Decentralized code construction and network coding for multicast with a cost criterion

Overview

- Randomized construction and its error behavior
- Performance of distributed randomized construction case studies
- Traditional methods based on flows a review
- Trees for multicasting a review
- Network coding with a cost criterion flow-based methods for multicasting through linear programming

- Distributed operation one approach
- A special case wireless networks
- Sample ISPs

Linear network coding

 Y_j Y_k

 $\begin{array}{ccc} Y_j & & Y_k \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\$

$$\begin{array}{c|c} Y_j & & Y_k \\ & v & \text{source } X_i \\ & & \text{originating at } v \\ Y_l = a_{1,3}X_i + f_{1,3}Y_j \\ & + f_{2,3}Y_k \end{array}$$

- Coefficients $\{a_{i,j}, f_{l,j}, b_{\beta_{i,l}}\}$ give network-constrained transfer matrices $(A, F, \{B_{\beta}\})$, a network code
- Matrix $M_{\beta} = A(I F)^{-1}B_{\beta}^{T}$ gives transfer function from sources to outputs [KM01]:

$$[X_1 X_2 \dots X_r] M_{\beta} = [Z_{\beta,1} Z_{\beta,2} \dots Z_{\beta,r}]$$

- Coefficients $\{a_{i,j}, f_{l,j}, b_{\beta_{i,l}}\}$ give network-constrained transfer matrices $(A, F, \{B_{\beta}\})$, a network code
- Matrix $M_{\beta} = A(I \mathbf{D}F)^{-1}B_{\beta}^{T}$ gives transfer function from sources to outputs [KM01]:

$$[X_1 X_2 \dots X_r] M_{\beta} = [Z_{\beta,1} Z_{\beta,2} \dots Z_{\beta,r}]$$

Feasibility and code construction

Determining feasibility

- min-cut max-flow bound satisfied for each receiver [ACLY00]
- transfer matrix $A(I-F)^{-1}B_{\beta}^{T}$ for each receiver β is non-singular [KM01]

Constructing linear solutions

• Centralized

- Direct algebraic solution using transfer matrix of [KM01]
- Algorithms using subgraph consisting of flow solutions to individual receivers [SET03, JCJ03]
- Decentralized
 - A distributed randomized network coding approach [HKMKE03]

Randomized network coding

- Interior network nodes independently choose random linear mappings from inputs to outputs
- Coefficients of aggregate effect communicated to receivers

Randomized network coding

- Interior network nodes independently choose random linear mappings from inputs to outputs
- Coefficients of aggregate effect communicated to receivers
- Receiver nodes can decode if they receive as many independent linear combinations as the number of source processes

Success probability

[HKMKE03, HMSEK03] For a feasible d-receiver multicast connection problem on a network with

- independent or linearly correlated sources
- a network code in which code coefficients $a_{i,j}$, $f_{l,j}$ for η links are chosen independently and uniformly over \mathbb{F}_q

the success probability is at least $(1 - d/q)^{\eta}$ for q > d. Error bound is of the order of the inverse of the field size, so error probability decreases exponentially with codeword length

Proof outline

- Recall transfer matrix $M_{\beta} = A(I F)^{-1}B_{\beta}^{T}$ for each receiver β must be non-singular
- We show an equivalent condition connected with bipartite matching: the Edmonds matrices $\begin{bmatrix} A & 0\\ I-F & B_{\beta}^T \end{bmatrix}$ (in the acyclic delay-free case) or $\begin{bmatrix} A & 0\\ I-DF & B_{\beta}^T \end{bmatrix}$ (in the case with delays) are non-singular
- This shows that if η links have random coefficients, the determinant polynomial

- has maximum degree η in the random variables $\{a_{x,j},f_{i,j}\}$
- is linear in each of these variables

Proof outline (cont'd)

- We want the product of the d receivers' determinant polynomials to be nonzero
- We can show inductively, using the Schwartz-Zippel Theorem, that for any polynomial $P \in \mathbb{F}[\xi_1, \xi_2, ...]$ of degree $\leq d\eta$, in which each ξ_i has exponent at most d, if $\xi_1, \xi_2, ...$ are chosen independently and uniformly at random from $\mathbb{F}_q \subseteq \mathbb{F}$, then P = 0 with probability at most $1 - (1 - d/q)^{\eta}$ for d < q
- Particular form of the determinant polynomials gives rise to a tighter bound than the Schwartz-Zippel bound for general polynomials of the same total degree

Utility of distributed network coding

• Decentralized scenarios

Receiver position		(2,4)	(4,4)	(8,10)	(10, 10)
Randomized flooding upper bound		0.563	0.672	0.667	0.667
Randomized	\mathbb{F}_{2^6} lower bound	0.882	0.827	0.604	0.567
Coding	\mathbb{F}_{2^8} lower bound	0.969	0.954	0.882	0.868