
Network coding for multicast

relation to compression

and generalization of

Slepian-Wolf
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Overview

• Review of Slepian-Wolf

• Distributed network compression

• Error exponents Source-channel separation issues

• Code construction for finite field multiple access networks
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Distributed data compression

Consider two correlated sources (X, Y ) ∼ p(x, y) that must be
separately encoded for a user who wants to reconstruct both

What information transmission rates from each source allow de-
coding with arbitrarily small probability of error?

E.g.

X1

X2

..

H(X1)

..

H(X2| X1)
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Distributed source code

A ((2nR1,2nR2), n) distributed source code for joint source (X, Y )

consists of encoder maps

f1 : Xn → {1,2, . . . ,2nR1}
f2 : Yn → {1,2, . . . ,2nR2}

and a decoder map

g : {1,2, . . . ,2nR1} × {1,2, . . . ,2nR2} → Xn × Yn

- Xn is mapped to f1(X
n)

- Y n is mapped to f2(Y
n)

- (R1, R2) is the rate pair of the code
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Probability of error

P
(n)
e = Pr{g(f1(Xn), f2(Y

n)) �= (Xn, Y n)}



Slepian-Wolf

Definitions:

A rate pair (R1, R2) is achievable if there exists a sequence of

((2nR1,2nR2), n) distributed source codes with probability of error

P
(n)
e → 0 as n → ∞

achievable rate region - closure of the set of achievable rates

Slepian-Wolf Theorem:
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For the distributed source coding problem for source (X, Y )

drawn i.i.d. ∼ p(x, y), the achievable rate region is

R1 ≥ H(X|Y )

R2 ≥ H(Y |X)

R1 + R2 ≥ H(X, Y )



Proof of achievability

Main idea: show that if the rate pair is in the Slepian-Wolf region,

we can use a random binning encoding scheme with typical set

decoding to obtain a probability of error that tends to zero

Coding scheme:

• Source X assigns every sourceword x ∈ Xn randomly among

2nR1 bins, and source Y independently assigns every y ∈ Yn

randomly among 2nR2 bins

• Each sends the bin index corresponding to the message
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• the receiver decodes correctly if there is exactly one jointly

typical sourceword pair corresponding to the received bin in-

dexes, otherwise it declares an error



Random binning for single source compression

An encoder that knows the typical set can compress a source X

to H(X)+ε without loss, by employing separate codes for typical

and atypical sequences

Random binning is a way to compress a source X to H(X) + ε

with asymptotically small probability of error without the encoder

knowing the typical set, as well as the decoder knows the typical

set

• the encoder maps each source sequence Xn uniformly at ran-

dom into one of 2nR bins
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• the bin index, which is R bits long, forms the code

• the receiver decodes correctly if there is exactly one typical

sequence corresponding to the received bin index



Error analysis

An error occurs if:

a) the transmitted sourceword is not typical, i.e. event

E0 = {X /∈ A
(n)
ε }

b) there exists another typical sourceword in the same bin, i.e.event

E1 = {∃x′ �= X : f(x′) = f(X),x′ ∈ A
(n)
ε }

Use union of events bound:

P
(n)
e = Pr(E0 ∪ E1)

≤ Pr(E0) + Pr(E1)
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Error analysis continued

Pr(E0) → 0 by the Asymptotic Equipartition Property (AEP)

Pr(E1) =
∑
x

Pr{∃x′ �= x : f(x′) = f(x),

x′ ∈ A
(n)
ε }

≤ ∑
x

∑
x′ �= x

x′ ∈ A(n)
ε

Pr(f(x′) = f(x))

=
∑
x

|A(n)
ε | 2−nR

≤ 2−nR 2n(H(X)+ε)

→ 0 if R > H(X)
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For sufficiently large n,

Pr(E0),Pr(E1) < ε

⇒ P
(n)
ε < 2ε



Jointly typical sequences

The set A
(n)
ε of jointly typical sequences is the set of sequences

(x,y) ∈ Xn × Yn with probability:

2−n(H(X)+ε) ≤ pX (x) ≤ 2−n(H(X)−ε)

2−n(H(Y )+ε) ≤ pY (y) ≤ 2−n(H(Y )−ε)

2−n(H(X,Y )+ε) ≤ pX,Y (x,y) ≤ 2−n(H(X,Y )−ε)

for (X,Y) sequences of length n IID according to pX,Y(x,y) =∏n
i=1 pX,Y (xi, yi)

Size of typical set:

|A(n)
ε | ≤ 2n(H(X,Y )+ε)
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Proof:

1 =
∑

p(x,y)

≥ ∑
A

(n)
ε

p(x,y)

≥ |A(n)
ε |2−n(H(X,Y )+ε)



Conditionally typical sequences

The conditionally typical set A
(n)
ε (X|y) for a given typical y se-

quence is the set of x sequences that are jointly typical with the

given y sequence.

