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Abstract—Körner and Marton established the capacity region
for the 2-receiver broadcast channel with degraded message sets.
Recent results and conjectures suggest that a straightforward
extension of the Körner-Marton region to more than 2 receivers
is optimal. This paper shows that this is not the case. We establish
the capacity region for a class of 3-receiver broadcast channels
with 2 degraded message sets and show that it can be strictly
larger than the straightforward extension of the Körner-Marton
region. The key new idea is indirect decoding, whereby a receiver
who cannot directly decode a cloud center, finds it indirectly by
decoding satellite codewords. This idea is then used to establish
new inner bounds on the capacity region of the general 3-receiver
broadcast channel with 2 and 3 degraded message sets. These
bounds are tight for some nontrivial cases.

I. INTRODUCTION

A broadcast channel with degraded message sets represents
a scenario where a sender wishes to communicate a common
message to all receivers, a first private message to a first
subset of the receivers, a second private message to a second
subset of the first subset and so on. Such scenarios can arise,
for example, in video or music broadcasting over a wireless
network to nested subsets of receivers at varying levels of
quality. What is the set of simultaneously achievable rates for
communicating such degraded message sets over the network?
This question was first studied by Körner and Marton

in 1977 [?]. They considered a general 2-receiver discrete-
memoryless broadcast channel with sender X and receivers
Y1 and Y2. A common message M0 ∈ [1, 2nR0 ] is to be sent
to both receivers and a private message M1 ∈ [1, 2nR1] is to
be sent only to receiver Y1. They showed that the capacity
region is given by the set of all rate pairs (R0, R1) such that 1

R0 ≤ min{I(U ; Y1), I(U ; Y2)}, (1)
R1 ≤ I(X ; Y1|U),

for some p(u, x). These rates are achieved using superpo-
sition coding [?]. The common message is represented by
the auxiliary random variable U and the private message is
superimposed to generate X . The main contribution of [?] is

1The Körner-Marton characterization does not include the second term
inside the min in the first inequality, I(U ;Y1). Instead it includes the bound
R0 + R1 ≤ I(X; Y1). It can be easily shown that the two characterizations
are equivalent.

proving a strong converse using the technique of images-of-
a-set [?].
Extending the Körner-Marton result to more than 2 receivers

has remained open even for the simple case of 3 receivers
Y1, Y2, Y3 with 2 degraded message sets, where a common
messageM0 is to be sent to all receivers and a private message
M1 is to be sent only to receiver Y1. The straightforward
extension of the Körner-Marton region to this case yields the
achievable rate region consisting of the set of all rate pairs
(R0, R1) such that

R0 ≤ min{I(U ; Y1), I(U ; Y2), I(U ; Y3)}, (2)
R1 ≤ I(X ; Y1|U),

for some p(u, x). Is this region optimal?
In [?], it was shown that the above region (and its natural

extension to k > 3 receivers) is optimal for a class of
product discrete-memoryless and Gaussian broadcast channels,
where each of the receivers who decode only the common
message is a degraded version of the unique receiver that
also decodes the private message. In [?], it was shown that
a straightforward extension of Körner-Marton region is also
optimal for the class of linear deterministic broadcast channels,
where the operations are performed in a finite field. In addition
to establishing the degraded message set capacity for this
class the authors gave an explicit characterization of the
optimal auxiliary random variables. In a recent paper Borade
et al. [?] introduced multilevel broadcast channels, which
combine aspects of degraded broadcast channels and broadcast
channels with degraded message sets. They established an
achievable rate region as well as a “mirror-image” outer bound
for these channels. Their achievable rate region is again a
straightforward extension of the Körner-Marton region to k-
receiver multilevel broadcast channels. In particular, Conjec-
ture 5 of [?] states that the capacity region of the 3-receiver
multilevel broadcast channels depicted in Figure ?? is the set
of all rate pairs (R0, R1) such that

R0 ≤ min{I(U ; Y2), I(U ; Y3)}, (3)
R1 ≤ I(X ; Y1|U),

for some p(u, x). Note that this region, henceforth referred to
as the BZT region, is the same as (??) because in the multilevel
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broadcast channel Y3 is a degraded version of Y1 and therefore
I(U ; Y3) ≤ I(U ; Y1).
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Fig. 1. Multilevel 3-receiver broadcast channels. Message M0 is to be sent
to all receivers and message M1 is to be sent only to Y1.

