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Abstract

We introduce the concept of a fiber aided wireless network architecture (FAWNA), which allows
high-speed mobile connectivity by leveraging the speed of optical networks. As a first step towards
designing such network architectures, we consider a single-input, single-output (SISO) wireless-
optical communication link. This link consists of a wireless channel and a fiber optic channel,
connected to each other by a wireless-optical interface. We propose a scheme where the received
signal at the wireless-optical interface is quantized before being sent over the fiber. The achievable
rate for this scheme approaches the SISO capacity exponentially with fiber capacity. We show that
for fixed fiber capacity, there is an optimal wireless bandwidth of operation when our scheme is used.
The wireless-optical interface has low complexity and does not require knowledge of the transmitter
code book. Moreover, the loss in “soft” information, due to quantization, goes to 0 asymptotically
with increase in fiber capacity. These properties make our scheme extendable to FAWNAs with large
number of transmitters, radio-optic converters, variable rates, changing channel conditions and node
positions.

1 Introduction

There is a considerable demand for increasingly high-speed communication networks with mobile con-
nectivity. Traditionally, high-speed communication has been efficiently provided through wireline infras-
tructure, particularly based on optical fiber, where bandwidth is plentiful and inexpensive. However,
such infrastructure does not support mobility. Instead, mobile communication is provided by wireless
infrastructure, most typically over the radio spectrum. However, limited available spectrum and inter-
ference effects limit mobile communication to lower data rates.
We introduce the concept of a fiber aided wireless network architecture (FAWNA), which allows high-
speed mobile connectivity by leveraging the speed of optical networks. In the proposed architecture, the
network coverage area is divided into zones such that an optical fiber “bus” passes through each zone.
Connected to the end of the fiber is a bus controller/processor, which coordinates use of the fiber as
well as connectivity to the outside world. Along the fiber are radio-optical converters, which are access
points consisting of simple antennas directly connected to the fiber. Each of these antennas harvest the
energy from the wireless domain to acquire the full radio bandwidth in their local environment and place
the associated waveform onto a subchannel of the fiber. Within the fiber, the harvested signals can be
manipulated by the bus controller/processor and made available to all other antennas. In each zone,
there may be one or more active wireless nodes. Wireless nodes communicate between one another, or to
the outside world, by communicating to a nearby antenna. Thus any node in the network is at most two
hops away from any other node, regardless of the size of the network. In general, each zone is generally
covered by several antennas, and there may also be wired nodes connected directly to the fiber. This
architecture has the potential to reduce dramatically the interference effects that limit scalability and the
energy-consumption characteristics that limit battery life, in pure wireless infrastructure. In particular,
the architecture makes use of the fact that areas with high densities of users, such as urban areas, or
indoor business and educational settings, generally have both the most severe interference problems, and
the most dense wireline infrastructure. Moreover, while wireless channels exhibit significant congestion,
generally in the form of interference, in areas with a high density of users, the optical fiber infrastructure
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Figure 1: Point-to-point communication over a wireless-optical link.

typically has significant over provisioning, with abundance of fiber that is not lit or only very partially
used. FAWNA thus uses the wireline infrastructure to provide a distributed means of aggressively har-
vesting energy from the wireless medium in areas where there is a rich, highly vascularized wireline
infrastructure and distributing in an effective manner energy to the wireless domain by making use of
the proximity of transmitters to reduce interference.
As a first step towards designing such network architectures, we consider a single-input, single-output

