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Abstract—This paper investigates the maximal channel coding
rate achievable at a given blocklength and error probability. For
general classes of channels new achievability and converse bounds
are given, which are tighter than existing bounds for wide ranges
of parameters of interest, and lead to tight approximations of the
maximal achievable rate for blocklengths � as short as 100. It is
also shown analytically that the maximal rate achievable with error

probability � is closely approximated by�� �

�
������ where�

is the capacity, � is a characteristic of the channel referred to as
channel dispersion, and � is the complementary Gaussian cumula-
tive distribution function.

Index Terms—Achievability, channel capacity, coding for noisy
channels, converse, finite blocklength regime, Shannon theory.

I. INTRODUCTION

T HE proof of the channel coding theorem involves three
stages:

• Converse: an upper bound on the size of any code with
given arbitrary blocklength and error probability.

• Achievability: a lower bound on the size of a code that can
be guaranteed to exist with given arbitrary blocklength and
error probability.

• Asymptotics: the bounds on the log size of the code nor-
malized by blocklength asymptotically coincide as a result
of the law of large numbers (memoryless channels) or an-
other ergodic theorem (for channels with memory).

As propounded in [1], it is pedagogically sound to separate
clearly the third stage from the derivation of the upper and lower
bounds:

• The bounds need not impose assumptions on the channel
such as memorylessness, stationarity, and ergodicity.

• The key information theoretic arguments are used mainly
in the converse and achievability bounds.

• The bounds can be extremely useful in assessing the
highest rate that can be achieved when operating with a
given blocklength and error probability.

The strong form of the coding theorem establishes that for
a general class of channels that behave ergodically [2], the
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channel capacity is the largest rate at which information can
be transmitted regardless of the desired error probability, pro-
vided that the blocklength is allowed to grow without bound.
In practice, it is of vital interest to assess the backoff from
capacity required to sustain the desired error probability at a
given fixed finite blocklength. Unfortunately, no guidance to
answer that question is offered either by the strong version of
the coding theorem, or by the reliability function, which gives
the asymptotic exponential decay of error probability when
transmitting at any given fraction of capacity.

In the nonasymptotic regime, there are no exact formulas for
the maximal rate sustainable as a function of blocklength and
error probability. In this paper, we show several new achiev-
ability and converse bounds which bound the fundamental limits
tightly for blocklengths as short as 100. Together with normal
approximations, the bounds also show that in the finite block-
length regime, the backoff from channel capacity is accu-
rately and succinctly characterized by a parameter that we refer
to as the channel dispersion , which measures the stochastic
variability of the channel relative to a deterministic channel with
the same capacity. Specifically, the finite blocklength coding
rate is approximated by1

(1)

where is the blocklength and is the error probability.
Since Shannon established the convergence of optimal coding

rate to capacity, there has been some work devoted to the as-
sessment of the penalty incurred by finite blocklength. Fore-
most, Shannon [3] provided tight bounds for the additive white
Gaussian noise (AWGN) channel that were studied numerically
by Slepian [4] (cf. also [5] and [6]). Recently, with the advent
of sparse-graph codes, a number of works [8]–[11] have studied
the SNR penalty as a function of blocklength in order to im-
prove the assessment of the suboptimality of a given code with
respect to the fundamental limit at that particular blocklength
rather than the asymptotic limit embodied in the channel ca-
pacity. Approximations of the type in (1) have been studied in
[7], [23], [29]–[31].

The major existing achievability and converse bounds are
reviewed in Section II along with refined asymptotic expan-
sions of achievable rate. Section III gives our new lower and
upper bounds on the maximal rate achievable for a given block-
length and error probability. The lower bounds are based on
three different constructive approaches that lead, respectively,
to the RCU (random-coding union) bound, the DT (dependency
testing) bound, and the bound based on the Neyman–Pearson

1As usual, ���� � � ���
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lemma that uses an auxiliary output distribution. Unlike existing
achievability bounds, the RCU and DT bounds contain no pa-
rameters (other than the input distribution) to be optimized. A
general converse upper bound is given as a result of the solu-
tion of a minimax problem on the set of input/output distri-
butions. Section IV studies the normal approximation to the
maximal achievable rate for discrete memoryless channels and
for the additive white Gaussian noise channel, and shows that
(1) holds up to a term of except in rare cases.
Throughout Sections III and IV, particular attention is given to
the binary erasure channel (BEC), the binary symmetric channel
(BSC), and the AWGN channel. Several coding schemes used in
practice are compared against the nonasymptotic fundamental
limits. The use of the normal approximation as a design tool
is illustrated in the context of the optimization of the maximal
throughput of a simple automatic repeat request (ARQ) retrans-
mission strategy. Section V summarizes our main findings.

II. PREVIOUS WORK

Let us consider input and output sets and and a con-
ditional probability measure . We denote
a codebook with codewords by . A
(possibly randomized) decoder is a random transformation

(where ’0’ indicates that the decoder
chooses “error”). A codebook with codewords and a decoder
that satisfies for are
called an -code (maximal probability of error). If the
messages are equiprobable, the average error probability is

A codebook and a decoder whose average probability of error
is smaller than are called an -code (average probability
of error). In the application of our results, we will take and

to be -fold Cartesian products of alphabets and , and a
channel to be a sequence of conditional probabilities

[2]. An code for is called
an code. The maximal code size achievable with a
given error probability and blocklength is denoted by

(2)

For the statement and proof of the achievability and converse
bounds, it is preferable not to assume that and have any
structure such as a Cartesian product. This has the advantage
of avoiding the notational clutter that results from explicitly
showing the dimension ( ) of the random variables taking
values on and .

A. Achievability Bounds Without Codeword Constraints

For a joint distribution on we denote the infor-
mation density by

(3)

(4)

with the understanding that if is not absolutely contin-
uous with respect to we define for all in the
singular set, and we define for any such that

.
Feinstein’s [13] achievability bound for maximal probability

of error is given as follows.

Theorem 1 (Feinstein): For any distribution , and any
, there exists an code (maximal probability of error)

such that2

(5)

Alternatively, Shannon’s achievability bound [14] is given as
follows.

Theorem 2 (Shannon): For any distribution , and any
, there exists an code (average probability of error) such

that

(6)

It is easy to verify that Theorem 1 implies a slightly weakened
version of Theorem 2 where is replaced by ; con-
versely, Theorem 2 implies the weakened version of Theorem 1
where maximal is replaced by average error probability.

The following upper bound is a reformulation of Gallager’s
random coding bound [15], in terms of information density.

Theorem 3 (Gallager): For any and , there
exists an code (average probability of error) such that

(7)

where .
For a memoryless channel (7) turns, after optimization over

, into

(8)

where and is Gallager’s random coding ex-
ponent [16].

B. Achievability Bounds With Linear Codes

For a linear code over the BSC, Poltyrev [17] proved the fol-
lowing upper bound on the probability of error.

Theorem 4 (Poltyrev): The maximal probability of error
under maximum likelihood decoding of a linear code3 with
weight distribution4 over the BSC with
crossover probability satisfies

(9)

2� , � and � denote distributions, whereas is reserved for the
probability of an event on the underlying probability space.

3At the expense of replacing maximal probability of error by average, the
same bound can be shown for a nonlinear code by generalizing the notion of
weight distribution.

