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Abstract— We adopt the network coding approach to achieve
minimum-cost multicast in interference-limited wireless networks
where link capacities are functions of the signal-to-noise-plus-
interference ratio (SINR). Since wireless link capacities can
be controlled by varying transmission powers, minimum-cost
multicast must be achieved by jointly optimizing network coding
subgraphs with power control and congestion control schemes. To
address this, we design a set of node-based distributed gradient
projection algorithms which iteratively adjust local control vari-
ables so as to converge to the optimal power control, coding
subgraph, and congestion control configuration. We explicitly
derive the scaling matrices required in the gradient projection
algorithms for fast, guaranteed global convergence, and show how
the scaling matrices can be computed in a distributed manner.

I. I NTRODUCTION

The recent breakthrough in network coding [1], [2] extends
the functionality of network nodes from traditional routing
to performing algebraic or even random operations [3] on
received data. In general, network coding techniques im-
prove network throughput [1], network robustness [4], and
the efficiency of network resource allocation [5], over those
achievable by pure routing.

The advantage of network coding is most pronounced in
establishing multicast connections. Li et al. [6] prove that
linear coding suffices to obtain the optimal throughput of a
multicast session, achieving the fundamental max-flow-min-
cut upper bound. This result greatly facilitates the optimization
of multicast flows based on network coding. In [7], throughput
optimization in undirected coded networks is studied via a
linear program. The problem of finding the minimum-cost
multicast scheme using a network coding approach is ad-
dressed in [8]. It is shown [8] that the solution of this problem
can be decomposed into two parts: finding the minimum-cost
coding subgraphs and designing the code applied over the
optimal subgraphs. A distributed solution for the second part
was provided in [3]. To solve the first part, the work in [5]
proposes a distributed algorithm for finding the optimal coding
subgraphs via a primal-dual approach. In previous work [9],
we solve the minimum-cost coding subgraph problem in wire-
line coded networks using simple node-based primal scaled
gradient projection algorithms requiring no dual computations.
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By exploiting the intrinsic connection between the optimal
coding subgraph problem and the optimal routing problem in
traditional networks, we design a complete set of distributed
solutions for the optimal multicast problem involving both
congestion control and network coding [9].

Whereas network coding techniques have thus far been
applied mostly to wireline networks, the performance gains
offered by network coding point to their promising appli-
cation in wireless networks, where multi-user interference,
channel fading, energy constraints, and the lack of centralized
coordination present new challenges. Initial studies on the
application of network coding in wireless networks occur
in [5], [10]. In [5], the minimum-energy multicast problem
is studied by exploiting the “wireless multicast advantage.”
The work in [10] introduces a distributed protocol which
supports multiple unicast flows efficiently by exploiting the
shared nature of the wireless medium.

In this work, we extend the optimization framework and dis-
tributed algorithms in [9] to achieve minimum-cost multicast
with network coding in interference-limited wireless networks.
We consider wireless networks where link capacities are
functions of the signal-to-interference-plus-noise ratio (SINR)
at the receiver. In this context, wireless link capacities can
be controlled by varying transmission powers. To achieve
minimum-cost multicast, the coding subgraphs must now be
jointly optimized with power control schemes at the physi-
cal layer. Moreover, this joint optimization must be carried
out in the network without excessive control overhead. To
solve this problem, we design a set of node-based scaled
gradient projection algorithms which iteratively adjust local
control variables at network nodes so as to converge to
the optimal power control, coding subgraph, and congestion
control configuration. These algorithms are distributed in the
sense that network nodes can separately update their control
variables after obtaining a limited number of control messages
from their neighboring nodes. We explicitly derive the scaling
matrices required in the gradient projection algorithms for
fast, guaranteed global convergence, and show how the scaling
matrices can be computed in a distributed manner.

II. PROBLEM FORMULATION

We consider the problem of jointly optimal power control,
congestion control, and network coding in wireless networks



with multiple multicast sessions. Our optimization framework
will yield a feasible set of transmission powers, link capacities,
as well as a set of network coding subgraphs, one for each
receiver of each multicast session.

