
On Minimizing Network Coding Resources:
An Evolutionary Approach

Minkyu Kim, Chang Wook Ahn, Muriel Médard, and Michelle Effros

Abstract— We consider the problem of minimizing the amount
of resources used for network coding while achieving the desired
throughput in a multicast scenario, whose NP-hardness leads
us to seeking for a method for quickly finding sufficiently good
solutions. To this end, we take an evolutionary approach based
on a Genetic Algorithm that works in an algebraic framework
combined with randomized polynomial identity testing methods.
We demonstrate the advantage of the proposed method over
other existing minimal approaches by carrying out simulations
on a number of different sets of network topologies. We also
show, as the more important benefit of the proposed approach,
its applicability to a variety of generalized optimization scenarios.

I. I NTRODUCTION

It is well known that in networkB (Fig. 1(a)), by allowing
network coding in contrast with simple forwarding or repli-
cating, a multicast of rate 2 is possible, in which one can also
observe that network coding is not needed at all nodes; only
nodez needs to combine its two inputs while all other nodes
perform routing only. This observation naturally leads us to
the following question: To achieve the desired throughput,at
which nodes does network coding need to be done?

If network coding is handled at the application layer, by
identifying the nodes where the access up to the application
layer is not necessary, we can minimize the performance
penalty incurred by network coding. If, on the other hand,
network coding is done by a special lower layer device such
as a router with the capability of mixing its inputs, it is of
natural interest to reduce the number of such devices deployed
while satisfying the communication demand.

Unfortunately, the problem of determining the set of mini-
mum number of nodes where coding needs to be done is NP-
hard since its decision problem, i.e., the problem to decide
whether the given multicast rate is achievable without coding,
reduces to a multiple Steiner subgraph problem, which is NP-
hard [1].

While mostly in the network coding literature coding is
assumed to be done at all possible places, the problem of
reducing the amount of resources engaged in network coding
has been addressed in a few recent works as follows.

M. Kim and C. W. Ahn are with Communication Laboratory, Sam-
sung Advanced Institute of Technology, Yongin, Gyeonggi 446-712, Korea
(minkyu@mit.edu, cwan.ahn@samsung.com).

M. Médard is with the Laboratory of Information and Decision Sys-
tems, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
(medard@mit.edu).

M. Effros is with Data Compression Laboratory, California Institute of
Technology, Pasadena, CA 91125, USA (effros@caltech.edu).

Fragouliet al. [2] show that coding is required at mostd−1
nodes in acyclic networks with 2 unit-rate sources andd sinks,
which, however, is not easy to generalize to the case of more
than 2 sources. They also present an algorithm to construct a
minimal subtree graph, which sequentially examines each link
in an arbitrary order and removes the links whose removal does
not affect the achievable rate.

Langberget al. [3] derive an upperbound on the number of
required coding nodes for both acyclic and cyclic networks,
which depends only on the desired rate and the number of
sinks. They first transform the given network in such a way
that each node has degree at most 3, and then obtain a minimal
subgraph similarly as above, based on which the bounds
are calculated. It is also shown that even approximating the
minimum number of coding nodes within any multiplicative
factor or within an additive factor of|V |1−ǫ is NP-hard.

Both approaches, after removing links in a greedy fashion,
assume network coding at all nodes with multiple incoming
links in the remaining subgraph. An illustrative example below
shows how these approaches may lead to a suboptimal solution
in a very simple network.

t
s

t x yzwl
(a) NetworkB

t
s

t x yzwl l
(b) NetworkB′

t
s

t
x yl l z w z z z w w w

(c) NetworkB′′

t
s

t x yz
(d) NetworkC

Fig. 1. Sample Networks for Example 1

Example 1:Suppose that linkl in networkB has capacity
2, which we represent by two parallel unit-capacity links asin
networkB′ (Fig. 1(b)). Note that the additional capacity allows
for a multicast of rate 2 without network coding. Fragouliet
al.’s approach, however, always removes the first visited link
out of l1 and l2, which renders coding atz necessary in the
remaining graph. On the other hand, Langberget al.’s method
first decomposes nodesz andw as in Fig. 1(c), in which there
are many sequences of link removal that result in a subgraph
where coding is required: e.g., ifl1 is the first visited link,
nodez4 must perform coding. Empirical tests show that, via
this approach with a randomly chosen order of link traversal,
coding is found to be required with probability about 0.68.