4We define � to be the number of 0-weight codewords in the codebook
minus 1. In particular, for a linear codebook with no repeated codewords� �

�.
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where

(10)

A linear code is generated by a binary matrix.
We can average (9) over an equiprobable ensemble of such ma-
trices. Applying Jensen’s inequality to pass expectation inside
the minimum and noticing that we obtain
the following achievability bound.

Theorem 5: For a BSC with crossover probability there ex-
ists a linear code such that a maximum likelihood decoder
has a maximal probability of error satisfying

(11)

where is given by (9).
A negligible improvement to (11) is possible if we average (9)

over an ensemble of all full-rank binary matrices instead. An-
other modification by expurgating low-weight codewords [18]
leads to a tightening of (11) when the rate is much lower than
capacity.

For the BEC the results of [19, Th. 9] can be used to compute
the exact value of the probability of error over an ensemble of all
linear codes generated by full-rank binary matrices [20].

Theorem 6 (Ashikhmin): Given a BEC with erasure prob-
ability , the average probability of error over all binary

linear codes with full-rank generating matrices chosen
equiprobably is equal to (12), shown at the bottom of the page,
where

is the number of -dimensional subspaces of .

C. Achievability Bounds With Codeword Constraints

Suppose that all codewords are required to belong to some set
. For example, there might be a cost associated with

using a particular input vector , in which case the set might
be chosen as

(13)

A cost-constrained generalization of (5) due to Thomasian [21]
(see also [22]) in which all the codewords are constrained to
belong to is

(14)

A cost-constrained version of (6) is

(15)

It should be noted that in both (14), and (15), the auxiliary dis-
tribution is not constrained to take values on . Theorem 3
admits the following generalization to the setting with cost con-
straints.

Theorem 7 (Gallager, With Cost): Suppose is such that

(16)

and denote

(17)

Then, for any such that ,
and there exists an -code (average probability of
error) with codewords in given by (13) and such that we have
(18), shown at the bottom of the page, where

.

D. Converse Results

The simplest upper bound on the size of a code as a function
of the average error probability follows from Fano’s inequality:

Theorem 8: Every -code (average probability of error)
for a random transformation satisfies

(19)

(12)

(18)
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where is the binary entropy
function.

A significant improvement under the maximal error proba-
bility formalism is supplied by the bound due to Wolfowitz [23].

Theorem 9 (Wolfowitz): Every -code (maximal proba-
bility of error) must satisfy

(20)

provided that the right-hand side (RHS) is not less than 1.

As shown in [24, Th. 7.8.1], this bound leads to the strong
converse theorem for the discrete memoryless channel (DMC),
even assuming noiseless feedback, namely

(21)

Theorem 9 can be further tightened by maximizing the prob-
ability therein with respect to the choice of the unconditional
output distribution in the definition of information density [25].

The following corollary to Theorem 9 gives another converse
bound which also leads to (21), but is too coarse for the pur-
poses of analyzing the fundamental limits in the finite block-
length regime.

Theorem 10 ([16, Th. 5.8.5]): For an arbitrary discrete mem-
oryless channel of capacity and any code
with rate , we have

(22)

where is constant independent of or .

The dual of the Shannon–Feinstein bounds in Theorems 1 and
2 (in the unconstrained setting) is given in [2].

Theorem 11 (Verdú-Han): Every -code (average error
probability) satisfies

(23)

The challenge we face in using Theorem 11 or the generally
tighter bound given in [26], to compute finite blocklength con-
verse bounds is the optimization with respect to the distribution
on the set of -dimensional input vectors.

The Shannon–Gallager–Berlekamp sphere-packing bound
[27] is given by the following result.

Theorem 12 (Shannon–Gallager–Berlekamp): Let
be a DMC. Then any code (average proba-

bility of error) satisfies

(24)

where

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

where the maximization in (27) is over all probability distribu-
tions on ; and in (29), and are independent

(33)

While Theorem 12 is of paramount importance in the anal-
ysis of the reliability function for sufficiently high rates, its use-
fulness in the finite-length regime is more limited because of
its slackness and slow speed of convergence of its normalized
logarithm. References [8] and [11] have provided tightened ver-
sions of the sphere-packing converse bound, which also apply
to continuous-output channels.

E. AWGN Bounds

For the AWGN channel, Shannon [3] gave the following re-
sult based on packing spherical cones.

Theorem 13 (Shannon): Let

(34)

where are independent and identically distributed (i.i.d.)
standard normal random variables. Assume that each codeword
satisfies

(35)

Define for

(36)

where

(37)
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Then, any code satisfies

(38)

with defined as

(39)

with

(40)

which is equal to the area of the unit sphere in cut out by a
cone with semiangle . Furthermore, there exists an
code with

(41)

(42)

Tackled in [4]–[6], [8], and [11], the accurate computation of
the bounds in Theorem 13 is challenging.

Applying Theorem 7 to the AWGN channel with
and optimizing over and , we obtain the following

result (see [16, Theorem 7.4.4]).

Theorem 14 (Gallager, AWGN): Consider the AWGN
channel with unit noise power and input power , with ca-
pacity

(43)

For blocklength , every and every ,
there exists an code (maximal probability of
error) with

(44)

where

for (45)

for (46)

(47)

(48)

(49)

(50)

(51)

Other bounds on reliability function have appeared recently,
e.g., [12]. However, those bounds provide an improvement only
for rates well below capacity.

F. Normal Approximation

The importance of studying the asymptotics of the function
for given was already made evident by Shannon in

[28, Th. 12] which states that, regardless of

(52)

where is the channel capacity. Using Theorem 9, Wolfowitz
[23] showed (52) for the DMC, and improved the term
to in [24]. Weiss [29] showed that for the BSC with
crossover probability

(53)

where denotes the functional inverse of the -function.
Crediting M. Pinsker for raising the question, a generalization
of (53) was put forward without proof by Dobrushin [30], for
symmetric DMCs whose transition matrices are such that the
rows are permutation of each other and so are the columns.
These results were significantly strengthened and generalized
by Strassen [31] who showed that for the DMC

(54)

where denotes the variance of the information density
under the capacity achieving distribution ; if such

distribution is not unique, then, among those distributions that
maximize the average of we choose the one that min-
imizes the variance of (if ) or that maximizes
it (if ). Strassen’s approach in [31] is not amenable to
generalization to channels with input constraints (most notably,
the AWGN channel). In particular, Theorem 1 is not sufficient
to prove the counterpart of (54) to the AWGN channel.

III. NEW BOUNDS ON RATE

A. Achievability: Random-Coding

The upper bounds on the average probability of error consid-
ered in this paper are based on random coding. The first result
gives a general, exact analysis of the error probability of the
maximum-likelihood decoder averaged over all codes.

