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Abstract— We consider the problem of minimizing the amount Fragouliet al. [2] show that coding is required at mast-1
of resources used for network coding while achieving the déed  nodes in acyclic networks with 2 unit-rate sources drsihks,
throughput in a multicast scenario, whose NP-hardness lea \pich however, is not easy to generalize to the case of more

us to seeking for a method for quickly finding sufficiently goa .
solutions. To this end, we take an evolutionary approach basi than 2 sources. They also present an algorithm to construct a

on a Genetic Algorithm that works in an algebraic framework ~Minimal subtree graph, which sequentially examines eah i
combined with randomized polynomial identity testing methods. in an arbitrary order and removes the links whose removas doe
We demonstrate the advantage of the proposed method over not affect the achievable rate.

other existing minimal approaches by carrying out simulatons Langberget al. [3] derive an upperbound on the number of

on a number of different sets of network topologies. We also ired codi des for both i d I twork
show, as the more important benefit of the proposed approach, required coding nodes tor both acyclic and cyclic networks,

its applicability to a variety of generalized optimization scenarios. Which depends only on the desired rate and the number of
sinks. They first transform the given network in such a way

that each node has degree at most 3, and then obtain a minimal
|. INTRODUCTION subgraph similarly as above, based on which the bounds
are calculated. It is also shown that even approximating the
It is well known that in networkB (Fig. 1(a)), by allowing minimum number of coding nodes within any multiplicative
network coding in contrast with simple forwarding or replifactor or within an additive factor dfi’|'~ is NP-hard.
Cating, a multicast of rate 2 is pOSSible, in which one can als Both approachES, after removing links in a greedy fashion’
observe that network coding is not needed at all nodes; oRl¥sume network coding at all nodes with multiple incoming
nodez needs to combine its two inputs while all other nOdqﬁ’]kS in the remaining subgraph_ An illustrative examp|ﬁ)he

perform routing only. This observation naturally leads as shows how these approaches may lead to a suboptimal solution
the following question: To achieve the desired throughptit, in a very simple network.

which nodes does network coding need to be done?

If network coding is handled at the application layer, by
identifying the nodes where the access up to the application
layer is not necessary, we can minimize the performan

penalty incurred by network coding. If, on the other hand ©, ©
network coding is done by a special lower layer device suc !

as a router with the capability of mixing its inputs, it is of () /@\

natural interest to reduce the number of such devices de¢I0' @) OB @ ®)

while satisfying the communication demand.

Unfortunately, the problem of determining the set of mini-(&) Network B (b) Network B’ (c) Network B”  (d) Network C
mum number of nodes where coding needs to be done is NP- Fig. 1.
hard since its decision problem, i.e., the problem to decide
whether the given multicast rate is achievable withoutegdi  Example 1: Suppose that link in network B has capacity
reduces to a multiple Steiner subgraph problem, which is NP-which we represent by two parallel unit-capacity linksras
hard [1]. networkB’ (Fig. 1(b)). Note that the additional capacity allows

While mostly in the network coding literature coding ifor a multicast of rate 2 without network coding. Fragoei
assumed to be done at all possible places, the problematfs approach, however, always removes the first visited link
reducing the amount of resources engaged in network codimgt of /; andl,, which renders coding at necessary in the
has been addressed in a few recent works as follows. remaining graph. On the other hand, Langbetgl’s method