Let us consider another networkC (Fig. 1(d)), where further

link removal is not possible, but coding at the merging nodez
is not needed. We can observe that obtaining a subgraph with
minimal, or even minimum, link usage does not rule out the
nodes where coding is possible but not necessary. �

Bhattadet al. [4], on the other hand, give linear program-
ming formulations for the problems of optimizing over various
resources used for network coding, based on the model allow-
ing continuous flows. Their optimal formulations, however,
involve an exponential number of variables and constraints
growing with the number of sinks, which makes it hard to
apply the formulations to the case of a large number of sinks,
even at the price of sacrificed optimality.

Rather than tackling an NP-hard problem toward optimality,
we focus on quickly finding a sufficiently good solution. One
can observe in the above example that finding a good order of
link traversal, out of exponentially many possible sequences in
general, is critical to the quality of the solution by Langberg
et al.’s approach. Likewise, the problem of deciding where to
perform coding involves the selection out of a large number
of choices. In this paper, we approach to this problem by
employing a method that manages a set of candidate solutions
of only a suitably small size being subject to sequential
enhancement in an evolutionary manner.

The above example also illustrates a possible tradeoff be-
tween network coding and link usage; i.e., if we first try
to reduce link usage as in Fragouliet al.’s method, coding
may become necessary in the remaining subgraph, while
minimizing the number of coding nodes first will result in
more link usage. An optimal choice would certainly depend
on the relative cost of each resource, and as will be discussed
later, our proposed method can be well generalized to the case
where optimization over both kinds of costs is needed.

This paper is organized as follows: Section II presents the
formulation of the problem with a brief introduction to Genetic
Algorithms, Section III describes the details of the approach
we propose in this paper, whose performance Section IV
demonstrates in comparison with other minimal approaches,
Section V generalizes our method to various optimization
scenarios, and Section VI concludes with a summary of the
results and a discussion of further work.

II. PROBLEM FORMULATION

Throughout the paper, we assume that a network is given
by an acyclic directed multigraphG = (N, A) where each
link has a unit capacity, and to represent links with larger
capacities, multiple links are allowed between a pair of nodes.
At each link, only integer amount of flow is allowed, hence
there is either no or unit rate of flow. We consider the single
multicast scenario in which a single sources ∈ N wishes to
transmit data at rateR to a setT ⊂ N of sink nodes, where
|T | = d. If there exists a transmission scheme, either involving
network coding or not, that enables alld sinks to receive all
the information sent, rateR is said to be achievable.

We wish to determine the set of minimum number of nodes
where coding is required in order to achieve the given rate

R, which we assume is achievable if coding is allowed at all
nodes. Note that, with network coding at all possible nodes,
the maximum achievable multicast rate is the minimum of the
individual max-flow bounds between the source and each of
the sinks [5], and for the decision version of the problem – the
problem to verify the achievability of the given multicast rate –
an algebraic formulation is given in [6]. We will consider how
this algebraic formulation can be applied to the case where
network coding is done only at some subset of the nodes.

We only consider linear coding, which is sufficient for
multicast [7], where a node’s output to an outgoing link is
represented as a linear combination of the inputs from its
incoming links. Nodes with a single incoming link have no
other input to be combined with the incoming information,
and hence it is clear that no coding is required for such nodes
(a formal proof can be found in [8]).

At nodes with multiple incoming links, if the output of an
outgoing link happens to be a linear combination of the inputs
such that all but one of the coefficients are zero, effectively no
coding operation occurs for that link; even if the only nonzero
coefficient is not identity, there is another coding scheme
with the coefficient replaced by identity [3]. Hence, to find
the nodes where coding is not necessary, we need to verify,
only at each of the nodes with multiple incoming links, if we
can restrict its outputs to depend on a single input without
destroying the achievability of the given rate.

More specifically, the above verification is done as follows:
We first construct, as demonstrated in [6], the labeled line
graphG′ = (N ′, A′) corresponding toG. Then, to each link
in G′ we assign a link coefficient, denoted byξi, and construct
a system matrix for each ofd connections, which isR-by-R
matrix describing the relationship between the input from the
source and the output to that sink. If we denote byP (ξ) the
product of the determinants of thosed matrices, the given
multicast rate is achievable if and only ifP (ξ) is nonzero
over the ring of polynomials in variablesξ [6].

