Network coding for multicast
relation to compression
and generalization of
Slepian-Wolf



Overview|

Review of Slepian-Wolf
Distributed network compression
Error exponents Source-channel separation issues

Code construction for finite field multiple access networks



Distributed data compression I

Consider two correlated sources (X,Y) ~ p(z,y) that must be
separately encoded for a user who wants to reconstruct both

What information transmission rates from each source allow de-
coding with arbitrarily small probability of error?
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Distributed source code I

A ((2nF1 2nk2) p) distributed source code for joint source (X,Y)
consists of encoder maps

f1:x" — {1,2,..., 271
fo:Y" — {1,2,...,2"2)

and a decoder map

g:{1,2,...,2M%) x {1,2, ... 2"}, xn o Yn

- X" is mapped to f1(X"™)
- Y™ is mapped to fo(Y")
- (R1, R») is the rate pair of the code



Probability of error

P = Pr{g(£1(X™), f2(Y™) % (X", Y™)}
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Definitions:
A rate pair (Rq,R») is achievable if there exists a sequence of
((2nfir 2nk2) p) distributed source codes with probability of error
P(n) — 0 as n — o©

€

achievable rate region - closure of the set of achievable rates

Slepian-Wolf Theorem:



For the distributed source coding problem for source (X,Y)
drawn i.i.d. ~ p(x,vy), the achievable rate region is

H(X|Y)

H(Y|X)
H(X,Y)
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Proof of achievabilityl

Main idea: show that if the rate pair is in the Slepian-Wolf region,
we can use a random binning encoding scheme with typical set
decoding to obtain a probability of error that tends to zero

Coding scheme:

e Source X assigns every sourceword x € X™ randomly among
2nl phins, and source Y independently assigns every y € Y"
randomly among 2™%2 bins

e Each sends the bin index corresponding to the message



e the receiver decodes correctly if there is exactly one jointly
typical sourceword pair corresponding to the received bin in-
dexes, otherwise it declares an error



Random binning for single source compressionl

An encoder that knows the typical set can compress a source X

to H(X)+e€ without loss, by employing separate codes for typical
and atypical sequences

Random binning is a way to compress a source X to H(X) + ¢
with asymptotically small probability of error without the encoder

knowing the typical set, as well as the decoder knows the typical
set

e the encoder maps each source sequence X" uniformly at ran-
dom into one of 2% bins



e the bin index, which is R bits long, forms the code

e the receiver decodes correctly if there is exactly one typical
sequence corresponding to the received bin index



Error analysisl

An error occurs if:
a) the transmitted sourceword is not typical, i.e. event
Eo={X¢ A"}
b) there exists another typical sourceword in the same bin, i.e.event
By = {3 # X f(x) = f(X),x € A"}

Use union of events bound:

pm) Pr(EqU E1)

< Pr(Ep) + Pr(E7)



Error analysis continuedl

Pr(Eg) — 0 by the Asymptotic Equipartition Property (AEP)
Pr(E1) = ) Pr{3x'#x: f(x) = f(x),
X

= Agn)}
Yo Y Pr(f(x) = f(x)

X x'#x
x' ¢ A™

= 3 |aM)| o nR
>—nR 2n(H(X)—|—e)
— 0ifR> H(X)
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For sufficiently large n,

Pr(Ep),Pr(Eq) < e
— p™ <o



Jointly typical sequencesl

The set AE”) of jointly typical sequences is the set of sequences
(x,y) € X" x Y™ with probability:

o~ n(H(X)+e) < v (x) < 2 (HX)—e)
o~ (HY)Fe) < o (y) < 27 (HY) =€)
Q—R(H(X,Y)‘l‘é) S pX,Y (X7 y) S Q—n(H(X,Y)—e)
for (X,Y) sequences of length n IID according to px y(x,y) =
[Ii—q px vy (i, vi)
Size of typical set:

|A§”>| § 2n(H(X,Y)—|—e)
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Proof:

|

> p(x,y)
> p(x,y)

A
1A | o= (H(XY)+e)
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Conditionally typical sequencesl

The conditionally typical set Agn)(X|y) for a given typical y se-
quence is the set of x sequences that are jointly typical with the
given y sequence.

Size of conditionally typical set:

1AM (X |y)| < 2nHXY)+e)

Proof:
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For (x,y) € A (X,Y),

p(y) = >—n(H(Y)=xe)
p(x,y) = >—n(H(X,Y)=xe)
= plxly) = POV
p(y)

>—n(H(X]Y)+2e)

Hence

1 2 > p(x]y)
xe A (X y)
| AL | o= n(H (X]Y)+2¢)

'V



Proof of achievability — error analysisl

Errors occur if:

a) the transmitted sourcewords are not jointly typical, i.e. event

Eo = {(X,Y) ¢ AL}

b) there exists another pair of jointly typical sourcewords in the
same pair of bins, i.e. one or more of the following events

B = {3 #X: f1(x) = A1(X), (¥, Y) € A}
By £Y : f2(y) = f(Y), (X,y") € A"}
A, y) X # Xy #Y, 1K) = f1(X),
F2(y) = f2(Y), (x,y') € AL}

SRR
N N
|

12



Use union of events bound:

P

PF(EO U El U EQ U Elg)
Pr(Eg) + Pr(E1) + Pr(E>) 4+ Pr(E12)

