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Information Spectrum Approach to Second-Order
Coding Rate in Channel Coding

Masahito Hayashi

Abstract—In this paper, second-order coding rate of channel
coding is discussed for general sequence of channels. The optimum
second-order transmission rate with a constant error constraint
is obtained by using the information spectrum method. We apply
this result to the discrete memoryless case, the discrete memoryless
case with a cost constraint, the additive Markovian case, and the
Gaussian channel case with an energy constraint. We also clarify
that the Gallager bound does not give the optimum evaluation in
the second-order coding rate.

Index Terms—Additive Markovian channel, central limit the-
orem, channel coding, Gallager bound, information spectrum,
second-order coding rate.

I. INTRODUCTION

B ASED on the channel coding theorem, there exists a se-
quence of codes for the given channel such that the

average error probability goes to when the transmission rate
is less than . That is, if the number of applications

of the channel is sufficiently large, the average error proba-
bility of a good code goes to . In order to evaluate the average
error probability with finite , we often use the exponential rate
of decrease, which depends on the transmission rate . How-
ever, such an exponential evaluation ignores the constant factor.
Therefore, it is not clear whether exponential evaluation pro-
vides a good evaluation for the average error probability when
the transmission rate is close to the capacity. In fact, many
researchers believe that, out of the known evaluations, the Gal-
lager bound [1] gives the best upper bound of average error
probability in the channel coding when the transmission rate is
greater than the critical rate. This is because the Gallager bound
provides the optimal exponential rate of decrease. In order to
clarify this point, we focus on the second-order coding rate in
channel coding, in which we describe the transmission length by

. From a practical viewpoint, when the coding
length is close to , the second-order coding rate gives a
better evaluation of average error probability than the first-order
coding rate. In fact, the second error coding rate has been ap-
plied for evaluation of the average error probability of random
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coding concerning the phase basis, which is essential to the se-
curity of quantum key distribution [2]. Therefore, it is appro-
priate to treat the second-order coding rate from the applied
viewpoint as well as the theoretical viewpoint. In the case of
the discrete memoryless case, Strassen [3] derived the optimum
rate for an arbitrary average error probability
using the Gaussian distribution. In this paper, we extend his re-
sult to more general cases, i.e., the discrete memoryless case
with cost constraint, the Gaussian additive noise case with the
energy constraint, and the additive Markovian case. Further, our
proof for the discrete memoryless case is much simpler than the
original one. Indeed, Strassen’s proof is difficult to follow be-
cause his proof is not so simple. In this paper, in order to treat
this problem from a unified viewpoint, we employ the method
of information spectrum, which was initiated by Han and Verdú
[4], and was mainly formulated by Han [5]. The second-order
coding rate is closely related to the method of information spec-
trum because Hayashi [6] treated this problem of fixed-length
source coding and intrinsic randomness using the method of in-
formation spectrum. Hayashi [6] discussed the error probability
when the compressed size is , where is the
size of input system and is the entropy of the distribu-
tion of the input system. In the method of information spec-
trum, we treat the general asymptotic formula, which gives the
relationship between the asymptotic optimal performance and
the normalized logarithm of the likelihood of the probability
distribution. In order to treat a special case, we apply the gen-
eral asymptotic formula to the respective information source and
calculate the asymptotic stochastic behavior of the normalized
logarithm of the likelihood. That is, in the information spec-
trum method, we have two steps, deriving the general asymp-
totic formula and applying the general asymptotic formula. With
respect to fixed-length source coding and intrinsic randomness,
the same relation holds concerning the general asymptotic for-
mula in the second-order coding rate. However, there is a dif-
ference concerning the application of the general asymptotic
formula to the independent and identical distributions. That is,
while the normalized logarithm of the likelihood approaches the
entropy in probability in the first-order coding rate, the
stochastic behavior is asymptotically described by the Gaussian
distribution in the first-order coding rate. In other words, in the
second step, the first-order coding rate corresponds to the law
of large numbers, and the second-order coding rate corresponds
to the central limit theorem.