In this paper we show that the straightforward extension of
the Körner-Marton region to more than 2 receivers is not in
general optimal 2. In particular, we establish the capacity re-
gion of the multilevel broadcast channels depicted in Figure ??
and show that it can be strictly larger than the BZT region
(Theorem ??). We then extend the results on the multilevel
broadcast channel to establish inner bounds on the capacity
region of the general 3-receiver broadcast channel with 2 and
3 degraded message sets (Proposition ?? and Theorem ??).

II. DEFINITIONS
Consider a discrete-memoryless 3-receiver broadcast chan-

nel consisting of an input alphabet X , output alphabets Y1, Y2

and Y3, and a probability transition function p(y1, y2, y3|x).
A (2nR0 , 2nR1 , n) 2-degraded message set code for a 3-

receiver broadcast channel consists of (i) a pair of messages
(M0, M1) uniformly distributed over [1, 2nR0 ]× [1, 2nR1], (ii)
an encoder that assigns a codeword xn(m0, m1), for each
message pair (m0, m1) ∈ [1, 2nR0 ]× [1, 2nR1 ], and (iii) three
decoders, one that maps each received yn

1 sequence into an
estimate (m̂01, m̂1) ∈ [1, 2nR0]×[1, 2nR1 ], a second that maps
each received yn

2 sequence into an estimate m̂02 ∈ [1, 2nR0],
and a third that maps each received yn

3 sequence into an
estimate m̂03 ∈ [1, 2nR0 ].
The probability of error is defined as

P (n)
e = P{M̂1 �= M1 or M̂0k �= M0 for k = 1, 2, or 3}.

A rate tuple (R0, R1) is said to be achievable if there exists
a sequence of (2nR0 , 2nR1 , n) 2-degraded message set codes
with P

(n)
e → 0. The capacity region of the broadcast channel

is the closure of the set of achievable rates.
A 3-receiver multilevel broadcast channel [?] is a 3-

receiver broadcast channel with 2 degraded message sets
where p(y1, y2, y3|x) = p(y1, y2|x)p(y3|y1) for every
(x, y1, y2, y3) ∈ X × Y1 × Y2 × Y3 (see Figure ??).
In addition to considering the multilevel 3-receiver broad-

cast channel and the general 3-receiver broadcast channel with
2 degraded message sets, we shall also consider the 3-receiver
broadcast channel with 3 message sets, where M0 is to be
sent to all receivers,M1 is to be sent to Y1 and Y2, and M2 is
2A complete version of this paper has been posted on arXiv and submitted

to the IEEE Trans. on IT [?].

to be sent only to Y1. Definitions of codes, achievability and
capacity regions for these cases are straightforward extensions
of the above definitions.

III. CAPACITY OF 3-RECEIVER MULTILEVEL BROADCAST
CHANNEL

Theorem 1: The capacity region of the 3-receiver multilevel
broadcast channel in Figure ?? is the set of rate pairs (R0, R1)
such that

R0 ≤ min{I(U1; Y3), I(U2; Y2)}, (4)
R0 + R1 ≤ I(U1; Y3) + I(X ; Y1|U1),

R0 + R1 ≤ I(U2; Y2) + I(X ; Y1|U2),

for some p(u1)p(u2|u1)p(x|u2), where the cardinalities of
the auxiliary random variables satisfy ‖U1‖ ≤ ‖X‖ + 4 and
‖U2‖ ≤ ‖X‖2 + 5‖X‖ + 4.
Remarks:
1) It is easy to show by setting U1 = U2 = U in the above
theorem that the BZT region (??) is contained in the
capacity region (??). We show in the next section that
the capacity region (??) can be strictly larger the BZT
region.

