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Abstract

We take a new look at the issue of network capacity. It is shown that network coding is an
essential ingredient in achieving the capacity of a network. Building on recent work by Li et
al., who examined the network capacity of multicast networks, we extend the network coding
framework to arbitrary networks and robust networking. For networks which are restricted
to using linear network codes, we find necessary and sufficient conditions for the feasibility of
any given set of connections over a given network. We also consider the problem of network
recovery for non-ergodic link failures. For the multicast setup we prove the surprising result
that there exist coding strategies that provide maximally robust networks, that do not require
adaptation of the network interior to the failure pattern in question. The results are derived
for both delay-free networks and networks with delays. We give a number of theorems
characterizing the existence of network coding strategies for various networks scenarios.

Keywords: Network information theory, algebraic coding, network robustness.

1. Introduction

The issue of network capacity has generally been considered in the context of networks of links
exhibiting ergodic error processes. Channel coding theorems and capacity regions can be found
for certain networks of this type, such as broadcast channels [1, 2, 3], multiple access channels
[4, 5] and relay channels [6, 7, 8]. Recently, some renewed attention has been paid to the
capacity of error-free networks. In particular, coding over error-free networks for the purpose
of transmitting multicast connections has been considered [9, 10, 11]. For a further, recent
discussion of network coding we refer to [12, ch.11,15].

The work in [9, 10] examined the network capacity of multicast networks and related capacity
to cutsets. Capacity is achieved by coding over a network. We present a new surprisingly simple
and effective framework for studying networks and their capacity. The framework is essentially
algebraic and makes a straight connection between a given network information flow problem
and an algebraic variety over the closure of a finite field. While the results of Li et al. [9] and
Ahlswede et al. [10] contain algebraic elements, (i.e. linear coding [9] and a remark pertaining
to convolutional codes [10]) the here presented connection to concepts from algebraic geometry
opens up the opportunity to employ very powerful theorems in well developed mathematical
disciplines. For networks which are restricted to using linear codes (we make precise later the
meaning of linear codes, since these codes are not bit-wise linear), we find necessary and sufficient
conditions for any given set of connections to be achievable over a given network. Using our



Figure 1: Networks with multicast connection from s to y and z.

framework, we show that the case of a multicast connection over a network exhibits a very special
structure, which makes its feasibility verifiable in polynomial time. This is an improvement over
the approach in [9], which requires enumeration of the cutsets. Moreover, similar to results in
[9], we show that linear codes over a network are sufficient to implement any feasible multicast
connection.

For networks where connections are not multicast, we show that giving the necessary and suf-
ficient conditions for the connections to be feasible is equivalent to the problem of finding a
point in an algebraic variety which, in general, is an NP-complete problem. Moreover, while
the cutset conditions are necessary and sufficient to establish the feasibility of a certain set of
connections for multicast connections, the cutset conditions are only necessary but provably not
sufficient for the case of general connections, i.e. of some arbitrary collection of point-to-point
connections.

The usefulness of coding over error-free networks can be easily viewed from an example. Consider
Figure 1 (from [9] and [10]). Each link can transmit a single bit error-free (here,we do not consider
delays). On the left-hand side network, the source may easily transmit two bits, by and by, to
receivers y and z, by using switching at x and broadcasting at ¢ and u. On the right-hand
side network, a code is required, where w must code over the arc (w,z). The capacity of such
networks is shown to be the maximum flow from the source to each receiver in the network.
This approach may be generalized from directed acyclic graphs to general directed graphs as
long as we consider delays along the links.

Networks that do not experience ergodic error processes may be reasonable models for networks
that in reality are built from links exhibiting ergodic failure processes. Appropriate coding over
the links in the network may render those links in effect error-free and network coding can then
be used to achieve capacity or recovery over an error-free network, with possible delays due to
coding. We do not explicitly consider in this paper the relation between link coding for ergodic
failures and network coding. All links are assumed to be error free when they are operational.
Links, however, are allowed to fail altogether.

Indeed, coding is not only applicable to networks in order to achieve capacity, but can also be
used to recover from network failures. For an early work pointing into this direction we refer
to Ayanoglu et al. [14] where coding strategies for simple networks are suggested. Such failures
are different from link errors, described by ergodic processes, which would be typically dealt



with by using channel coding. The failures we consider entail the permanent removal of an
edge, such as would occur in a network if there were a long-term failure due to a link cut or
other disconnection. We show that network coding can provide maximal robustness of a network
against non-ergodic link failures. Moreover, we prove that there exist coding strategies that do
not require an adaptation to a specific link failure pattern.

2. Problem Formulation

A communication network is a collection of directed links connecting transmitters, switches, and
receivers. The goal of this section is to give a succinct formulation of the network communication
problem of interest in this paper. A network may be represented by a directed graph G = (V| E)
with a vertex set V and an edge set E. We will allow multiple edges between two vertices and,
hence, E is a subset of £ C V x V x Z,, where the last integer enumerates edges between
two vertices.. Edges (links) are denoted by round brackets (vq,v2,7) € E and assumed to be
directed. The head and tail of an edge e = (v',v,1) is denoted by v = head(e) and v’ = tail(e).

We define T';(v) as the set of edges that end at a vertex v € V and T'g(v) as the set of edges
originating at v. Formally, we have

I'1(v) = {e € £ : head(e) = v}
Fo(v) = {e € E : tail(e) = v}.

The in-degree §7(v) of v is defined as d;(v) = |I'7(v)| while the out-degree do(v) is defined as
do(v) = [Co(v)].

A network is called cyclic if it contains directed cycles, i.e. if there exists a sequence of edges
(vo,v1), (v1,12), ..., (Vn,v) in G. A network is called acyclic if it does not contain directed cycles.
To each link e € E we associate a non-negative number C(e), called the capacity of e.

Let Z (v) = {X(v,1), X(v,2),...,X(v,u(v))} be a collection of u(v) discrete random processes
that are observable at node v. We want to allow communication between selected nodes in the
network, i.e. we want to replicate, by means of the network, a subset of the random processes
in 2 (v) at some different node v'. We define a connection ¢ as a triple (v,v', Z (v,v")) €
V XV X Py (), where &4 (,) denotes the power set of 2(v). The rate R(c) of a connection
¢ = (v,v, 2 (v,v")) is defined as R(c) = Z H(X(v,7)), where H(X) is the entropy
: X (v,3)eZ (v')
rate of a random process X.

Given a connection ¢ = (v,v', 2 (v,v")), we call v a source and v" a sink of ¢ and write v =

source(c) and v’ = sink(c). For notational convenience we will always assume that source(c) #
sink(c).

A node v can send information through a link e = (v,u) originating at v at a rate of at most
C'(e) bits per time unit. The random process transmitted through link e is denoted by Y (e). In
addition to the random processes in 2 (v), node v can observe random processes Y (e') for all
¢/ in I'7(v). In general he random process Y (e) transmitted through link e = (v,u) € T'p(v) will
be a function of both 2 (v) and Y (') if €' is in T';(v).

If v is the sink of any connection ¢, the collection of v(v) random processes 2 (v) = {Z(v,1),



Z(v,2),...,Z(v,v(v))} denotes the output at v = sink(c). A connection ¢ = (v,v', Z"(v,v")) is
established successfully if a (possibly delayed) copy of 2 (v,v') is a subset of Z(v").

Let a network G be given together with a set € of desired connections. One of the fundamen-
tal questions of network information theory is under which conditions a given communication
scenario is admissible.

We will make a number of simplifying assumptions:

1. The capacity of any link in G is a constant, e.g. m bits per time unit. This is an assumption
that can be satisfied to an arbitrary degree of accuracy. If the capacity exceeds m bits per
time unit, we model this as parallel edges with unit capacity. Fractional capacities can be
well approximated by choosing the time unit large enough.

2. Each link in the communication network has the same delay. We will allow for the case
of zero delay in which case we call the network delay-free. We will always assume that
delay-free networks are acyclic in order to avoid stability problems.

3. Random processes X (v,1), I € {1,2,...,u(v)} are independent and have a constant and
integral entropy rate of, e.g., m bits per unit time. The unit time is chosen to equal the time
unit in the definition of link capacity. This implies that the rate R(c) of any connection
¢ = (v,v', 2 (v,0")) is an integer equal to |2 (v,v")|. This assumption can be satisfied with
arbitrary accuracy by letting the time basis be large enough and by modeling a source of
larger entropy rate as a number of parallel sources.