Let the wireless network be modelled by a directed and
connected graphG = (N , E) whereN is the set of nodes and
E the set of links. Each nodei ∈ N models a wireless trans-
ceiver. We assume that the wireless network isinterference-
limited, so that the capacity of link(i, j), denoted byCij ,
is a nonnegative function of the signal-to-interference-plus-
noise ratio (SINR) at the receiver of the link, i.e.,Cij =
C(SINRij). We further assumeC(·) is increasing, concave,
and twice continuously differentiable. For(i, j) ∈ E , SINRij

is given by

SINRij(P ) =
GijPij

Gij

∑
n6=j Pin +

∑
m 6=i Gmj

∑
n Pmn + Nj

,

where Pmn is the transmission power on link(m,n), Gmj

denotes the (constant) path gain from nodem to j, Nj is the
noise power at nodej’s receiver. For example, in a CDMA
network using single-user decoding, the information-theoretic
link capacity per unit bandwidth isCij = log(1 + SINRij).
Assume every nodei is subject to an individual power con-
straint:

∑
j Pij , Pi ≤ P̄i. Denote the set of all feasible

power vectors byΠ = {P ≥ 0 :
∑

j Pij ≤ P̄i,∀i ∈ N}.
Let M denote the set of multicast sessions. Each session

m ∈ M is identified by the source-destination-set pair
(s(m),W(m)) where s(m) is the source node andW(m)
is the set of all receivers of sessionm. For eachw ∈ W(m),
we refer to(s(m), w) as sub-sessionw of m. In this work,
we assume network coding is applied to individual sessions
such that data of different sessions are coded independently. In
general, this restricted coding scheme is suboptimal. However,
it provides a tractable framework for optimization. Moreover,
it typically incurs little loss of optimality [7].

We adopt a flow model to analyze the transmission of the
multicast sessions’ data in the network. LetFij(m) denote
network-coded transmission rate of sessionm traffic on link
(i, j). For simplicity, we refer toFij(m) as the flow rate of
sessionm traffic on (i, j). The flow rate of a sub-session
fij(w; m) represents the part ofFij(m) that is relevant for
receiverw ∈ W(m). Thus, the vectorf(w;m) = (fij(w;m))
forms thecoding subgraph[8] for the pair(s(m), w). The flow
rates of a session and its sub-sessions are related as follows:

Fij(m) = max
w∈W(m)

fij(w; m), (1)

and the total flow rate on a link(i, j) is Fij =
∑

m∈M Fij(m).
The flow of each sub-session is feasible if it satisfies the usual
flow conservation constraints[1], [8]: for all w ∈ W(m),
fij(w; m) ≥ 0 and

∑

j∈Oi

fij(w; m) =





rm, i = s(m),
0, i = w,∑

j∈Ii

fji(w; m) , ti(w; m), otherwise.

Here,rm is the end-to-end flow rate of sessionm, Oi = {j :
(i, j) ∈ E} andIi = {j : (j, i) ∈ E} denote the set of next-hop
neighbors and the set of immediately upstream neighbors of
nodei, respectively. In what follows, denote the set of feasible
flows (fij(w; m))(i,j) by F(w; m). The concepts of session
flow rates, sub-session flow rates, and coding subgraphs are
illustrated in Figure 1.

Because the flow of any sub-session follows the same con-
servation constraints as a unicast session in traditional routed
networks, it can be optimized by arouting methodology [9].
The main difference between the present problem and the
traditional routing problem is that the session flowFij(m)
is themaximum(rather than the sum) of the sub-session flows
fij(w; m).

To assess the optimality of a multicast scheme, we first
associate a utility functionUm(rm) with each sessionm ∈
M. Assume that sessionm’s maximum rate demand isRm

bits/sec, andUm(rm) is strictly increasing, concave, and twice
continuously differentiable inrm ∈ [0, Rm]. Next, we assume
a cost measured by the functionDij(Cij , Fij) is incurred on
link (i, j) when the total link flow rate isFij and the link
capacity isCij . AssumeDij(·, ·) is jointly convex, strictly
decreasing (increasing), and twice continuously differentiable
in Cij (Fij).