(SISO) wireless-optical communication link. Figure 1 shows such a link between two points A and B.
The various quantities in the figure will be described in detail in the next section. Optimal relay design
for the serial relay channel where, both links across the interface are AWGN links, has been considered
in [13, 14]. In this paper, we consider two hop communication, where, the first hop is over a wireless
channel and the second, over a fiber optic channel. The links we consider are ones where the fiber optic
channel capacity is larger than the wireless channel capacity.
The transmitter at A transmits information to an intermediate wireless-optical interface (radio-optical
converter) at O over a wireless channel. The wireless-optical interface then relays this information to the
destination, B, over a fiber optic channel. The end-to-end design is done to maximize the transmission
rate between A and B. Since, in general, a FAWNA has a large number of radio-optical converters, an
important design objective is to keep the wireless-optical interface as simple as possible without sacri-
ficing too much in performance.
Our problem has a similar setup, but a different objective than the CEO problem [10, 11, 12] with a
single agent. In the CEO problem, the rate-distortion tradeoff is analyzed for a given source that needs
to be conveyed to the CEO. Rate-distortion theory, which uses infinite dimensional vector quantization,
is used to analyze the problem. We analyze the maximum rate at which reliable communication is
possible between the transmitter and receiver when, decoding is not performed at the wireless-optical
interface. The interface needs to be practically implementable and has to have low complexity, extend-
ability to FAWNAs with large number of transmitters and radio-optic converters and, adaptability to
variable rates, changing channel conditions and node positions. We use finite-dimensional quantizers at
the interface and use high-resolution quantizer theory for analysis.
Let us denote the capacities of the wireless and optical channels as Cw(P,W ) and Cf bits/sec, respec-
tively, where, P is the average transmit power at A and W is the wireless transmission bandwidth.
Since, as stated earlier, we consider links where Cw(P,W ) ≤ Cf , [7] shows that the capacity of the two
hop SISO link, CSISO(P,W ), is

CSISO(P,W ) = min

{

Cw(P,W ), Cf

}

= Cw(P,W ) bits/sec. (1)

One way of achieving this capacity is to decode and re-encode at the wireless-optical interface. How-
ever, decoding results in the wireless-optical interface having high complexity and the interface requires
knowledge of the transmitter code book. A major drawback of the decode/re-encode scheme is signif-
icant loss in optimality as we go to FAWNAs with multiple transmitters and radio-optical converters.
This happens because “soft” information in the wireless signal is completely lost by decoding at the
wireless-optical interface. Hence, multiple antenna gain is not possible with this scheme.
In this paper, we propose a scheme in which the wireless signal at the radio-optical converter is sampled
and quantized using a fixed-rate, memoryless, vector quantizer, before being sent over the fiber. Hence,
the wireless-optical interface uses a forwarding scheme. Since, transmission of continuous values over the
fiber is practically not possible using commercial lasers, quantization is necessary for the implementation
of a forwarding scheme.
We show that the capacity using this quantization scheme approaches the SISO capacity, CSISO(SNR),
exponentially with fiber capacity. The scheme is thus near-optimal with respect to decoding, since, the
fiber capacity is large. For fixed fiber capacity, there is an optimal wireless bandwidth of operation when



our scheme is used. We show that low dimensional (or even scalar) quantization can be performed at
the interface without significant loss in performance. We compute an upper bound to this loss as 4.35
dB. Not only does this result in low complexity, but also smaller (or no) buffers are required, thereby
further simplifying the radio-optical interface. Moreover, Hui and Neuhoff [9] show that asymptotically
optimal quantization can be implemented with complexity increasing at most polynomially with the
rate. Knowledge of the transmitter code book is not required at the wireless-optical interface. In our
scheme, the loss in “soft” information, due to quantization of the wireless signal, goes to 0 asymptotically
with increase in fiber capacity. These properties make our scheme extendable to FAWNAs with large
number of transmitters and radio-optic converters. Since the wireless-optical interfaces do not require
knowledge of the transmitter code book, our scheme offers easy adaptability to variable rates, changing
channel conditions and node positions.
The paper is organized as follows: In section 2, we describe our wireless and fiber channel models. We
introduce our scheme in section 3 and analyze its performance in section 4. We conclude in section 5.
Unless specified otherwise, all logarithms in this paper are to the base 2.

2 Channel models

Wireless Channel: We use a linear model for the wireless channel between A and the wireless-optical
interface:

y = ax + w, (2)

where, x,w,y ∈ C are the channel input, noise and output, respectively. The channel gain (state), a ∈ C,
is deterministic. The noise, w, is a zero mean circularly symmetric complex Gaussian random variable,
w ∼ CN (0, N0), and is independent of the channel input. N0/2 is the double-sided white noise spectral
density. The channel input, x, satisfies the average power constraint E[|x|2] = P/W , where, P and W
are the average transmit power at A and wireless bandwidth, respectively. Hence, the wireless channel
capacity is

Cw(P,W ) = W log

(

1 +
|a|2P
N0W

)

bits/sec, (3)

and W symbols/sec are transmitted over the wireless channel.