4. The random processes X (v,l) are independent for different v. This assumption reflects
the nature of a communication network. In particular, information that is injected into
the network at different locations is assumed independent.

In addition to the above constraints, we assume that communication in the network is performed
by transmission of vectors (symbols) of bits. The length of the vectors is equal in all transmissions
and we assume that all links are synchronized with respect to the symbol timing.

Any binary vector of length m can be interpreted as an element in Fom , the finite field with
2" elements. The random processes X (v,1), Y (e) and Z(v,l) can hence be modeled as discrete
processes X (v,1) = {Xo(v,1), X1(v,1),...}, Y(e) = {Yo(e),Yi(e),...} and Z(v,l) = {Zy(v,1),
Z1(v,1),...}, that consist of a sequence of symbols from Fom .

We have the following definition of a delay-free (and hence by assumption acyclic) Fom -linear
communication network, (cf. [9]).

Definition 1 Let G = (V,E) be a delay-free communication network. We say that G is a
Fom -linear network, if for all links, the random process Y (e) on a link e = (v,u,i) € E satisfies

w(v)
Y(e) =) meX(v,l) + > Ber Y (€),
=1

¢':head(e’)=tail(e)

where the coefficients oy, and [ . are elements of Fym .



Definition 1 is concerned with the formation of random processes that are transmitted on the
links of the network. It is possible to consider time-varying coefficients oy . and 3 . and we call
the network time-invariant or time varying depending on this choice.

The output Z(v,l) at any node v is formed from the random processes Y (e) for e € I'7(v). It
will be sufficient for the purpose of this paper to restrict ourselves to the case that Z(v,[) are
also linear combinations of the Y (e), i.e.

Zw,j)= Y, e V() (1)

¢’:head(e’)=v

where the coefficients ./ ; are elements of Fom. Indeed, we will prove in section 3.1 that , for
linear networks, it suffices to consider the formation of the Z(v,7) by linear functions of Y'(e)
for e € I'r(v). The concepts of Definition 1 are illustrated in the following example network.

v X@e) VvV
%

Y(e')= alve”x(\/ 1) +Be‘,e”Y(e') +|3e,e” Y(e)
Y(E'") u
v

Z(ul)=¢,.,Y(€") + & ,Y(€E")

We emphasize that we can freely choose m and the field o containing the constants oy e, Ber e,
and €. ;. In particular, we frequently choose to consider the algebraic closure F of Fy, which is
defined as the union of all possible algebraic extensions of Fa. Once we find suitable coefficients
in F it is clear that these coefficients also lie in a finite extension of Fs.

For a given network G and a given set of connections %, we formally define a network coding
problem as a pair (G, %). The problem is to give succinct, algebraic conditions under which a set
of desired connections is feasible. This is equivalent to finding elements oy, Ber ¢, and € ; in a
suitably chosen field Fom such that all desired connections can be established successfully by the
network. Such a set of numbers oy ¢, B ¢, and e ; will be called a solution to the network coding
problem (G,%). If a solution exists the network coding problem will be called solvable. The
solution is time-invariant (time-varying) if the oy, B¢ ¢, and €, ; are independent (dependent)
of the time.

We also consider the case of networks that suffer from link failure. Link failures are not assumed
to be ergodic processes and we assume that a link either is working perfectly or is effectively
removed from the network. A link failure pattern can be identified with binary vectors f of
length | F/| such that each position in f is associated with one edge in G. If a link fails we assume
that the corresponding position in f equals one, otherwise the entry in f corresponding to the
link equals zero.

We say that a network is solvable under link failure pattern f if it is solvable once the links
corresponding to the support of f have been removed. While it is straightforward to investigate
the solvability for a given failure pattern, finding common solutions for classes of failure patterns



is a much more interesting task. We say that a network solution is static under a set .% of link
failure pattern, if there exists solutions for the network under any link failure pattern f € .%
with the same elements oy, 8o .. Static solutions are particularly desirable because

i) no new solution has to be found and distributed in the network if a failure pattern f € #
occurs,

i) the individual nodes in the interior network can be oblivious to the failure pattern, i.e. the
basic operation performed at a node in the network are independent of the particular error
pattern.

The fundamental questions that we strive to answer in this paper are:

1. Under what conditions is a given linear network coding problem solvable?
2. How can we efficiently find a solution to a given linear network coding problem?

3. When does a static solution exist for a network that is subject to link failures?

The main tools we will use for answering the above issues involve concepts from algebraic
geometry. In particular, we will relate the network coding problem to the problem of finding
points on algebraic varieties, which is one of the central questions of algebraic geometry.

In section 3 we introduce part of the algebraic framework. The goal of the section is to make
the reader familiar with some of the employed concepts. The base theorem is an algebraic re-
formulation of the MIN-CUT MAX-FLOW theorem. We point out the algebraic interpretation
of this theorem in the context of the Ford-Fulkerson algorithm.

In section 4.1 we apply the algebraic framework to acyclic networks. We rapidly recover and
extend the work of Li et al. [9] and Ahlswede et al. [10]. In particular, we are able to answer
some of the problems left open by the authors [9].

In section 4.2 we address the general network coding problem for cycle-free networks. We derive
necessary and sufficient conditions to guarantee the solvability of a network coding problem. In
particular, we can relate the solvability of a network coding problem to the problem of deciding
if a given variety is empty. The main tool for an algorithmic approach to the problem is the use
of Grobner bases.

The case of robust networks that are subject to link failure is treated in section 5. The main
surprising result is that robust multicast can be achieved with static solutions to the network
coding problem.

Section 6 extends the results to networks with delay and networks with cycles. While many of
the findings for delay-free networks have straightforward equivalents for networks with delays,
the general network coding problem turns out to require a technical sophistication beyond the
scope of this paper. We sketch the technical difficulties involved in this generalization.

3. An algebraic formulation

In this section we will develop some of the algebraic concepts used throughout this paper. For
the reader’s convenience we will follow a simple example of a point-to-point connection in the



communication network given in Figure 2a.
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Figure 2 a) A point-to-point connection in a simple network; b) The same network with nodes
representing the random processes to be transmitted in the network.

Let G = (V, E) be a communication network. A cut between a node v and v’ is a partition of
the vertex set of G into two classes S and St — v — S of vertices such that S contains v and SC
contains v’. The value V(S) of the cut is defined as

V(8) = > Cle).

edges from S to st

The famous MIN-CUT MAX-FLOW Theorem can be formulated as:

Theorem 1 (MIN-CUT MAX-FLOW) Let a network with a single source and a single sink be
given, i.e. the only desired connection is ¢ = (v,v', 2 (v,v")). The network problem is solvable
if and only if the rate of the connection R(c) is less than or equal to the minimum value of all
cuts between v and v'.

Proof. See [16, 17]. |

The Ford-Fulkerson labeling algorithms [16] gives a way to finding a solution for point-to-point
connections provided a network problem is solvable. The algorithm is graph theoretic by design
and finds, under the assumptions made in section 2, a solution such that all parameters oy, and
Be e in Definition 1 are either zero or one.

While the Ford-Fulkerson labeling algorithm provides an elegant solution for point-to-point
connections, the technique is not powerful enough to handle a more involved communications
scenario. In the remainder of this section we develop some theory and notation necessary
for more complex setups. We first consider a point-to-point setup. Let node v be the only
source in the network. We let z = (X (v,1), X (v,2),..., X (v,u(v))) denote the vector of input
processes observed at v. Similarly let v be the only sink node in a network. We let z =
(Z(v' 1), Z('",2),..., Z(v",v(v"))) be the vector of output processes.

The most important consequence of considering an Fom [linear network is that we can give
a transfer matrix describing the relationship between an input vector z and an output vector
z. Let M be the system transfer matrix of a network with input z and output z, i.e. z =
zM. For a fixed set of coefficients ajc, B e, and €. ;, M is a matrix whose coefficients are
elements in the field Fom In our case, we go a step further and consider the coefficients as
indeterminate variables. Hence, we consider the elements of matrix M as polynomials over the
ring Fol. .., ey, Ber ey -5 €l j, - -] Of polynomials in the variables o, B¢ ¢, and e ;.