Theorem 15: (Random coding average error probability)
Denote by the error probability achieved by the
maximum likelihood decoder with codebook . Let
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be independent with marginal distribution .
Then

(55)

where

(56)

(57)

with

(58)

Proof: Since the messages are equiprobable, upon re-
ceipt of the channel output , the maximum likelihood decoder
chooses with equal probability among the members of the set

Therefore, if the codebook is , and is trans-
mitted, the maximum likelihood decoder will choose
with probability if

(59)

(60)

for . If (60) is not satisfied an error will surely
occur. Since the codewords are chosen independently with iden-
tical distributions, given that the codeword assigned to message
1 is and given that the channel output is , the joint dis-
tribution of the remaining codewords is . Conse-
quently, the conditional probability of correct decision is shown
in (61) at the bottom of the page, where has the same distri-
bution as , but is independent of any other random variable
arising in this analysis. Averaging (61) with respect to
jointly distributed as we obtain the summation in (55).
Had we conditioned on a message other than we would
have obtained the same result. Therefore, the error probability
averaged over messages and codebook is given by (55).

Naturally, Theorem 15 leads to an achievability upper bound
since there must exist an

(average error probability) code.

B. Achievability: Random-Coding Union Bound

One way to loosen (55) in order to obtain a simpler bound is
via the following result.

Theorem 16: (RCU bound) For an arbitrary there exists
an code (average probability of error) such that

(62)
where .

Proof: 5 The average probability of error attained by an ar-
bitrary codebook using a maximum likelihood de-
coder is upper bounded by

(63)
where we do not necessarily have equality since the maximum
likelihood decoder resolves some ties in favor of the correct
codeword. Using Shannon’s random coding argument, the de-
sired result will follow if we can show that the expectation of
the RHS of (63) is upper bounded by the RHS of (62) when the
codebook is chosen by independent drawings from . The ex-
pectations of all of the terms in (63) are identical and are
equal to

(64)

(65)

where (64) holds by conditioning and averaging, (65) holds by
choosing the tighter bound on probability between 1 and the
union bound, and all probabilities are with respect to the distri-
bution

(66)

The proof is now complete since the RHS of (65) is equal to the
RHS of (62).

5A short proof of Theorem 16 can be obtained as a corollary of Theorem 15
by keeping only the first term in the sum (55) and then further upper-bounding
��� by ������ � �������� ��. The standalone proof we give here
is useful in Appendix A.

(61)
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Gallager’s bound (7) can also be obtained by analyzing the
average behavior of random coding and maximum-likelihood
decoding. In fact, it is easy to verify that we can weaken (62) to
recover (7) using and .
Furthermore Shannon’s bound (6) can also be obtained by
weakening (62) by splitting the expectation according to
whether or not and upper bounding
by 1 when and by otherwise.

In principle, without exploiting any symmetries, the
brute-force computation of the bound (62) has complexity

for a DMC with input/output alphabets and
. Next we give easier-to-compute upper bounds that do not

sacrifice much tightness.

C. Achievability: Dependence Testing Bound

Theorem 17: (DT bound) For any distribution on , there
exists a code with codewords and average probability of error
not exceeding

(67)

Proof: Consider the following obvious identity for arbi-
trary and :

(68)

(for we understand both sides to be equal to 1, which is
the value attained for all ). If we let
and we average both sides of (68) with respect to we obtain

(69)

Letting , we see that Theorem 17 is, in fact, equivalent
to the following result.

Theorem 18: For any distribution on , there exists a
code with codewords and average probability of error not
exceeding

(70)

where .
Proof: The proof combines Shannon’s random coding with

Feinstein’s suboptimal decoder. Fix . Let
be a collection of deterministic functions defined as

(71)

For a given codebook , the decoder runs likeli-
hood ratio binary hypothesis tests in parallel, the of which
is between the true distribution and “average noise”

. The decoder computes the values for the received

channel output and returns the lowest index for which
(or declares an error if there is no such index). The

conditional error probability given that the th message was
sent is

(72)

where we have used the union bound and the definition of
. Averaging (72) over codebooks that are generated

as (pairwise) independent random variables with distribution
we obtain

where recall that has the same distribution as , but unlike
, it is independent of . Averaging further over equiprobable

messages, and since

(73)

we obtain that the average error probability is upper bounded by
(70), and therefore there must exist a code whose average error
probability is upper bounded by that expression.

We may wonder whether in the above proof a choice of
threshold different from may lead to a tighter bound.
In fact, it is readily seen that we can generalize Theorem 18 not
just to any other constant value of the threshold but to thresholds
that are codeword dependent, leading to the following result.

Lemma 19: For any distribution on , and any measur-
able function , there exists an code (av-
erage probability of error) satisfying

(74)
where .

In order to optimize the choice of the function , we can
view the RHS of (74) as the average with respect to of

(75)
which is a weighted sum of two types of errors. Thus, for every

, (75) is equal to times the average error probability in
a Bayesian hypothesis testing problem between with a
priori probability and with a priori probability .
The average error probability is then minimized by the test that
compares the likelihood ratio between these two distributions to
the ratio of the two a priori probabilities. Thus, we obtain that
the optimal threshold is, in fact, codeword independent:

; and Theorem 18 gives the tightest version of Lemma 19.
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Remarks:
1) Unlike the existing bounds (5), (6), and (7), the bounds

in Theorems 17 and 18 require no selection of auxiliary
constants.

2) Theorem 2 follows by taking in Lemma 19 and
weakening by a factor of 2.

3) The bound in [32] is provably weaker than Theorem 17
(originally published in [33]).

4) It can be easily seen from (67) that Theorem 17 can be used
to prove the achievability part of the most general known
channel capacity formula [2].

5) We refer to the bound in Theorems 17 and 18 as the de-
pendence testing bound because the RHS of (70) is equal
to times the Bayesian minimal error probability of a
binary hypothesis test of dependence:

6) An alternative expression for (67) is given by

(76)

This follows from (67) and:

(77)

which is valid for any nonnegative .
7) Yet another way to look at (67) is by defining a particular

-divergence [34] as follows:

(78)

Then (67) is equivalent to

(79)

Since processing does not increase -divergence, the lower
bound (79) can be further simplified by applying a suitable
mapping of the space into some other space.

Using Lemma 19 we can easily extend Theorem 18 to the
case of input constraints.

Theorem 20: For any distribution on there exists a code
with codewords in and average probability of error satis-
fying

(80)

Proof: Set for and for
. Then by Lemma 19 we have

(81)

Trivial upper bounding yields (80). Lemma 19 guarantees the
existence of a codebook whose average probability of error sat-
isfies the required (80). However, we are not guaranteed that that
codebook is feasible since some of the codewords might fall out-
side the set . If we modify the codebook, replacing every in-
feasible codeword by an arbitrary , while not modifying
the decoder, the error probability (averaged over messages) does
not change. The reason is that the decoding set corresponding
to a message that has been assigned an infeasible codeword is
empty (because the corresponding threshold is ), and there-
fore, its conditional probability of error is 1, and remains 1 after
it has been replaced by since the decoder has not been mod-
ified.

D. Achievability: Maximal Probability of Error

Any achievability bound on average error probability gives
a bound on maximal error probability since the existence of an

code in the average sense guarantees the existence of an
code in the maximal sense, for any .

However, in this subsection we give maximal error probability
counterparts to some of the bounds in Section III-C.