first decomposes nodesandw as in Fig. 1(c), in which there
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link removal is not possible, but coding at the merging nede R, which we assume is achievable if coding is allowed at all
is not needed. We can observe that obtaining a subgraph withdes. Note that, with network coding at all possible nodes,
minimal, or even minimum, link usage does not rule out thihe maximum achievable multicast rate is the minimum of the
nodes where coding is possible but not necessary. [0 individual max-flow bounds between the source and each of
the sinks [5], and for the decision version of the probleme- th
Bhattadet al. [4], on the other hand, give linear programproblem to verify the achievability of the given multicaate —
ming formulations for the problems of optimizing over vargo an algebraic formulation is given in [6]. We will considento
resources used for network coding, based on the model allais algebraic formulation can be applied to the case where
ing continuous flows. Their optimal formulations, howevenetwork coding is done only at some subset of the nodes.
involve an exponential number of variables and constraintsWe only consider linear coding, which is sufficient for
growing with the number of sinks, which makes it hard tonulticast [7], where a node’s output to an outgoing link is
apply the formulations to the case of a large number of sinkgpresented as a linear combination of the inputs from its
even at the price of sacrificed optimality. incoming links. Nodes with a single incoming link have no
Rather than tackling an NP-hard problem toward optimalitgther input to be combined with the incoming information,
we focus on quickly finding a sufficiently good solution. On@nd hence it is clear that no coding is required for such nodes
can observe in the above example that finding a good order(afformal proof can be found in [8]).
link traversal, out of exponentially many possible seq@srin At nodes with multiple incoming links, if the output of an
general, is critical to the quality of the solution by Langpe outgoing link happens to be a linear combination of the iaput
et al’s approach. Likewise, the problem of deciding where teuch that all but one of the coefficients are zero, effegtinel
perform coding involves the selection out of a large numbeoding operation occurs for that link; even if the only namze
of choices. In this paper, we approach to this problem hppefficient is not identity, there is another coding scheme
employing a method that manages a set of candidate solutigvith the coefficient replaced by identity [3]. Hence, to find
of only a suitably small size being subject to sequentitie nodes where coding is not necessary, we need to verify,
enhancement in an evolutionary manner. only at each of the nodes with multiple incoming links, if we
The above example also illustrates a possible tradeoff lmn restrict its outputs to depend on a single input without
tween network coding and link usage; i.e., if we first trglestroying the achievability of the given rate.
to reduce link usage as in Fragos al’s method, coding  More specifically, the above verification is done as follows:
may become necessary in the remaining subgraph, whiMe first construct, as demonstrated in [6], the labeled line
minimizing the number of coding nodes first will result ingraphG’ = (N’, A’) corresponding td=. Then, to each link
more link usage. An optimal choice would certainly depenid G’ we assign a link coefficient, denoted &y and construct
on the relative cost of each resource, and as will be disdussesystem matrix for each af connections, which isk-by-R
later, our proposed method can be well generalized to thee casatrix describing the relationship between the input fréwe t
where optimization over both kinds of costs is needed.  source and the output to that sink. If we denote®y) the
This paper is organized as follows: Section Il presents tipgoduct of the determinants of thosematrices, the given
formulation of the problem with a brief introduction to Géise multicast rate is achievable if and only #(£) is nonzero
Algorithms, Section Ill describes the details of the apptoa over the ring of polynomials in variables[6].
we propose in this paper, whose performance Section IVNote that, for a node irG with multiple incoming links,
demonstrates in comparison with other minimal approachesich of its outgoing links is represented by a nodé&irwith
Section V generalizes our method to various optimizationultiple incoming links. Therefore, we need to inspect only
scenarios, and Section VI concludes with a summary of thiee nodes inG’ with multiple incoming links; to be specific,
results and a discussion of further work. for nodewv in G with incoming linksiy, ..., [, at each of the
n nodes inG’ corresponding to those links, we examine the
coefficients assigned to its incoming links, out of whicthiéte
Throughout the paper, we assume that a network is giverists a single coefficient except which zeroing out all othe
by an acyclic directed multigraptr = (N, A) where each coefficients does not rendé¥¢) to be a zero polynomial, we
link has a unit capacity, and to represent links with larg@an conclude that coding is not required at nedassuming
capacities, multiple links are allowed between a pair ofezod that all other nodes perform coding.
At each link, only integer amount of flow is allowed, hence The difficulty arises when several nodes are considered
there is either no or unit rate of flow. We consider the singtegether; whether coding is needed at a node depends on
multicast scenario in which a single souree& N wishes to whether coding is done at other nodes and thus the above
transmit data at rat® to a setT’ C N of sink nodes, where verification procedure cannot be applied separately to each
|T'| = d. If there exists a transmission scheme, either involvingpde. For example, in network (Fig. 2) with three sinks
network coding or not, that enables dllsinks to receive all and the target multicast rate 2, both nodesand b are
the information sent, rat® is said to be achievable. identified to be non-coding nodes when verified separately,
We wish to determine the set of minimum number of noddmrit not together. As the number of involved nodes increases,
where coding is required in order to achieve the given rathecking the necessity of coding may require the evaluation
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(s) to be perfectly smooth or unimodal, or not well understood,
and if finding a global optimum is not critical [11]. Note that
O /@\ () the search space consisting :efdimensional binary vectors
O) O is not smooth or unimodal with respect to the number of
coding nodes and the structure of the space consisting of the
() () feasible vectors is not well understood. Also, the NP-hasdn
of the problem allows us to only hope for quickly finding a
@ ©) @) sufficiently good solution, not necessarily optimal.
Note also that, while it is hard to characterize the striectur
Fig. 2. Network D showing correlation between coding at different nodesof the search space, once provided with a solution we can
rather easily verify its feasibility and count the numbertiod
coding nodes therein. Thus, if the use of genetic operations
of exponentially many selections of link coefficients. can suitably limit the size of the search space, a solution ca
Note that the only aspect of the coefficients we are intetlestge obtained fairly efficiently.
is whether their being zero or not, hence if there ave
coefficients associated with the nodes with multiple inaugni I1l. PROPOSEDAPPROACH
links, we are to explore am-dimensional binary space. As To begin with, recall that our decision on the necessity
we try to find the nodes where coding is necessary, we akcoding at a node is based on the inspection of all of its
facing 2™ choices about how to proceed, but little theoreticalutgoing links, which indicates that links rather than rode
guidance can be given on how to make them optimally. Wean be more correctly referred to as the location for coding.
employ a search method, based on a Genetic Algorithm (GAg,also pointed out in [3] that the number of coding links is a
that serves to efficiently reduce the size of the space to tm®re accurate estimator of the amount of computation ieclrr
actually searched using an evolutionary mechanism, adsletay coding. In this section, we set our objective to minimggin