Example 1. We consider the network of Figure 2. The following set of equations governs the



parameters o, B . and €, ; and the random processes in the network

Y(er) = a1eX(0,1) +ag,X(v,2) + aze, X(v,3)
Y(ez) = 1,6, X(v,1) + 2,6, X (0,2) + 3,0, X (v, 3)
Y(es) = a1,e,X(0,1) + a6, X(0,2) + a3, X (v,3)
Y(es) = BepesY (€1) + BesyesY (€2)
Y(es) = BepesY (€1) + BesyesY (€2)
Y(es) = BesesY (€3) + BesesY (€4)
Y(er) = PeserY (€3) 4 BeyerY (€4)
Z(W'1) = ees1Y(e5) + g 1Y (€6) + 1Y (€7)
Z(W',2) = ee;2Y(e5) 4 €eg.2Y (€6) + cep2Y (€7)
Z(W'3) = ees3Y(e5)+ ey 3Y (€6) + s 3Y (e7)

It is straightforward to compute the transfer matrix describing the relationship between z and
2. In particular, let matrices A and B be defined as:

Ale; Aley, leg €es,1 Fes,2 EFes,3
A= 026 (20, (2e3 ; B = €es,1 Fep,2 EFep,3
Q31 (3ey (3¢, €er,1 €er,2 Eer,3

The system matrix M is found to equal

Bel,es Bex 7341634736 561,64 564,87 -
M=A 532,35 /862764/364766 5@2,@4 584,67 B
0 563,66 /683,67

The determinant of matrix M equals det(M) = det(A)(Be, ,e5Bes.ea — Bes,esBer,es)(Beq,eBes,er —
Bea,erBes,eq)det(B). We can choose parameters in an extension field F5* so that the determinant
of M is nonzero over Fom. Hence, we can choose A as the identity matrix and B so that the
overall matrix M is also an identity matrix. One such solution (found by the Ford-Fulkerson
algorithm) would be to B¢, e = Bes,es = Bes,es = Bes,er = 1 while all other parameters of type
Be e are chosen to equal zero. Clearly a point to point communication between v and v’ is
possible at a rate of three bits per unit time. We note that, over the algebraic closure F there
exists an infinite number of solutions to the posed networking problem, namely all assignments
to parameters [ . which render a nonzero determinant of the transfer matrix M. ]

Inspecting Example 1 we see that the crucial property of the network is, that the equation
(Bei,esBes,es — BensesBer,es)(Bea,esBes,er — BeaenBes,eq) admitted a choice of variables so that the
polynomial did not evaluate to zero. The following simple lemma will be the foundation of many
existence proofs given in this paper:

Lemma 2 Let F[X;, X>,...,X,] be the ring of polynomials over an infinite field F in variables
X1, Xo,...,X,. For any non-zero element f € F[X1,Xs,...,X}] there exists an infinite set of
n-tuples (x1,x9,...,x,) € F* such that f(zq,z2,...,z,) #0.



Proof. The proof follows by induction over the number of variables and the fact that F is an
infinite field. ]

The following theorem makes the connection between the network transfer matrix M, (an alge-
braic quantity), and the MIN-CUT MAX-FLOw Theorem (a graph-theoretic tool):

Theorem 3 Let a linear network be given with source node v, sink node v' and a desired
connection ¢ = (v,v', Z (v,v")) of rate R(c). The following three statements are equivalent:

1. A point-to-point connection ¢ = (v,v', 2" (v,v")) is possible.

2. The MIN-CuT MAX-FLOW bound (Theorem 1) is satisfied between v and v' for a rate
R(c).

3. The determinant of the R(c) x R(c) transfer matrix M is nonzero over the ring
FQ[. ey Ofey e ,ﬁe/,e, <oy Eel gyt ]

Proof. Most of the theorem is a direct consequence of the MIN-CUT MAX-FLow Theo-
rem. In particular 1) and 2) are equivalent by Theorem 1. In particular, the theorem only
treats the single source, single sink case for a network with integer flows (by assumption).
The Ford-Fulkerson algorithm thus yields R(c) edge-disjoint paths between source and sink
nodes. We show the equivalence of 1) and 3). This in turn will show the equivalence of 2)
and 3). The Ford-Fulkerson algorithm implies that a solution to the linear network coding
problem exists. Choosing this solution for the parameters of the linear network coding prob-
lem yields a solution such that M is the identity matrix and hence the determinant of M over
Fol...,cue, -y Beles--- 1€ jy- .| does not vanish identically. Conversely, if the determinant of
M is nonzero over Fy|...,cqe,...,Bel ey €e j,---] We can invert matrix M by choosing pa-
rameters €. | accordingly. From Lemma 2 we know that we can choose the parameters as to
make this determinant non-zero. Hence 3) implies 1) and the equivalence is shown. 1

From Example 1, Lemma 2, and Theorem 3 we conclude that studying the feasibility of con-
nections in a linear network scenario is equivalent to studying the properties of solutions to
polynomial equations over the field F. The third statement of Theorem 3 allows us to trans-
late graph-theoretical properties of a network, like max-flow and connectivity, into an algebraic
condition. Powerful algebraic tools can then be employed to arrive at statements concerning
the original network. =~ We will have to extend the considered fields for cyclic networks and
networks with delay. It is worthwhile pointing out, that it is sufficient in Theorem 3 to consider
expressions over fields of fixed characteristic. In other words, if a solution to a point-to-point
network problem exists, there does also exist a solution restricted to the algebraic closure of the
binary field Fo. Hence, there is no need or advantage to consider fields of other characteristic.
Nevertheless, it is not clear if linear coding strategies are sufficient for a general network problem
problem. In the following section, we investigate the structure of general transfer matrices and
the polynomial equations to which they give rise.

3.1. Transfer Matrices

In a linear communication network of Definition 1 any node v; transmits, on an outgoing edge,
a linear combination of the symbols observed on the incoming edges. This relationship between



edges in a linear communication network is the natural incidence structure for our problem.
We say that any edge e = (u,v) feeds into edge ¢’ = (v,u) if head(e) is equal to tail(e’). We
define the “directed labeled line graph” of G = (V, E) as &(V,€) with vertex set V = E and
edge set & = {(e,e') € E? : head(e) = tail(e’)}. Any edge ¢ = (e,¢') € £ is labeled with the
corresponding label 3, .. Figure 3 shows the directed labeled line graph of the network in Figure
2.

Figure 3 The directed labeled line graph & corresponding to the network depicted in Figure 2a.

We define the adjacency matrix F' of the graph & with elements F; ; given as

o Beie; head(e;) = tail(e;)
by 0  otherwise.

Lemma 4. Let F be the adjacency matrix of the labeled line graph of a cycle-free network G.
The matrix I — F has a polynomial inverse with coefficients in Fa[..., e ¢, .. .].

Proof. Provided the original network G is acyclic, the graph & is acyclic. Hence we may
assume that the vertices in & are ordered according to an ancestral ordering. It follows that F
is a strict upper-triangular matrix and hence I — F' is invertible in the field of definition of F'.
The claim that the I — F' is invertible in the ring of polynomials rather than the corresponding
quotient field of rational functions follows from a direct back-substitution algorithm. |

In order to consider the case that a network contains multiple sources and sinks we consider
L= (Il,[l?g, s 73:#) = (X(vla 1)7X(U17 2)7 cee 7X(U171U‘(,Ul))7X(U27 1)7 s 7X(,U|V|7:U‘(U|V\))) as the
vector of input processes on all vertices in V. If a vertex v in a network is not a source node,
we set the corresponding parameter p(v) equal to zero. z = (z1,2,...,2,) is a vector of length

=232 1(vi)-
Let the entries of a p x |E| matrix A be defined as

po e wi= X (tail(e;),1)
b 0  otherwise.

Similarly, let 2 = (21, 22, ..., 2,) = (Z(v1,1), Z(v1,2), ..., Z(v1,v(v1)), Z (v, 1), ..., Z(vy), v(vpv))))
be the vector of output processes. If v; is not a sink node of any connection we let v(v;) be

equal to zero. z is a vector of length v = ) . v(v;). Let the entries of a v x |E| matrix B be
defined as

B . — 5ej,l Z; = Z(head(ej),l)
b 0 otherwise.

Example 2 We consider the network depicted in Figure 4a. The corresponding labeled line
graph is depicted in Figure 4b.
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Figure 4 a) A network with two source and two sink nodes. b) The corresponding labeled line
graph; Labels in b) are omitted for clarity. The edge e, does not feed into any other edge and no
edge feeds into e,,, which renders an isolated vertex in the labeled line graph.