The optimal multicast scheme results from balancing the
aggregate session utility and the total network:

maximize
∑

m∈M
Um(rm)−

∑

(i,j)∈E
Dij(Cij , Fij) (2)

subject to 0 ≤ rm ≤ Rm, ∀m ∈M, (3)

Cij = C(SINRij(P )), ∀(i, j) ∈ E (4)

Fij =
∑

m∈M
max

w∈W(m)
fij(w; m), ∀(i, j) ∈ E ,

P ∈ Π,

(fij(w; m)) ∈ F(w; m), ∀w ∈ W(m). (5)

Note that the problem involves joint congestion control at the
transport layer (cf. (3)), network coding at the network layer
(cf. (5)), and capacity allocation through power control at the
physical layer (cf. (4)) in the context of wireless networks.

By introducingoverflow rateFm = Rm− rm andoverflow
costDm(Fm) = Um(Rm)−Um(rm), we can convert (2) into
a cost minimization problem [11]:

minimize
∑

m∈M
Dm(Fm) +

∑

(i,j)∈E
Dij(Cij , Fij). (6)

SinceDm(Fm) is strictly increasing, convex, and twice con-
tinuously differentiable on[0, Rm], it resembles ordinary link
cost functions. Thus, one can think of the rejected flowFm

as being routed on avirtual overflow link connectings(m)
directly to a virtual sinks′(m). In this way, congestion control
can be incorporated into the routing functionality of the source
node. This idea is illustrated in Figure 1.

The objective function in (6) is convex in all flow variables.
It is convex in P if every Cij is concave inP for all
(i, j). Unfortunately, given thatCij = C(SINRij) is strictly
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Fig. 1. Example of a coded multicast network with a single source. All
links have unit capacity. The left figure characterizes a network coding
scheme, showing the symbol stream on each link. The right figure shows
the corresponding flow pattern where the two digits on each real link are flow
rates of sub-sessions(s, w1) and(s, w2), respectively. An overflow link with
traffic rejected from the network is shown in both figures.

increasing,∇2Cij(P ) cannot be negative definite. However,
if

C ′′(x) · x + C ′(x) ≤ 0, ∀x ≥ 0, (7)

then with changes of variablesSmn = ln Pmn [12],∇2Cij(S)
is negative definite and the objective function is convex in
S. This observation is first made in [13], where the capacity
function is required to satisfy−xC ′′(x)/C ′(x) ∈ [1, 2]. Our
results, however, indicate that the upper bound2 can be
removed. The detailed proof is omitted here for brevity. In
what follows, we assume (7) and denote the set of feasibleS
by ΠS = {S ∈ R|E| :

∑
j eSij ≤ P̄i, ∀i ∈ N}.

With the desired convexity of the problem established, it
remains to resolve the technical difficulty introduced by the
non-differentiability of the maximum function in (1). As in
[5], [14], we use theLn-norm approximation

Fij(m) = max
w∈W(m)

fij(w;m) ≈

 ∑

w∈W(m)

(fij(w;m))n




1/n

.

With this, the derivative exists everywhere and is given by

∂Fij(m)
∂fij(w;m)

=
(

fij(w;m)
Fij(m)

)n−1

.

Thus, we obtain the following convex and twice continu-
ously differentiable Jointly Optimal Power control, Network
coding, and Congestion control (JOPNC) problem:

minimize
∑

m∈M
Dm(Fm) +

∑

(i,j)∈E
Dij(Cij , Fij) (8)

subject to Fm + rm = Rm, ∀m ∈M,

Cij = C(SINRij(S)), ∀(i, j) ∈ E ,

S ∈ ΠS ,

Fij =
∑

m∈M


 ∑

w∈W(m)

(fij(w;m))n




1/n

,

(fij(w;m)) ∈ F(w; m), ∀w ∈ W(m).

III. N ODE-BASED CONTROL VARIABLES AND

OPTIMALITY CONDITIONS

In the previous work [9], we show that in wireline mul-
ticast networks with network coding, congestion control and
coding subgraph optimization can be achieved using a routing
methodology. We now extend this technique to wireless net-
works, where in contrast to wireline networks, link capacities
can be further controlled by varying transmission powers.