In this paper, we treat the channel coding in the second-order
coding rate, i.e., the case in which the transmission length
is . Similar to the aforementioned case, we
employ the method of information spectrum. That is, we
treat the general channel, which is the general sequence
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4948 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 11, NOVEMBER 2009

Fig. 1. Relationship between the present result and fixed-length source coding/intrinsic randomness. The arrow describes the direct part, and the arrow
describes the converse part.

of probability distributions without structure.
As shown by Verdú and Han [14], this method enables us
to characterize the asymptotic performance with only the
random variable (the normalized logarithm of
the likelihood ratio between the conditional distribution and
the nonconditional distribution) without any further assump-
tion, where . Concerning
this general asymptotic formula, if we can suitably formulate
theorems in the second-order coding rate and establish an
appropriate relationship between the first-order coding rate and
the second-order coding rate, we can easily extend proofs con-
cerning the first-order coding rate to those of the second-order
coding rate. Therefore, there is no serious difficulty in estab-
lishing the general asymptotic formula in the second-order
coding rate. In order to clarify this point, we present proofs
of some relevant theorems in the first-order coding rate, even
though they are known.

In order to treat the special cases, it is sufficient to apply
the general asymptotic formula, i.e., to calculate the asymptotic
behavior of the random variable . The additive
Markovian case can be treated in the same way as fixed-length
source coding and intrinsic randomness. However, other special
cases have other difficulties, which do not appear in fixed-length
source coding or intrinsic randomness. The first difficulty is the
optimization concerning the input distribution in the converse
part of the channel coding. This problem commonly appears
among three cases, i.e., the discrete memoryless case, the dis-
crete memoryless case with cost constraint, and the Gaussian ad-
ditive noise case with the energy constraint. In the discrete mem-
oryless case, the second-order coding rate corresponds to simple
application of the central limit theorem, while the first-order
coding rate corresponds to the law of large numbers. Hence, the
performance in second-order coding rate is characterized by the
variance of the logarithmic likelihood ratio, and the direct part
can be easily obtained in this case. This relationship is summa-
rized in Fig. 1.

However, there is another difficulty in the direct part for the
discrete memoryless case with cost constraint and the Gaussian
additive noise case with the energy constraint. In these cases, all
of the encoded signals have to satisfy cost constraint. This kind
of difficulty does not appear in the case of first-order coding rate
of both the discrete memoryless case with cost constraint and the
Gaussian additive noise case with the energy constraint. This is
because it is sufficient to construct the code whose average error
probability goes to zero in the case of the first-order coding rate
while it is required to construct the code whose average error
probability goes to a given threshold in the case of the second-
order coding rate. We find a code satisfying the following: its
average error probability goes to zero and its average cost is less
than the constraint.

Then, there exists a subcode satisfying the following: its av-
erage error probability goes to zero and the costs of all encoded
signals are less than the constraint. However, the same method
cannot be applied when we find a code satisfying the following:
its average error probability goes to and its average cost is
less than the constraint. In this paper, we directly construct a
code, in which the costs of all encoded signals are less than the
constraint.

Here, we describe the meaning of the second-order coding
rate. When the transmission length is described by

, as shown in Section IX-A, the optimal error can be
approximately attained by random coding. Since it seems that
random coding cannot be realized, our evaluation seems to be
related to only the theoretical best performance. However, in
the quantum key distribution, it can be realized concerning the
phase bases [7], [2]. In such a setting, the coding length is on
the order of or [8]. In the quantum key distri-
bution, Hayashi [2] has applied the second-order coding rate to
evaluate the phase error probability, which is directly linked to
the security of the final key.

The remainder of this paper is organized as follows. In
Section II, we revisit the second-order coding rate in the sta-
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tionary discrete memoryless case, and discuss the second-order
coding rate in the stationary discrete memoryless case with
cost constraint. In Section III, the Markovian additive channel
is treated. In Section IV, the Gaussian additive noise case with
the energy constraint is considered. These results are shown in
Section X by employing the method of information spectrum.
In the present result, the performance of information transmis-
sion is discussed in terms of second-order coding rate using
two important quantities and instead of the capacity in
the discrete memoryless case. In other cases, similar quantities
play the same role.

In Section V, we compare our evaluation with the Gallager
bound [1] in the second-order setting. In Section VI, the prop-
erties of and are discussed. In Section VI-A, we dis-
cuss a typical example such that is different from . In
Section VI-B, the additive properties concerning and
are proved. In Section VII, the notations of the information spec-
trum are explained. In Section VIII, the performance of the in-
formation transmission is discussed in terms of the second-order
coding rate using the information spectrum in the general case.
That is, we present general formulas for the second-order coding
rate. In Section IX, the theorem presented in the previous section
is proved. In Section X, using general formulas for the second-
order coding rate, we demonstrate our proof of the second-order
coding rate in the stationary discrete memoryless case using our
general result concerning the second-order coding rate. In this
proof, the direct part is immediate. The converse part is the most
difficult considered herein because we must treat the informa-
tion spectrum for the general input distributions in the sense of
the second-order coding rate.

