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Abstract—We adopt the network coding approach to achieve By exploiting the intrinsic connection between the optimal
minimum-cost mult!cast in interfe_rence-limited_wireless n(_?l’WOI'kS coding subgraph problem and the optimal routing problem in
where link capacities are functions of the signal-to-noise-plus- 4 itional networks, we design a complete set of distributed

interference ratio (SINR). Since wireless link capacities can . . . - . h
be controlled by varying transmission powers, minimum-cost solutions for the optimal multicast problem involving bot

multicast must be achieved by jointly optimizing network coding congestion control and network coding [9].
subgraphs with power control and congestion control schemes. To  Whereas network coding techniques have thus far been
address this, we design a set of node-based distributed gl'adientapp"ed mosﬂy to wireline networks, the performance gains
projection algorithms which iteratively adjust local control vari- e raq by network coding point to their promising appli-
ables so as to converge to the optimal power control, coding cation in wireless networks, where multi-user interference
subgraph, and congestion control configuration. We explicitly . v o
derive the scaling matrices required in the gradient projection Cchannel fading, energy constraints, and the lack of centralized
algorithms for fast, guaranteed global convergence, and show how coordination present new challenges. Initial studies on the
the scaling matrices can be computed in a distributed manner. gpplication of network coding in wireless networks occur
in [5], [10]. In [5], the minimum-energy multicast problem
is studied by exploiting the “wireless multicast advantage.”
The recent breakthrough in network coding [1], [2] extendfhe work in [10] introduces a distributed protocol which
the functionality of network nodes from traditional rOUtin%upports multiple unicast flows efficiently by exploiting the
to performing algebraic or even random operations [3] Qhared nature of the wireless medium.
received data. In general, network coding techniques im-|j this work, we extend the optimization framework and dis-
prove network throughput [1], network robustness [4], angiputed algorithms in [9] to achieve minimum-cost multicast
the efficiency of network resource allocation [5], over thosgith network coding in interference-limited wireless networks.
achievable by pure routing. We consider wireless networks where link capacities are
The advantage of network coding is most pronounced fiinctions of the signal-to-interference-plus-noise ratio (SINR)
establishing multicast connections. Li et al. [6] prove thajt the receiver. In this context, wireless link capacities can
linear coding suffices to obtain the optimal throughput of ge controlled by varying transmission powers. To achieve
multicast session, achieving the fundamental max-flow-migsinimum-cost multicast, the coding subgraphs must now be
cut upper bound. This result greatly facilitates the optimizatiqainﬂy optimized with power control schemes at the physi-
of multicast flows based on network coding. In [7], throughpyy| |ayer. Moreover, this joint optimization must be carried
optimization in undirected coded networks is studied via gt in the network without excessive control overhead. To
linear program. The problem of finding the minimum-cos{pive this problem, we design a set of node-based scaled
multicast scheme using a network coding approach is agmdient projection algorithms which iteratively adjust local
dressed in [8]. It is shown [8] that the solution of this problerontro| variables at network nodes so as to converge to
can be decomposed into two parts: finding the minimum-cagle optimal power control, coding subgraph, and congestion
coding subgraphs and designing the code applied over ¥htrol configuration. These algorithms are distributed in the
optimal subgraphs. A distributed solution for the second pafénse that network nodes can separately update their control
was provided in [3]. To solve the first part, the work in [S},ariaples after obtaining a limited number of control messages
proposes a distributed algorithm for finding the optimal codingom their neighboring nodes. We explicitly derive the scaling
subgraphs via a primal-dual approach. In previous work [hatrices required in the gradient projection algorithms for
we solve the minimum-cost coding subgraph problem in wirgyst guaranteed global convergence, and show how the scaling

line coded networks using simple node-based primal scalgftrices can be computed in a distributed manner.
gradient projection algorithms requiring no dual computations.