Since large-scale wireless networks usually lack centralized
coordination, it is desirable to distribute the control function-
alities to individual nodes. For this purpose, we devise a set
of node-based control variables. First, to permit each node to
independently adjust the sub-session flow rates on its outgoing
links, we adopt therouting variablesintroduced in [15]. For
eachm ∈M, defineφm = Fm

Rm
and

φij(w;m) =

{
fij(w;m)

Rm
, if i = s(m),

fij(w;m)
ti(w;m) , if i 6= s(m), w.

The routing variables must be nonnegative. In addition,φm +∑
j∈Oi

φij(w;m) = 1 for all w ∈ W(m) if i = s(m), and∑
j∈Oi

φij(w;m) = 1 for all w ∈ W(m) if i 6= s(m), w
and ti(w; m) > 0.2 Similarly, to achieve distributed power
adjustment, define

Power allocation variables:ηij = Pij/Pi, ∀(i, j) ∈ E ,

Power control variables:γi = Si/S̄i, ∀i ∈ N .

Here,Si = ln Pi andS̄i = ln P̄i. With appropriate scaling, we
can always letP̄i > 1 so thatS̄i > 0 for all i. Thus,(ηij) and
γi satisfyηij ≥ 0,

∑
j∈Oi

ηij = 1, andγi ≤ 1.
The routing, power allocation, and power control variables

defined above determine the transmission powers as well as all
the sub-session flow rates on all links. The JOPNC problem
in (8) can thus be posed in terms of these variables. To solve
the resulting differentiable optimization problem, an iterative
gradient projection method may be used. For distributed imple-
mentation, it is desirable for the cost gradients with respect to
the local control variables of a node to be computable locally,
after a possibly local exchange of information. Fortunately, for
our problem, this turns out to be the case.

The first derivatives of the objective function, denoted by
D, with respect to routing variables are [15]:

∂D

∂φm
= Rm · δφm,

∂D

∂φij(w; m)
=

{
Rm · δφij(w;m), if i = s(m),
ti(w;m) · δφij(w;m), if i 6= s(m), w.

Key information lies in themarginal routing cost indicators

δφm = D′
m(Fm)

and
δφij(w; m) =

∂Dij

∂fij(w;m)
+

∂D

∂rj(w;m)
,

2For those intermediate nodes havingti(w; m) = 0, we let the routing
variablesφij(w; m) assume arbitrary nonnegative values satisfying the same
simplex constraint.



where

∂Dij

∂fij(w; m)
=

∂Dij

∂Fij

(
fij(w; m)
Fij(m)

)n−1

,

∂D

∂rj(w; m)
=

{
0, if j = w,∑

k∈Oj
φjk(w;m)δφjk(w; m), otherwise.

From the previous recursive relation, we can see that the
marginal routing cost indicators can be obtained via sequential
marginal cost exchanges among neighboring nodes starting
from the destination nodes. The finite termination of the
sequential message passing relies on the routing pattern of
the sub-session being loop-free. This, however, is guaranteed
by the distributed routing algorithm discussed below.

We now turn to the derivatives with respect to the power
variables. The first derivatives in the power allocation variables
are

∂D

∂ηij
= Pi


−

∑

(m,n)

∂Dmn

∂Cmn

C ′mnGmnGinPmn

IN2
mn

+ δηij


 ,

where themarginal power allocation cost indicatoris

δηij =
∂Dij

∂Cij

C ′ijGij

INij
(1 + SINRij).

In above equations,C ′mn stands forC ′(SINRmn) andINmn

denotes the interference plus noise on link(m,n): Gmn(Pm−
Pmn) +

∑
l 6=m GlnPl + Nn.

Finally, the derivatives with respect to the power control
variables are

∂D

∂γi
= S̄iδγi,

where themarginal power control cost indicatoris

δγi = Pi


−

∑

(m,n)

∂Dmn

∂Cmn

C ′mnGmnGinPmn

IN2
mn

+
∑

j∈Oi

δηij · ηij


 .

(9)
This formula forδγi involves measures from all links in the
network. We will introduce an efficient message exchange
protocol for the computation ofδγi in the next section.