Note that, for a node inG with multiple incoming links,
each of its outgoing links is represented by a node inG′ with
multiple incoming links. Therefore, we need to inspect only
the nodes inG′ with multiple incoming links; to be specific,
for nodev in G with incoming linksl1, ..., ln, at each of the
n nodes inG′ corresponding to thosen links, we examine the
coefficients assigned to its incoming links, out of which if there
exists a single coefficient except which zeroing out all other
coefficients does not renderP (ξ) to be a zero polynomial, we
can conclude that coding is not required at nodev assuming
that all other nodes perform coding.

The difficulty arises when several nodes are considered
together; whether coding is needed at a node depends on
whether coding is done at other nodes and thus the above
verification procedure cannot be applied separately to each
node. For example, in networkD (Fig. 2) with three sinks
and the target multicast rate 2, both nodesa and b are
identified to be non-coding nodes when verified separately,
but not together. As the number of involved nodes increases,
checking the necessity of coding may require the evaluation

t
s

t
x za c bdt

y
Fig. 2. NetworkD showing correlation between coding at different nodes.

of exponentially many selections of link coefficients.
Note that the only aspect of the coefficients we are interested

is whether their being zero or not, hence if there arem
coefficients associated with the nodes with multiple incoming
links, we are to explore anm-dimensional binary space. As
we try to find the nodes where coding is necessary, we are
facing 2m choices about how to proceed, but little theoretical
guidance can be given on how to make them optimally. We
employ a search method, based on a Genetic Algorithm (GA),
that serves to efficiently reduce the size of the space to be
actually searched using an evolutionary mechanism, as details
will be provided in the subsequent sections.

A. A Brief Introduction to Genetic Algorithms

Genetic Algorithms (GAs) are stochastic search methods
employing natural genetic ideas such as gene recombination,
mutation and survival of the fittest. GA has been applied to a
large number of scientific and engineering problems, includ-
ing many combinatorial optimization problems in networks
(e.g., [9], [10]).

GAs [11], [12] operate on a set of candidate solutions, called
population, where each solution is represented typically by a
bit string, calledchromosome. Each chromosome is assigned a
fitness valuethat measures how well the chromosome solves
the problem at hand, compared with other chromosomes in
the population. From the current population, a new population
is generated using typically three genetic operators:selection,
crossoverandmutation. Chromosomes are selected randomly
(with replacement) for the new population in such a way that
fitter chromosomes have more chances to be selected. For
crossover, survived chromosomes are randomly paired, and
in each pair two chromosomes exchange a subset of the bit
strings to create two offspring. Chromosomes are then subject
to mutation which refers to random flips of the bits applied
individually to each of the new chromosomes. The process
of evaluation, selection, crossov! er and mutation forms one
generation in the execution of a GA. The above process
is iterated with the newly generated population successively
replacing the current one, and terminates when a certain
stopping criterion is reached, e.g., after a predefined number
of generations.

There are several aspects of our problem suggesting that a
GA-based method be a promising candidate: GA has proved to
apply well if the space to be searched is large, but known not

to be perfectly smooth or unimodal, or not well understood,
and if finding a global optimum is not critical [11]. Note that
the search space consisting ofm-dimensional binary vectors
is not smooth or unimodal with respect to the number of
coding nodes and the structure of the space consisting of the
feasible vectors is not well understood. Also, the NP-hardness
of the problem allows us to only hope for quickly finding a
sufficiently good solution, not necessarily optimal.

Note also that, while it is hard to characterize the structure
of the search space, once provided with a solution we can
rather easily verify its feasibility and count the number ofthe
coding nodes therein. Thus, if the use of genetic operations
can suitably limit the size of the search space, a solution can
be obtained fairly efficiently.

III. PROPOSEDAPPROACH

To begin with, recall that our decision on the necessity
of coding at a node is based on the inspection of all of its
outgoing links, which indicates that links rather than nodes
can be more correctly referred to as the location for coding.It
is also pointed out in [3] that the number of coding links is a
more accurate estimator of the amount of computation incurred
by coding. In this section, we set our objective to minimizing
the number of coding links, which can easily generalize to the
case of coding nodes, as will be shown in the next section.

