
Decentralized code construction

and network coding for multicast

with a cost criterion
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Overview

• Randomized construction and its error behavior

• Performance of distributed randomized construction - case

studies

• Traditional methods based on flows - a review

• Trees for multicasting - a review

• Network coding with a cost criterion - flow-based methods

for multicasting through linear programming
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• Distributed operation - one approach

• A special case - wireless networks

• Sample ISPs
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• Coefficients {ai,j, fl,j, bβi,l} give network-constrained transfer

matrices (A,F, {Bβ}), a network code

• Matrix Mβ = A(I − F )−1BT
β gives transfer function from

sources to outputs [KM01]:

[X1 X2 . . . Xr]Mβ = [Zβ,1 Zβ,2 . . . Zβ,r]
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Feasibility and code construction

Determining feasibility

• min-cut max-flow bound satisfied for each receiver [ACLY00]

• transfer matrix A(I − F )−1BT
β for each receiver β is non-

singular [KM01]

Constructing linear solutions

• Centralized
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– Direct algebraic solution using transfer matrix of [KM01]

– Algorithms using subgraph consisting of flow solutions to

individual receivers [SET03, JCJ03]

• Decentralized

– A distributed randomized network coding approach [HKMKE03]



Randomized network coding

• Interior network nodes independently choose random linear

mappings from inputs to outputs

• Coefficients of aggregate effect communicated to receivers

• Receiver nodes can decode if they receive as many indepen-

dent linear combinations as the number of source processes
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Success probability

[HKMKE03, HMSEK03] For a feasible d-receiver multicast con-

nection problem on a network with

• independent or linearly correlated sources

• a network code in which code coefficients ai,j, fl,j for η links

are chosen independently and uniformly over Fq

the success probability is at least (1 − d/q)η for q > d. Error

bound is of the order of the inverse of the field size, so error

probability decreases exponentially with codeword length
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Proof outline

• Recall transfer matrix Mβ = A(I − F )−1BT
β for each receiver

β must be non-singular

• We show an equivalent condition connected with bipartite

matching: the Edmonds matrices

[

A 0

I − F BT
β

]

(in the acyclic

delay-free case) or

[

A 0

I −DF BT
β

]

(in the case with delays)

are non-singular

• This shows that if η links have random coefficients, the de-

terminant polynomial
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– has maximum degree η in the random variables {ax,j, fi,j}

– is linear in each of these variables



Proof outline (cont’d)

• We want the product of the d receivers’ determinant poly-

nomials to be nonzero

• We can show inductively, using the Schwartz-Zippel Theo-

rem, that for any polynomial P ∈ F[ξ1, ξ2, . . . ] of degree ≤ dη,

in which each ξi has exponent at most d, if ξ1, ξ2, . . . are

chosen independently and uniformly at random from Fq ⊆ F,
then P = 0 with probability at most 1− (1− d/q)η for d < q

• Particular form of the determinant polynomials gives rise to

a tighter bound than the Schwartz-Zippel bound for general

polynomials of the same total degree
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Utility of distributed network coding

• Decentralized scenarios
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Src

Receiver position ( 2,4) (4,4) (8,10) (10,10)

Randomized flooding upper bound 0.563 0.672 0.667 0.667

Randomized F26 lower bound 0.882 0.827 0.604 0.567
Coding F28 lower bound 0.969 0.954 0.882 0.868
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