II. SECOND-ORDER CODING RATE IN STATIONARY DISCRETE
MEMORYLESS CHANNELS

As the most typical case, we revisit the second-order coding
rate of stationary discrete memoryless channels, in which we
use an -multiple application of the discrete channel ,
which transmits the information from the input system
to the output system . That is, the channel considered
here is given as the stationary discrete memoryless channel

, where
and . Note that, in this paper,
denotes the product of two distributions and (two channels

and ), and denotes the product of uses of
the distribution (the channel ), i.e., the th independent
and identical distribution (i.i.d.) of (the th stationary mem-
oryless channel of ). In this case, when the transmission rate
is less than the capacity , the average error probability
goes to exponentially, if we use a suitable encoder and the
maximum-likelihood decoder.

Let be the size of the transmitted information. The en-
coder is a map from to , and the decoder is
given by the set of subsets of , where corre-
sponds to the decoding region of . Then, the
code is given by the triple and is denoted by

. The average error probability is described as

where . For simplicity, the size is de-
noted by . The performance of the code is given by the
pair of and . As stated by the channel coding the-
orem [9], the capacity is given by

(1)

where is the set of distributions on , and

The second equation of (1) was shown in Ohya–Petz–Watanabe
[15] and Hayashi–Nagaoka [16] with the quantum setting. For
a reader’s convenience, its proof is given in Appendix I with the
nonquantum setting. Thus,
satisfies

(2)

Throughout this paper, we choose the base of the logarithm to
be .

Although the above channel coding theorem concerns only
the first-order coding rate of the transmission length ,
our main focus is the analysis of the second-order coding rate.
When the transmission length asymptotically behaves as

, the optimal average error is given by

(3)

Fixing the average error probability, we obtain the following
quantity:

(4)

We refer to this value as the optimum second-order trans-
mission rate with the error probability . In order to treat the
second-order coding rate, we need the distribution function
for the standard Gaussian distribution (with expectation and
variance ), which is defined by

In this problem, the quantity
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plays an important role. By using these quantities,
and are calculated in

the stationary discrete memoryless case as follows.

Theorem 1 [3]: When the cardinality is finite and
exists uniquely, then

(5)

(6)

When is linearly independent by regarding distributions
as positive vectors, the map is a one-to-one map.
Then, exists uniquely. However,
when is not linearly independent, is
not necessarily unique. In order to treat such a case, we intro-
duce two quantities and and two distributions and

where . In order to treat such a
case, Theorem 1 is generalized as follows.

Theorem 2 [3]: When the cardinality is finite and the
set has multiple elements, (5) and (6) are generalized as

More precisely, the direct part

(7)

(8)

holds without any assumption, and the converse part

holds with the assumption .

Next, consider the cost function . In this case, we
often assume that all codewords of the code belong to
the set

The maximum coding rate with the above condition is called the
capacity with the cost constraint, and is given by [10]

where

In the same way to (3) and (4), we define the following values
with the cost constraint:

(9)

(10)

where expresses the set for a code
. We introduce two quantities and

and two distributions and

where .

Theorem 3: When the cardinality is finite
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More precisely, the direct part

(11)

(12)
holds without any assumption, and the converse part

holds with the assumption .

Remark 1: When the sets and are given as general
probability spaces with general -fields and , the
above formulation can be extended with the following def-
inition. The channel is given by the real-valued function
from and satisfying the following conditions: i) for
any is a probability measure on ; and ii) for any

, the function is a measurable function
on . The probability measure takes on values in . Then,
the summands and are replaced by

and , respectively. For any distribution
on , the function is replaced by the inverse of

Radon–Nikodym derivative of with respect to
. In this extension, the direct parts (7), (8), (11), and (12)

are valid.

III. SECOND-ORDER CODING RATE IN ADDITIVE

MARKOVIAN CHANNEL

Next, we focus on the additive Markovian channel, in which
we assume that the additive noise obeys the transition ma-
trix on the set . Then, the channel

has the form ,
where is the initial state and the arithmetic is based
on mod . For simplicity, we assume that the transition matrix

is irreducible. Then, the th marginal distribution
approaches the

stationary distribution , which is given as the eigenvector
of associated with the eigenvalue [12]. When the con-
ditional distribution is denoted by , the normal-
ized entropy of the distribution
goes to . Then, by defining the
capacity in the same way as , the channel capacity

is calculated as

(13)

Similarly to and ,
the second-order quantities and

are defined for the additive Markovian
case. Then, the following theorem holds. In this problem, as is

shown later, the mutual information attains the capacity when
the input distribution is the uniform distribution. So, when
the input distribution is the uniform distribution, the additive
Markovian version is the variance

which plays an important role. By using these quantities,
and are calculated in

the additive Markovian case as follows.