will be provided in the subsequent sections. the number of coding links, which can easily generalize & th
_ ) ) ) case of coding nodes, as will be shown in the next section.
A. A Brief Introduction to Genetic Algorithms We employ the structure of the standard GA introduced

Genetic Algorithms (GAs) are stochastic search metholly Holland [13] (see Fig. 3) with its elements specifically
employing natural genetic ideas such as gene recombinatidésigned to fit our problem, as will be described below.
mutation and survival of the fittest. GA has been applied toNote that GA's performance depends on the details of its
large number of scientific and engineering problems, incluglements such as selection mechanism, crossover operator,
ing many combinatorial optimization problems in networkend numerical parameters, etc. Theoretical works, however
(e.g., [9], [10]). were not yet able to provide a useful prediction about which

GAs [11], [12] operate on a set of candidate solutions, dall€ombination of such elements would be best suited to a
population where each solution is represented typically by $pecific problem [11]. We thus tested several choices of the
bit string, calledchromosomeEach chromosome is assigned &lements reported to work well in many other studies, and
fitness valughat measures how well the chromosome solvé¥cked the one that worked best for our problem.
the problem at hand, compared with other chromosomes in
the population. From the current population, a new popatati

is generated using typically three genetic operatsetection { _

crossoverand mutation Chromosomes are selected randomly :’V‘;‘ligfjlfg]fﬂgfr?

(with replacement) for the new population in such a way that while termination criterion not reached
fitter chromosomes have more chances to be selected. For {select solutions for next population:
crossover, survived chromosomes are randomly paired, and perform crossover and mutation;

in each pair two chromosomes exchange a subset of the bit evaluate population;

strings to create two offspring. Chromosomes are then stibje -

to mutation which refers to random flips of the bits applied

individually to each of the new chromosomes. The process

of evaluation, selection, crossov! er and mutation forms on Fig. 3. Standard Genetic Algorithm Structure [12]

generationin the execution of a GA. The above process

is iterated with the newly generated population succelsive

replacing the current one, and terminates when a certdin Notations and Preliminaries

stopping criterion is reached, e.g., after a predefined mumb We first construct the labeled line gragh, in which we

of generations. refer to each node with multiple incoming links asading
There are several aspects of our problem suggesting thaicant and letC be the the set of all coding points. For the

GA-based method be a promising candidate: GA has provedto coding pointe; € C, we let M; be the set of the link

apply well if the space to be searched is large, but known nmefficients associated with the incoming linksd4o and let




