Decentralized code construction
and network coding for multicast
with a cost criterion



Overview|

Randomized construction and its error behavior

Performance of distributed randomized construction - case
studies

Traditional methods based on flows - a review
Trees for multicasting - a review

Network coding with a cost criterion - flow-based methods
for multicasting through linear programming



e Distributed operation - one approach

e A special case - wireless networks

e Sample ISPs
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o Coefficients {a; j, f ;, g, l} give network-constrained transfer
matrices (A, F,{Bg}), a network code

e Matrix Mg = A(I—F)_lBg gives transfer function from
sources to outputs [KMO1]:

(X1 Xo...Xr] Mg=1[Z31 Z32-..Z3,]
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Feasibility and code COﬂStI’UCtiOI’lI

Determining feasibility
e min-cut max-flow bound satisfied for each receiver [ACLYO0O]

e transfer matrix A(I—F)_lBg for each receiver § is non-
singular [KMO1]

Constructing linear solutions

e Centralized

10



— Direct algebraic solution using transfer matrix of [KMO01]
— Algorithms using subgraph consisting of flow solutions to
individual receivers [SET03, JCJO03]
e Decentralized

— A distributed randomized network coding approach [HKMKEO3]



Randomized network codingl

e Interior network nodes independently choose random linear
mappings from inputs to outputs

e Coefficients of aggregate effect communicated to receivers
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Randomized network coding|

e Interior network nodes independently choose random linear
mappings from inputs to outputs

e Coefficients of aggregate effect communicated to receivers

e Receiver nodes can decode if they receive as many indepen-
dent linear combinations as the number of source processes
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Success probabilityl

[HKMKEO3, HMSEKO3] For a feasible d-receiver multicast con-
nection problem on a network with

e independent or linearly correlated sources

e a network code in which code coefficients a; ;, f; ; for n links
are chosen independently and uniformly over [y

the success probability is at least (1 — d/q)" for ¢ > d. Error
bound is of the order of the inverse of the field size, so error
probability decreases exponentially with codeword length
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Proof outline|

e Recall transfer matrix Mg = A(I — F)_lBg for each receiver
B must be non-singular

e We show an equivalent condition connected with bipartite

A 0
matching: the Edmonds matrices 7 | (in the acyclic
I — F Bﬁ
delay-f A 01 th ith del
elay-free case) or 1-DF Bl (in the case wi elays)

are non-singular

e T his shows that if n links have random coefficients, the de-
terminant polynomial
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— has maximum degree n in the random variables {ax,j,fi,j}

— is linear in each of these variables



Proof outline (cont’d) |

e \We want the product of the d receivers’ determinant poly-
nomials to be nonzero

e \We can show inductively, using the Schwartz-Zippel Theo-
rem, that for any polynomial P € F[£1,&5,...] of degree < dn,
in which each &, has exponent at most d, if £&1,&>,... are
chosen independently and uniformly at random from [, C I,
then P = 0 with probability at most 1 — (1 —d/q)" for d < q

e Particular form of the determinant polynomials gives rise to
a tighter bound than the Schwartz-Zippel bound for general
polynomials of the same total degree
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Utility of distributed network codingl

e Decentralized scenarios

L 4 @ @ @ @
XZ
X, X,
@ @ 'Src @ @
XZ
@ @ ® @ @
] Receiver position | (2,4) ] (44) | (810) | (10,10) |

| Randomized flooding upper bound | 0.563 | 0.672 | 0.667 | 0.667 |

Randomized I¥5¢ lower bound 0.882 | 0.827 | 0.604 0.567
Coding F>s Tower bound 0.969 | 0.954 | 0.882 0.868
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