I. INTRODUCTION

Il. PROBLEM FORMULATION
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with multiple multicast sessions. Our optimization frameworklere,r,,, is the end-to-end flow rate of session O; = {j :
will yield a feasible set of transmission powers, link capacitie$;, j) € £} andZ; = {j : (j,i) € £} denote the set of next-hop
as well as a set of network coding subgraphs, one for eantighbors and the set of immediately upstream neighbors of
receiver of each multicast session. nodei, respectively. In what follows, denote the set of feasible

Let the wireless network be modelled by a directed arftbws (fi;(w;m))(; ;) by F(w;m). The concepts of session
connected grapf = (V, £) where is the set of nodes andflow rates, sub-session flow rates, and coding subgraphs are
£ the set of links. Each nodec A/ models a wireless trans-illustrated in Figure 1.
ceiver. We assume that the wireless networlnigrference-  Because the flow of any sub-session follows the same con-
limited, so that the capacity of linK:, j), denoted byC;;, servation constraints as a unicast session in traditional routed
is a nonnegative function of the signal-to-interference-plusetworks, it can be optimized by rauting methodology [9].
noise ratio (SINR) at the receiver of the link, i.€;; = The main difference between the present problem and the
C(SINR;;). We further assumeé’(-) is increasing, concave, traditional routing problem is that the session fldd;(m)
and twice continuously differentiable. For, j) € £, SINR;; is themaximum(rather than the sum) of the sub-session flows
is given by fij(w;m).

To assess the optimality of a multicast scheme, we first

= , associate a utility functio,,,(r,,) with each sessiomn €

Gij Zn#j Pin + Zm#i Gmj 2 op P + Nj M. Assume that sessiom’s maximum rate demand i&,,
where P, is the transmission power on linkn,n), Gu; bits/_sec, an(U,,L_(rm) is_ strict_ly increasing, concave, and twice
denotes the (constant) path gain from nedeo j, N; is the continuously differentiable LS [0, Ry Ne.xt,.we assume
noise power at nodg's receiver. For example, in a CDMA & cost measured by the functidn;; (Cy;, £;) is incurred on
network using single-user decoding, the information-theorefiBK (i,j) when the total link flow rate is; and the link
link capacity per unit bandwidth i';; = log(1 + SINR;;). CaPacity isCy;. AssumeDi; () is jointly convex, strictly
Assume every nodé is subject to an individual power con-decreasing (increasing), and twice continuously differentiable

SINR;;(P)

straint: -, P;; £ P, < P,. Denote the set of all feasibleM Cij (Fij)- , _
power vectors byll = {P > 0: 3, P, < B, Vi € N} The optimal multicast scheme results from balancing the
= . g =40 . . e .
Let M denote the set of multicast sessions. Each sessfipdregate session utility and the total network:
m € M is identified by_ the source-destination-set pairmaximize Z Upn (1) — Z D;;(Cij, Fij) 2)
(s(m),W(m)) where s(m) is the source node an®V(m) meM (i])EE
is the set of all receivers of sessian For eachw € W(m),  subjectto 0 <7y, < R, ¥m e M, (3)
we refer to(s(m),w) assub-sessionv of m. In this work, Ay - .
we assume network coding is applied to individual sessions Cij = C(SINR;;(P)), ¥(i.j) € € )

such that data of different sessions are coded independently. In Fij= > pax fig(wim), ¥(i,j) € €,
general, this restricted coding scheme is suboptimal. However, EM

it provides a tractable framework for optimization. Moreover, Pell,

it typically incurs little loss of optimality [7]. (fij(w;m)) € F(w;m), Yw € W(m).  (5)

We adopt a flow model to analyze the transmission of t
multicast sessions’ data in the network. LEf;(m) denote
network-coded transmission rate of sessiortraffic on link
(¢, 7). For simplicity, we refer toF;;(m) as the flow rate o
sessionm traffic on (i,5). The flow rate of a sub-session
fij(w;m) represents the part df;;(m) that is relevant for
receiverw € W(m). Thus, the vectolf (w; m) = (f;;(w;m))
forms thecoding subgraplii8] for the pair(s(m), w). The flow
rates of a session and its sub-sessions are related as follows: minimize Z D (F) + Z D (Cyj, Fij).  (6)

rKfote that the problem involves joint congestion control at the

transport layer (cf. (3)), network coding at the network layer

f (cf. (5)), and capacity allocation through power control at the

physical layer (cf. (4)) in the context of wireless networks.
By introducingoverflow rateF,,, = R,,, — r,, andoverflow

costD,,,(Fin) = Up(Ry) — U (1), We can convert (2) into

a cost minimization problem [11]:

meM (i,5)€E
Fij(m) = max fi;(w;m), 1 . o ) ’ .
weEW(m) Since D,,,(F,,) is strictly increasing, convex, and twice con-
and the total flow rate on a link, j) is Fi; = 3", v, Fi; (m). tinuously differentiable ori0, R,,], it resembles ordinary link