We employ the structure of the standard GA introduced
by Holland [13] (see Fig. 3) with its elements specifically
designed to fit our problem, as will be described below.
Note that GA’s performance depends on the details of its
elements such as selection mechanism, crossover operator,
and numerical parameters, etc. Theoretical works, however,
were not yet able to provide a useful prediction about which
combination of such elements would be best suited to a
specific problem [11]. We thus tested several choices of the
elements reported to work well in many other studies, and
picked the one that worked best for our problem.{ i n i t i a l i z e p o p u l a t i o n ;e v a l u a t e p o p u l a t i o n ;w h i l e t e r m i n a t i o n c r i t e r i o n n o t r e a c h e d{ s e l e c t s o l u t i o n s f o r n e x t p o p u l a t i o n ;p e r f o r m c r o s s o v e r a n d m u t a t i o n ;e v a l u a t e p o p u l a t i o n ;}}

Fig. 3. Standard Genetic Algorithm Structure [12]

A. Notations and Preliminaries

We first construct the labeled line graphG′, in which we
refer to each node with multiple incoming links as acoding
point and letC be the the set of all coding points. For the
ith coding pointci ∈ C, we let Mi be the set of the link
coefficients associated with the incoming links toci, and let

M denote the union of all suchMi’s where |M | = m.
We assume that the components of the vectorξ consisting
of all link coefficients are rearranged such that the firstm
components ofξ belong toM , i.e., ξj ∈ M(1 ≤ j ≤ m).
As discussed in Section II, each chromosome is represented
by anm-dimensional binary vector, whosekth component is
associated withξk. Once a chromosomey is given, we refer
to each coding pointci as inactive if the number of 1’s in the
y’s components associated with the setMi is at most one, and
activeoth! erwise.

B. Initial Population

The initial population is randomly constructed such that
each component of the chromosomes is assigned 0 or 1
with equal probabilities. Note, however, that the size of the
population, typically not exceeding a few hundreds, is much
smaller than the size of the entire space, and thus it is very
unlikely that a feasible chromosome is seeded into the initial
population, the lack of which may cause the algorithm to fail
to yield a single feasible solution for a considerable number
of early generations.

We thus insert into the randomly generated population the
vector of all 1’s, which is feasible by assumption but renders
all coding points active, and this insertion turns out to improve
the performance of the algorithm very significantly. For in-
stance, without the all-one vector, the algorithm almost always
ends with the population of only infeasible chromosomes for
a mid-sized problem withm = 80.

C. Fitness Evaluation

We define the fitness valueF of chromosomey as

F (y) =

{

number of activeci
′s, if y is feasible,

∞, if y is infeasible.

To verify the feasibility of a given chromosomey, we evaluate
the polynomialP (ξ) such that

P (ξ)|ξk=0 for k s.t. yk=0(1≤k≤m).

Note that the determinant of theith transfer matrixMi (1 ≤
i ≤ d), which is defined asMi = A(I −F)−1BT

i and of size
R-by-R for multicast rateR [6], may containR! terms, each of
which already consists of up toO(µ2|E|) monomials, where
µ is the maximum number of links outgoing incident to the
source or incoming incident to the sinks. Hence, keepingP (ξ)
in a polynomial form is very inefficient (or even impossible)
for its exponential size.

Rather than treatingP explicitly in a polynomial form, we
thus keepA, F , andBi’s in a matrix form and rely on one of
the following approaches: The first method is to assign random
elements from a finite fieldFq to nonzero elements ofA, F ,
andBi’s, and then to declareP (ξ) to be nonzero withno error
if the product of the determinants evaluates a nonzero valuein
Fq, and zero otherwise with an error probability upperbounded
by 1 − (1 − d/q)ν , where ν is the maximum number of
links in any set of links constituting a flow solution from

all sources to any receiver [14]. Note, however, that in our
context of optimization this one-sided error, if might happen,
only affects the solution to be more conservative, which is far
less critical than the opposite case where an infeasible solution
is mistakenly admitted feasible. We can lower the error bound
as much as we desire by increasing the field size ! or repeating
the random test at an additional cost of computation.

