
Network coding for security and

robustness
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Outline

• Network coding for detecting attacks

• Network management requirements for robustness

• Centralized versus distributed network management

2



Byzantine security

• Robustness against faulty/malicious components with arbi-

trary behavior, e.g.

– dropping packets

– misdirecting packets

– sending spurious information

• Abstraction as Byzantine generals problem [LSP82]

• Byzantine robustness in networking [P88,MR97,KMM98,CL99]
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Byzantine detection with network coding [HLKMEK04]

Distributed randomized network coding can be extended to de-

tect Byzantine behavior

• Small computational and communication overhead

– small number of hash bits included with each packet, cal-

culated as simple polynomial function of data

• Require only that a Byzantine attacker does not design and

supply modified packets with complete knowledge of other

nodes’ packets
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Byzantine modification detection scheme

• Suppose each packet contains θ data symbols x1, . . . , xθ and

φ ≤ θ hash symbols y1, . . . , yφ

• Consider the function π(x1, . . . , xk) = x2
1 + · · · + x

k+1
k

• Set

yi = π(x(i−1)k+1, . . . , xik) for i = 1, . . . , φ − 1

yφ = π(x(φ−1)k+1, . . . , xθ)

where k =
⌈

θ
φ

⌉

is a design parameter trading off overhead against

detection probability
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Detection probability

[HLKMEK04] If the receiver gets s genuine packets, then the

detection probability is at least 1 −
(

k+1
q

)s
.

• E.g. With 2% overhead (k = 50), code length=7, s = 5, the

detection probability is 98.9%.

• with 1% overhead (k = 100), code length=8, s = 5, the

detection probability is 99.0%.
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Analysis

• Let M be the matrix whose ith row mi represents the concate-

nation of the data and corresponding hash value for packet

i

• Suppose the receiver tries to decode using

– s unmodified packets, represented as Ca [M |I], where the

ith row of the coefficient matrix Ca is the vector of code

coefficients of the ith packet

– r−s modified packets, represented by [CbM + V |Cb], where

V is an arbitrary matrix
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Analysis (cont’d)

• Let C =

[

Ca

Cb

]

• Decoding is equivalent to pre-multiplying the matrix
[

CaM Ca

CbM + V Cb

]

with C−1, which gives
[

M + C−1

[

0

V

]

I

]
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• For any Cb and V , since receiver decodes only with a full rank

set of packets, possible values of Ca are s.t. C is non-singular



Analysis (cont’d)

We can show that

• for each of ≥ s packets, the attacker knows only that the

decoded value will be one of qrank(V ) possibilities






mi +
rank(V )

∑

j=1

γi,jvj

∣

∣

∣

∣

∣

∣

γi,j ∈ Fq







• at most k + 1 out of the q vectors in a set {u + γv|γ ∈ Fq},
where u = (u1, . . . , uk+1) is a fixed length-(k +1) vector and

v = (v1, . . . , vk+1) a fixed nonzero length-(k + 1) vector, can

satisfy the property that the last element of the vector equals

the hash of the first k elements.
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Network mgt for link failure recovery [HMK02, HMK03]

• Structured schemes for link failure recovery, e.g. end-to-end

path protection, loopback, generalized loopback

• Network coding admits any solution feasible on surviving links

• Network management information directs network’s response

to different link failures

• Questions:

-How to quantify fundamental amount of information needed
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to direct recovery?

-How do different types of recovery schemes compare in man-

agement overhead?



A theoretical framework for network management

• Network management information can be quantified by the
log of the number of different behaviors (codes) used [tbh]
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• Allowing general network coding solutions gives fundamental
limits on management information required
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Classes of failure recovery schemes considered

• Receiver-based schemes: only receivers change behavior un-

der different failure scenarios

• Network-wide schemes: any node may change behavior, in-

cludes receiver based schemes as a special case

• Linear schemes: linear operations at all nodes

• Nonlinear receiver-based schemes: nonlinear decoding at re-

ceivers
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Need for network management

• A link h is called integral if there exists some subgraph of

the network on which the set of source-receiver connections

is feasible if and only if h has not failed.

• For any network connection problem with at least one inte-

gral link whose failure is recoverable, no single linear code

can cover the no-failure scenario and all recoverable failures
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Bounds on network management

Network management for single recoverable link, using network

parameters

• r, number of source processes transmitted in network;

• m, the number of links in a minimum cut between the source

nodes and receiver nodes;

• d, the number of receiver nodes;

• tmin, the minimum number of terminal links among all re-

ceivers.
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Some bounds

• Tight lower bounds on no. of linear codes for general case:

receiver-based

⌈

m
m−r

⌉

network-wide

⌈

m+1
m−r+1

⌉

• Tight upper bounds on no. of linear codes for the single-receiver:

receiver-
based

{

r + 1 for r = 1 or m − 1
r for 2 ≤ r ≤ m − 2

network-
wide

{

r + 1 for r = 1, r = 2 = m − 1
r for r = 2 ≤ m − 2,

r = 3, r = m − 1 ≥ 3
r − 1 for 4 ≤ r ≤ m − 2
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• Upper bound on no. of linear codes for multicast: (r2 + 2)(r + 1)d−2

• Tight lower bounds for nonlinear receiver-based codes for multicast:

{

r for 1 < r = tmin − 1
1 for r = 1 or r ≤ tmin − 2