The flow of each sub-session is feasible if it satisfies the us@@St functions. Thus, one can think of the rejected flby

flow conservation constraintl], [8]: for all w € W(m), @S being routed on airtual overflow link connectings(m)
fi;(w;m) >0 and directly to a virtual sinks’(m). In this way, congestion control

can be incorporated into the routing functionality of the source
T, i =s(m), node. This idea is illustrated in Figure 1.
0, 1= w, The objective function in (6) is convex in all flow variables.
Z fii(w;m) £ t;(w;m), otherwise It is convex in P if every C;; is concave inP for all
JET (¢, 7). Unfortunately, given tha€’;; = C(SINR;;) is strictly

Z fij(w§m) =

JEO;



IIl. NODE-BASED CONTROL VARIABLES AND
OPTIMALITY CONDITIONS

In the previous work [9], we show that in wireline mul-
ticast networks with network coding, congestion control and
coding subgraph optimization can be achieved using a routing
methodology. We now extend this technique to wireless net-
works, where in contrast to wireline networks, link capacities
can be further controlled by varying transmission powers.

Since large-scale wireless networks usually lack centralized
coordination, it is desirable to distribute the control function-

Fig. 1. Example of a coded multicast network with a single source. Afjjlities to individual nodes. For this purpose, we devise a set

links have unit capacity. The left figure characterizes a network codin . . .
scheme, showing the symbol stream on each link. The right figure shoé/t node-based control variables. First, to permit each node to

the corresponding flow pattern where the two digits on each real link are flithdependently adjust the sub-session flow rates on its outgoing

rates of sub-sessior{s, w1) and(s, ws), respectively. An overflow link with links, we adopt theouting variablesintroduced in [15]. For
traffic rejected from the network is shown in both figures. . F
eachm € M, define¢,, = = and

fulwm) i = s(m),
, , . - Gij(wsm) =< 1 (m) o
increasing,V2C;;(P) cannot be negative definite. However, RO if ¢ # s(m),w.

i Y , The routing variables must be nonnegative. In addition+
C'(x) z+C'(2) <0, V&20, (1) S o, dij(wsm) = 1 for all w € W(m) if i = s(m), and

then with changes of variable,,,, = In P,,,,, [12], V2C;;(S) > jeo, $ij(wim) S 1 forall w € Wm) if @ # s(m),w
is negative definite and the objective function is convex i@nd ti(w;m) > 0.2 Similarly, to achieve distributed power
S. This observation is first made in [13], where the capacifdiustment, define
function is required to satisfy-2C"(z)/C’(x) € [1,2]. Our  power allocation variablesy;; = Pi;/P;, Y(i,j) € &,
results, however, indicate that the upper bouhdtan be
removed. The detailed proof is omitted here for brevity. In
what follows, we assume (7) and denote the set of feasibleHere, S; = In P, andS; = In P;. With appropriate scaling, we
by ITs = {S € RI¢l: 37 €59 < P, Vi e N}. can always let’; > 1 so thatS; > 0 for all i. Thus, (,;) and

With the desired convexity of the problem established, 4f; satisfyn;; > 0, Zjeoi n;; =1, and~y,; < 1.
remains to resolve the technical difficulty introduced by the The routing, power allocation, and power control variables
non-differentiability of the maximum function in (1). As indefined above determine the transmission powers as well as all
[5], [14], we use theL™-norm approximation the sub-session flow rates on all links. The JOPNC problem
in (8) can thus be posed in terms of these variables. To solve

Power control variablesy; = S;/S;, Vi€ N.

1/n
. N the resulting differentiable optimization problem, an iterative
Fij(m) = L figwsm) = [ Y (fij(w;m)) - gradient projection method may be used. For distributed imple-
weW(m) mentation, it is desirable for the cost gradients with respect to

the local control variables of a node to be computable locally,
after a possibly local exchange of information. Fortunately, for
oF;;(m) (fij(w;m))"‘l our problem, this turns out to be the case.