Alternatively, since we are interested in the existence of a
network code in a field of any size, the above randomized
test, as those originally developed by Schwartz, Zippel and
many others, can generalize as follows: By assigning random
integers from a finite setS and operating in the real field, the
randomized test, which now has the error probability bound of
(1−dν/|S|), can run substantially faster than that performing
matrix computations in a large finite field. Note, however, that
very large components ofMi’s due to the matrix inversion,
(I − F)−1, can prevent exact calculation of determinants
numerically, and in such a case we may choose to use, for
a practical purpose, a numerical method such as the condition
number, whose being infinite implies singularity of the matrix.
The condition number is efficiently calculated by singular
value decomposition and considered a numerically reliable
indicator of matrix singularity [15], [16].

In addition, there are many more recent algorithms for this
purpose, called polynomial identity testing, some of which
use a reduced number of random bits [17], [18] and some
take deterministic approaches [19], [20]. These algorithms
are not used for our numerical simulations, nevertheless the
possibility of adopting any efficient testing method including
those mentioned above is fully open.

D. Genetic Operators and Numerical Parameters

We employ a rank-based selection mechanism which in
many cases allows for more successful search than the original
fitness-proportionate selection methods [11]; in particular, an
exponential ranking method is used, as suggested by [21],
where the probability of a particular chromosome’s selection
decreases exponentially with its rank in the population. We
also putelitism into effect by retaining the best chromosome
unaltered at each generation, which is found by many re-
searchers to significantly improve the GA’s performance [11].

We use parameterized uniform crossover, where each pair
of chromosomes is selected for crossover with probability 0.8
and the two chromosomes in a selected pair exchange each
bit independently with probability 0.8. Parameterized uniform
crossover is commonly used in recent GA applications [11]
and indeed turns out to work better for our problem than
other traditional crossover operators such as one- or two-point
crossovers. For mutation, simple binary mutation, where each
bit in each chromosome is flipped with probability 0.01, is
used.

The population size is set to 150, and the iteration is
terminated if no progress is made in the best value of the
population for 100 generations or if the generation number
reaches a limit: 300 for the simulations in the next section.

Set I Set II Set III
3 Copies 7 Copies 15 Copies 31 Copies LATA-X ISP 1755 (20,12,4) (40,12,3)

Best Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best Avg.
Proposed 0 0.65 0 2.15 3 5.35 12 17.20 0 0.35 0 0.25 0 1.20 0 1.05

Minimal 1 7 7.00 19 19.00 43 43.00 91 91.00 11 11.25 4 8.55 20 23.30 12 15.10
Minimal 2 0 2.15 2 4.70 7 11.60 28 52.80 0 1.10 0 0.80 0 1.85 0 1.90

TABLE I

NUMBER OF CODING L INKS CALCULATED BY THE PROPOSEDMETHOD AND TWO M INIMAL APPROACHES

IV. PERFORMANCEEVALUATION

We demonstrate the performance of our approach by car-
rying out simulations on various network topologies. For
comparison, we also perform numerical tests using the two
previously mentioned minimal approaches by Fragouliet
al. [2] (”Minimal 1”) and Langberget al. [3] (”Minimal 2”),
in both of which link removal is done in a random order. For
each of the three methods, the best and the average values
obtained by 20 iterations are shown in Table I.

A. Set I of Networks

Consider the network constructed by cascading a number
of copies of networkB′ in Example 1(Fig. 1(b)) such that
the source of a copy ofB′ is replaced by another’s sink (see
Fig. 4). It is clear that the networks constructed as such have
the maximum multicast rate 2, which is achievable without
coding at all; i.e., the optimal value is always zero. With the
source being the node at the top and the sinks being all the
leaf nodes, networks with 3, 7, 15, and 31 cascaded copies
of B′ are chosen for our simulations, in which the number of
sinks is 4, 8, 16, 32, respectively.s

t t t t
Fig. 4. Example from the set I of networks: 3 cascaded copies of B′

B. Set II of Networks

We also apply our method to sample backbone topologies:
the local access transport area network X (LATA-X) and ISP
1755 (Ebone) topology obtained from the Rocketfuel Project
[22]. Assuming for simplicity that each link has unit capacity,
we choose the orientation of each link such that no cycle is
generated while the given multicast rate is achievable between
a source and the given number of sinks that are arbitrarily
selected; in particular, the parameters used are (9 sinks, rate
2) for LATA-X and (4 sinks, rate 3) for ISP 1755.