Size of conditionally typical set:

|A(n)
ε (X|y)| ≤ 2n(H(X|Y )+ε)

Proof:
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For (x,y) ∈ A
(n)
ε (X, Y ),

p(y)
.
= 2−n(H(Y )±ε)

p(x,y)
.
= 2−n(H(X,Y )±ε)

⇒ p(x|y) =
p(x,y)

p(y)
.
= 2−n(H(X|Y )±2ε)

Hence

1 ≥ ∑
x∈A

(n)
ε (X|y)

p(x|y)

≥ |A(n)
ε |2−n(H(X|Y )+2ε)



Proof of achievability – error analysis

Errors occur if:

a) the transmitted sourcewords are not jointly typical, i.e. event

E0 = {(X, Y ) /∈ A
(n)
ε }

b) there exists another pair of jointly typical sourcewords in the
same pair of bins, i.e. one or more of the following events

E1 = {∃x′ �= X : f1(x
′) = f1(X), (x′,Y) ∈ A

(n)
ε }

E2 = {∃y′ �= Y : f2(y
′) = f2(Y), (X,y′) ∈ A

(n)
ε }

E12 = {∃(x′,y′) : x′ �= X,y′ �= Y, f1(x
′) = f1(X),

f2(y
′) = f2(Y), (x′,y′) ∈ A

(n)
ε }
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Use union of events bound:

P
(n)
e = Pr(E0 ∪ E1 ∪ E2 ∪ E12)

≤ Pr(E0) + Pr(E1) + Pr(E2) + Pr(E12)



Error analysis continued

Pr(E0) → 0 by the AEP

Pr(E1) =
∑

(x,y)

Pr{∃x′ �= x : f1(x
′) = f1(x),

(x′,y) ∈ A
(n)
ε }

≤ ∑
(x,y)

∑
x′ �= x

(x′,y) ∈ A(n)
ε

Pr(f1(x
′) = f1(x))

=
∑

(x,y)

|A(n)
ε (X|y)| 2−nR1

≤ 2−nR1 2n(H(X|Y )+2ε)

→ 0 if R1 > H(X|Y )
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Similarly,

Pr(E2) ≤ 2−nR2 2n(H(Y |X)+2ε)

→ 0 if R2 > H(Y |X)

Pr(E12) ≤ 2−n(R1+R2) 2n(H(X,Y )+ε)

→ 0 if R1 + R2 > H(X, Y )



Error analysis continued

Thus, if we are in the Slepian-Wolf rate region, for sufficiently

large n,

Pr(E0),Pr(E1),Pr(E2),Pr(E12) < ε

⇒ P
(n)
ε < 4ε

Since the average probability of error is less than 4ε, there exist

at least one code (f∗
1, f∗

2, g∗) with probability of error < 4ε.

Thus, there exists a sequence of codes with P
(n)
ε → 0.
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Model for distributed network compression

• arbitrary directed graph with integer capacity links

• discrete memoryless source processes with integer bit rates

• randomized linear network coding over vectors of bits in F2

• coefficients of overall combination transmitted to receivers

• receivers perform minimum entropy or maximum a posteriori
probability decoding
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Distributed compression problem

Consider

• two sources of bit rates r1, r2, whose output values in each

unit time period are drawn i.i.d. from the same joint distri-

bution Q

• linear network coding in F2 over vectors of nr1 and nr2 bits

from each source respectively

Define
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• m1 and m2 the minimum cut capacities between the receiver

and each source respectively

• m3 the minimum cut capacity between the receiver and both

sources

• L the maximum source-receiver path length



Theorem 1 The error probability at each receiver using mini-
mum entropy or maximum a posteriori probability decoding is at
most