2) It is straightforward to show that the above region is
convex and therefore there is no need to use a time-
sharing auxiliary random variable.
Proof: The interesting part of the proof of Theorem ??

is achievability. Specifically, step 3 of the decoding procedure
for Case 2 below describes a key contribution of this paper.
We show how Y2 can find M0 without directly decoding Un

1

or uniquely decoding Un
2 .

To show achievability of any rate pair (R0, R1) in region
(??), because of its convexity, it suffices to show the achiev-
ability of any rate pair (R0, R1) such that

R0 = min{I(U1; Y3), I(U2; Y2)} − δ

R0 + R1 = min{I(U1; Y3) + I(X ; Y1|U1),

I(U2, Y2) + I(X ; Y1|U2)} − 3δ,

for some U1 → U2 → X and any δ > 0.
Rewriting the second equality we obtain

R0 + R1 = I(U1; Y3) + min{I(U2; Y1|U1), I(U2; Y2)

− I(U1; Y3)} + I(X ; Y1|U2) − 3δ.

Now consider the following two cases:
Case 1: I(U1; Y3) > I(U2; Y2): The rates reduce to

R0 = I(U2; Y2) − δ

R1 = I(X ; Y1|U2) − 2δ.

This pair can be achieved via a simple superposition coding
scheme [?].
Case 2: I(U1; Y3) ≤ I(U2; Y2): The rates reduce to

R0 = I(U1; Y3) − δ

R1 = I(X ; Y1|U2) + min{I(U2; Y1|U1),

I(U2, Y2) − I(U1; Y3)} − 2δ.
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Let S1 = min{I(U2; Y1|U1), I(U2, Y2) − I(U1; Y3)} − δ and
S2 = I(X ; Y1|U2) − δ, then R1 = S1 + S2.

Code Generation:
Fix p(u1)p(u2|u1)p(x|u2) that satisfies the condition

of Case 2. Generate 2nR0 = 2n(I(U1;Y3)−δ) sequences
Un

1 (1), . . . , Un
1 (2nR0) distributed uniformly at random

over the set of ε-typical† Un
1 sequences, where

δ → 0 as ε → 0. For each Un
1 (m0), generate

2nS1 = 2n(min{I(U2;Y1|U1),I(U2,Y2)−I(U1;Y3)}−δ) sequences
Un

2 (m0, 1), Un
2 (m0, 2), . . ., Un

2 (m0, 2
nS1) distributed

uniformly at random over the set of conditionally ε-
typical Un

2 sequences. For each Un
2 (m0, s1) generate

2nS2 = 2n(I(X;Y1|U2)−δ) sequences Xn(m0, s1, 1),
Xn(m0, s1, 2), . . ., Xn(m0, s1, 2

nS2) distributed uniformly at
random over the set of conditionally ε-typical Xn sequences.
Encoding:
To send the message pair (m0, m1) ∈ [1, 2nR0 ]× [1, 2nR1],

the sender expresses m1 by the pair (s1, s2) ∈ [1, 2nS1] ×
[1, 2nS2] and sends Xn(m0, s1, s2).
Decoding and Analysis of Error Probability:
1) Receiver Y3 declares that m0 is sent if it is the unique
message such that Un

1 (m0) and Y n
3 are jointly ε-typical.

It is easy to see that this can be achieved with arbitrarily
small probability of error because R0 = I(U1; Y3) − δ.

2) Receiver Y1 first declares that m0 is sent if it is the
unique message such that Un

1 (m0) and Y n
1 are jointly ε-

typical. This decoding step succeeds with arbitrarily high
probability because R0 = I(U1; Y3)−δ ≤ I(U1; Y1)−δ.
It then declares that s1 is sent if it is the unique
index such that Un

2 (m0, s1) and Y n
1 are jointly ε-

typical. This decoding step succeeds with arbitrarily high
probability because S1 ≤ I(U2; Y1|U1) − δ. Finally it
declares that s2 is sent if it is the unique index such
that Xn(m0, s1, s2) and Y n

1 are jointly ε-typical. This
decoding step succeeds with high probability because
S2 = I(X ; Y1|U2) − δ.