Theorem 1:For a feasible set of routing variables
(φm), (φi(w;m)) and power variables(ηi), (γi) to induce
the jointly optimal sub-session flows and link capacities, the
following conditions are necessary. For allm ∈ M, w ∈
W(m) and i 6= s(m), w with ti(w; m) > 0, there exists a
constantλi(w;m) such that

δφik(w; m)
{

= λi(w; m), if φik(w; m) > 0,
≥ λi(w; m), if φik(w; m) = 0.

(10)

For the source nodei = s(m), define for everyw ∈ W(m),
λi(w; m) = minj∈Oi δφij(w;m), then δφik(w;m) satisfies
(10) and

δφm




≥ ∑

w∈W(m) λi(w; m), if φm = 0,

=
∑

w∈W(m) λi(w; m), if φm ∈ (0, 1),
≤ ∑

w∈W(m) λi(w; m), if φm = 1.
(11)

For all i ∈ N , there exists a constantνi such that

δηik

{
= νi, if ηik > 0,
≥ νi, if ηik = 0,

(12)

δγi

Pi

{
= 0, if γi < 1,
≤ 0, if γi = 1.

(13)

Moreover, the above set of conditions are sufficient if (10)
holds at all intermediate nodes whetherti(w; m) > 0 or not.3

IV. N ODE-BASED DISTRIBUTED ALGORITHMS

Since the JOPNC problem in (8) involves the minimization
of a convex objective over convex regions, the class ofscaled
gradient projectionalgorithms is appropriate for providing
a distributed solution. Using this method, Gallager [15] and
Bertsekas et al. [16] develop distributed routing algorithms for
wireline networks supporting unicast sessions. In this section,
we adapt this technique to design node-based algorithms for
jointly optimal power control, network coding, and congestion
control for wireless networks. These algorithms includes two
kinds of routing algorithms implemented at the source and
intermediate nodes respectively, as well as power allocation
and power control algorithms implemented at individual nodes.
Our algorithms use a new technique for computing scaling
matrices which are amenable to distributed computation. With
this technique, we show that our algorithms are guaranteed to
converge from all initial conditions.4

A. Source Node Congestion Control/Routing Algorithm (CR)

This algorithm is implemented at the source nodes(m) of
every sessionm ∈ M. It adjusts the routing variables on all
the outgoing links ofs(m) (including the virtual overflow link)
and for all sub-sessionsw ∈ W(m). We therefore call it the
Congestion control/Routing (CR) algorithm. For conciseness,
we suppress the session indexm and use the short-hand
notation φs(w) = (φsj(w))j∈Os . At the kth iteration, the
feasible set of vectorφs = (φm, (φs(w))w∈W(m)) is

Fk
φs

= {φs ≥ 0 : φm + φs(w)′ · 1 = 1

andφsj(w) = 0, ∀w ∈ W, j ∈ Bk
s (w)

}
,

where ′ denotes the vector transpose,Bk
s (w) stands for the

blocked node setof nodes relative to sub-sessionw.5

Node s updates the current routing vectorφk
s via the

following scaled gradient projection algorithm:

φk+1
s = CR(φk

s) =
[
φk

s − (Mk
s )−1 · δφk

s

]+

Mk
s

.

3WhenPi = 0, define δγi/Pi|Pi=0 = limPi→0+ δγi/Pi.
4The work in [16] uses a more involved scheme to approximate the diagonal

terms of the Hessian matrices with respect to the routing variables. Since
the resulting scaling matrices do not always upper bound the Hessians,
convergence may not happen for some initial conditions.

5This device is invented in [15], [16] to prevent the formation of loops in the
routing pattern of sub-sessionw. For a nodei, Bk

i (w) consists of its next-hop
neighborj with marginal cost ∂D

∂rk
j (w)

higher than ∂D
∂rk

i (w)
, and neighbors

that route positive flows to more costly downstream nodes. By blocking such
nodes, we force each sub-session’s traffic to flow through nodes in decreasing
order of marginal costs, thus precluding the existence of loops. For an exact
definition ofBk

i (w), see [16].