With this, the derivative exists everywhere and is given by

The first derivatives of the objective function, denoted by

dfij(wsm) — \ Fyj(m) _ . )
. ) . D, with respect to routing variables are [15]:
Thus, we obtain the following convex and twice continu- oD
ously differentiable Jointly Optimal Power control, Network —(% =Ry - 00,

coding, and Congestion control (JOPNC) problem:
. 0D | Ry - 06ii(w;m), if i =s(m),
minimize Z D, (F,) + Z D;;(Cyj, Fij) (8) i (w;m) T\ tilw;m) - 8 (w;m), i i # s(m), w.

meM (i.j)€E . L , _ N
i Key information lies in themarginal routing cost indicators
subjectto  F,, + 7 = R, Ym e M, A Ion lies | (o] uting indi
_ /
and
S e Ilg, aDij oD
1/n 5¢” (w7 m) = + ,
n Ofij(w;m) — Orj(w;m)
Fy=> | > Gulwm)"|
meM \weW(m) 2For those intermediate nodes havihgw;m) = 0, we let the routing

variables¢; ; (w; m) assume arbitrary nonnegative values satisfying the same
(fij(wym)) € F(wym), Yw € W(m). simplex constraint.



where For all i € \V, there exists a constani such that

Ofij(w;m) — OFy; \ Fij(m) 7 R = 77 if i =0,
ob [0, if j=uw, 6%—{ =0, ify<l, 13)
drj(w;m) | Lkeo, Pix(wim)ogx(w;m), otherwise P <0, ify=1

reover, the above set of conditions are sufficient if (10)

From the previous recursive relation, we can see that t . )
P ‘hg;ds at all intermediate nodes whethghw; m) > 0 or not3

marginal routing cost indicators can be obtained via sequenti
marginal cost exchanges among neighboring nodes starting V. NODE-BASED DISTRIBUTED ALGORITHMS

from the destination nodes. The finite termination of the gince the JOPNC problem in (8) involves the minimization
sequential message passing reIies_on the routi_ng patternyph convex objective over convex regions, the classaafled
the sub-session being loop-free. This, however, is guarantefdgient projectionalgorithms is appropriate for providing
by the distributed routing algorithm discussed below. a distributed solution. Using this method, Gallager [15] and
We now turn to the derivatives with respect t0 the poWg§esekas et al. [16] develop distributed routing algorithms for
variables. The first derivatives in the power allocation variablesaline networks supporting unicast sessions. In this section
are we adapt this technique to design node-based algorithms for
oD ODyan C' G Gin P jointly optlmgl power control, network codm_g, anq congestion
Er P |- 5C N2 + s |, control for wireless networks. These algorithms includes two
i (mm) " mn kinds of routing algorithms implemented at the source and
intermediate nodes respectively, as well as power allocation
) and power control algorithms implemented at individual nodes.
dD;; CijGij(l + SINR;;) Our algorithms use a new technique for computing scaling
0C;; 1INy Y matrices which are amenable to distributed computation. With
In above equations;”. =~ stands forC’(STN Ryny) and Ny this technique, we show that our algorithms are guaranteed to

denotes the interference plus noise on link n): G, (P — converge from all initial condition$.

where themarginal power allocation cost indicatds

577ij =

Prn) + 2 12m Gun P+ N A. Source Node Congestion Control/Routing Algorithm (CR)
Finally, the derivatives with respect to the power control thig algorithm is implemented at the source nade:) of
variables are oD every sessiomn € M. It adjusts the routing variables on all

o = Si07i, the outgoing links of(m) (including the virtual overflow link)
) ! o and for all sub-sessions € W(m). We therefore call it the
where themarginal power control cost indicatais Congestion control/Routing(R) algorithm. For conciseness,
D O G G P we suppress the session index and use t_he short-hand
571_ —p |- aCmn mn In;\?g int mn + Z 57]ij “Mij 'nota.tlon d)s(w) = (¢sj(w))j6(95- At the kth |terat|on, the
(o ZE M mn jeo; feasible set of vectop, = (dm, (ds(w))wewm)) 1S
O (4. 00t (w) 1=1
This formula ford~; involves measures from all links in the ?. s= T m s
network. We will introduce an efficient message exchange and¢,;(w) =0, Yw € W, j € B¥(w)},

protocol for the computation afy; in the next section. where’ denotes the vector transpos8)(w) stands for the

. . . i iy 5
Theorem 1:For a feasible set of routing variablesplocked node setf nodes relative to sub-sessiom.”