C. Set III of Networks

As another set of sample networks, we employ the topolo-
gies generated by the algorithm in [23], which constructs
connected acyclic directed graphs uniformly at random; two
networks with parameters (20 nodes, 80 links, 12 sinks, rate
4) and (40 nodes, 120 links, 12 sinks, rate 3) are used for
simulations.

We observe that our approach performs far better than
Minimal 1 approach, both in terms of the best and the average
values. In comparison with the second minimal approach, our
approach produces considerably better solutions on average
while the gap between the best values by the two methods be-
coming wider for larger-sized problems. We can also observe
that the networks in sets II and III, as opposed to those in
set I, lead to no difference in the best values obtained by 20
iterations of the proposed and Minimal 2 approaches, which
may indicate that the scenario as in networkB′ in Example
1 is not much likely to be the case in general topologies.
However, in the case where doing such many iterations is not
easy, the proposed method can be much more useful. Note that
the benefit of the proposed approach is not only its superior
performance in reducing the number of coding links, but more
importantly its applicability to various generalized scenarios,
as will be di! scussed in the next section.

V. GENERALIZATION

The more important advantage of our proposed approach
lies in that, as opposed to the previously mentioned minimal
approaches, it can be readily applied to a variety of generalized
problems, which involve non-coding links/nodes and thus are
hard to solve optimally.

1) Number of Coding Nodes:The proposed method can
easily generalize to the case of minimizing coding nodes,
which initially was our objective. For feasible chromosome
y, we alternatively defineF (y) as the number of nodes with
multiple incoming links any of whose associated coding points
is active. Table II shows the number of required coding nodes
computed by such modified method for the set I of networks.
(For the minimal approaches, due to the special structure of
the networks in set I, the number of coding nodes happens
to be the same as that of coding links. Thus, see Table I for
comparison.)

2) Different Coding Costs:If the cost for coding is different
at each of the links, one would be interested in minimizing the
total overhead incurred by coding, which can be calculated by
summing up the coding cost at each of the active coding points

3 Copies 7 Copies 15 Copies 31 Copies
Best Avg. Best Avg. Best Avg. Best Avg.
0 0.85 0 2.60 3 6.00 12 19.05

TABLE II

PERFORMANCE OF THEPROPOSEDMETHOD FORCODING NODES

and is to be used as the fitness value of a feasible chromosome.
A similar generalization works for the case of coding nodes.
On the other hand, the previous minimal approaches may not
have a natural generalization to this scenario unless the coding
costs can be clearly ordered, in which case traversing the
links/nodes in descending order of cost seems reasonable.

3) Routing Solution and Network Code:A solution pro-
duced by our method determines the link coefficients inM
either to be zeroed out or to remain indeterminate, which in
the latter case are to be assigned elements from a proper finite
field by any existing coding method. Note that each of the
link coefficients not belonging toM , which we callrouting
coefficients, also has binary choices: It is now either zero or
identityrather than an indeterminate. Hence, by simply adding
the routing coefficients to the solution vector, we can obtain a
feasible routing solution that determines which links are used
for routing, for now without any optimization. Furthermore,
if the randomized fitness evaluation method in a finite field
is used with all nonzero routing coefficients being replaced
by identity, a feasible network code is obtained, without any
additional code construction procedure, at the end of the
iteration.

4) Consideration of Link Costs:The cost for link usage is
clearly subject to optimization, which alone can be efficiently
solved by assuming coding at all possible places [24] while
joint optimization over the coding and link costs is difficult;
e.g., the formulation in [4] entails an exponential number of
variables and constraints. We note that the optimization of
link cost jointly with coding cost can be incorporated into
our GA-based framework by adjusting the fitness value as
follows: Given a feasible chromosome that includes the routing
coefficients, for each of the links if any of its associated
coefficients is nonzero, we add the associated link cost to the
fitness value in which the coding cost has already been taken
into account.

VI. CONCLUSIONS ANDFURTHER WORK

We have proposed an evolutionary approach to the problem
of minimizing the amount of resources used for network
coding and compared its performance with other existing
minimal approaches. Our result show that the proposed ap-
proach achieves significantly superior performance over the
minimal approaches. The more important benefit the proposed
approach offers is its applicability to a variety of generalized
optimization scenarios.