∑3
i=1 pi

e, where

p1
e ≤ exp

{
− n min

X1,X2

(
D(PX1X2

||Q)

+

∣∣∣∣m1(1 − 1

n
logL) − H(X1|X2)

∣∣∣∣
+ )

+ 22r1+r2 log(n + 1)

}

p2
e ≤ exp

{
− n min

X1,X2

(
D(PX1X2

||Q)

+

∣∣∣∣m2(1 − 1

n
logL) − H(X2|X1)

∣∣∣∣
+ )

+ 2r1+2r2 log(n + 1)

}

p3
e ≤ exp

{
− n min

X1,X2

(
D(PX1X2

||Q)

+

∣∣∣∣m3(1 − 1

n
logL) − H(X1X2)

∣∣∣∣
+ )

+ 22r1+2r2 log(n + 1)

}
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Distributed compression

• Redundancy is removed or added in different parts of the

network depending on available capacity

• Achieved without knowledge of source entropy rates at inte-

rior network nodes

• For the special case of a Slepian-Wolf source network con-

sisting of a link from each source to the receiver, the network

coding error exponents reduce to known error exponents for

linear Slepian-Wolf coding [Csi82]
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Proof outline

• Error probability ≤ ∑3
i=1 pi

e, where

– p1
e is the probability of correctly decoding X2 but not X1,

– p2
e is the probability of correctly decoding X1 but not X2

– p3
e is the probability of wrongly decoding X1, X2

• Proof approach using method of types similar to that in
[Csi82]

• Types Pxi, joint types Pxy are the empirical distributions of
elements in vectors xi
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Proof outline (cont’d)

Bound error probabilities by summing over

• sets of joint types

Pi
n =




{PX1X̃1X2X̃2
| X̃1 �= X1, X̃2 = X2} i = 1

{PX1X̃1X2X̃2
| X̃1 = X1, X̃2 �= X2} i = 2

{PX1X̃1X2X̃2
| X̃1 �= X1, X̃2 �= X2} i = 3

where Xi, X̃i ∈ Fnri
2
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• sequences of each type

TX1X2
=

{
[ x y ] ∈ Fn(r1+r2)

2

∣∣∣ Pxy = PX1X2

}
TX̃1X̃2|X1X2

(xy) =
{
[ x̃ ỹ ] ∈ Fn(r1+r2)

2

∣∣∣
Px̃ỹxy = PX̃1X̃2X1X2

}



Proof outline (cont’d)

• Define

– Pi, i = 1,2, the probability that distinct (x,y), (x̃,y), where

x �= x̃, at the receiver

– P3, the probability that (x,y), (x̃, ỹ), where x �= x̃,y �= ỹ,

are mapped to the same output at the receiver

• These probabilities can be calculated for a given network, or

bounded in terms of block length n and network parameters
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Proof outline (cont’d)

• A link with ≥ 1 nonzero incoming signal carries the zero
signal with probability 1

2nc, where c is the link capacity

• this is equal to the probability that a pair of distinct input
values are mapped to the same output on the link

• We can show by induction on the minimum cut capacities mi

that

Pi ≤
(
1 − (1 − 1

2n
)L

)mi

≤
(

L

2n

)mi
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Proof outline (cont’d)

We substitute in

• cardinality bounds

|P1
n| < (n + 1)2

2r1+r2

|P2
n| < (n + 1)2

r1+2r2

|P3
n| < (n + 1)2

2r1+2r2

|TX1X2
| ≤ exp{nH(X1X2)}

|TX̃1X̃2|X1X2
(xy)| ≤ exp{nH(X̃1X̃2|X1X2)}

• probability of source vector of type (x,y) ∈ TX1X2

Qn(xy) = exp{−n(D(PX1X2
||Q) + H(X1X2))}
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Proof outline (cont’d)

and the decoding conditions

• minimum entropy decoder:

H(X̃1X̃2) ≤ H(X1X2)

• maximum a posteriori probability decoder:

D(PX̃1X̃2
||Q) + H(X̃1X̃2) ≤ D(PX1X2

||Q) + H(X1X2)

to obtain the result
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Conclusions

• Distributed randomized network coding can achieve distributed

compression of correlated sources

• Error exponents generalize results for linear Slepian Wolf cod-

ing

• Further work: investigation of non-uniform code distribu-

tions, other types of codes, and other decoding schemes
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