Theorem 4: The relations

hold.

Remark 2: It seems strange that Theorems 2 and 3 have sepa-
rate treatment for and while Theorem 4 has no such
treatment. The separate treatment is caused by the nonunique-
ness of the distribution realizing the capacity. However, in the
additive memoryless channel case, the uniqueness holds. That
is, only the uniform distribution realizes the capacity. A similar
fact holds for the additive Markovian case.

IV. SECOND-ORDER CODING RATE IN GAUSSIAN CHANNEL

In this section, we consider the case of additive Gaussian
noise. In this case, both of the input system and the output
system are given by , and the output distribution is

given by for a given variance of noise. If there
is no restriction for input signal, the capacity diverges. Hence, it
is natural to consider the cost constraint. Consider the cost func-
tion and the maximum cost . Then, the maximum
mutual information is attained when
is equal to . In this case

(14)

Then, the capacity is known to be [9], [11]

Since

is calculated as
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Since the cardinality of is infinite, the assumption of Section II
does not hold. That is, we cannot apply Theorem 3. However,
the following theorem holds.

Theorem 5: Define the quantities and
in the same way as (9) and (10). Then

V. COMPARISON WITH THE GALLAGER BOUND

At first glance, the Gallager bound [1] seems to work well
for evaluating the average error probability, even when the
transmission length is close to . This is because this
bound gives the optimal exponential rate when the coding
rate is greater than the critical rate. In this section, we clarify
whether the present evaluation or the Gallager bound [1] pro-
vides a better evaluation when the transmission length is close
to . For this analysis, we describe the transmission length
by . Let us compare the present evaluation with
the Gallager bound, which is given by

(15)

where

Since the present evaluation is essentially based on Verdú and
Han’s method [14], this comparison can be regarded as a com-
parison between Verdú and Han’s evaluation and the Gallager
bound. Next, we substitute into . Then

Taking the derivatives of , we obtain

When

Therefore, as is rigorously shown in Appendix II, when

(16)

Fig. 2. Comparison between the present evaluation and the Gallager bound.
The solid line indicates the Gallager bound, and the dotted line indicates the
present evaluation.

Next, we set as . Then, the Gallager bound yields

(17)

for any . That is, the gap between our evaluation and the
Gallager bound is equal to the difference between

and

Although the former is smaller than the latter, both exponential
rates coincide in the limit . Since we can consider that
the Gallager bound gives the trivial bound for , both
evaluations are illustrated in Fig. 2.

Next, we consider the same comparison for the additive Mar-
kovian case. Substitute to in (15). Then, the Gallager’s in-
equality

(18)

holds for any channel , any input distribution , and any
real positive number . Substituting and the additive Mar-
kovian channel , the uniform distribution into

, and , we obtain

where

Thus, by substituting into , inequality (18) yields that

(19)

Since the asymptotic first and second cummulants of the
random variable are and , we have
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as . Since , substituting

into , we obtain

Substituting and into and in the ex-
ponent of (19), we have

Therefore, when , choosing , we obtain

which has the same form as (17).
In both cases, when , the difference is not so

small. In such a case, it is better to use the present evaluation.
That is, the Gallager bound does not give the best evaluation in
this case. This conclusion is opposite to the exponential evalua-
tion when the rate is greater than the critical rate. Han [5] calcu-
lated the exponential rate of the present bound, and found that
it is worse than that of the Gallager bound.1

Moreover, a similar conclusion was obtained in the low-den-
sity parity-check (LDPC) case. Kabashima and Saad [13] com-
pared the Gallager upper bound of the average error probability
and the approximation of the average error probability by the
replica method. That is, they compared both thresholds of the
rate, i.e., both maximum transmission rates at which the respec-
tive error probability goes to zero. In their study [13, Table I],
they pointed out that there exists a nonnegligible difference be-
tween these two thresholds in the LDPC case. This information
may be helpful for discussing the performance of the Gallager
bound.