M denote the union of all suctd/;'s where |[M| = m. all sources to any receiver [14]. Note, however, that in our
We assume that the components of the vegtaronsisting context of optimization this one-sided error, if might happ
of all link coefficients are rearranged such that the first only affects the solution to be more conservative, whichars f
components of belong toM, i.e., & € M(1 < j < m). less critical than the opposite case where an infeasiblgisol
As discussed in Section I, each chromosome is represenigdistakenly admitted feasible. We can lower the error loun
by anm-dimensional binary vector, whoggh component is as much as we desire by increasing the field size ! or repeating
associated witlt,. Once a chromosomg is given, we refer the random test at an additional cost of computation.
to each coding point; asinactiveif the number of 1's in the  Alternatively, since we are interested in the existence of a
y’s components associated with the 8¢t is at most one, and network code in a field of any size, the above randomized
active oth! erwise. test, as those originally developed by Schwartz, Zippel and
. ) many others, can generalize as follows: By assigning random
B. Initial Population integers from a finite se§ and operating in the real field, the
The initial population is randomly constructed such thatndomized test, which now has the error probability bouind o
each component of the chromosomes is assigned 0 or1l-dv/|S|), can run substantially faster than that performing
with equal probabilities. Note, however, that the size @ thmatrix computations in a large finite field. Note, howeveatth
population, typically not exceeding a few hundreds, is muclery large components af/;’s due to the matrix inversion,
smaller than the size of the entire space, and thus it is veily — F')~!, can prevent exact calculation of determinants
unlikely that a feasible chromosome is seeded into theainitinumerically, and in such a case we may choose to use, for
population, the lack of which may cause the algorithm to fad practical purpose, a numerical method such as the conditio
to yield a single feasible solution for a considerable numbaumber, whose being infinite implies singularity of the rmatr
of early generations. The condition number is efficiently calculated by singular
We thus insert into the randomly generated population tivalue decomposition and considered a numerically reliable
vector of all 1's, which is feasible by assumption but reisdeindicator of matrix singularity [15], [16].
all coding points active, and this insertion turns out toio@  In addition, there are many more recent algorithms for this
the performance of the algorithm very significantly. For inpurpose, called polynomial identity testing, some of which
stance, without the all-one vector, the algorithm almosegs use a reduced number of random bits [17], [18] and some
ends with the population of only infeasible chromosomes fa@gike deterministic approaches [19], [20]. These algorthm
a mid-sized problem withn = 80. are not used for our numerical simulations, nevertheless th
possibility of adopting any efficient testing method indhagl

C. Fitness Evaluation those mentioned above is fully open.

We define the fitness valué of chromosome; as
D. Genetic Operators and Numerical Parameters

7 if y is infeasible We employ a rank-based selection mechanism which in
- many cases allows for more successful search than the akigin
To verify the feasibility of a given chromosomewe evaluate fitness-proportionate selection methods [11]; in paréiguin
the polynomialP(§) such that exponential ranking method is used, as suggested by [21],
where the probability of a particular chromosome’s setecti
decreases exponentially with its rank in the population. We
Note that the determinant of thi¢h transfer matrix); (1 < also putelitisminto effect by retaining the best chromosome
i < d), which is defined as/; = A(I — F)~' B! and of size unaltered at each generation, which is found by many re-
R-by-R for multicast rateR [6], may containR! terms, each of searchers to significantly improve the GAs performancg.[11
which already consists of up t0(x?|E|) monomials, where ~ We use parameterized uniform crossover, where each pair
1 is the maximum number of links outgoing incident to th@f chromosomes is selected for crossover with probabili® 0
source or incoming incident to the sinks. Hence, keepng) and the two chromosomes in a selected pair exchange each
in a polynomial form is very inefficient (or even impossiblepit independently with probability 0.8. Parameterizedfoimh
for its exponential size. crossover is commonly used in recent GA applications [11]
Rather than treating® explicitly in a polynomial form, we and indeed turns out to work better for our problem than
thus keepd, F, andB;'s in a matrix form and rely on one of other traditional crossover operators such as one- or wiotp
the following approaches: The first method is to assign rand@rossovers. For mutation, simple binary mutation, whehea
elements from a finite field, to nonzero elements of, F, bit in each chromosome is flipped with probability 0.01, is
andB;’s, and then to declar®(¢) to be nonzero witmo error  used.
if the product of the determinants evaluates a nonzero \yalue The population size is set to 150, and the iteration is
IF,, and zero otherwise with an error probability upperboundeégrminated if no progress is made in the best value of the
by 1 — (1 — d/q)”, wherev is the maximum number of population for 100 generations or if the generation number
links in any set of links constituting a flow solution fromreaches a limit: 300 for the simulations in the next section.

number of activer;’s, if y is feasible,
Fy) = N =

P(§)|£k:0 for k s.t. y,=0(1<k<m).



Set | Set Il Set Il
3 Copies 7 Copies 15 Copies 31 Copies LATA-X ISP 1755 (20,12,4) (40,12,3)
Best | Avg. | Best [ Avg. Best [ Avg. Best [ Avg. Best | Avg. Best | Avg. | Best [ Avg. Best [ Avg.
Proposed 0 0.65 0 2.15 3 5.35 12 17.20 0 0.35 0 0.25 0 1.20 0 1.05
Minimal 1 7 7.00 | 19 19.00 | 43 | 43.00| 91 91.00| 11 11.25 4 855 | 20 | 23.30| 12 15.10
Minimal 2 0 2.15 2 4.70 7 1160 | 28 52.80 0 1.10 0 0.80 0 1.85 0 1.90