A



Error analysis continuedl

Pr(Eg) — 0 by the AEP

Pr(E1) = > Pr{x'#x:f1(x) = f1(x),

(x,y)
x,y) € A}

< ) > o Pr(fi(x) = f1(x))
(x,y) X #x
x,y) € A"
= 3 Ay 2
(x,y)

— 0if Ry > H(X|Y)
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Similarly,

— 0if Rp > H(Y|X)
Pr(E1n) < >—n(R1+R2) on(H(X,Y)+e)

— 0ifR{+ Ry > H(X,Y)



Error analysis continuedl

Thus, if we are in the Slepian-Wolf rate region, for sufficiently
large n,

Pr(Ep), Pr(Ey),Pr(E),Pr(E12) < e
=S PE(”) < de

Since the average probability of error is less than 4e¢, there exist
at least one code (f], f5,9™) with probability of error < 4e.

Thus, there exists a sequence of codes with PE(”) — 0.
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Model for distributed network compressionl

e arbitrary directed graph with integer capacity links

e discrete memoryless source processes with integer bit rates
e randomized linear network coding over vectors of bits in [Fo
e coefficients of overall combination transmitted to receivers

e receivers perform minimum entropy or maximum a posteriori
probability decoding
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Distributed compression probleml

Consider

e two sources of bit rates r1,r>, whose output values in each

unit time period are drawn i.i.d. from the same joint distri-
bution @

e linear network coding in [f» over vectors of nry and nro bits
from each source respectively

Define
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e mq1 and mo the minimum cut capacities between the receiver
and each source respectively

e m3 the minimum cut capacity between the receiver and both
sources

e . the maximum source-receiver path length



Theorem 1 The error probability at each receiver using mini-
mum entropy or maximum a posteriori probability decoding is at

most Zz_l pe, Where

Pe

<

IA

IN

X17X2

exp { — n min (D(PXleHQ)

1
+|ma(1 - ~log L) — H(X1|X2)

+
) + 2211772 |og(n + 1)}

1 2

exp { —nmin (D(P)QXQHQ)

1
+ |m2(1 - log L) — H(X2|X1)

_|_
) 4 21272 |og(n + 1)}

Xl 2

exp { —n min (D(PXleHQ)

1
|- |m3(1 - log L) — H(X1X2)

_|_
) + 2211272 jog(n + 1)}

17



Distributed compressionl

e Redundancy is removed or added in different parts of the
network depending on available capacity

e Achieved without knowledge of source entropy rates at inte-
rior network nodes

e For the special case of a Slepian-Wolf source network con-
sisting of a link from each source to the receiver, the network
coding error exponents reduce to known error exponents for
linear Slepian-Wolf coding [Csi82]
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Proof outline|

e Error probability < >3 , pl, where
— pé is the probability of correctly decoding X» but not X4,
— pg is the probability of correctly decoding X7 but not X-

— pg is the probability of wrongly decoding X4, X»

e Proof approach using method of types similar to that in
[Csi82]

e Types FPx,, joint types Pxy are the empirical distributions of
elements in vectors x;
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Proof outline (cont’d) |

Bound error probabilities by summing over

e sets of joint types

P

9

)
{PX1X1X2X2
{PX1X1X2X‘2

\ {PX1X1X2X2

where X;, X; € F5"

X1# X1, Xo=Xp} i=1
X1=X1,Xo0# Xo} i=2
X1# X1,X0# X5} i=3
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e sequences of each type
Tx,x, = {[ x yle FZ(”J“"“?) | Pxy = PX1X2}
_f12 o n(ri+ro)
(‘TX1X2|X1X2(XY) — {[ X yleFyime ‘

Pryxy = PX1X2X1X2}



Proof outline (cont’d) |

e Define

— P;,i = 1,2, the probability that distinct (x,y), (X,y), where
X #* X, at the receiver

— P3, the probability that (x,y), (X,¥), where x # X,y = ¥,
are mapped to the same output at the receiver

e [ hese probabilities can be calculated for a given network, or
bounded in terms of block length n and network parameters
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Proof outline (cont’d) |

e A link with > 1 nonzero incoming signal carries the zero
signal with probability 5%, where c is the link capacity

e this is equal to the probability that a pair of distinct input
values are mapped to the same output on the link

e \We can show by induction on the minimum cut capacities m;
that

P < (1—(1—%#)”%
< (31)
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Proof outline (cont’d) |

We substitute in

e cardinality bounds

Pl < (n4+ 1)1
P2l < (n41)21T72
P3| < (ng 122
Tx1x,] < exp{nH(X1X2)}
T, X0 x, x, (XY < exp{nH (X1 X2| X1 X2)}

e probability of source vector of type (x,y) € Tx, x,
Q"'(xy) = exp{-n(D(Px,x,||Q)+ H(X1X5))}
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Proof outline (cont’d) |

and the decoding conditions

e Minimum entropy decoder:

H(X1X5) < H(X1X>5)

e Maximum a posteriori probability decoder:

D(Py, %.1Q) + H(X1X2) < D(Px, x,||Q) + H(X1X2)

to obtain the result
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Conclusions|

e Distributed randomized network coding can achieve distributed
compression of correlated sources

e Error exponents generalize results for linear Slepian Wolf cod-
ing

e Further work: investigation of non-uniform code distribu-
tions, other types of codes, and other decoding schemes
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