VI. PROPERTIES OF AND
A. Example

In this section, we consider a typical example, in which is
different from . For this purpose, we choose two parameters

satisfying

(20)

1This description was provided in the original Japanese version, but not in the
English translation.

where . According to
the following three conditions i), ii), and iii), we define the five
joint distributions , and on two random
variables and . In the following,
denotes the marginal distribution of concerning .

i) Uniformity on
All distributions are assumed to satisfy

ii) Same marginal distribution on for
Two random variables and are not
independent in and , but and have the same
marginal distribution on . That is

where is the conditional distribution of
given when the joint distribution is given by .

Thus, and satisfy

iii) Independence between and for .
Due to condition (20), there exist two solutions for in
the following equation because is monotone in-
creasing in and is monotone decreasing in :

where

Letting and be these two solutions, we define three
distributions , and , in which two random vari-
ables and are independent, by

From the construction, we can check that

(21)

for . Consider the subsets of joint distributions

Then, . Hence, the relationship among
, and is illustrated in Fig. 3.

Then, the following lemma holds.

Lemma 1:

(22)

(23)

Its proof is given in Appendix III.
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Therefore, (21) implies that

and

That is, the capacity of the channel is
calculated as

Then, the set is given by the convex hull of
and . Thus,

. When

Otherwise

Our numerical analysis (Fig. 4) suggests the relation
.

B. Additivity

The capacity satisfies the additivity condition. That is, for
any two channels and , the combined
channel satisfies the
following:

Similarly, as mentioned in the following lemma, and
satisfy the additivity condition.

Lemma 2: The equations

(24)

(25)

hold.
Proof of Lemma 2: We choose the distributions and

as

Then

Assume that a distribution with the random variables and
satisfies the following:

(26)

Fig. 3. , and .

(27)

Then, the marginal distributions and of concerning
and satisfy

which implies

for and , where denotes
the support of the distribution . Hence

Therefore, when the conditions (26) and (27) are satisfied, the
maximum of is equal to , which implies
(24). Similarly, we obtain (25).

The same fact holds with the cost constraint. The capacity
with the cost constraint satisfies the additivity condition. That
is, for any two cost functions and for channels and
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Fig. 4. Comparison between (dotted line) and (solid line).

, the combined cost
satisfies the following:

The quantities and satisfy the additivity
condition.

Lemma 3: The equations
(28)

(29)
hold.

This lemma can be proven in the same way as Lemma 2 by
replacing the definitions of and by

VII. NOTATIONS OF THE INFORMATION SPECTRUM

A. Information Spectrum

In this paper, we treat general channels. First, we focus on two
sequences of probability spaces of the input signal and
those of the output signal, and a sequence of prob-
ability transition matrixes . We also
focus on a sequence of distributions on input systems

. The asymptotic behavior of the logarithmic likeli-
hood ratio between and

can be characterized by the following
quantities:

for . Focusing on a sequence of distributions on output
systems , we can define

for .
When the channel is the th stationary discrete memory-

less channel of and the probability distribution
is the th i.i.d. of , the law of large num-

bers guarantees that coincides with the mutual in-
formation . For a more
detailed description of asymptotic behavior, we focus on the
second-order for concerning the coding length. In
order to characterize the coefficient of the second-order , we
introduce the following quantities:

for . When , the superscript is abbreviated.
Similarly, and are
defined for . When is and
is , the second order of the coding length is
and the central limit theorem guarantees that

asymptotically obeys the Gaussian distribution with
expectation and variance

Therefore, when , using the distribution function for
the standard Gaussian distribution, we can express the above
quantities as follows:

(30)

In the case of additive channels, we focus on the limiting be-
havior of the entropy rate of the distributions
describing the additive noise. Similarly to the above, we define
the following:
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for . As is discussed in [6, Sec. VII], when is given
by a Markovian process and , the relationships

(31)

(32)

(33)

hold.

B. Stochastic Limits

In order to treat the relationship between the above quantities,
we consider the limit superior in probability and the
limit inferior in probability , which are defined by

In particular, when
, we write

The concept can be generalized as

From the definitions, we can check the following properties:

(34)

(35)

where is a joint distribution of two random variables and
. As shown by Han [5], the relation

(36)

holds for and any two sequences and
of distributions with the variable .

By using this concept,
, and are character-

ized by

Substituting and into and in (36), and using
(34), we obtain

Since
is characterized as

(37)

Similarly

(38)

In the following, we discuss the relationship between the afore-
mentioned quantities and channel capacities.

VIII. GENERAL ASYMPTOTIC FORMULAS

A. General Case

Next, we consider the capacity and its related quantity,
which are defined by

Concerning these quantities, the following general asymptotic
formulas hold.