(ém), (¢;(w;m)) and power variablegn,), (v;) to induce Node s updates tr_le current routing _vect(qrs via the

the jointly optimal sub-session flows and link capacities, tHgllowing scaled gradient projection algorithm:

following conditions are necessary. For all € M, w € k1 % & Ey—1 ]t

W(m) andi # s(m),w with #;(w;m) > 0, there exists a ¢, =CR(¢;) = [¢8 - (M) '5¢5}M§‘

constant\; (w; m) such that

) 3When P; =0, define 6’Y’i/P’i|Pi:0 = Hmpi*;(ﬁr 5’YL/P1

S (w; m) = Ai(w;m), if gix(w;m) >0, (10) 4The work in [16] uses a more involved scheme to approximate the diagonal
ik \W; > X\ (w;m), if ¢ix(w;m) =0. terms of the Hessian matrices with respect to the routing variables. Since

the resulting scaling matrices do not always upper bound the Hessians,
For the source node= s(m), define for everyw € W(m), convergence may not happen for some initial conditions.

X (w:m) = min;eo, 6¢;: (w;m), then d¢;.(w;m) satisfies 5This device is invented in [15], [16] to prevent the formation of loops in the
(I(()) ’an(; jeo; 0¢ij(w;m) Gir(w;m) routing pattern of sub-sessian For a node, B (w) consists of its next-hop

neighbor; with marginal cost=—22— higher than—22— and neighbors

. ark (w) ork (w)
> ZwEW(m) )\Z-(w; m), if ¢Om =0, that route positive flows to more]costly downstream nodes. By blocking such
56 — (- m) if ¢ € (0 ) (11) nodes, we force each sub-session’s traffic to flow through nodes in decreasing
m weW(m) AT ’ m 1o order of marginal costs, thus precluding the existence of loops. For an exact

< ZwEW(m) Ai(w;m), if ¢p = 1. definition of B¥ (w), see [16].



Here, the operator{]Mk denotes projection on the fea-C. Power Allocation Algorithm (PA)

sible set 7} relative to the norm induced by matrix At the kth iteration, nodei updates its power allocation
MF. The vector5d> consists of marginal cost indicatorsvector ¥ = (nw)Jeoi within the feasible set?, =
(6%, (66% (w))jeo. wew). The scaling matrix( ¥ is sym- {n; >0:7n;-1 =1} via the following scaled gradient pro-
metric and positive definite. In particular, we chodsg to jection:

be a diagonal matrix upper-bounding the Hessian evaluated at B +
the kth step: n = PAMY) = [0} — (QN) ™" onf] 5
MF = Rdeiag {Am(DO), We now specify the appropriate scaling matj§. Assume

§ the sum of the local link costs at hodbefore thekth iteration
(|W| [Asj(po) + AN (w)|hj(w)A(D0)Dw€W jeANk(w)} is Y .co, D = Df The powers used by other nodes do not
change over the iteration, and 65; depends only om;;:

where AN* (w) = O,\B% (w), h;(w) is the maximum number G P
of hops on a path fronj to w, and C i~ 11ig £ Cij(nij).
GijPi(1 = nij) + 22,2 Gmj P + N
0\ —
Am(D ):F:Df}%’){gm D (F), It can be shown that there exists a lower bound on
the updated value of); such thatC,; = Cij(gij) and
4,,(D) 9%D;; Di;(C,;, Ff) = DF. Accordingly, the possible range of
v TRy D”(Cz] F”)<D0 OF2 SINR”, abbreviated as;;, is
ii P
and x;;”'" _ Gij il -
A(D%) = max A, (D°). Gy (1 _Qij) + Zm# Gomg bom + N
(m’”)eg G'LJPZ mazx

< ="
With this choice of M¥, the CR algorithm resembles a 2imi Gmi P+ N; ’
constrained Newton algorithm, which is known to have faglefine an auxiliary term
convergence properties [17]. Moreover, it is clear th&t can
be computed locally at with a simple distributed protocol Bii = 1
whereby theh;(w)’s are determined. The scaling matrices we Y jj
specify for subsequent algorithms share the same features. oD,
80”‘

Bi; (DF) max  {C(z)*2*(1 4 z)?}

min maz
z}; Sxﬁx”

+

min {C"(x)x*(1 + 2)?}],

min max
k oottt <zx<gl?
ij (Cij, Fl)=D; i =T =g

B. Intermediate Node Routing Algorithm (RT)

Consider any session € M and for brevity omit the index where B;;(D¥) = maxp, (c,;, k)< Dk ac? . We choose the
m. Relative to a sub-sessian an intermediate nodechanges scaling matrix as
the allocation of the sub-session’s traffic on its outgoing links
by a_d]ustlng |ts_ current routing vecter” (w (gbfj( ))jco, QF = 2P’€ ——diag {(8i;)jc0, } -
within the feasible set
For details of the derivation, please refer to [18].
Fhw = {¢iw)20:¢,(w) 1=1