3) Receiver Y2 finds m0 as follows. It declares that m0 ∈
[1, 2nR0 ] is sent if it is the unique index such that
Un

2 (m0, s1) and Y n
2 are jointly ε-typical for some s1 ∈

[1, 2nS1]. Suppose (1, 1) ∈ [1, 2nR0 ] × [1, 2nS1] is the
message pair sent, then the probability of error averaged
over the choice of codebooks can be upper bounded as
follows

P (n)
e ≤ P{(Un

2 (1, 1), Y n
2 ) not jointly ε-typical}

+ P{(Un
2 (m0, s1), Y

n
2 )

jointly ε-typical for some m0 �= 1}

(a)
< δ′ +

∑
m0 �=1

∑
s1

P{(Un
2 (m0, s1), Y

n
2 )

jointly ε-typical}
(b)

≤ δ′ + 2n(R0+S1)2−n(I(U2;Y2)−δ)
(c)

≤ δ′ + 2−nδ,

†We assume strong typicality throughout this paper [?].

where (a) follows by the union of events bound, (b)
follows by the fact that for m0 �= 1, Un

2 (m0, s1) and
Y n

2 are generated completely independently and thus
each probability term under the sum is upper bounded by
2−n(I(U2;Y2)−δ) [?], (c) follows because by construction
R0 + S1 ≤ I(U2; Y2) − 2δ, δ′ → 0 as ε → 0. Thus
with arbitrarily high probability, any jointly ε-typical
Un

2 (m0, s1) with the received Y n
2 sequence must be

of the form Un
2 (1, s1), and receiver Y2 can correctly

decodes M0 with arbitrarily small probability of error.
Note that Y2 may or may not be able to uniquely decode
Un

2 (1, 1). However, it finds the correct common message
with arbitrarily small probability of error even if its rate
R0 > I(U1; Y2)!

Thus all receivers can decode their intended messages
with arbitrarily small probability of error and hence the
rate pair R0 = I(U1; Y3) − δ, R1 = I(X ; Y1|U2) +
min{I(U2; Y1|U1), I(U2, Y2)− I(U1; Y3)}− 2δ is achievable.
This completes the proof of achievability of Theorem ??.

The converse proof is quite similar to previous weak con-
verse and outer bound proofs for 2-receiver broadcast channels
(e.g., see [?], [?], [?]).
The identification of the auxiliary random variables are

as follows: Let U1i = (M0, Y
i−1
1 ), i = 1, . . . , n; U2i =

(M0, Y
i−1
1 , Y n

2 i+1), i = 1, . . . , n; and let Q be a time-
sharing random variable uniformly distributed over the set
{1, 2, ..., n} and independent of Xn, Y n

1 , Y n
2 , Y n

3 . We then set
U1 = (Q, U1Q) and U2 = (Q, U2Q). Using this identification
the converse to Theorem ?? follows with the required Markov
structure on the auxiliary random variables. Please refer to [?]
for the details.

The bounds on the cardinality of the auxiliary random
variables are also established in [?].
Remark: We denote the decoding technique used in step 3
as indirect decoding because Y2 decodes the cloud center U1

indirectly by decoding possibly a list of satellite codewords.

IV. MULTILEVEL PRODUCT BROADCAST CHANNEL
In this section we show that the BZT region can be strictly

smaller than the capacity region in Theorem ??.
Consider the product of 3-receiver broadcast channels given

by the Markov relationships

X1 → Y21 → Y11 → Y31,

X2 → Y12 → Y32. (5)

In [?] we derive the following simplified characterizations for
the capacity and the BZT regions.
Proposition 1: The BZT region for the above product chan-

nel reduces to the set of rate pairs (R0, R1) such that

R0 ≤ I(V1; Y31) + I(V2; Y32),

R0 ≤ I(V1; Y21), (6)
R1 ≤ I(X1; Y11|V1) + I(X2; Y12|V2),

for some p(v1)p(v2)p(x1|v1)p(x2|v2).
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Proposition 2: The capacity region for the product channel
reduces to the set of rate pairs (R0, R1) such that

R0 ≤ I(V11; Y31) + I(V12; Y32),

R0 ≤ I(V21; Y21), (7)
R0 + R1 ≤ I(V11; Y31) + I(V12; Y32)

+ I(X1; Y11|V11) + I(X2; Y12|V12),

R0 + R1 ≤ I(V21; Y21) + I(X1; Y11|V21) + I(X2; Y12|V12),

for some p(v11)p(v21|v11)p(x1|v21)p(v12)p(x2|v12).
Now we compare these two regions via the following

example.