1) Bounds Fixing the Input Distribution: As we saw in the
proof of Theorem 18, the random coding method is such that
only pairwise independent codewords are required. If ,

, and is a finite field, then an interesting ensemble
that satisfies that property (but not total statistical independence)
together with being equiprobable on is that of a random
linear code: construct a random matrix with independent
coefficients equiprobable on ; then the codewords are gen-
erated as the products of the matrix and every vector in . For
certain channels such as additive-noise discrete channels and
erasure channels, the average error probability and the maximal
error probability coincide for linear codes (with an appropri-
ately defined randomized maximum likelihood (ML) decoder;
see Appendix A). Therefore, for those channels, the bound in
Theorem 17 achieved with an equiprobable not only can be
achieved by a linear code but it is also an upper bound on max-
imal error probability.

The following bound on maximal error probability holds in
general.

Theorem 21: For any input distribution and measurable
, there exists a code with codewords such

that the th codeword’s probability of error satisfies

(82)

where the first probability is with respect to and the second
is with respect to the unconditional distribution . In partic-
ular, the maximal probability of error satisfies

(83)

Proof: First, we specify the operation of the decoder
given the codebook . The decoder simply computes
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for the received channel output and selects the first
codeword for which .

Now, let us show that we can indeed choose codewords so
that their respective probabilities of decoding error satisfy (82).
For the first codeword, the conditional probability of error under
the specified decoding rule is independent of other codewords
and is equal to

(84)

if the first codeword is . There must exist at least one
choice of , which we call , such that

(85)

(86)

Now assume that codewords have been chosen
and we are to show that can also be chosen so that (82) is
satisfied. Denote

(87)

If the th codeword is , its conditional probability of error is

(88)

Thus

(89)

(90)

(91)

Thus, there must exist a codeword such that
satisfies (82).

By upper-bounding the second term in (83) via

(92)

we observe that Feinstein’s Theorem 1 is a corollary of Theorem
21.

The proof technique we used to show Theorem 21 might
be called sequential random coding because each codeword is
chosen sequentially depending on the previous choices, and its
existence is guaranteed by the fact that the average cannot be
exceeded by every realization. Note that there is no contradic-
tion due to the nonending nature of sequential random coding:
sooner or later the conditional probability of error of the next
message becomes 1.

Some symmetric channels and choices of (most notably
the BEC and the BSC under equiprobable ) satisfy the suffi-
cient condition in the next result.

Theorem 22: Fix an arbitrary input distribution . If the cu-
mulative distribution function does not depend

on for any when is distributed according to , then
there exists an code with maximal probability of error
satisfying

(93)

Proof: Under the stated conditions, (83) states that the
maximal error probability is upper bounded by the average with
respect to of

(94)
Thus, can be optimized similarly to (75).

2) Extension to Input Constraints: Theorem 21 can be ex-
tended to the case of input constraints in the following way.

Theorem 23: For any input distribution and measurable
, there exists a code with codewords in the

set such that the maximal probability of error satisfies

(95)

Proof: The proof is the same as that of Theorem 21 with the
modification that the selection of each codeword belongs to ,
and at each step we use the fact that for an arbitrary nonnegative
function , there exists such that

(96)

since otherwise we would get the impossible
.

Comparing Theorem 23 with Theorem 20 we note that (95)
is stronger than the bound

(97)

Using the fact that

(98)

an immediate corollary of Theorem 23 is the following.

Theorem 24: For any distribution and any , there
exists an code (maximal probability of error) with code-
words in the set such that

(99)

Note that (99) is always stronger than the conventional input-
constrained version of Feinstein’s bound (14).

3) Bounds Fixing the Output Distribution: All the previous
achievability bounds fixed some input distribution and then
proved that a certain codebook exists. However, in some cases
(most notably, the AWGN channel) it is desirable to consider
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auxiliary distributions on the output alphabet that are not neces-
sarily induced by an input distribution.

The optimal performance of binary hypothesis testing plays
an important role in our development. Consider a random vari-
able defined on which can take probability measures or

. A randomized test between those two distributions is defined
by a random transformation where 0 indi-
cates that the test chooses . The best performance achievable
among those randomized tests is given by6

(100)
where the minimum is guaranteed to be achieved by the
Neyman–Pearson lemma (Appendix B). Thus, gives
the minimum probability of error under hypothesis if the
probability of error under hypothesis is not larger than .
As a function of , (100) is a piecewise-linear convex function
joining the points

(101)

iterated over all . It is easy to show that (e.g., [35]) for any

(102)

On the other hand

(103)

where satisfies

(104)

Additional results on the behavior of in the case when
and are product distributions are given in Appendix C.
Throughout most of our development, the binary hypothesis

testing of interest is , and ,
an auxiliary unconditional distribution.7 In that case, for brevity
and with a slight abuse of notation we will denote

(105)

As a consequence of (102) we have

(106)

6We write summations over alphabets for simplicity; however, all of our gen-
eral results hold for arbitrary probability spaces.

7As we show later, it is sometimes advantageous to allow � that cannot be
generated by any input distribution.

Each per-codeword cost constraint can be defined by specifying
a subset of permissible inputs. For an arbitrary ,
we define a related measure of performance for the composite
hypothesis test between and the collection

(107)

Again, typically we will take and as -fold Cartesian
products of alphabets and . To emphasize dependence on
we will write and . Since and will
usually be fixed we will simply write . Also, in many cases

will be the same for all . In these cases we will
write .

Theorem 25 (Achievability, Input Constraints: Bound):
For any , there exists an code with codewords
chosen from , satisfying

(108)

Note: It is possible8 that (108) will be of the form
with . In this case the statement of the theorem should be
understood as “ codes with arbitrarily high exist.”

Proof: Fix , , and . We con-
struct the collection of random binary-valued condi-
tionally independent given , and with marginal conditional
distributions given by , which denotes, for brevity, the
conditional distribution that achieves the minimum in (100) for

, , and .
We construct the codebook sequentially:

Step 1. Choose arbitrarily. Note that regardless of
the choice of we have from (100) that

(109)

Step . Assume have been chosen. Choose
so that

(110)

Unless such a choice is impossible, proceed to the next
step.

Let be the number of steps that this procedure takes before
stopping. (In case it does not stop, we let .)

The decoder simply applies the independent random trans-
formations to the data. If all outputs are
0, the decoder outputs 0; otherwise, it outputs the smallest such
that .

8For an example of such a case, take � � ��� �� with the Borel �-al-
gebra. Define � ��� � � ���, i.e., a point measure at � � �, and take
� to be Lebesgue measure. Then, � ���� � � � for any � and 	, and

 �� � � � for any � � �.
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It follows from the encoder/decoder construction and (110)
that the maximal error probability of the code is indeed upper
bounded by . Let

(111)

For any , we have

(112)

(113)

(114)

(115)

where (113) follows because if , it is im-
possible that and simultaneously, while if

we were not able to add to the code-
book, and therefore ; and
(115) follows by the construction of from (100).

From (115) we conclude that is such that

(116)

Accordingly

(117)

(118)

(119)

(120)

where (117) follows from (116) and (107); (118) follows from
(111); and (119) follows from the fact that by definition of

, it achieves the minimum in (100) for and
.

In (100) and (107) we have defined and using random-
ized tests. Then, in Theorem 25 we have constructed the coding
scheme with a randomized decoder. Correspondingly, if we de-
fine and using nonrandomized tests, then the analog of
Theorem 25 for a nonrandomized decoder can be proved.