Fiber Optic Channel: The fiber optic channel between the wireless-optical interface and the receiver,
B, can reliably support a rate of Cf bits/sec. Fiber channel coding is performed at the wireless-optical
interface in order to achieve this. Note that the code required for the fiber is a very low complexity one.
An example of a code that may be used is the 8B10B code, which is commonly used in Ethernet. Hence,
fiber channel coding does not significant increase the complexity at the wireless-optical interface.

3 Proposed Scheme

The input to the wireless channel, x, is a zero mean circularly symmetric complex Gaussian random
variable, x ∼ CN (0, P/W ). Note that it is this input distribution that achieves the capacity of our
wireless channel model. The output from the antenna at the wireless-optical interface is first converted
from passband to baseband and then sampled at the Nyquist rate of W complex samples/sec. The
random variable, y, represents the output from the sampler. Fixed-rate, memoryless, m-dimensional
vector quantization is performed on these samples at a rate of l bits/complex sample. The quantized
complex samples are subsequently sent over the fiber after fiber channel coding and modulation.
The fiber is thus required to reliably support a rate of Wl bits/sec1. Hence, we get the following
constraint on l:

l ≤ Cf

W
. (4)

The quantizer noise, qm,l, is modelled as being additive. Thus, the two-hop channel between A and B
is modelled as:

z = ax + w + qm,l.

1The samples that are being quantized are correlated across time and the correlation depends on the dimension of the

vector being quantized, m. If source coding is performed on the quantized samples, the rate requirement on the fiber is

lowered for fixed distortion. However, this comes at a cost of increased complexity at the wireless-optical interface.



The quantizer used is an optimal fixed rate, memoryless m-dimensional, high resolution vector quantizer
and hence, its distortion-rate function is given by the Zador-Gersho function [1, 3, 5]:

E[|qm,l|2] = E[|y|2]Mmβm2−l =

(

N0 +
|a|2P
W

)

Mmβm2−l. (5)

Mm is Gersho’s constant, which is independent of the distribution of y. βm is the Zador’s factor that
depends on the distribution of y. Since the fiber channel capacity is large, the assumption that the
quantizer is a high resolution one, is valid. Note that, since this quantizer is an optimal fixed rate,
memoryless vector quantizer, references [2, 3, 4, 6, 8] show that it has the following properties:

E[qm,l] = 0, (6)

E[zq∗
m,l] = 0, (7)

E[yq∗
m,l] = −E[|qm,l|2]. (8)

From (6, 7, 8), we obtain

E[|z|2] = E[|y|2] − E[|qm,l|2]. (9)

Let the capacity for this scheme (in bits/sec) be denoted as CQ(P,W,m, l), where, m ∈ {1, 2, . . .} and

l ≤ Cf

W
. We establish the following theorem:

Theorem 1

CSISO(P,W ) − Φ(P,W,m, l) ≤ CQ(P,W,m, l) ≤ CSISO(P,W ),

where,

Φ(P,W,m, l) = W log

(

1 +
|a|2PMmβm2−l

N0W

)

.

Proof: The upper bound follows trivially from the fact that the rate achieved using the proposed scheme
cannot exceed the capacity of the two hop wireless-optical channel, CSISO(P,W ).
We now consider the lower bound. Let x̂llse(z) be the linear least-squares error (LLSE) estimate of x

from z and ellse, the estimation error. Thus

x = x̂llse(z) + ellse.

We denote the variance of the estimation error as λllse = E[|ellse|2]. Now

1

W
CQ(P,W,m, l)

= I(x; z)

= h(x) − h(x|z)
= h(x) − h(ellse|z)
≥ h(x) − h(ellse) (10)

≥ h(x) − h(eG
llse) (11)

= log

(

P

λllseW

)

= log

(

1

1 − ρ2
x,z

)

. (12)

Since conditioning reduces entropy, the inequality in (10) follows. In (11), we replace ellse by another
random variable, eG

llse ∼ CN (0, λllse). Since the Gaussian distribution maximizes entropy for fixed
variance, h(ellse) ≤ h(eG

llse), and the inequality in (11) follows. Equation (12) follows since

λllse = E[|x|2] − E[xz∗]E[x∗z]

E[|z|2] =
P

W
− Pρ2

x,z

W
=

P (1 − ρ2
x,z)

W
.