TABLE |
NUMBER OF CODING LINKS CALCULATED BY THE PROPOSEDMETHOD AND TWO MINIMAL APPROACHES

IV. PERFORMANCEEVALUATION C. Set Ill of Networks

We demonstrate the performance of our approach by carAs another set of sample networks, we employ the topolo-
rying out simulations on various network topologies. Fdgies generated by the algorithm in [23], which constructs
comparison, we also perform numerical tests using the tggnnected acyclic directed graphs uniformly at random; two
previously mentioned minimal approaches by Fragaetli networks with parameters (20 nodes, 80 links, 12 sinks, rate
al. [2] ("Minimal 1”) and Langberget al. [3] ("Minimal 27), 4) and (40 nodes, 120 links, 12 sinks, rate 3) are used for
in both of which link removal is done in a random order. Fosimulations.
each of the three methods, the best and the average valu

obtained by 20 iterations are shown in Table I. S¥e observe that our approach performs far better than

Minimal 1 approach, both in terms of the best and the average
A. Set | of Networks values. In comparison wit_h the second minimgl approach, our
) , approach produces considerably better solutions on aserag
Consider the network constructed by cascading & numbg@ije the gap between the best values by the two methods be-
of copies of networkB’ in Example 1(Fig. 1(b)) such that oming wider for larger-sized problems. We can also observe
the source of a copy oB’ is replaced by another's sink (s€gat the networks in sets Il and Ill, as opposed to those in
Fig. 4). Itis clear that the networks constructed as suclehays; | |ead to no difference in the best values obtained by 20
the maximum multicast r_ate 2, Whlgh is achievable W'thOli'lterations of the proposed and Minimal 2 approaches, which
coding at all; i.e., the optimal value is always zero. Witk thmay indicate that the scenario as in netwdkin Example
source being the node at the top and the sinks being all t_qu not much likely to be the case in general topologies.
leaf nodes, networks with 3, 7, 15, and 31 cascaded copj§§yever, in the case where doing such many iterations is not
of B" are chosen for our simulations, in which the number Qf5sy the proposed method can be much more useful. Note that
sinks is 4, 8, 16, 32, respectively. the benefit of the proposed approach is not only its superior
performance in reducing the number of coding links, but more
importantly its applicability to various generalized sagns,
as will be di! scussed in the next section.

V. GENERALIZATION
The more important advantage of our proposed approach

lies in that, as opposed to the previously mentioned minimal
approaches, it can be readily applied to a variety of geizesxl
problems, which involve non-coding links/nodes and thies ar
/Q\ hard to solve optimally.
@ @ @ O

1) Number of Coding NodesThe proposed method can
easily generalize to the case of minimizing coding nodes,
Fig. 4. Example from the set | of networks: 3 cascaded copie8’oc  which initially was our objective. For feasible chromosome
y, we alternatively defind”(y) as the number of nodes with
multiple incoming links any of whose associated coding fmin
B. Set Il of Networks is active. Table 1l shows the number of required coding nodes
We also apply our method to sample backbone topologiesimputed by such modified method for the set | of networks.
the local access transport area network X (LATA-X) and ISfFor the minimal approaches, due to the special structure of
1755 (Ebone) topology obtained from the Rocketfuel Projettie networks in set I, the number of coding nodes happens
[22]. Assuming for simplicity that each link has unit caggci to be the same as that of coding links. Thus, see Table | for
we choose the orientation of each link such that no cycle gemparison.)
generated while the given multicast rate is achievable éetw 2) Different Coding Costslf the cost for coding is different
a source and the given number of sinks that are arbitrardy each of the links, one would be interested in minimizirg th
selected; in particular, the parameters used are (9 siaks, itotal overhead incurred by coding, which can be calculaied b
2) for LATA-X and (4 sinks, rate 3) for ISP 1755. summing up the coding cost at each of the active coding points



3 Copies 7 Copies 15 Copies 31 Copies
Best [ Avg. | Best]| Avg. | Best| Avg. | Best| Avg.
0 0.85 0 2.60 3 6.00 | 12 | 19.05

TABLE I
PERFORMANCE OF THEPROPOSEDMETHOD FORCODING NODES

The framework of the proposed approach may be modified
so as to work with as cyclic graphs or to allow for semi-
decentralized operation with only limited amount of feetlba
Also, more recent GA techniques, e.g., linkage learning GA
which offers improved scalability exploiting the corredat
between variables that is to be learned as the algorithm
progresses, are worth to investigate for their applicgbih

and is to be used as the fitness value of a feasible chromosothe.context of network coding.

A similar generalization works for the case of coding node

On the other hand, the previous minimal approaches may not

have a natural generalization to this scenario unless timgo

costs can be clearly ordered, in which case traversing tqgl
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