We assume that the network is supposed to accommodate two connections ¢; = (v, 4/, {X (v, 1),
X(v,2)}) and ¢ = (v',u, {X(v',1)}). We fix an ordering of edges as e, ', €y, €vus €ur w7, €/

v sy v !y Cul u-

For this ordering the adjacency matrix F' of the labeled line graph & is found to equal

0 Bev,v/,evl,vu 0 0 /BBU,UI,B,UI,HI 0 0 0
0 0 0 0 0 IBQU,UN,QUH,” Bev,v”’ev”,u’ 0
0 0 00 0 0 0 0
F = 0 0 0 0 0 B@UI,UII 1Cull gy Bevl,vu,evu,u/ 0
o 0 00 0 0 0 Beyr urreur
0 0 00 0 0 0 0
0 0 00 0 0 0 Bewsrew,
0 0 00 0 0 0 0
Also, matrices A and B are found to equal:
al,ev ol al,ev ol al;ev,u 0 0 0 0 0
A= a2,ev,vl a?,ev,vu Q2. 0 0 0 00
0 0 0 Qy g1 Qurgrr 00 0
and
0 0 Eey,u,l 0 0 6%” w1 0 &‘eu, w1
B = 0 0 0 0 6evl,u/,l 0 561}//’”/,1 0
0 0 0 0 Eevl,ul,Z 0 581}//,”/,2 0

From the definition of matrices F', A and B, we can easily find the transfer matrix of the overall
network.

Theorem 5 Let a network be given with matrices A, B and F. The transfer matrix of the
network is given as

M =A(I-F)'BT

where [ is the |E| x |E| identity matrix.
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Proof. Matrices A and E do not substantially contribute to the overall transfer matrix as
they only perform a linear mixing of the input and output random processes. In order to find
the “impulse response” of the link between an input random process X (v,i) and an output
Z(v',j) we have to add all gains along all paths that the random process X (v,4) can take in
order to contribute to Z(v',j). It is straightforward to verify that the path between nodes
in the network are accounted for in the series I + F + F? + F3 + .... Matrix F is nilpotent
and eventually there will be a N such that FN is the all zero matrix. Hence, we can write
(I-F)"'=({I+F+F*+F3+...). The theorem follows. 1

The transfer matrix M is considered as a matrix over the ring of polynomials Fo[..., e, ..., Be e,
..,€(€,7),...]. Inthesequel, we will use a vector £ to denote the set of variables ..., qe, ..., Be ¢,
..,e(€',7),... and hence we consider M as matrix with elements in F5[¢]. We will use the ex-

plicit form of the vector £ only if we want to make statements about a specific solution of a

particular network problem (G, %).

We conclude this section with a remark that it is sufficient to form the output processes Z (v, ¥)
by a linear function of the processes Y (e),e € TI';(v). Indeed, provided a network problem is
solvable, let the output process Z(v,f) be equal to ¥(Y (e1),Y (e2),...,Y (€5, (»))) Wwhere 9(-)
is an arbitrary function and the edges e; are in I'j(v). By Definition 1 the processes Y(e)
are a linear function of the input processes X (w,j). Hence, provided that the output Z(v,¥)
equals any particular input, the function ¢ (-) describes a vector space homomorphism from
(Y(e1),Y(e2),...,Y(es5,(v))) to Z(v,£) for all £ and hence 9(-) must be a linear function. This
proves that the form of Equation (1) is no restriction on the solvability of a network coding
problem.

4. Delay-Free Networks

4.1. Multicast of Information

In its simplest form the multicast problem consists of the distribution of the information gen-
erated at a single source node v to a set of sink nodes uy,uo,...,uy such that all sink nodes
get all source bits. In other words, the set of desired connections is given by {(v,u1, 2 (v)),
(v,u2, Z (v)),...,(v,up, 2 (v))}. Clearly, each connection (v,u;, Z (v)) must satisfy the cut-
set bound between v and w;. Ahlswede et al. [10] showed that this condition is sufficient to
guarantee the existence of a coding strategy that ensures the feasibility of the desired connec-
tions. Li et al. [9] showed that linear coding strategies are sufficient to achieve this goal. The
following theorem recovers their result in the algebraic framework developed in the previous
section.

Theorem 6 Let a delay-free network G and a set of desired connections € = {(v,u1, Z (v)),
(v,u2, Z (v)),...,(v,un, Z (v))} be given. The network problem (G, %) is solvable if and only
if the MIN-CUT MAX-FLOW bound is satisfied for all connections in € .

Proof. We have a single source in the network and, hence, the system matrix M is a matrix with
dimension |2 (v)| x N|Z (v)|. Moreover, by assumption and Theorem 3, each |2 (v)| x |2 (v)]
submatrix corresponding to one connection has nonzero determinant over Fs[£]. We consider the
product of the N determinants of the |2 (v)| x |2 (v)| submatrices. This product is a nonzero
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polynomial f € F5(§). By Lemma 2 we can find an assignment €, for  such that f(éo) # 0 and,
hence, the determinants of all N submatrices are simultaneously nonzero in F. Matrix B can
be chosen as a block diagonal matrix which contains on the main diagonal the inverse of the
corresponding | 2" (v)| x | £ (v)| submatrices of M. By choosing matrix B in this way we can
guarantee that M is the N-fold repetition of the |2 (v)| x |2 (v)| identity matrix, which proves
the Theorem. ]

The most important ingredient of Theorem 6 is the fact that all sink nodes get the same infor-
mation. Moreover, all sink nodes receive the entire data that is injected into the network. In
other words, provided that the sink nodes know the part of the system matrix that describes
their connection, there are no interfering signals in the network. Another interesting aspect of
this setup is that the sink nodes do not have to be aware of the topology of the network. Knowl-
edge about the overall effects of all coding occurring in the network is sufficient to resolve their
connection. We emphasize that it suffices to consider coding strategies involving the algebraic
closure of the finite field of characteristic two. In other words, if the network coding problem
is solvable at all, it is also solvable for an arbitrary characteristic of the underlying finite field.
Also, it is solvable over essentially any infinite field, so, e.g., also the field of rational functions in
a delay variable D with coefficients from Fo. We remark further on these possibilities in section
6.1, where the case of networks with delay is treated.

The construction of special codes for the multicast network coding problem is rather easy. From
the proof of Theorem 6, it is clear that we are given a polynomial in ¢ (the product of the N
determinants) and we have to find a point that does not lie on the a_lgebraic variety cut out
by this polynomial. A simple greedy algorithm will actually suffice to find such a solution. We
formulate this algorithm as follows:

Algorithm 1 [An algorithm to find a vector a such that F'(a) # 0 holds for a polynomial F']

Input: A polynomial F' in indeterminates &1,&o, ..., &,; integer: ¢t =1

Iteration:

1. Find the maximal degree § of & in F' and let 7+ be the smallest number such that
2> 4.

2. Find an element a; in Fy: such that F/(£)|¢,—q, # 0 and let F' < F/(&)|¢,=q,-

3. If t = n then halt, else t < ¢ + 1, goto 2).

Output: (ay,a9,...,a,).

The determination of the coefficients a; renders a network such that all the transfer matrices
between the single source and any sink node are invertible. Choosing the matrix B so that
all these matrices are the identity matrix solves the multicast network problem. The following
theorem proves the correctness of Algorithm 1 and provides a simple bound on the degree of the
extension of Fy that we will have to consider.

Theorem 7 Let a delay-free communication network G and a solvable multicast network prob-

lem be given with one source and N receivers. Let F' be the product of the determinants of
the transter matrices for the individual connections and let 6 be the maximal degree of F' with
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respect to any variable ;. There exists a solution to the multicast network problem in Fy;,
where i is the smallest number such that 2* > §. Algorithm 1 finds such a solution.