As long as is the output distribution induced by an input
distribution , the quantity (107) satisfies the bounds

(121)

(122)

The bound (122) is achieved by choosing the test that is equal
to 1 with probability regardless of ; since is achieved by

the optimal test, it can only be better. To verify (121), note that
for any that satisfies the condition in (107), we have

(123)

(124)

(125)

(126)

Using (121) in Theorem 25 we obtain a weakened but useful
bound:

(127)

where the supremum is over all input distributions, and de-
notes the distribution induced by on the output. By a ju-
dicious choice of in Lemma 19 we can obtain a strength-
ened version of the bound for average error probability with the
supremum in the denominator of (127) replaced by the average.

E. General Converse: Average Probability of Error

We give first a general result, which upon particularization
leads to a new converse as well to the recovery of previously
known converses; see Section III-G. The statement of the result
uses the notation introduced in (100) particularized to

.
Theorem 26: For a given code (possibly randomized encoder

and decoder pair), let

average error probability with

average error probability with and

encoder output distribution

with equiprobable codewords

Then

(128)

Proof: The message is denoted by the random variable
, equiprobable on . The encoder and decoder are

the random transformations and . Consider the fol-
lowing (suboptimal) test for deciding between and :
denote the observed pair by ; is fed to the decoder which
selects , and the test declares with probability

(129)
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The probability that the test is correct if is the actual dis-
tribution is

(130)

(131)

where (131) is simply the definition of . Likewise, the proba-
bility that the test is incorrect if is the actual distribution
is

(132)

(133)

where (133) is simply the definition of .
The optimal test that attains the minimum in (100) among all

tests such that the probability of corrected decision under
is not less than has a probability of incorrect decision under

that cannot be larger than (133).

Theorem 26 allows one to use any converse for channel
to prove a converse for channel . It has many interesting
generalizations (for example, to list-decoding and channels with
feedback) and applications, whose study is outside the scope of
this paper.

A simple application of Theorem 26 yields the following re-
sult.

Theorem 27 (Converse): Every code (average proba-
bility of error) with codewords belonging to satisfies

(134)

where ranges over all distributions on , and ranges
over all distributions on .

Proof: Denote the distribution of the encoder output by
and particularize Theorem 26 by choosing for an
arbitrary , in which case we obtain . Therefore,
from (128) we obtain

(135)

(136)

As we will see shortly in important special cases,
is constant on . In those cases the following converse is partic-
ularly useful.

Theorem 28: Fix a probability measure on . Suppose
that for . Then every -code
(average probability of error) satisfies

(137)

Proof: The result follows from Theorem 27 and the fol-
lowing auxiliary result.

Lemma 29: Suppose that is
independent of . Then, for any supported on we
have

(138)

Proof: Take a collection of optimal tests for each pair
versus , i.e.

(139)

(140)

Then take as a test for versus . In this way, we
get

(141)

We now prove the reverse inequality. Consider an arbitrary test
such that

(142)

Then observe that

(143)

(144)

(145)

(146)

where (144) follows from the assumption, (146) follows because
is a nondecreasing function of , and (145) is by Jensen’s

inequality which is applicable since is convex. Therefore,
from (146) we obtain that

(147)

and together with (141) this concludes the proof.
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F. General Converse: Maximal Probability of Error

The minimax problem in (134) is generally hard to solve. A
weaker bound is given by Theorem 31 which is a corollary to
the next analog of Theorem 26.

Theorem 30: For a given code (possibly with a randomized
decoder) with codewords belonging to , let

maximal error probability with

maximal error probability with

Then
(148)

Proof: Consider an -code with codewords
and a randomized decoding rule

. We have for some

(149)

and at the same time

(150)

Consider the hypothesis test between and
that decides in favor of only when the decoder
output is . By (150) the probability of correct decision under

is at least , and, therefore

(151)

(152)

Theorem 31 (Converse): Every code (maximal prob-
ability of error) with codewords belonging to satisfies

(153)

where the infimum is over all distributions on .
Proof: Repeat the argument of the proof of Theorem 27

replacing Theorem 26 by Theorem 30.

G. Relation to Classical Converse Bounds

We illustrate how Theorems 26 and 30 can be used to prove
all the converse results cited in Section II:

• Fano’s inequality (Theorem 8): Particularize (135) to the
case , where is the output distribution in-
duced by the code and the channel . Note that any
hypothesis test is a (randomized) binary-output transfor-
mation and therefore, by the data-processing inequality for
divergence we have

(154)

where the binary divergence function satisfies

(155)

(156)

Using (155) in (154), we obtain

(157)

Fano’s inequality (19) follows from (157) and (135).
• Information spectrum converse (Theorem 11): Replace

(157) with (102), which together with (135) yields

(158)

(159)

The bound (159) is equivalent to the converse bound (23).
Similarly, by using a stronger bound in place of (102) we
can derive [26]. Furthermore, by keeping the freedom in
choosing in (135) we can prove a stronger version of
the result.

• Wolfowitz’s strong converse (Theorem 9): To apply
Theorem 31 we must compute a lower bound on

; but this simply amounts to taking
the infimum over in (106). Thus

(160)

Now, suppose that ; then using (4) we conclude
that Theorem 31 implies Theorem 9.

• Shannon–Gallager–Berlekamp (Theorem 12): Applying
Theorem 31, we may first split the input space into
regions such that is constant within . For
example, for symmetric channels and equal to the
capacity achieving output distribution, there is no need
to split since is identical for all .
For a general DMC, we apply Theorem 26 with
chosen as follows. The distribution only de-
pends on the type of and is chosen optimally for
each type (and depending on the coding rate). Over the

-channel, the decoder can at most distinguish codewords
belonging to different types and therefore, we can estimate

. Using this estimate in (128), the proof
of Theorem 12 follows along the same lines as the proof
of [36, Th. 19] by weakening (128) using Chernoff-type
estimates.

• Refinements to [8, Th. 12] and [11]: As we explained
above, Theorem 12 is obtained from Theorem 31 by
choosing judiciously and by performing a large
deviation analysis of . [8] improved Theorem 12 by
extending the results to the case of infinite and by
tightening the Chernoff-type estimates of [27]. A further
improvement was found in [11] for the special case of
input-symmetric channels by directly lower-bounding
the average probability of error and avoiding the step
of splitting a code into constant composition subcodes.
Theorem 28 is tighter than the bound in [11] because for
symmetric channels and relevant distributions the
value of does not depend on and, therefore,
average probability of error is bounded directly.
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H. BSC

This section illustrates the application of the finite-length
upper and lower bounds to the BSC with crossover probability

.
Particularizing Theorem 15 to equiprobable input distribu-

tions and the BSC we obtain (see also [37]) the following result.

Theorem 32: For the BSC with crossover probability , we
have (161), shown at the bottom of the page.

Note that the exact evaluation of (161) poses considerable
difficulties unless the blocklength is small. The next result gives
a slightly weaker, but much easier to compute, bound.

Theorem 33: For the BSC with crossover probability , there
exists an code (average probability of error) such that

(162)
If is a power of 2, then the same bound holds for maximal
probability of error.

Proof: We apply Theorem 16 (RCU bound), with
, and the equiprobable input distribution. The informa-

tion density is

(163)

where is the Hamming weight of the difference between
and . Accordingly, since is equiprobable and independent
of we obtain

(164)

The statement about the maximal probability of error is ex-
plained in Appendix A.