Example:

Consider the multilevel product broadcast channel example
in Figure ??, where: X1 = X2 = Y12 = Y21 = {0, 1},
and Y11 = Y31 = Y32 = {0, E, 1}, Y21 = X1, Y12 = X2,
the channels Y21 → Y11 and Y12 → Y32 are binary erasure
channels (BEC) with erasure probability 1

2 , and the channel
Y11 → Y31 is given by the transition probabilities: P{Y31 =
E|Y11 = E} = 1, P{Y31 = E|Y11 = 0} = P{Y31 =
E|Y11 = 1} = 2/3, P(Y31 = 0|Y11 = 0} = P{Y31 =
1|Y11 = 1} = 1/3. Therefore, the channel X1 → Y31 is
effectively a BEC with erasure probability 5/6.

X1 Y21 Y11 Y31

X2 Y12
Y32

1/2

1/2

2/3

2/3

1/2

1/2

1/2

1/2

1/3

1/3

1/2

1/2

0

1

0

1

0

E

1

0

E

1

Fig. 2. Product multilevel broadcast channel example.

Proposition 3: The BZT region for the above example
reduces to the set of rate pairs (R0, R1) satisfying

R0 ≤ min
{p

6
+

q

2
, p

}
,

R1 ≤
1 − p

2
+ 1 − q. (8)

for some 0 ≤ p, q ≤ 1.
The proof of this proposition is given in [?]. It is quite

straightforward to see that (R0, R1) = (1
2 , 5

12 ) lies on the
boundary of this region.

Proposition 4: The capacity region for the channel in Fig-
ure ?? reduces to set of rate pairs (R0, R1) satisfying

R0 ≤ min
{r

6
+

s

2
, t

}
,

R0 + R1 ≤ min

{
r

6
+

s

2
+

1 − r

2
+ 1 − s,

1 + t

2
+ 1 − s

}
,

(9)

for some 0 ≤ r ≤ t ≤ 1, 0 ≤ s ≤ 1.
The proof of this proposition is also given in [?]. Note that

substituting r = t yields the BZT region. By setting r =
0, s = 1, t = 1 it is easy to see that (R0, R1) = (1/2, 1/2)
lies on the boundary of the capacity region. Figure ?? plots the
BZT region and the capacity region for the example channel
showing that the capacity region is strictly larger.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5
BZT region
Capacity region

(0.5, 0.5)

(0.6, 0.2)

(2/3, 0)

R
1

R0

Fig. 3. The BZT and the capacity regions for the channel in Figure ??.

V. ACHIEVABLE RATE REGIONS FOR 3-RECEIVER
BROADCAST CHANNEL WITH DEGRADED MESSAGE SETS

We use superposition coding, indirect decoding, and the
Marton achievability scheme for the general 2-receiver broad-
cast channels [?] to establish the following inner bound for the
3-receiver broadcast channel with 2 degraded message sets.
Proposition 5: A rate pair (R0, R1) is achievable in a

general 3-receiver broadcast channel with 2 degraded message
sets if it satisfies the following inequalities:

R0 ≤ min{I(U2; Y2), I(U3; Y3)},

2R0 ≤ I(U2; Y2) + I(U3; Y3) − I(U2; U3|U1),

R1 ≤ min{I(X ; Y1|U2) + I(X ; Y1|U3), I(X ; Y1|U1)},

R0 + R1 ≤ min
{
I(X ; Y1), I(U2; Y2) + I(X ; Y1|U2),

I(U3; Y3) + I(X ; Y1|U3)
}
,

2R0 + R1 ≤ I(U2; Y2) + I(U3; Y3)