Proof. We only have to show that Algorithm 1 indeed terminates properly. Also it suffices
to show that we can find & in Fy: as the rest of the proof follows by induction. We consider
F as a polynomial in &,&s,...,&, with coefficients from F»[¢1]. By the definition of 0 the
coefficients of F are not divisible by ¢ — &, and hence there exists an element a; € Fy: such
that on substituting a; for & at least one of the coefficients evaluates to a nonzero element of
F,:. Substituting a; for & and repeating the procedure yields the desired solution. I

A simple general upper bound on the necessary degree of the extension field for the multicast
problem is given in the following corollary:

Corollary 8 Let a delay-free communication network G and a solvable multicast network prob-
lem be given with one source and N receivers. Let R be the rate at which the source generates
information. There exists a solution to the network coding problem in a finite field Fom with
m < [logy(NR +1)]. n

Proof. Each entry in the matrix (I — F)~! has degree at most one in any variable. Hence,
the degree of each variable in the determinant of a particular transfer matrix is at most R. It
follows that the relevant polynomial has degree at most N R in any variable. ]

4.2. The General Network Coding Problem

The situation is much changed if we consider the general network coding problem, i.e. we are
given a network G and an arbitrary set of connections, . This problem is considerably more
difficult than the multicast problem. Some progress on characterizing the achievable set of
connections is found in [13] for the case of arbitrary, non-linear coding strategies. The set of
achievable connections is here bounded within Yeung’s framework of information inequalities
[12]. Here, we focus on linear network coding which allows us to make concise statements for a
number of network coding problems. In order to accommodate the desired connections we have
to ensure that i) the MIN-CUT MAX-FLOW bound is satisfied for every single connection and
ii) there is no disturbing interference from other connections. The following example outlines
the basic requirements for the general case:
a) b)

M Vs
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Figure 5 a) A network with two source and two sink nodes. b) The corresponding labeled line
graph;

Example 3 Let the network G be given as depicted in Figure 5a). The corresponding labeled
line graph is given in Figure 5b). We assume that we want to accommodate two connections
in the network, i.e. € = {(v1,u1, {X(v1,1), X (v1,2)}), (v2, ug, {X (v2,1), X (v2,2)})}. Vectors z
and z are given as z = (X (v1, 1), X (v1,2), X (vg, 1), X(v2,2)) and z = (Z(u1, 1), Z(u1,2), Z(ug, 1),
Z(ug,2)). It is straightforward to check that the system matrix M is given as:

0 & &i&é &
i &2 &3 00 €21 &2 0 0
I 0 &8 &80
Eia &5 &6 00 €3 & 0 0
M = 0 0 &7 &s
0 0 0 &7 &is 0 0 &5 &%
0 & &&E Lo
0 0 0 &9 &0 0 0 &7 &»
0 0 &5 &6
We can write M as a block matrix
M1 M
M: ) ]
[ My, Mspo ]

Where M;; denotes the transfer matrix between (X (v, 1), X(v1,2)) and (Z(u1,1), Z(u1,2)),
M; 5 denotes the transfer matrix between (X (v, 1), X (v1,2)) and (Z(ug,1), Z(u2,2)), etc.

It is easy to see that the network problem (G, %) is solvable if and only if the determinants
of My, and Mjs are unequal to zero, while the matrices M2 and My are zero matrices.
Note that the determinant of M; ; and My is nonzero over Fy[{] if and only if the MIN-CUT
MAX-FLOW bound is satisfied. Indeed, we have -

det(Mi,1) = (&11&15 — §12614) 61 (621624 — £22623)

and

det(Ma2) = £264(&17820 — E18619) (€986 — E5&10) (25828 — E26827)-

It is interesting to note that the MIN-CUT MAX-FLOW condition is satisfied for each connection
individually but also for any cut between both sources and both sinks. This condition is guar-
anteed by edge eg. If edge eg is removed the determinant of the transfer matrix would vanish
identically, which indicates a violation of the MIN-CUT MAX-FLOW condition applied to cuts
separating vy and vy from uy and wuo.

In order to satisfy My; = 0 we have to choose & = 0 which implies that det(M32) equals
zero. However then, we cannot satisfy the requirements that det(Mg,z) # 0and My; = 0
simultaneously and hence, the network problem (G, %) is not solvable. It is worthwhile pointing
out that it can be verified that this non-solvability of the network coding problem is pertinent
to any coding strategy and is not a shortcoming of linear network coding. |

As before, let 2 denote the vector of input processes and let z denote a vector of output processes.
Following Example 3 we consider the transfer matrix in a block form as M = {M; ;} such that
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M; ; is the submatrix of M describing the transfer matrix between the input processes at v; and
the output processes at v;. The following theorem states a succinct condition under which a
network problem (G, %) is solvable.

Theorem 9 (Generalized MIN-CUT MAX-FLow Condition) Let an acyclic, delay-free lin-
ear network problem (G, %) be given and let M = {M; ;} be the corresponding transfer matrix
relating the set of input nodes to the set of output nodes. The network problem is solvable if
and only if there exists an assignment of numbers to variables £ such that

1. M; j = 0 for all pairs (v;,v;) of vertices such that (v;,vj, Z (vi,v;)) € €.

2. If € contains the connections (v;,,vj, Z (vi,, v;)), (Viy, vj, Z (Viy,v5)), - ., (vi,, v, Z (vi,,0}))
the submatrix [Mi:f,ng,j’ e ,Mg’]} is a non singular v(v;) x v(v;) matrix..

Proof. Assume the conditions of the theorem are met and assume the network operates
with the corresponding assignment of numbers to §. Condition 1) ensures that there is no
disturbing interference at the sink nodes. Also, any sink node v; can invert the transfer matrix

[M.T ML MT

L ' .| and hence recover the sent information.
i1,j 7 i2,] ie,]

Conversely, assume that either of the conditions is not satisfied. If condition 1) is not satisfied,
then the collection of random processes observed on the incoming edges of v; is a superposition
of desired information and interference. Moreover, the sink node v; has no possibility to distin-
guish interference from desired information and hence, the desired processes cannot be reliably
reproduced at v;.

Condition 2) is equivalent to a MIN-CUT MAX-FLOW condition, which clearly has to be satisfied
if the network problem is solvable. I

Theorem 9 gives a succinct condition for the satisfiability of a network problem. However,
checking the two conditions is a tedious task as we have to find a solution, i.e. an assignment
to number ¢ that exhibits the desired properties. The theory of Grobner bases provides a
structured a_pproach to this problem. In order to check if a given network problem is solvable
without necessarily having to give a solution we can give a procedure that is guaranteed to reveal
the solvability of the network problem. We will sketch this approach in the remainder of this
section.

Let f1(€), f2(£),. .., fx (&) denote all the entries in M that have to evaluate to zero in order to sat-

isfy the first condition of Theorem 9. We consider the ideal generated by f1(£), f2(€),..., fx(§)
and denote this ideal by I(f1, fo, ..., fx). From the Hilbert Nullstellensatz [18] we know that
this ideal is a proper ideal of Fy[¢] if and only if we can find an assignment of numbers for &
such that we can satisfy the first condition of Theorem 9. In order to satisfy the second condi-
tion of the theorem we let gi(§),g2(£),...,9r(§) denote the determinants of the v(v;) x v(vj)

matrices that have to be non-zero. Next, we introduce a new variable £ and consider the

function & [17, gi(£) — 1. We call the ideal I(f1(£), f2(£),- .-, fxc(€),1 — & 112, 9(£)) the ideal
of the linear network problem denoted by Ideal((G,%)). The algebraic variety associated with
Ideal((G, %)) is denoted Var((G, %)),

Var((G, %)) = {(a1,a2,-.-,a,) €EF" : f(ar,a2,...,a,) =0V f € Ideal((G, %))}
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Theorem 10 Let a linear network problem (G, %) be given. The network problem is solvable
if and only if Var((G,¢) is nonempty and hence, the ideal Ideal((G,¢’)) is a proper ideal of
F[&o,&], i.e Ideal((G, %)) S F[&o,£].

Proof. Assume first that the ideal Ideal((G, %)) is a proper ideal of Fy[&y,£]. Hilbert’s Null-
stellensatz implies that the variety Var((G, %)) of points where all elements of Ideal((G,%))
vanish is non-empty. Hence, there exists an assignment to & and £ such that Condition 1 of
Theorem 9 is satisfied. Moreover, for all solutions in the variety Var((G,€)) we have & # 0 and
HZL:1 g(§) # 0 as otherwise 1 is in the generating set of the ideal and hence Ideal((G, %)) would
be identified with F2[&o,£]. Hence, Condition 2 of Theorem 9 is satisfied and any element of V

is a solution of the linear network problem.