It turns out that Poltyrev’s bound (11), derived using linear
codes and weight spectra, is in fact equal to (162) with
replaced by . Indeed, notice that

(165)
This holds since on the left we have counted all the ways of
choosing two binary -vectors and such that
and overlaps at least a half of . The last condition is equiv-
alent to requiring . So we can choose in

ways and in ways, which is the RHS of (165).
Now applying (165) to (11) yields (162) with replaced
by .

Theorem 34: For the BSC with crossover probability , there
exists an code (average probability of error) such that

(166)

If is a power of 2, then the same bound holds for maximal
probability of error.

Proof: Taking to be equiprobable on , the DT
bound of Theorem 17 is equal to times the minimal prob-
ability of error of an optimal binary hypothesis test between
fair coin tosses (with prior probability ) and bias- coin
tosses (with prior probability ). The upper bound (67) on
the average error probability becomes

(167)

where

(168)

(169)

and is a binomial random variable with param-
eters and . Averaging over , (167) becomes (166). The
statement about the maximal probability of error is explained
in Appendix A.

For comparison, Feinstein’s lemma (Theorem 1), with
equiprobable input distribution yields

(170)

where .
Gallager’s random coding bound (7) also with equiprobable

input distribution yields9

(171)

where [16, Th. 5.6.2, Cor. 2 and Example 1 in Sec. 5.6.]

(172)

9Inequality (171) holds for average probability of error. Figs. 1 and 2 show
the corresponding bound on maximal error probability where we drop the half
of the codewords with worse error probability. This results in an additional term
of �� appended to the RHS of (171), while becomes therein.

(161)
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Fig. 1. Rate-blocklength tradeoff for the BSC with crossover probability � � ���� and maximal block error rate � � �� .

and , .
We now turn our attention to the computation of the con-

verse bound of Theorem 28. Choosing equiprobable on
we recover the classical sphere packing bound (cf. [16,

eq. (5.8.19)] for an alternative expression).

Theorem 35: For the BSC with crossover probability , the
size of an code (average error probability) must satisfy

(173)

where is defined as

(174)

with

(175)

where and the integer are defined by

(176)

with

(177)

Proof: To streamline notation, we denote
since it does not depend on , and is

fixed. Then, the Hamming weight of the output word is a
sufficient statistic for discriminating between and

. Thus, the optimal randomized test is

,
,
,

(178)

where and are uniquely determined by

(179)

Then we find that

(180)

Thus, by Theorem 28

(181)

The numerical evaluation of (162), (166), and (173) is shown
in Figs. 1 and 2, along with the bounds by Feinstein (170) and
Gallager (171). As we anticipated analytically, the DT bound
is always tighter than Feinstein’s bound. For and



2322 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 5, MAY 2010

Fig. 2. Rate-blocklength tradeoff for the BSC with crossover probability � � ���� and maximal block error rate � � �� .

, we can see in Fig. 1 that for blocklengths greater
than about 150, Theorem 17 gives better results than Gallager’s
bound. In fact, for large the gap to the converse upper bound of
the new lower bound is less than half that of Gallager’s bound.
The RCU achievability bound (162) is uniformly better than all
other bounds. In fact for all the difference between
(162) and the converse is within 3 – 4 bits in . This
tendency remains for other choices of and , although, for
smaller and/or , Gallager’s bound (originally devised to an-
alyze the regime of exponentially small ) is tighter for a larger
range of blocklengths, see Fig. 2. A similar relationship between
the three bounds holds, qualitatively, in the case of the additive
white Gaussian noise channel (Section III-J).

I. BEC

Next we illustrate the application of the achievability bounds
in Theorems 15, 16, 17, and 22 to the special case of the binary
erasure channel. Using Theorem 15 we obtain the next bound.

Theorem 36: For the BEC with erasure probability , we have
(182), shown at the bottom of the page.

Easier to evaluate is the DT bound (Theorem 17), which par-
ticularizes to the following.

Theorem 37: For the BEC with erasure probability , there
exists an code (average probability of error) such that

(183)

If is a power of 2, then the same bound holds for maximal
probability of error. In any case there exists an code
(maximal probability of error) such that

(184)

Proof: Using Theorem 17 with ,
and the equiprobable input distribution, it

(182)
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follows that if contains erasures and coincides with in
all the nonerased bits, then

(185)

and otherwise, . Then (67) implies (183) since
erasures happen with probability . If is a

power of 2 then the same bound holds for maximal probability
of error by using linear codes (see Appendix A). Bound (184)
is obtained by exactly the same argument, except that Theorem
22 must be used in lieu of Theorem 17.

Application of Theorem 16 yields exactly (184) but only
for average probability of error. Since Theorem 16 is always
stronger than Gallager’s bound, we conclude that Theorem 37
is also stronger than Gallager’s bound for the BEC and there-
fore achieves the random coding exponent. Similarly Theorem
21 (and hence Theorem 22) is always stronger than Feinstein’s
bound, see (92). Therefore, Theorem 37 is also stronger than
Feinstein’s bound for the BEC. The average block erasure
probability for a random ensemble of linear codes is given in
[38]; it can be shown that it is sandwiched between (183) and
(184), which are also considerably easier to compute.

Upper bounds on error probability can be converted easily
into lower bounds on . For example, Theorem 37 for
the maximal probability of error formalism implies10

(186)

where is a binomial random variable with param-
eters and .

The upper bound on code size given by Theorem 31 (with
capacity achieving output distribution) is improved by the fol-
lowing result,11 which is stronger than related bounds such as in
[39].

Theorem 38: For the BEC with erasure probability , the av-
erage error probability of an code satisfies

(187)

even if the encoder knows the location of the erasures non-
causally.

Proof: It is easy to show that the probability of correct
decoding in an -ary equiprobable hypothesis testing problem
where the observable takes one out of values is upper bounded
by , even if stochastic decision rules are allowed. Indeed,

10For numerical purposes we can safely weaken (186) by replacing
��� with �� � ��.

11For a �-ary erasure channel, Theorem 38 holds replacing � by
� and ��� by ��� . In fact, this �-ary analog of (187) is achievable by
�-ary maximum distance separable (MDS) codes.

suppose that the true hypothesis is a (random variable) , the
observable output is and the decision is ; then

(188)

(189)

(190)

(191)

Now suppose that the location of the erasures is known to
the encoder, and there are erasures. Then, re-
gardless of the code (possibly dependent on the erasure pattern)
chosen by the encoder, the decoder faces an -ary equiprob-
able hypothesis testing problem where the observable takes one
out of values. Therefore, the probability of error is lower

bounded by . Since each pattern of erasures oc-

curs with probability and there are of them,
(187) follows.

Figs. 3 and 4 show that, as expected, (183) is quite a bit tighter
than the Gallager and Feinstein bounds. In fact, the gap between
(183) and (187) is below 3 bits in , uniformly across the
blocklengths shown on the plot. Fig. 5 compares the DT bound
(183) with the BEC achievability bound (12); they are within
one bit of each other, the winner depending on a particular value
of . The zigzagging of the plot of (12) is a behavior common
to all bounds that are restricted to integer values of . The
complexity of the computation of (12) is , compared to

for the DT bound (183).