We now compute ρx,z. From our channel and quantizer models, we have the following Markov chain:
(x,w) ↔ y ↔ qm,l. Using this Markov chain, we obtain the following relation:

E[xq∗
m,l]

= Ey

[

E[xq∗
m,l|y]

]

= Ey

[

E[x|y]E[q∗
m,l|y]

]

= Ey

[

E[xy∗]

E[|y|2]yE[q∗
m,l|y]

]

(13)

=
E[xy∗]E[yq∗

m,l]

E[|y|2]

= −a∗PMmβm2−l

W
. (14)

Since x and y are jointly Gaussian random variables, we obtain (13). Equation (14) follows from the
quantizer properties (5, 8), and our wireless channel model (2). Now

ρ2
x,z

=
|E[xz∗]|2

E[|x|2]E[|z|2]

=
|E[xy∗] + E[xq∗]|2

E[|x|2]E[|z|2]

=
|a|2 P

W
(1 − Mmβm2−l)2

E[|z|2] (15)

=
|a|2 P

W
(1 − Mmβm2−l)

N0 + |a|2 P
W

. (16)

We obtain (15) using (14) and, (16) using (5, 9). Combining (12, 16), we obtain

CQ(P,W,m, l)

≥ W log(1 +
|a|2P
N0W

) − Φ(P,W,m, l)

= CSISO(P,W ) − Φ(P,W,m, l), (17)

where, Φ(P,W,m, l) = W log

(

1 + |a|2PMmβm2−l

N0W

)

is the loss in capacity due to quantization noise. We

use (1, 3) for (17). This completes the proof of the theorem. 2

4 Performance Analysis

In this section, we analyze the performance of the scheme proposed in Section 3. We consider how
the loss in capacity due to quantization noise, Φ(P,W,m, l), varies with the quantization dimension,
m, and quantization rate, l. We also study the dependence of the capacity lower bound of Theorem 1,
on transmit power and wireless bandwidth. Since, high resolution quantization is done at the wireless-
optical interface and our link model is one where the fiber channel capacity is always greater than the
wireless channel capacity, the following constraints must be met:

0 ≤ W < Cf , (18)

W log(1 +
|a|2P
N0W

) ≤ Cf . (19)

4.1 Effect of quantization dimension

We first study the effect of quantization dimension on the performance of our scheme. We prove the
following lemma:



Lemma 1

Φ(P,W,∞, l) ≤ Φ(P,W,m, l) ≤ Φ(P,W, 1, l),

where, Φ(P,W, 1, l) and Φ(P,W,∞, l) correspond to loss in capacity due to fixed rate, scalar and infinite

dimensional vector quantization, respectively, and

Φ(P,W, 1, l) = W log

(

1 +
π
√

3|a|2P2−l

2N0W

)

, Φ(P,W,∞, l) = W log

(

1 +
|a|2P2−l

N0W

)

.

Proof: Since Gaussian signaling is used for the wireless channel, the input to the quantizer is a correlated
Gaussian random vector. Zador’s factor and Gersho’s constant obey the following property:

M∞β∞ ≤ Mmβm ≤ M1β1 ≤ M1β
G
1 ,

where, βG
1 is the Zador’s factor for an i.i.d Gaussian source and, β1 ≤ βG

1 . Since, M1 = 1
12 , M∞ = 1

2πe
,

βG
1 = 6

√
3π and β∞ = 2πe, 2 we obtain

1 ≤ Mmβm ≤ π
√

3

2
. (20)

The lower bound corresponds to fixed rate, infinite dimensional vector quantization, whereas, the upper
bound corresponds to fixed rate, scalar quantization. Equation (20), and the fact that Φ(P,W,m, l) is a
concave (logarithmic) function of Mmβm, completes the proof. 2

As we reduce the quantizer dimension, we reduce the quantization complexity at the wireless-optical
interface. However, we pay in terms of capacity. This lemma shows that this loss in performance is

upper bounded by 10 log(π
√

3
2 ) ∼ 4.35 dB. The maximum loss occurs when a fixed rate, scalar quantizer

is used.

4.2 Effect of quantizer rate

We now study the effect of quantizer rate on Φ(P,W,m, l). We prove the following lemma:

Lemma 2

Φ(P,W,m, l) = Θ(2−l).