Conversely, assume that Ideal((G, %)) = F2[£,£]. It follows that the variety Var((G,¢)) is
empty and there is no solution which satisfies the required conditions. Indeed, by choosing a
proper value for &y any solution to the network coding problem would immediately give rise to

a non-empty variety Var((G,%)). 1

Using Theorem 10 we have reduced the problem of deciding the solvability of a linear network
problem to the problem of deciding if a variety is empty or not. We can decide this problem
using Buchberger’s algorithm [19] to compute a Grobner basis for the ideal Ideal((G,%)). It
is well known [19] that the Grobner basis of an ideal equals 1 if and only if the corresponding
variety is non-empty. The techniques involving Grobner bases exceed the scope of the paper
and we refer to Cox et al. [19] for a thorough treatment of Grobner bases and Buchberger’s
algorithm. We only note that it is well known that, in general, the complexity of Grobner
basis computations is not polynomially bounded in the number of variables. Nevertheless,
mathematics software routinely solves large Grobner basis computations. A careful study of the
structure of Ideal((G, %)) C F2[{o,£] as obtained from network problems as well as optimizing

the computation of a Grobner basis for the ideal of a linear network problem, is an important
future tasks for deriving efficient algorithms deciding a network problem.

4.3. Some Special Network Problems

In a few cases it is relatively straightforward to satisfy the conditions of Theorem 9 and Theorem
10. These approaches can be subsumed under the principle that the conditions of Theorem 9
can be satisfied by means of linear algebra alone. The multicast scenario of Section 4.1 is the
simplest example of this situation.

We start with the case of multiple sources and multiple sinks in a network coding problem
where all sources want to communicate all their information to all sinks. In other words, the
set of desired connections between N sources and K sinks is given as € = {(v;, uj, 2 (v;)) : i =
0,1,...N,j =1,2,... K}. One characterization of this setup is again that it is interference free
due to the fact that all sinks are supposed to receive all the information. This “interference free”
situation was also exploited in [15] where a similar theorem is stated in the context of general,
potentially non-linear, coding strategies.

Theorem 11 Let a linear, acyclic, delay-free network G be given with a set of desired con-

nections ¢ = {(vi,uj, Z (v;)) : ¢ = 0,1,...N,j = 1,2,... K}. The network problem (G,%)
is solvable if and only if the MIN-CUT MAX-FLOW bound is satisfied for any cut between all
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source nodes {v; : © =0,1,... N} and any sink node u,;.

Proof. We consider the transfer matrices between the N source nodes and any of the K sink
nodes individually. Each matrix, considered as matrix over IF;[{], is non singular by assumption.

Hence we can find an assignment of numbers to the variables { such that the matrix evaluated

at these points is non singular over F. This holds for each relevant ZZ]\; 1 1(v;) by sz\; 1 (i)
matrix. The sink nodes can obtain the desired information by choosing matrix B appropriately.

We note that Theorem 11 contains Theorem 6 as a special case for N = 1. The situations are
relatively similar and Theorem 11 can be reduced to Theorem 6 by introducing a super node
having access to the entire information feeding information to the nodes v;.

A surprising fact in solving a given set of connections in the setup of Theorem 11 is that there is
no encoding necessary at the source nodes. This is also clear from the observation that this case
is “interference free”. However, allowing for proper encoding at the source node is crucial for
the general networking problem. In a number of special cases we can make use of the encoding
opportunity at the sources to guarantee the existence of a solution to a network coding problem.
In the remaining theorems of this section we specialize to the case of one source, which gives
us complete control over the encoding matrix A. The specific type of network coding problem
that is covered in each of the subsequent theorems is specified in the set of desired connections.

We say that the MIN-CuT MAX-FLOW is satisfied between a source node v and a set of sink
nodes {ui,ug,...,ux} at rates |2 (v,u;)| if it is satisfied for any cut seperating a set % C
{u1,ug,...,ux} from v at a rate ), , |2 (v, u)|.

Theorem 12 Let a linear, acyclic, delay-free network G be given with a set of desired connec-
tions ¢ = {(v,uj, Z (v,u;)) : j = 1,2,... K} such that all collections of random processes are
mutually disjoint, i.e. 2 (v,u;) N Z (v,u;) = 0 for i # j. The network problem is solvable if
and only if the MIN-CUT MAX-FLOW bound is satisfied between v and the set of sink nodes
{ur,ug,...,ux} at rates |2 (v, u;)|.

Proof. We can assume, without loss of generality, that the mutually disjoint random processes
2 (v, uj) partition the set 2 (v). Hence, the overall transfer matrix is a | Z (v)| by | 2 (v)| square
matrix that is non-singular by assumption. Choosing matrix A at the source node properly we
can guarantee that the overall transfer matrix realizes the identity matrix and each sink node
receives the data stream intended for it. Conversely, assume that the MIN-CUT MAX-FLOW is
not satisfied for any subset of the sink nodes. It follows that the corresponding submatrix of
the transfer matrix contains linearly dependent columns and hence the overall transfer matrix
cannot be non-singular. |

We note that the setup of Theorem 12 breaks down if we allow more than one source node
because this imposes a restriction on the particular form of matrix A. However, we can loosen
the restrictions on the disjointness of the information to be distributed to different nodes. In
particular we can augment the set of connections %" of Theorem 12 by a number of connections
{(vyug, Z'(v)) : £ = 1,2,... N} that should receive the entire information injected into the
network at node v.
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Theorem 13 Let a linear, acyclic, delay-free network G be given with a set of desired connec-
tions € = {(v,uj, Z (v,uj)) : j =1,2,... K}U{(v,ug, ' (v)) : L =K+1,K+2,... K+ N} such
that the collections of random processes 2 (v, u;), Z (v,u;) are mutually disjoint for i,j < K,
ie. Z'(v,uj) N & (v,u;) =0 fori # j,4,j < K. The network problem is solvable if and only if
the MIN-CuT MAX-FLOW bound is satisfied between v and the set of sink nodes {u1, us, ... ,uk}
at rates |2 (v,u;)| and between v and ug, ¢ > K at a rate |2 (v)|.

Proof. The proof is an extension of the proof of Theorem 12. The transfer matrix of this
proof is augmented by a number of |2 (v)| by |2 (v)| square matrices corresponding to the
connections (v,ug, Z (v)). The matrix A that we chose in the proof of Theorem 12 is non-
singular and, hence, the product of A and the square matrices corresponding to the connections
(v,up, Z (v)) is non-singular, too. These matrices can be inverted by a proper choice of matrix
B. 1

Theorem 13 has an interesting corollary for the case of two sink nodes, which might be best
described as “two-level” multicast. The setup assumes two sinks such that one sink should
receive all the information 2" (v), while a second sink receives only a subset of 2 (v).

Corollary 14 Let a linear, acyclic, delay-free network G be given with a set of desired connec-
tions € = {(v,u1, Z (v,u1)), (v,us, Z (v))}. The network problem is solvable if and only if the
MIN-CUT MAX-FLOW bound is satisfied between v and u; at a rate |2 (v,u;)| and between v
and ugy at a rate |2 (v)]. 1

There are a large number of special cases which can be treated similarly to the results given
in this section. The proofs of the above theorems should be adaptable to these situations with
only minor modifications. We now turn our attention to the problem of robust networks.

5. Robust Networks

An interesting challenge is added to the problem of network coding if we assume that links in a
network may fail. The question then becomes under which failure pattern a successful network
usage is still guaranteed. Let e = (v, u,i) be a failing link. We assume that any downstream
sink node, i.e. any node that can be reached from u via a directed path, can be notified of the
failure of link e. However, no other nodes are being notified of the link failure. Given a network
G and a link failure pattern f it is straightforward to consider the network G, that is obtained
by deleting the failing links and applying the results of the previous sections to this setup. We
are interested in static solutions where the network is oblivious to the particular failure pattern.
The idea is that each node transmits on outgoing edges a function of the observed random
processes, such that the functions are independent of the current failure pattern. Here we use
the convention that the constant 0 is observed on failing links. We can achieve the effect of a
failing link e by setting parameters [, ¢, B ¢ and ag . to zero for all €/, ¢’ and ¢, which effectively
anihilates the influence of any random process transmitted on edge e. Let M[{] be the system
matrix for a particular linear network coding problem. Moreover, let the set of parameters &;
that are affected by a failing link e, i.e. that correspond to S ¢, Bee and oy for all €', e” and
Z, be denoted as Be:

B, = {&; : & is identified with B ¢, Beer or ay, for any €', € and ¢}
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For any particular link failure pattern f we define B(f) as

B(f): U B,

e:fe=1

The following lemma makes the connection between the network problem without and with a
link failure pattern f:

Lemma 15 Let M[£] be the system matrix of a linear network coding problem with system
matrix M[{]. Let f be a particular link failure pattern and let M;[¢] be the system matrix for
the network G; obtained by deleting the failing links. We have the following relation between
MI¢] and M[E].