+ I(X ; Y1|U2, U3) − I(U2; U3|U1),

2R0 + 2R1 ≤ I(U2; Y2) + I(X ; Y1|U2) + I(U3; Y3)

+ I(X ; Y1|U3) − I(U2; U3|U1),
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for some p(u1, u2, u3, x) = p(u1)p(u2|u1)p(x, u3|u2) =
p(u1)p(u3|u1)p(x, u2|u3) (or in other words, both U1 →
U2 → (U3, X) and U1 → U3 → (U2, X) form Markov
chains).
The general idea of the proof is to represent M0 by U1,

superimpose two independent pieces of information aboutM1

to obtain U2 and U3, respectively, and then superimpose the
remaining information aboutM1 to obtain X . Receiver Y1 de-
codes U1, U2, U3, X , receivers Y2 and Y3 find M0 via indirect
decoding of U2 and U3, respectively, as in Theorem ??. The
details of the argument can be found in [?].
Remarks: (see [?] for proofs) The inner bound is tight when
Y1 is less noisy receiver than Y3 [?]. This is more general
class than degradedness and hence the above inner bound is
also tight for the multilevel case in Theorem ??.
The above inner bound can be extended to the case of 3

degraded message sets.
Theorem 2: A rate triple (R0, R1, R2) is achievable in a

general 3-receiver broadcast channel with 3 degraded message
sets if it satisfies the conditions:

R0 ≤ I(U3; Y3)

R1 ≤ min{I(U2; Y2|U1), I(X ; Y1|U3)},

R2 ≤ I(X ; Y1|U2)

R0 + R1 ≤ min
{
I(U2; Y2), I(U2; Y2|U1)

+ I(U3; Y3) − I(U2; U3|U1)
}
,

2R0 + R1 ≤ I(U2; Y2) + I(U3; Y3) − I(U2; U3|U1),

R0 + R2 ≤ I(U3; Y3) + I(X ; Y1|U2, U3)

R1 + R2 ≤ I(X ; Y1|U1),

R0 + R1 + R2 ≤ min
{
I(X ; Y1), I(U3; Y3) + I(X ; Y1|U3),

I(U2; Y2|U1) + I(U3; Y3)+

I(X ; Y1|U2, U3) − I(U2; U3|U1)
}
,

2R0 + R1 + R2 ≤ I(U2; Y2) + I(U3; Y3)

+ I(X ; Y1|U2, U3) − I(U2; U3|U1),

R0 + 2R1 + R2 ≤ I(U2; Y2|U1) + I(U3; Y3)

+ I(X ; Y1|U3) − I(U2; U3|U1),

2R0 + 2R1 + R2 ≤ I(U2; Y2) + I(U3; Y3)

+ I(X ; Y1|U3) − I(U2; U3|U1).

for some p(u1, u2, u3, x) = p(u1)p(u2|u1)p(x, u3|u2) =
p(u1)p(u3|u1)p(x, u2|u3) (i.e., as before both U1 → U2 →
(U3, X) and U1 → U3 → (U2, X) form Markov chains).
Remarks:
1) The region of Theorem ?? reduces to the inner bound
of Proposition ?? by setting R1 = 0.

2) When R2 = 0 this region reduces to straightforward
extension of the Körner-Marton scheme!

3) When R2 = 0 the above region (equivalently the
straightforward extension of the Körner-Marton scheme)
is optimal in the following two non-trivial cases:
• The broadcast channel is deterministic.
• Y1 is a less noisy receiver than Y3 and Y2 is a less
noisy receiver than Y3.

VI. CONCLUSION
We show that the capacity region of the 3-receiver broad-

cast channels with 2 degraded message sets can be strictly
larger than the straightforward extension of the Körner-Marton
region. The achievability proof uses the new idea of indirect
decoding whereby a receiver decodes a cloud center indirectly
through joint typicality with a satellite codeword. Using this
idea, we devise new inner bounds to the capacity of the general
3-receiver broadcast channel with 2 and 3 degraded message
sets, which are tight in some cases. It would be interesting to
investigate applications of indirect decoding to other problems,
for example, 3-receiver broadcast channels with confidential
message sets [?].
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