Here, the operator[·]+
Mk

s
denotes projection on the fea-

sible set Fk
φs

relative to the norm induced by matrix

Mk
s . The vector δφk

s consists of marginal cost indicators
(δφk

m, (δφk
s(w))j∈Os,w∈W). The scaling matrixMk

s is sym-
metric and positive definite. In particular, we chooseMk

s to
be a diagonal matrix upper-bounding the Hessian evaluated at
the kth step:

Mk
s = Rm

2 diag
{
Am(D0),(

|W|
[
Asj(D0) + |AN k

s(w)|hj(w)A(D0)
])

w∈W,j∈ANk
s (w)

}

whereAN k
s(w) ≡ Os\Bk

s (w), hj(w) is the maximum number
of hops on a path fromj to w, and

Am(D0) ≡ max
F :Dm(F )≤D0

D′′
m(F ),

Aij(D0) ≡ max
Fij :Dij(Cij ,Fij)≤D0

∂2Dij

∂F 2
ij

,

and

A(D0) ≡ max
(m,n)∈E

Amn(D0).

With this choice of Mk
s , the CR algorithm resembles a

constrained Newton algorithm, which is known to have fast
convergence properties [17]. Moreover, it is clear thatMk

s can
be computed locally ats with a simple distributed protocol
whereby thehj(w)’s are determined. The scaling matrices we
specify for subsequent algorithms share the same features.

B. Intermediate Node Routing Algorithm (RT)

Consider any sessionm ∈M and for brevity omit the index
m. Relative to a sub-sessionw, an intermediate nodei changes
the allocation of the sub-session’s traffic on its outgoing links
by adjusting its current routing vectorφk

i (w) = (φk
ij(w))j∈Oi

within the feasible set

Fk
φi(w) = {φi(w) ≥ 0 : φi(w)′ · 1 = 1

andφij(w) = 0, ∀j ∈ Bk
i (w)

}
.

Becauseφk
i (w) affects only the routing pattern of sub-session

w inside the network, we refer to the updating algorithm as a
pure Routing algorithm (RT ). Similar to CR, it has a scaled
gradient projection form:

φk+1
i (w) = RT (φk

i (w))

=
[
φk

i (w)− (Mk
i (w))−1 · δφk

i (w)
]+

Mk
i (w)

.

Here, δφk
i (w) = (δφk

ij(w)) and the diagonal scaling matrix
Mk

i (w) is chosen as

tki (w)
2

diag
{(

Aij(D0) + |AN k
i (w)|hk

j (w)A(D0)
)

j∈ANk
i (w)

}

C. Power Allocation Algorithm (PA)

At the kth iteration, nodei updates its power allocation
vector ηk

i = (ηk
ij)j∈Oi within the feasible setFηi

=
{ηi ≥ 0 : η′i · 1 = 1} via the following scaled gradient pro-
jection:

ηk+1
i = PA(ηk

i ) =
[
ηk

i − (Qk
i )−1 · δηk

i

]+
Qk

i

.

We now specify the appropriate scaling matricQk
i . Assume

the sum of the local link costs at nodei before thekth iteration
is

∑
j∈Oi

Dk
ij = Dk

i . The powers used by other nodes do not
change over the iteration, and soCij depends only onηij :

C

(
GijPiηij

GijPi(1− ηij) +
∑

m 6=i GmjPm + Nj

)
, Cij(ηij).

It can be shown that there exists a lower boundη
ij

on
the updated value ofηij such thatCij = Cij(ηij

) and

Dij(Cij , F
k
ij) = Dk

i . Accordingly, the possible range of
SINRij , abbreviated asxij , is

xmin
ij =

GijPiηij

GijPi(1− η
ij

) +
∑

m 6=i GmjPm + Nj
≤ xij

≤ GijPi∑
m 6=i GmjPm + Nj

= xmax
ij .

Define an auxiliary term

βij =
1

η2
ij

[
Bij(Dk

i ) max
xmin

ij ≤x≤xmax
ij

{C ′(x)2x2(1 + x)2}

+
∂Dij

∂Cij

∣∣∣∣
Dij(Cij ,F k

ij)=Dk
i

· min
xmin

ij ≤x≤xmax
ij

{C ′′(x)x2(1 + x)2}
]

,

whereBij(Dk
i ) = maxDij(Cij ,F k

ij)≤Dk
i

∂2Dij

∂C2
ij

. We choose the
scaling matrix as

Qk
i =

1
2P k

i

diag {(βij)j∈Oi} .