M€l = M[€]li=0 v eieB()-

Proof. The effect of a failed link can be modeled by the fact that no information about a
random process is either fed into a failed link or is fed from the failed link into another link.
Setting the coefficients &; € B(f) to zero is compliant with the assumption that a constant 0 is
observed on failed nodes. ]

Let .Z be the set of failure patterns f such that the network coding problem (G £, %) is solvable.
For the multicast scenario, i.e. the case € = {(v,u1, Z (v)), (v,u2, Z (v)), ..., (v,un, Z (v))}
, we have the following surprising result:

Theorem 16 Let a linear network G and a set of connections ¢ = {(v,u1, Z (v)), (v,u2, Z (v)),
ooy (vun, Z'(v))} be given. There exists a common, static solution to the network problems
(Gy, %) for all f € 7.

Proof. Let f be any particular failure pattern that renders a solvable network. Let gy ;(&) be
the determinant of the transfer matrix corresponding to connection (v,u;, 2 (v)). We consider
the product g(§) = Hf\;l [lfc797i(§). By Lemma 2 we can find an assignment of numbers
to  such that g(§) and hence every single determinant g;;(§) evaluates to a non zero value
simultaneously. It follows that regardless of error pattern in .% the basic multicast requirements

are satisfied. ]

Theorem 16 makes very robust multicast scenarios possible - in a sense the multicast can be
organized as robustly as possible. 1t is also interesting to note that choosing the value of the
variables ¢ at random from a large enough field yields a solution, which with high probability
achieves maximum robustness of the network. We can give an equivalent to Theorem 7 and
Corollary 8. In formulating the following theorem, the price we have to pay for this exceptional
robustness becomes apparent.

Theorem 17 Let a delay-free communication network G and a solvable multicast network prob-
lem be given with one source and N receivers. Moreover, let . C % be a set of failure
patterns from which we want to recover. Let R be the rate at which the source generates in-
formation. There exists a solution to the network coding problem in a finite field Fom with
m < [logy(|ZINR + 1)].

20



Proof. Let F' be the product of the determinants of the transfer matrices for the individual
connections and let 0 be the maximal degree of F' with respect to any variable &;. Following
the proof of Corollary 8 we know that ¢ is bounded by R. Altogether we have to consider the
product of N|.#| determinants. The theorem follows. 1

The question arises if statements like Theorem 16 can be derived for a general network problem.
The following example shows that simple network coding problems exist that do not allow a
static solution for different failure patterns in ..

Example 4 We consider the network G depicted in Figure 6. Let the capacity of all edges be one
bit per time unit and let the set of desired connections be given as € = {(v1,u1, Z (v1)), (v2, ug,

Z (v2))} with |27 (v1)] = [ 2 (v2)] = 1.

.0

a)

o
u % u
Figure 6 a) A communication network with two source nodes (v1,v2) and two sink nodes (u1, us2).
b) The corresponding labeled line graph;

The example is small enough that it is possible to verify directly that i) the network coding
problem is solvable for any single failure involving a single link and i) there does not exist a
static solution for any (linear or non-linear) coding strategy.

We show how this observation is reflected in the algebraic setup of our approach. Let the input
vector z and the output vector z be given as x = (H(vy,1), H(vg,1)) and z = (Z(uq, 1), Z(ug, 1)).
The transfer matrix M is found to equal

1000 0 & 6 o

01 00 & && 0 0
M:(§5560000>0010535354 (0)0
0 0 & & 00)] 0001 0 o0 {n
0000 1 & £0 0

00000 1 0 £

B ( &6+ 8680 (& +E&&E&) i )
§7€3&10 st +Erbsbabry )

where &5, &6, &7, £s account for the way the elements of x are fed into the network while &g, €19, &11, €12
account for the linear mixing being performed at the sink nodes.

The ideal of the network coding problem Ideal((G, %)) is generated by the polynomials {£7 &3 &1,
(€5 &1 + &6 §284)€12,€0(85 €0 + &6 €2 610) (€8 §11 + €7 €3 64 §12) — 1} and we can easily find a point
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in the corresponding variety. Next we consider the case that link ey fails. According to Lemma
15 we find the corresponding transfer matrix M., by letting all variables §; € B, = {&s,&11}
be zero. Hence the ideal Ideal((G,,, %)) is generated by {&7 &3 &0, (€5 &1 + &6 &2 a)&12,E0(E5 €9 +
&6 €2 &10)&7 €3 €4 E12—1}. Similarly we consider the case that link e; fails in which case we find that
Be, = {&5,&1,8} and Ideal((Ge,, €)) is generated by {&7&3 810,86 82 §a €12, &5(§6 §2610) (€8 §11 +
§7€364812) — 1}

A necessary condition for the existence of a common solution to the network problems obtained
if either e4 or e; fails is that the smallest ideal J containing Ideal((G,, %)) and Ideal((Ge,, %))
is a proper ideal of F2[£(, &7, €] or, in other words, the intersection of the corresponding varieties
is not empty.

The ideal J is generated by {&12 &5 &1, &) 7 €3 €a 1285 E9—1,67 63610, €] €6 §2 €10 € E11—1, &6 E2 Ea &un}

and it can be seen that the condition that either of &3, &7, or £1¢ has to be equal to zero leads to
a situation in which either the equation & &6 &2 €108 €11 — 1 = 0 or &) &7 €384 &12 &5 &g — 1 cannot
be satisfied. Hence, 1 € J and J = F»[¢] and there does not exist a static solution which allows

for failure of the link e; or es. I

6. Networks with Delay

So far we have dealt with delay-free (and hence, by assumption, cycle free) networks. The
extension to networks with delays is relatively straightforward (while technical) for the multicast
scenario. The general scenario requires considerably more technical tools. The main problem
in the treatment of the general setup is that the system matrix is a matrix over the polynomial
ring F (D)[¢] whose coefficients are rational functions in a delay variable D. Hence, the natural

field of consideration is the algebraic closure of the field of rational functions in D.

Given an acyclic network with delay, we can either operate the network in a continuous mode
where information is continuously injected into the network or we can operate the network in
a burst oriented mode. In the latter mode each vertex transmits information on an outgoing
node only if an input has been observed on all incoming links. This approach, taken by Li et
al. [9] leads to a situation where a network with delay can be thought of as instantaneous and
the results of Section 4.1 apply. The time fraction during which a particular link is idle can be
controlled by choosing the frame length large enough.

Here, we treat the case of continuous operation of a network with delay. The problem arises
that the same injected information can take different routes causing different delays through the
network. This delay necessitates memory at the sink nodes.

We now consider input random processes X (v,4), output random processes Z(u,7) and random
processes Y (e) transmitted on a link e as power series in a delay parameter D, i.e.

X(,Uaj)(D) = ZX[(’U,].)DK
=0

Z(v,5)(D) =Y Zu(v,§) D"
=0
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=Y Yy(e)D*
£=0

Also, as before, given a particular ordering of sources and sinks we use the the notation
2(D) = (X(v,1)(D), X (6,2)(D), ..., X (v, u(0))(D)) and (D) = (Z(s/,1)(D), Z(v/,2)(D),...,
Z(W' v(v"))(D)) to denote the vectors of random processes that are input and output of the
system.

In this paper we restrict ourselves to interior network nodes that operate in a memoryless fashion
which means that any internal node of the network can take linear combinations of the symbols
observed simultaneously on its incoming edges. However, this turns out to be too restrictive
for the general linear network problem. Still, memoryless operation of the nodes is sufficient to
treat a robust multicast scenario. Nevertheless, even for this case, we will see that we have to
allow for memory at the sink (or source) nodes. Formally, we have the following definition.

Definition 2 (Networks with delay) Let G = (V, FE) be a communication network with de-
lay. We say that G is a Fom -linear network if for all edges in E the random process Y (e) =
Yrco Yi(e)D' on a link e = (v,u) satisfies

Yiyi(e Zaz eXt(v,1) Z Ber Yi(e')

’:head(e’):tail(e)

where the coefficients oy, and [ . are elements of F. ]

The output Z(v,l) at any node v can be formed from the observed random processes at v in
any suitable fashion. However, it turns out that it is sufficient to consider linear operation at
the output, i.e. we have

t

Zia(, ) = Y &y iZi(v,d) Z > el Yile),

L=t—m(v) {=t—m(v) e’:head(e’)=v

where the coefficients e, ; , and €7, ;, are elements of F and m(v) accounts for the memory
required at sink node v.