Theorem 6 [14], [16]: The relations

(39)

(40)

hold for and .
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Remark 3: Historically, Verdú and Han [14] proved the first
equation in (40). Hayashi and Nagaoka [16] established the
second equation in (40) with for the first time, even for
the classical case, although their main topic was the quantum
case. The relation (39) is proven for the first time in this paper.

Next, we proceed to the second-order coding rate. As a gen-
eralization of (3) and (4), we define the following:

(41)

(42)

Similar to Theorem 6, the following general formulas for the
second-order coding rate hold.

Theorem 7: The relations

(43)

(44)

hold for and .

Indeed, Theorem 7 has greater significance than generaliza-
tion. This theorem provides a unified viewpoint concerning the
second-order asymptotic rate in channel coding and the fol-
lowing merits. First, it shortens the proof of Theorem 3. Second
it enables us to extend Theorem 3 to the case of cost constraint.
Third, it yields the extension to Gaussian noise case, which has
continuous input signals. Fourth, it allows us to extend the same
treatment to the Markovian case with the additive noise.

B. Cost Constraint

We focus on a sequence of cost function where
is a function from to . In this case, all alphabets are

assumed to belong to the set

That is, our code is assumed to satisfy that
. Then, the capacities with cost constraint are given by

(45)

(46)

Concerning these quantities, the following general asymptotic
formulas hold.

Theorem 8: [5], [16]: The relations

(47)

(48)

hold for and .

Remark 4: Historically, Han [5] proved the first equation in
(48). Hayashi and Nagaoka [16] established the second equation
in (48) with for the first time, even for the classical case,
although their main topic was the quantum case. The relation
(47) is proven for the first time in this paper.

Similar to Theorem 7, the following general formulas for the
second-order coding rate hold.

Theorem 9: The relations

(49)
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(50)

hold for .

The above theorems can be regarded as special cases of The-
orems 6 and 7 by substituting the set into the set .
Hence, it is sufficient to show Theorems 6 and 7.

C. Additive Case

Next, we consider the case where the channel is given as a
sequence of additive channel

on the set with the cardinality . Verdú and
Han proved the following theorem.

Theorem 10: [14]: The relations

(51)

(52)

hold for . This theorem and (55) imply (54).

Remark 5: Verdú and Han proved (52) in the case of
at [14, eq. (7.2) ]. Other cases are proven at the first time in this
paper.

Similar to Theorem 10, the following formulas for the
second-order coding rate hold for general additive channels.

Theorem 11: The relations

(53)

(54)

hold for . Hence, we obtain Theorem 4 from (32) and
(33).

Now, using Theorems 6 and 7, we prove Theorems 10 and 11.
Since , we have

(55)

(56)

where (55) and (56) follow from (35) and (37), respectively.
Since the equality holds when is the uniform distribution,
we obtain

which implies (52). Similarly, we can show (54).

Since , we have

which implies that

Thus, we obtain (51). Similarly, we obtain (55).

Remark 6: When the sets and are given as general
probability spaces with general -fields and , the
above formulation can be extended with the following defini-
tion. The th channel is given by the real-valued function
from and satisfying the following conditions: i) for
any is a probability measure on , and ii) for
any is a measurable function on .
and take values in sequence of probability measures on
and , respectively. Then, the summands and

are replaced by and ,

respectively. For any distribution on , the function
is replaced by the inverse of Radon–Nikodym derivative

of with respect to . In the above definitions,
, and are given as the infimum and

supremum among all sequences of probability measures on
and . The following proof is also valid in

this extension.

IX. PROOF OF THE GENERAL FORMULAS FOR THE

SECOND-ORDER CODING RATE

In this section, we prove Theorems 6 and 7. That is, for the
reader’s convenience, we present a proof for the first-order
coding rate, as well as that for the second-order coding rate.

A. Direct Part

We prove the direct part, i.e., the inequalities

(57)

(58)

(59)

(60)

For arbitrary , using the random coding method, we show that
there exists a sequence of codes such that

and . This method is
essentially the same as Verdú and Han’s method [14].

First, for , we focus on the random variables
subject to the distribution . We assume that the
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random variable is independent of the random variable
for . Then, we define the code with the size
depending on the random variable . We
generate the encoder , in which is chosen as

when . The decoder is chosen by
the following inductive method:

Thus, the average error probability is evaluated as

The second term is evaluated as

Any two sequences and satisfy the inequality
. Hence,

be-

cause
. Thus, the convergence

implies the inequality .
Next, in order to prove (57), for any sequence , we construct

a code such that

. For any , we choose the integer such that
for

. Then, for any , we choose to be the maximum
satisfying . Then, as . Thus,

goes to , and
goes to . Hence, we obtain the

inequality , i.e.,
(57).