There are several topics for further research. GA compo-
nents of the proposed approach, such as the method for con-
structing the initial population, can be further specialized for
the problem at hand to improve the algorithm’s performance.

The framework of the proposed approach may be modified
so as to work with as cyclic graphs or to allow for semi-
decentralized operation with only limited amount of feedback.
Also, more recent GA techniques, e.g., linkage learning GA
which offers improved scalability exploiting the correlation
between variables that is to be learned as the algorithm
progresses, are worth to investigate for their applicability in
the context of network coding.

REFERENCES

[1] M. B. Richey and R. G. Parker, “On multiple steiner subgraph prob-
lems,” Networks, vol. 16, no. 4, pp. 423–438, 1986.

[2] C. Fragouli and E. Soljanin, “Information flow decomposition for
network coding,”IEEE Trans. Inform. Theory, to appear.

[3] M. Langberg, A. Sprintson, and J. Bruck, “The encoding complexity of
network coding,” inProc. IEEE ISIT ’05.

[4] K. Bhattad, N. Ratnakar, R. Koetter, and K. R. Narayanan,“Minimal
network coding for multicast,” inProc. IEEE ISIT ’05.

[5] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Networkinforma-
tion flow,” IEEE Trans. Inform. Theory, vol. 46, no. 4, pp. 1204–1216,
2000.

[6] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Networking, vol. 11, no. 5, pp. 782–795, 2003.

[7] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. Inform. Theory, vol. 49, no. 2, pp. 371–381, 2003.

[8] Y. Wu, P. A. Chou, and S. Kung, “Minimum-energy multicastin mobile
ad hoc networks using network coding,”IEEE Trans. Commun., to
appear.

[9] R. Elbaum and M. Sidi, “Topological design of local-areanetworks
using genetic algorithms,”IEEE/ACM Trans. Networking, vol. 4, no. 5,
pp. 766–778, 1996.

[10] B. Dengiza, F. Altiparmak, and A. E. Smith, “Efficient optimization of
all-terminal reliable networks, using an evolutionary approach,” IEEE
Trans. Rel., vol. 46, no. 1, pp. 18–26, 1997.

[11] M. Mitchell, An Introduction to Genetic Algorithms. MIT Press, 1996.
[12] M. Srinivas and L. M. Patnaik, “Genetic algorithms: A survey,” IEEE

Computer, vol. 27, no. 6, pp. 17–26, 1994.
[13] J. H. Holland,Adaptation in Natural and Artificial Systems. Univ. of

Michigan Press, 1975.
[14] T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros, “The benefits

of coding over routing in a randomized setting,” inProc. IEEE ISIT ’03.
[15] G. H. Golub and C. F. van Loan,Matrix Computations, 3rd ed. Johns

Hopkins University Press, 1993.
[16] J. W. Demmel, Applied Numerical Linear Algebra. Society for

Industrial and Applied Mathematics, 1997.
[17] Z.-Z. Chen and M.-Y. Kao, “Reducing randomness via irrational num-

bers,” SIAM J. Comput., vol. 29, no. 4, pp. 1247–1256, 2000.
[18] D. Lewin and S. Vadhan, “Checking polynomial identities over any field:

towards a derandomization?” inProc. ACM STOC ’98, pp. 438–447.
[19] R. Lipton and N. Vishnoi, “Deterministic identity testing for multivariate

polynomials,” inProc. SODA ’03, pp. 756–760.
[20] V. Kabanets and R. Impagliazzo, “Derandomizing polynomial identity

tests means proving circuit lower bounds,” inProc. ACM STOC ’03, pp.
355–364.

[21] C. R. Houck, J. A. Joines, and M. G. Kay, “A genetic algorithm for
function optimization : a matlab implementation,” NCSU-IE, Tech. Rep.
95-09, 1995.

[22] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISPtopologies
with rocketfuel,” in Proc. of ACM/SIGCOMM ’02, pp. 133–145.

[23] G. Melançon and F. Philippe, “Generating connected acyclic digraphs
uniformly at random,”Inf. Process. Lett., vol. 90, no. 4, pp. 209–213,
2004.

[24] D. S. Lun, M. Médard, T. Ho, and R. Koetter, “Network coding with a
cost criterion,” MIT-LIDS, Tech. Rep. P-2584, 2004.