For details of the derivation, please refer to [18].

D. Power Control Algorithm (PC)

At the kth iteration of the power control algorithm, the
whole vector γ = (γi) is varied within the feasible set
Fγ =

{
γ ∈ R|N | : γ ≤ 1

}
. The update vector is given by

the following scaled gradient projection:

γk+1 = PC(γk) =
[
γk − (V k)−1 · δγk

]+
V k .

Let the scaling matrixV k = diag{(vi)i∈N }. Then PC can
be decomposed into separate computations at individual nodes
requiring only their own marginal cost indicators:

γk+1
i = PC(γk

i ) = min
{

1, γk
i −

δγk
i

vi

}
.

It remains to design a procedure to let every nodei compute
its own δγi prior to the algorithm iteration. The following
protocol is based on a convenient rearrangement of (9).



Power Control Message Exchange Protocol:Let each
node n sum up the measures from all its incoming links
(m,n) to form the power control message:MSGn ,∑

m∈In

∂Dmn

∂Cmn

C′mnSINRmn

INmn
, which is then broadcast to the

whole network. Upon obtainingMSGn, nodei processes it
according to the following rule: ifn is a next-hop neighbor
of i, node i multiplies MSGn with path gain Gin and
subtracts the product from the value of local measureδηin·ηin;
otherwise, nodei multipliesMSGn with −Gin. Finally, node
i adds up all the processed messages, and this sum multiplied
by Pi equalsδγi. Note that this protocol requiresonly one
message from each node in the network. For details, see [18].

By approximating the Hessian matrix, we find the appro-
priate diagonal terms ofV k:

vi =
S̄i

2
|N ||E| [B̄(D0)κ + B(D0)ϕ

]
,

where

B̄(D0) = max
(m,j)∈E

max
Dmj≤D0

∂2Dmj

∂C2
mj

,

B(D0) = min
(m,j)∈E

min
Dmj≤D0

∂Dmj

∂Cmj
,

κ = max0≤x≤x̄ C ′(x)2 · x2, andϕ = max0≤x≤x̄ C ′′(x) · x2.
Here, x̄ is a finite upper bound for the achievableSINR on
all links, which must exist due to the peak power constraints.

E. Convergence of Algorithms

Applying the scaling matrices specified above for each of
the algorithms, we have our central convergence result.

Theorem 2:Assume an initial set of loop-free routing vari-
ables(φ0

m), (φ0
i (w;m)), and power variables(η0

i ), (γ0
i ) such

that the resulting network costD0 is finite, then the sequences
generated by algorithmsCR, RT , PA, andPC all converge,
i.e.,φk

m → φ∗m for all m ∈M, φk
i (w; m) → φ∗i (w; m) for all

w ∈ W(m) andi 6= w, ηk
i → η∗i for all i ∈ N , andγk → γ∗

ask →∞. Furthermore,(φ∗m), (φ∗i (w; m)), η∗i , andγ∗ yield
a jointly optimal solution to the JOPNC problem in (8).

Note that the theorem does not assume any order in running
the algorithmsCR, RT , PA, and PC at different nodes.
For convergence to the joint optimum, every node only needs
to iterate its own algorithms until its local variables satisfy
the conditions in Theorem 1.6 Thus, our algorithms provide
a distributed method of finding the jointly optimal power
control, network coding, and congestion control configuration
for wireless multicast networks.7

6In practice, nodes may keep updating their local variables with the
corresponding algorithms until further reduction in network cost by any one
of the algorithms is negligible.

7Only the power control part of our algorithms requires a network-wide
message exchange protocol. This scheme, however, requires only one message
to be sent from every node, even in the presence of heavy mutual interference.

V. CONCLUSION

We adopt the network coding approach to achieve
minimum-cost multicast in interference-limited wireless net-
works where link capacities are functions of theSINR. We
develop a node-based framework within which transmission
powers, network coding subgraphs, and admitted session rates
are jointly optimized. We design a complete set of node-
based distributed algorithms to achieve this joint optimization,
and prove the convergence of the algorithms to the optimum
wireless network configuration from all initial conditions.
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