For proving (59), we choose . Substi-
tuting into in the above discussion, we denote
the code by . Then

Since

we obtain the inequality
.

For any , we choose the integer such that

for . Then, defining similarly, we obtain
,

and

Hence, we obtain the inequality
, i.e., (59).

For an arbitrary number , there exists
a sequence of input distributions such that .
Therefore, the inequality (58) holds. Similarly, we can show the
inequality (60).

B. Converse Part

Next, we prove the converse part, i.e.,

(61)

(62)

(63)

(64)

which completes our proof, because the other inequalities
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are trivial based on their definitions. In the converse part, we
essentially employ Hayashi and Nagaoka’s [16] method. We
choose an arbitrary sequence of codes . Let be

. Assume that the code consists of the
triplet . Then, for any sequence of output
distributions and any real , the inequality

(65)

holds, where is the empirical distribution for the
points .

Since , the relation
holds for any , where .

Thus,
. Therefore,

, which implies (61).
Now, assume that . Since

, (65) implies that .
Thus, . Since is an
arbitrary positive real number, ,
which implies (62).

Next, consider the case in which .
Replacing by in (65), we ob-

tain . Thus,
, which implies

(63). Replacing into in (65), similar to
(62), we can show (64).

The inequality (65) is shown as follows. We focus on the in-
equalities

where the first inequality follows from the fact that any
two distributions and and any positive constant
satisfy

.
Thus

which implies (65).

X. PROOF OF THE STATIONARY MEMORYLESS CASE

In this section, calculating the second-order information spec-
trum quantities in the stationary memoryless case with ,
we prove Theorems 2, 3, and 5.

A. Proof of Theorem 2

In this section, using Theorem 7, we prove Theorem 2 when
the cardinality is finite. For this purpose, we show the fol-
lowing relations in the stationary discrete memoryless case, i.e.,
the case in which for

and . In this section, ab-
breviating as , we will prove that

(66)

and

(67)

The situation of (66) is illustrated by Fig. 5. Showing both in-
equalities and using Theorem 7, we obtain

(68)

Since the right-hand side of (68) is continuous with respect to ,
(68) implies that

That is, we can show Theorem 2.
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Fig. 5. Limiting behavior of and the Gaussian dis-

tribution with the variance .

In fact, when is the i.i.d. of or

is equal to or . Thus, (66) holds.
Therefore, the achievability part (the direct part) of Theorem 2
holds. Therefore, it is sufficient to prove the converse part (67).

We focus on the set of empirical distributions with out-
comes. In this proof, using empirical distributions, we divide
the probability space into two parts, i.e., the main part and
the marginal part. Its cardinality is evaluated as

. In this proof, we use the distribution

and the sets

where is given in Section II and is the empirical
distribution of .

Since and

When

where and denote the expectation and the variance under
the distribution . Thus, Chebyshev inequality implies

Define the quantity

When , the inequality

(69)

holds. Since the random variable

has the variance

(70)

as goes to infinity. Since the random variable

is written as
a combination of finite number of random variables

, this convergence is uniform concerning
. Further

(71)
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Hence, from the combination of (69), (70), and (71), for any
, there exists such that for

Therefore

where is the complement of .
Thus

Since and are arbitrary, when

which implies (67) because of the continuity of the right-hand
side.

B. Proof of Theorem 3

In this section, using Theorem 9, we prove Theorem 3 when
the cardinality is finite. For this purpose, we show the fol-
lowing relations in the stationary discrete memoryless case, i.e.,
the case in which
for and , and

. In this section, abbreviating as , we will
prove that

(72)

and

(73)

Showing both inequalities and using Theorem 9, we obtain

(74)
Since the right-hand side of (74) is continuous with respect to ,
(74) implies that

That is, we can show Theorem 3.
The inequality (73) can be proven in the same way as (67)

by replacing and by the set of empirical distributions
and . Therefore,

the converse part of Theorem 3 holds. Therefore, it is sufficient
to prove the direct part (72).

For any distribution satisfying , we
choose the closet empirical distribution .
Let be the uniform distributions on the set

. It is sufficient to show that

(75)

Since

(76)

we have

(77)

which implies (75).
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In order to prove (75) without condition , we choose
a sequence of input distributions with finite supports
such that

Choose the distribution as the uniform distributions on the
set . Then, instead of (76), the relation

holds. Since goes to zero, the same discussion
as (77) yields (75).