The process of encoding information at the network nodes and feeding it into outgoing edges
can again be captured in the adjacency matrix F' of the corresponding directed line graph. We
distinguish the case of acyclic networks with delay from the case of a network that contains
cycles.

Lemma 18. Let F be the adjacency matrix of the labeled line graph of a cycle free network

%. The matrix I — DF has a polynomial inverse in the ring Fo[D, ..., Be, ;5 - -

Proof. Using an ancestral ordering of the edges in the network we see that I — DF can be
written as an upper triangular matrix with entries from the ring Fo[D, ..., Be“ej, ..]. The claim
follows by using a back substitution algorithm to give an explicit form of the inverse (I — DF)~!.

|
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Lemma 19. Let F' be the adjacency matrix of labeled line graph of a network ¢. The matrix
I — DF has a inverse in the field of rational functions Fa(D, ..., Be; e;,---)-

Proof. The determinant of I — DF' is nonzero, which can be seen from letting D be equal
to zero. Hence the matrix is invertible over its field of definition which can be taken to be

FZ(Da---a,Bei,eja---)- [ |

As in the case of delay-free networks we consider the system matrix M. The entries of M are

defined as the rational functions M; ;(D) = %%, where z;(D) is the response of the system to

an excitation z;(D). The system matrix is again composed of the multiplication of three matrices
A(D), B(D) and a matrix (I — DF) ! defined as in Section 3.1. However, now matrices A(D)

and B(D) in general also contain rational functions in D.

In particular, the entries of a p x |E| matrix A(D) are now defined as

4 e, (D) = X(tail(e;), 1)
J 0 otherwise

Similarly, the entries of a v x |E| matrix B(D) are defined as

B gejyl(D) zj = Z(head(ej),1)
b 0 otherwise.

We will call matrices constant, polynomial, and rational depending on their domain of definition.
Also, we call a rational matrix A realizable if all entries in A are realizable rational functions,
i.e. any entry in A is defined when evaluated at D = 0.

The following theorem gives the equivalent of Theorem 5 for the case of networks with delay:

Theorem 20 Let a communication network G with delay be given with rational matrices A(D),
B(D). Let F be the adjacency matrix of the corresponding labeled line graph &. The transfer
matrix of the network is given as

M = A(D)(I - DF)"'B(D)T
where I is the |E| x |E| identity matrix.

Proof. The proof is essentially identical to the proof of Theorem 5 and therefore omitted.

The base theorem underlying the development in Section 4 is Theorem 3. The following re-
formulation applies to networks with cycles:

Theorem 21 Let a communication network G be given. The following three statements are
equivalent:

1. A point-to-point connection ¢ = (v,v', Z (v,v")) is possible.

2. The MIN-CUT MAX-FLOW bound is satisfied for a rate R(c).
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3. The determinant of the R(c) x R(c) transfer matrix M is nonzero over the field
FQ(D y Xl ey ,,Bel’e,...,&‘;,l,... ’6g,j,l"")'

Proof. Again, most of the theorem is a direct consequence of the MIN-CUT MAX-FLoOwW
Theorem, which also is true in the case of cyclic networks. Statements 1) and 2) are equivalent
by this theorem. The Ford-Fulkerson algorithm yields a solution to the network problem that
satisfies the requirements of a linear solution. Hence we can associate a system transfer matrix
with this solution which, consequently, has to have a non zero determinant.

Conversely, if the determinant of M is non zero we can invert matrix M by choosing parameters
59-1 and € il accordingly. From Lemma 2 we know that we can choose the parameters so as to
make this determinant non zero. Hence 3) implies 1) and the equivalence is shown. ]

We are now in a position to state the main results concerning networks with cycles in a multicast
and robust multicast setup. We start with a formulation of the multicast scenario.

Theorem 22 Let a communication network G and a set of connections € = {(v,u1, Z (v)),
(v,u2, Z (v)),...,(v,un, Z (v))} be given. The network problem (G, %) is solvable if and only
if the MIN-CUT MAX-FLOW bound is satisfied for all connections in € .

Proof. After changing the field of constants from Fy to Fy (D), the field of rational functions
in D, the proof is essentially the same as the proof of Theorem 6. The determinants of the N
relevant transfer matrices can be considered as the ratio of polynomials from the ring Fy (D)[¢].
By Lemma 2 we can find an assignment of ¢ such that all N determinants are nonzero in F(D)
and hence that all N submatrices are invertible. Again, we can choose a realizable matrix B(D),
as a matrix with elements from F(D) such that M is the N fold repetition of DI where ¢ is a
large enough integer and I is the |2 (v)| x |2 (v)| unit matrix. 1

Corollary 23 Let a linear network G be given with a set of desired connections € = {(v;, u;j,
2 (vi)) :1=0,1,...N,5 = 1,2,... K}. The network problem G is solvable if and only if the
MIN-CuT MAX-FLOW bound is satisfied for any cut between all source nodes {v; : i =0,1,... N}
and any sink node u;. I

Li et al. give a result for the multicast problem that concerns the achievability of the MIN-
Cut MAX-FLOW bound in networks with cycles. The codes employed in their setup are time-
varying and the question is raised if a time-invariant multicast network exists that satisfies the
simultaneous MIN-CUT MAX-FLOW bound. An important consequence of the proof of Theorem
22 is the following corollary, which answers this question affirmatively:

Corollary 24 Let a communications network G and a set of connections € = {(v,u1, Z (v)),
(v,u2, Z (v)),...,(v,un, Z (v))} be given. The network problem (G,%) has a time-invariant
solution if and only if the MIN-CUT MAX-FLOW bound is satisfied for all connections in € .

Proof. The proof follows from the proof of Theorem 22. In particular, the individual de-
terminants can be made nonzero by choosing the assignment of & over F rather than F(D).
It should be noted that while the operations performed at the interior nodes of the network
are time-invariant, the individual sink nodes have to implement rational functions (involving
memory) in order to output the (possibly delayed) input 2 (v). 1
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The same arguments that lead to the derivation of robust networks and Theorem 16 can be
extended to the case of networks with delays. In particular, following Corollary 24, such a
robust solution can be made time-invariant. Again we will allow the sink nodes to implement
rational functions in D rather than being restricted to memoryless operations. Moreover, while
the interior nodes of the network are oblivious to any failure patterns, the sink nodes are allowed
to change the way in which they form their output depending on the occurred failure.

Theorem 25 Let a communications network G and a set of connections € = {(v,u1, Z (v)),
(v,u2, Z (v)),...,(v,un, Z (v))} be given. There exists a common, static solution to the net-
work problems (Gy,¢’) for all f in % .

Proof. The proof is a combination of the proofs of Theorems 16 and 22. I

By now it should be clear that all the particular network problems treated in Section 4.3 all
have an equivalent formulation for networks with cycles. For brevity we will not reformulate
these theorems.

6.1. General Networks with Cycles

While all the theorems and findings of Sections 4, and 5 were relatively straightforward to
generalize, the general network problem requires considerable technical sophistication, which
lies outside the scope of this paper. Nevertheless, it is always possible to associate a network
coding problem with an ideal in a ring of polynomials. The field of constants for this ring
becomes the field of rational functions F (D). We are hence looking for solutions to polynomial
equations in the ring F(D)[¢]. Such solutions will in general be found in the algebraic closure
of F(D). The operational rﬁeaning of such a solution to a network coding problem is beyond
the scope of Definition 2 and hence the scope of this paper. The peculiarities of the algebraic
structures emerging from network coding problems is an intriguing new field in algebraic network
coding.

7. Conclusions

We have presented an algebraic framework for investigating capacity issues in networks using
linear codes. The introduced technique makes a connection between certain systems of polyno-
mial equations and the solutions to network problems. The use of algebra in this context is a
significant and enabling tool since it is possible to capitalize on powerful theorems in this well
established field of mathematics.

We see many roads opening up for further research. The investigation of network behavior under
randomly chosen codes is an intriguing question in the context of self-organizing networks. Other
avenues are a structured investigation of network management requirements for robust networks.
In particular, relating a change in a network to the change in receiver function can give insight
into the minimum number of bits required to respond to failure scenarios.

Other issues involve the development of protocols that capitalize on the insights from network
coding. More theoretical issues address questions about the sufficiency of network coding as well
as a general separability of network coding and coding for ergodic link failures.
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