J. The AWGN Channel

1) The Channel and Power Constraints: For the real-valued
additive-noise white Gaussian channel we have the following
specific definitions:

• ,
• and
• .

Additionally, codewords are subject to one of three types of
power constraints:

• equal-power constraint: denotes the maximal
number of codewords, such that each codeword
satisfies

(192)

• maximal power constraint: denotes the max-
imal number of codewords, such that each codeword

satisfies

(193)
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Fig. 3. Rate-blocklength tradeoff for the BEC with erasure probability � � ��� and maximal block error rate � � �� .

• average power constraint: denotes the max-
imal size of a codebook that satisfies

(194)

It is easiest to analyze , but and are more inter-
esting from the practical viewpoint. Following Shannon [3] we
will make use of simple inequalities relating all three quantities,
summarized in the following.

Lemma 39: For any the inequalities

(195)

and

(196)
hold.

Proof: The left-hand bounds are obvious. The right-hand
bound in (195) follows from the fact that we can always take
the -code and add an -th coordinate to each code-
word to equalize the total power to . The right-hand bound
in (196) is a consequence of the Chebyshev inequality on the
probability of finding a codeword with power greater than
in the -code.

The particularization of the exact error probability achieved
by random coding in Theorem 15 leads to (41) which turns out
to be the tightest of all the bounds for the AWGN channel. How-
ever the particularization of the -bound to the AWGN channel
is of paramount importance in Section IV.

2) Evaluation of : We will now apply Theorems 25 and
28 to the AWGN channel with equal-power constraint (192). For
each , the set of permissible inputs is

(197)

To use Theorems 25 and 28 we must also choose the auxiliary
distribution over . A particularly convenient choice is

(198)

with to be specified later. Due to the spherical symmetry of
both and (198), for all

(199)

To simplify calculations, we choose
. The information density is given

by

(200)
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Fig. 4. Rate-blocklength tradeoff for the BEC with erasure probability � � ��� and maximal block error rate � � �� .

It is convenient to define independent standard Gaussian vari-
ables , . Then, under and under

, the information density has the same
distribution as

(201)

and

(202)

respectively. A judicious choice is

(203)

since it maximizes , and
coincides with the capacity-achieving output distribution for the
AWGN channel. With this choice of , (201) and (202) be-
come

(204)

and

(205)
Finally, using the Neyman–Pearson lemma (Appendix B), we
obtain the following result.

Theorem 40: For the additive white Gaussian noise channel
and all

(206)

where satisfies

(207)

Applying Theorems 28, 40, and Lemma 39, we obtain the
following converse bound.

Theorem 41: For the AWGN channel and for any and
(average probability of error) we have

(208)

where satisfies

(209)

and and are defined in (204) and (205).
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Fig. 5. Comparison of the DT-bound (183) and the combinatorial bound of Ashikhmin (12) for the BEC with erasure probability � � ��� and probability of block
error � � �� .

The distributions of and are noncentral . However,
the value of decreases exponentially, and for large ,
traditional series expansions of the noncentral distribution do
not work very well; a number of other techniques must be used
to evaluate these probabilities, including Chernoff bounding as
well as (106) and (103).

3) Evaluation of : Although we are free to chose any ,
it is convenient to use (198).

Theorem 42: For the chosen , and for any
and , we have

(210)

where satisfies

(211)

with and being probability density functions (PDFs) of
and , defined as

(212)

(213)

where is a modified Bessel function of a first kind:

(214)

The proof is given in Appendix D.

A straightforward application of a (local) central limit the-
orem yields the following result.

Lemma 43: Under the conditions of Theorem 42

(215)

where

(216)

Experimentally, we have observed that the convergence in
(215) is very fast. For example, for and

, we find that

(217)

Summarizing, we have particularized Theorems 25 and 31 to
the AWGN channel to show

(218)
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Fig. 6. Bounds for the AWGN channel, ��� � � ��, � � �� .

where and determined by Theorems 40 and 42.
4) Numerical Evaluation: In this section our goal is to com-

pare various achievability bounds. To emphasize the quality of
the bounds we also compare them against the converse, The-
orem 41. As usual, we plot the converse bounds for the average
probability of error formalism and achievability bounds for the
maximal probability of error formalism. The power constraint
is the maximal one, i.e., we are plotting bounds on .
The results are found on Figs. 6 and 7. Let us first explain how
each bound was computed:

1) The converse bound is Theorem 41. Note that in [3]
Shannon gives another converse bound (38). However,
in this case both bounds numerically coincide almost
exactly and for this reason only the bound in Theorem 41
is plotted.

2) Feinstein’s bound is Theorem 24 with

(219)

and .
3) Gallager’s bound is Theorem 14, where we optimize the

choice of for each , and then select the largest that
still keeps the bound (44) below the required .

4) The bound is an application of Theorem 25 with and
given by Theorems 40 and 42. As discussed earlier, the

convergence in (215) is very fast and affects rate only
as ; thus we can safely replace the with . In
this way, for each we need to compute only .

5) Shannon’s bound12: The bound in (41) is on average prob-
ability of error. For the BSC and BEC we transformed from
average to maximal probability of error using the random
linear code method. Unfortunately, for the AWGN channel
we could not find anything equivalent; instead we need to
recourse to traditional “purging”. Namely, if we have an

-code for average probability then there must exist
a -subcode for maximal probability. Consequently,
if is the maximal cardinality of the codebook
guaranteed by the Shannon bound, then instead we plot

(220)

Shannon’s achievability bound is the clear winner on both
Figs. 6 and 7. It comes very close to the converse; for example,
on Fig. 6 in terms of the difference between the Shannon
bound and the converse is less than 6 bits uniformly across the
range of blocklengths depicted on the graph. This illustrates that
random codes are not only optimal asymptotically, but also al-
most optimal even for rather small blocklengths.

The drawback of the Shannon bound is that it is harder
to compute and analyze than the bound and requires a
“purging” procedure to guarantee a small maximal probability
of error. Section IV-C invokes the bound to analyze the

12We use expression (42) and the representation of � ��� as a noncentral
�-distribution given by [3, (17)]. Note that to improve numerical stability
of the integration in (42) it is convenient to multiply the integrand by
��	
 ��	�� .
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Fig. 7. Bounds for the AWGN channel, ��� � �� ��, � � �� .

asymptotic expansion of . In Figs. 6 and 7 we can
see that the bound is also quite competitive for finite .

Comparing the bound and the classical bounds of Fein-
stein and Gallager, we see that, as expected, the bound is uni-
formly better than Feinstein’s bound. In the setup of Fig. 6, the

bound is a significant improvement over Gallager’s bound,
coming very close to the Shannon bound as well as the con-
verse. In Fig. 7, both the and Gallager bounds are again very
close to the Shannon bound but this time Gallager’s bound is
better for small . There are two reasons for this. First, recall
that we have analyzed a suboptimal decoder based on hypoth-
esis testing, whereas Gallager used the maximum likelihood de-
coder. It seems that for small it is important to use optimal de-
coding. Moreover, Gallager’s analysis is targeted at very small .
Indeed, as we go from to , the tightness of Gallager’s
bound improves significantly. In general we observe that Gal-
lager’s bound improves as the channel becomes better and as

gets smaller. On the other hand, the bound is much more
uniform over both SNR and . In Section IV, the bound, in
contrast to Gallager’s bound, yields the correct term in the
asymptotic expansion of .