C. Proof of Theorem 5

As is shown in Section X-B, we obtain the direct part, i.e.,

Hence, when , it is sufficient to prove

(78)

For the following discussion, we define the empirical distribu-
tion in the continuous case

where is the delta measure at . In the following discussion,
we use the distribution

and the sets

where we obtain

When , the random variable

has the expectation

and the variance

Thus, Chebyshev inequality implies

When , under the -variable Gaussian distribution ,

the random variable is calculated to be

The expectation is
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and the variance is

The random variable

converges to the normal distribution when goes to infinity.
Due to the property of Gaussian distribution, this convergence
is uniform when is bounded. Hence

(79)

and

(80)

Similarly to (70), we obtain the uniform convergence

(81)

Therefore, the combination of (79), (80), and (81) yields that

Since is arbitrary, when

which implies (78).

XI. CONCLUDING REMARKS AND FUTURE STUDY

We have obtained a general asymptotic formula for channel
coding in the sense of the second-order coding rate. That is,
it has been shown that the optimum second-order transmission
rate with the error probability is characterized by the second-
order asymptotic behavior of the logarithmic likelihood ratio be-
tween the conditional output distribution and the nonconditional
output distribution. Using this result, we have derived this type
of optimal transmission rate for the discrete memoryless case,
the discrete memoryless case with a cost constraint, the additive
Markovian case, and the Gaussian channel case with an energy
constraint. The performance in the second-order coding rate is
characterized by the average of the variance of the logarithmic
likelihood ratio with the single letterized expression. When the
input distribution producing the capacity is not unique, it is char-
acterized by its minimum and its maximum. We give a typical
example such that the minimum is different from the maximum.
Furthermore, both quantities have been verified to satisfy the
additivity.
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The main results of this study are as follows. While the ap-
plication of the information spectrum method to the second-
order coding rate was initiated by Hayashi [6], his research
indicated that there is no difficulty in extending general for-
mulas to the second-order coding rate. Therefore, in the i.i.d.
case, the second-order coding rate of the source coding and
intrinsic randomness are solved by the central limit theorem.
However, channel coding cannot been treated using the method
of Hayashi [6] except for the additive noise case with no cost
constraint because the present problem contains the optimiza-
tion concerning the input distribution in the nonadditive noise
case. In the converse part, we have to treat the general sequence
of input distributions. In order to resolve this difficulty, we have
treated the logarithmic likelihood ratio between the conditional
output distribution and the distribution , which is introduced
in Section X-A.

Furthermore, we can consider the quantum extension of our
results. There is considerable difficulty concerning noncommu-
tativity in this direction. In addition, the third-order coding rate
is expected but appears difficult. The second order is the order

, and it is not clear whether the third order is a constant
order or the order . This is an interesting problem for future
study.

APPENDIX I
PROOF OF THE SECOND EQUATION OF (1)

Recall the following minimax theorem.

Lemma 4: Consider two vector spaces and and consider
a real-valued function with the domain . If is
convex with respect to and concave with respect to , then
(see [17, Ch. VI, Prop. 2.3])2

where and are convex subsets of and .

Since
. The joint convexity

of the divergence implies that is convex.
Thus, Lemma 4 can be applied. Therefore, we obtain

Now, the second equation of (1) is proved.

APPENDIX II
PROOF OF (16)

For a given , we prove (16). Since , the
function is convex. Choosing such that

2This relation holds even if is infinite dimensional, as long as is a closed
and bounded set.

we have the relation

(82)

Then, the minimum of is attained when

. Since is continuous and bounded, ap-
proaches zero as goes to infinity. More precisely, (82) implies

That is

When the function is chosen to be
approaches zero as goes to zero.

Thus, we have

which implies (16).

APPENDIX III
PROOF OF LEMMA 1

For this proof, we define the maps and as

where and . When the distribution
satisfies that , the following Pythagorean-type

inequality holds:

(83)

Similarly, when the distribution satisfies that ,
the following Pythagorean-type inequality holds:

(84)

Define
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Then,
, and .

For any , we have

i.e.,

which implies

Thus, converges to zero. Therefore, there exists
a distribution such that . Hence

which implies (22).
Further, for any , we assume that satisfies

. Since the concavity of implies the inequality
, the

following Pythagorean-type inequality holds:

(85)

Combination of (84) and (85) yields (23).
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