D. P Control Algorith PC
and s, (w) = 0, Vj € Bf(w)}. ower Control Algorithm (PC)

At the kth iteration of the power control algorithm, the

Becausep! (w) affects only the routing pattern of sub-sessioWhole vectorfy = () is varied within the feasible set
w inside the network, we refer to the updating algorithm as& = {7 € R :4 <1} . The update vector is given by
pure Routing algorithmRT"). Similar to CR, it has a scaled the following scaled gradient projection:

radient projection form: ) _ +
g proj AL = PO = hk — vk .571@]% '

¢t (w) = RT(¢;(w)) Let the scaling matrixy’* = diag{(v;)s;en}. Then PC can
) -~ + . . . P
_ {gbf(w) — (MF(w))t Mﬁ(w)} o be dggomposed |r_1to separate_computa.tlor_]s at |nfj|V|duaI nodes
MF(w) requiring only their own marginal cost indicators:
Here, 6} (w) = (6¢%(w)) and the diagonal scaling matrix AL = PO (yF) = min{l,’yf _ ‘575}
MF(w) is chosen as ' i

It remains to design a procedure to let every ned®mpute
its own dé~; prior to the algorithm iteration. The following

k
JEANY w)} protocol is based on a convenient rearrangement of (9).

t} ( LACON { (A4 (D) + AN (w) S () A(D") )



Power Control Message Exchange Protocdlet each V. CONCLUSION

node n sum up the measures from all its incoming links e adopt the network coding approach to achieve
(m,n) to form the power control messagel/SG,, minimum-cost multicast in interference-limited wireless net-
> merz,, S8mn E IL%NR’""- which is then broadcast to theworks where link capacities are functions of tHéN R. We
whole network. Upon obtaining/SG,, nodei processes it develop a node-based framework within which transmission
according to the following rule: if» is a next-hop neighbor powers, network coding subgraphs, and admitted session rates
of i, node i multiplies MSG, with path gainG;, and are jointly optimized. We design a complete set of node-
subtracts the product from the value of local measurg-7:»; based distributed algorithms to achieve this joint optimization,

otherwise, node multiplies M SG,, with —G;,,. Finally, node and prove the convergence of the algorithms to the optimum

i adds up all the processed messages, and this sum multipligebless network configuration from all initial conditions.

by P, equalsédv;. Note that this protocol requiresnly one
message from each node in the netwdttr details, see [18].
By approximating the Hessian matrix, we find the appro{il

priate diagonal terms of *:

(2]

INI\c‘?\ [B(D%)k + B(D°)¢]

(3]

where

_ 02Dy 4
B(D%) = 2 Zmj [4]

(D7) (r?ﬁ)és D,I,SiD 802 ’
(5]

D..

B(D°) = min  min 9Dy

(m,§)€E Dy <D OCy; [6]

K = MaXo<g<z C’(w)2 22, and ¢ = maxo<,<z C”(z) - 22 (7]

Here, z is a finite upper bound for the achievatdd NR on
all links, which must exist due to the peak power constraintgs]

E. Convergence of Algorithms [9]

Applying the scaling matrices specified above for each of
the algorithms, we have our central convergence result. (10]

Theorem 2:Assume an initial set of loop-free routing vari-
ables(¢?,), (¢?(w;m)), and power variable&?), (79) such [11]
that the resulting network co#° is finite, then the sequences[lz]
generated by algorithmSR, RT, PA, and PC all converge,
i.e.,¢f, — ¢, forallm e M, ¢F(w;m) — ¢} (w;m) for all
w € W(m) andi # w, n¥ — n} for alli € N, andy* — ~*
ask — oo. Furthermore(¢?,), (¢; (w;m)), nf, and~* yield
a jointly optimal solution to the JOPNC problem in (8).

(13]

(14]

Note that the theorem does not assume any order in runnlna
the algorithmsCR, RT, PA, and PC at different nodes.
For convergence to the joint optimum, every node only needs
to iterate its own algorithms until its local variables satisf{i6]
the conditions in Theorem & Thus, our algorithms provide
a distributed method of finding the jointly optimal power17]
control, network coding, and congestion control configuration
for wireless multicast networks. [

6In practice, nodes may keep updating their local variables with the
corresponding algorithms until further reduction in network cost by any one
of the algorithms is negligible.

7Only the power control part of our algorithms requires a network-wide
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