Proof:

Φ(P,W,m, l)

= W log

(

1 +
|a|2PMmβm2−l

N0W

)

≤ |a|2 P

N0
Mmβm2−l log(e) = O(2−l). (21)

The inequality log(1 + v) ≤ v log(e) results in (21). Hence,

Φ(P,W,m, l) = O(2−l). (22)

We also have

Φ(P,W,m, l)

= W log

(

1 +
|a|2PMmβm2−l

N0W

)

≥ |a|2 P

N0
Mmβm2−l log(e) − |a|4P 2M2

mβ2
m2−2l log(e)

2N2
0 W

= Ω(2−l). (23)

We use the inequality log(1 + v) ≥ v log(e) − v2 log(e)/2, to obtain (23). Hence,

Φ(P,W,m, l) = Ω(2−l). (24)

2Our quantizer model does not make use of the correlation between its input symbols. If the quantizer does so, β∞ can

be further lowered, giving a lower distortion for fixed rate.



Combining (22) and (24), completes the proof. 2

This lemma shows that the loss in capacity, Φ(P,W,m, l), decreases exponentially with the quantizer
rate. Hence, the capacity using the proposed scheme approaches the SISO capacity exponentially with
quantizer rate. Note that

lim
l→∞

Φ(P,W,m, l) = 0.

This happens since the quantization loss goes to 0 asymptotically with quantizer rate. However, from (4),
we see that the maximum value that l takes, depends on the fiber capacity and the wireless bandwidth.
Since, Φ(P,W,m, l) decreases exponentially with l, it is minimum when l = Cf/W . Thus, we have the
following lemma:

Lemma 3

min
l≤Cf

W

Φ(P,W,m, l) = Φ(P,W,m,Cf ) = W log

(

1 +
|a|2PMmβm2−

Cf
W

N0W

)

.

The lemma shows that the capacity loss due to quantization decreases exponentially with fiber capacity.
Hence, with our scheme, the rate at which reliable communication is possible approaches the SISO
capacity exponentially with fiber capacity. The scheme is thus near-optimal with respect to decoding at
the wireless-optical interface, since, the fiber capacity is large.
Let us define

CLB(P,W,m,Cf ) , CSISO(P,W ) − Φ(P,W,m,Cf ).

CLB(P,W,m,Cf ) is a lower bound to the maximum achievable rate (and SISO capacity) when quanti-
zation is done at the wireless-optical interface. From Lemma 3, we have

CLB(P,W,m,Cf ) = W log

(

1 +
|a|2P
N0W

)

− W log

(

1 +
|a|2PMmβm2−

Cf
W

N0W

)

.

We have already seen that CLB(P,W,m,Cf ) tends to CSISO(P,W ), exponentially with fiber capacity
(Lemma 2). Figure 2 is a plot of CLB(P,W,m,Cf ) versus fiber capacity, which illustrates this behavior.

In the plot, we set W = 10 Mhz, Mmβm = 1 and |a|2P

N0

= 25 × 106 sec−1.

4.3 Effect of transmit power on capacity lower bound

We analyze the dependence of CLB(P,W,m,Cf ) on transmit power, P . Examining the first derivative
with respect to P :

∂CLB(P,W,m,Cf )

∂P
=

|a|2N0(1 − Mmβm2−
Cf
W ) log(e)W 2

(N0W + |a|2P )(N0W + |a|2PMmβm2−
Cf
W )

> 0,

where, the inequality follows since high resolution quantization is done at the wireless-optical interface,
i.e., 1 � Cf/W . Thus, CLB(P,W,m,Cf ) increases monotonically with P .
Equation (19) can be expressed as a constraint on the transmit power:

P ≤ P ∗ ,
N0W

|a|2
(

2
Cf
W − 1

)

. (25)

If the SISO link is operated at a transmit power greater than P ∗, the wireless channel capacity will exceed
the fiber capacity and CSISO(P,W ) = Cf .3 Hence, the optical channel will be limiting the SISO link
capacity and increasing the transmit power beyond P ∗ does not affect SISO capacity. In this paper, we
do not consider the power regime, P > P ∗. Hence, maximizing the capacity lower bound for P ∈ [0, P ∗]:

max
P∈[0,P∗]

CLB(P,W,m,Cf ) = CLB(P ∗,W,m,Cf ) = Cf − W log

(

1 + Mmβm(1 − 2−
Cf
W )

)

.

Figure 3 is a plot of CSISO(P,W ) and CLB(P,W,m,Cf ) versus |a|2P

N0

. In the plot, we refer to |a|2P

N0

as the
“Scaled Transmit Power”. We set W = 5 Mhz, Cf = 50 Mbps and Mmβm = 1.

3In general, for fixed fiber capacity, this is the best wireless performance a FAWNA can offer.



20 40 60 80 100 120 140 160 180 200
11

12

13

14

15

16

17

18

19

Fiber capacity − C
f
 (in Mbps)

Li
nk

 c
ap

ac
ity

 (i
n 

M
bp

s)

SISO capacity
C

LB
(P,W,m,C

f
)

Figure 2: Dependence of SISO link capacity on fiber capacity.
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4.4 Effect of bandwidth on capacity lower bound

We now analyze how the capacity lower bound, CLB(P,W,m,Cf ), varies with the wireless bandwidth,
W . Considering the derivative with respect to W :

∂CLB(P,W,m,Cf )

∂W
(26)

= log

[

1 + |a|2P

N0W

1 + |a|2PMmβm2−

cf
W

N0W

]

− |a|2P log(e)

N0W
.

1 + Mmβm2−
cf
W

(

|a|2PCf loge(2)
N0W 2 +

Cf loge(2)
W

− 1

)

(

1 + |a|2P

N0W

)(

1 + |a|2PMmβm2−

cf
W

N0W

) .

Setting
∂CLB(P,W,m,Cf )

∂W
= 0, we obtain the critical point of the function. This point is the maximum

of CLB(P,W,m,Cf ), since, the second derivative is negative at this point (we omit the steps here for
brevity). Hence, the optimal bandwidth of operation is:

W ∗ = arg max
W∈[0,Cf )

CLB(P,W,m,Cf ).

When our scheme is used, for fixed fiber capacity, quantizer distortion as well as wireless capacity (power
efficiency) increases with wireless bandwidth. The quantizer distortion increases since, the quantization
rate decreases inversely with bandwidth. The two effects compete and yield the optimal bandwidth.
When the operating bandwidth is lowered from W ∗, CLB(P,W,m,Cf ) is lowered since, the reduction
in power efficiency is more than the reduction in quantizer distortion. On the other hand, when the
bandwidth is increased beyond W ∗, CLB(P,W,m,Cf ) is lowered since, the increase in quantizer distortion
is more than the increase in power efficiency. Obtaining an analytical solution for W ∗ from (26), is
difficult. However, the optimal bandwidth can easily be found by numerical techniques. Figure 4
shows the plot of the SISO capacity, CSISO(P,W ), and the capacity lower bound, CLB(P,W,m,Cf ),

versus bandwidth for |a|2P

N0

= 108 sec−1 and Cf = 100 Mbps. The optimum bandwidth for this case is
numerically found out to be W ∗ ∼ 35 MHz. The value of the capacity lower bound at this bandwidth
is CLB(P,W ∗,m,Cf ) ∼ 51.38 Mbps.

5 Conclusion

In this paper, we introduce the concept of a fiber aided wireless network architecture, which allows
high-speed mobile connectivity by leveraging the speed of optical networks. As a first step towards
designing such network architectures, we consider a single-input, single-output (SISO) wireless-optical
communication link. We propose a scheme in which the wireless signal at the radio-optical converter is
sampled and quantized using a fixed-rate, memoryless, vector quantizer, before being sent over the fiber.
The rate at which reliable communication is possible with this scheme approaches the SISO capacity
exponentially with fiber capacity. The scheme is thus near-optimal, since, the fiber capacity is large.
For fixed fiber capacity, there is an optimal wireless bandwidth of operation when our scheme is used.
The wireless-optical interface has low complexity and does not require knowledge of the transmitter
code book. In our scheme, the loss in “soft” information, due to quantization of the wireless signal,
goes to 0 asymptotically with increase in fiber capacity. These properties make our scheme extendable
to FAWNAs with large number of transmitters, radio-optic converters, variable rates, changing channel
conditions and node positions.
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