Comparing the RCU bound and the DT bound (and its rel-
ative, the bound), the DT bound is very handy theoreti-
cally and does not lose much nonasymptotically compared to
the RCU bound. In fact, for the BEC the DT bound is tighter
than the RCU bound. Also, the DT bound (in the form of Theo-
rems 22 and 25) and the bound are directly applicable to the

maximal probability of error, whereas the RCU bound requires
further manipulation (e.g., Appendix A).

IV. NORMAL APPROXIMATION

We turn to the asymptotic analysis of the maximum achiev-
able rate for a given blocklength. In this section, our goal is
to show a normal-approximation refinement of the coding the-
orem. To that end, we introduce the following definition.

Definition 1: The channel dispersion (measured in squared
information units per channel use) of a channel with capacity
is equal to

(221)

(222)

In fact, we show that for both discrete memoryless channels
and Gaussian channels,

(223)

The asymptotic behavior in (223) is particularly useful in con-
junction with the nonasymptotic upper and lower bounds devel-
oped in Section III, as (223) turns out to be an accurate and suc-
cinct approximation to the fundamental finite blocklength limit
for even rather short blocklengths and rates well below capacity.
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Thus, an excellent approximation to the rate penalty incurred for
operating at blocklength and error probability is

(224)

where is the required for the probability of error of
the binary equiprobable hypothesis test

(225)

(226)

to be if are independent and Gaussian with variances .
This implies that if the target is to transmit at a given fraction
of capacity and at a given error probability , the
required blocklength scales linearly with the channel dispersion:

(227)

An important tool in this section is the following nonasymp-
totic result.

Theorem 44 (Berry–Esseen): (e.g., Theorem 2, [40, Ch.
XVI.5]) Let , be independent with

(228)

(229)

(230)

(231)

(232)

Then for any13

(233)

A. DMC

The DMC has finite input alphabet , finite output alphabet
, and conditional probabilities

(234)

where is a conditional probability mass function on
for all , which is abbreviated as when notationally
convenient. We denote the simplex of probability distributions
on , by . It is useful to partition into -types

(235)

13Note that for i.i.d. � it is known [41] that the factor of 6 in (233) can be
replaced by 0.7975. In this paper, the exact value of the constant does not affect
the results and so we take the conservative value of 6 even in the i.i.d. case.

We denote by (respectively, ) the cardi-
nality of the largest codebook with maximal (respectively, av-
erage) probability of error below . We use the following nota-
tion and terminology:

• divergence variance

(236)

• conditional divergence variance

(237)

• output distribution as

• mutual information

(238)
• unconditional information variance

(239)

(240)

(241)

• conditional information variance

(242)

(243)

(244)

• third absolute moment of the information density

(245)

Note that is defined only provided that
for -almost all , and the divergence variance is defined only
if . Continuity of and is
established by Lemma 62 in Appendix E.

The compact subset of capacity-achieving distributions is

(246)
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where

(247)

1) Achievability Bound:

Theorem 45: For any , we have

(248)

(249)

if and

(250)

if . Finally, if whenever
then

(251)
Proof: Select . Let , and choose the

product measure as the distribution of . Passing this
distribution through induces a joint probability distribu-
tion on , and the information density is the sum of
independent identically distributed

(252)

The random variable has the distribution of when
is distributed according to . Accordingly, it has

mean and variance , and its third absolute
moment is bounded according to the following auxiliary result
whose proof is in Appendix F.

Lemma 46:

(253)

Suppose that , and therefore
. Taking for an arbitrary

in Theorem 1 we get (250).
Now, assume that and denote

(254)

where is the RHS of (253).
To use the DT bound (67) we need to prove that for some

the following inequality holds:

(255)

(256)

(257)

Denote for arbitrary

(258)

According to Theorem 44, we have

(259)

For sufficiently large , let

(260)

Then, from (259) we obtain

(261)

We now bound the second term (257) by the following technical
result proved in Appendix G.

Lemma 47: Let be independent random
variables, be nonzero and

; then for any

(262)

Therefore, we have

(263)

Summing (261) and (263) we prove inequality (255). Hence, by
Theorem 17 we get

(264)

(265)

(266)

because according to (260) and the differentiability of we
have

(267)

Note that (248) implies (249) after applying

(268)

with .
Finally, the proof of (251) repeats the proof of (248)

step-by-step with the only change that Theorem 21 is used
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instead of Theorem 17 and in (254) we replace by
.

Note that by using the Feinstein bound (5) we could only
prove (249), not the stronger (248) or (251). This suboptimality
in the term is an analytical expression of the fact that
we have already observed in Section III: namely, that the Fe-
instein bound is not tight enough for the refined analysis of

.
As another remark, we recall that by using the DT bound,

Theorem 17, we proved that with input distribution we can
select messages which
are distinguishable with probability of error . It is not hard to
see that by using the bound, Theorem 25, we could select14

, which is the same for
a capacity achieving (see Lemma 62) and is larger other-
wise. While in the unconstrained case we used the DT bound, in
the cost constrained cases we resort to the bound (as in the
AWGN case treated in Section IV-C).

Converse Theorem for DMC: We need to define a few new
quantities in order to state the converse counterpart to Theorem
45.

• Define maximal and minimal conditional variances (they
exist since is continuous) as

(269)

and

(270)

• Define the (unique) capacity achieving output distribution
by , where is any capacity achieving

input distribution.
• is an exotic DMC if and there exists an

input letter such that: a) for any capacity achieving :
, b) , and c)

. (See Appendix H for an example of an exotic DMC.)
• For any denote a type of elements by

(271)

• For any and denote by the maximal
cardinality of the codebook with codewords in and
maximal probability of error below .

Theorem 48: Fix a DMC .
• If , then there exists a constant such that

for all and all sufficiently large

(272)

• If and the DMC is not exotic, then there
exists a constant such that for all and
all sufficiently large

(273)

14Theorem 25 is applied with � � ��� � and � � , a � -type in the
input space � . The analysis of � is the same as in the proof of Theorem 48,
Section IV-B.II; for � it is sufficient to use the lower bound (121).

• If and the DMC is exotic, then there exists a
constant such that for all and all suffi-
ciently large

(274)

Proof: See Appendix I

2) DMC Dispersion: The following result is a refinement of
[31].

Theorem 49: For a DMC and we have

(275)

where is the capacity and is the minimal variance of the
information density over all capacity achieving distributions (cf.
(270)). In addition, if there exists a capacity achieving input dis-
tribution such that whenever
then

(276)

Proof: Theorem 45 yields, by taking to be a dis-
tribution that achieves capacity and minimizes (or

since they coincide on by Lemma 62),

(277)

For the lower bound, take for from Theorem 48.
Then any is composed of subcodes over types
for . If we remove all codewords except those in
and leave the decoding regions untouched, then we obtain an

code over . But then Theorem 48 states that

(278)

Since is a sum of over all and the cardinality
of is no more than , we conclude

(279)

This completes the proof of (275) and (276) follows from (251).

It is useful to introduce the following definition.

Definition 2: For a channel with -capacity , the -disper-
sion is defined for as

(280)

Note that for , approximating by is
optimistic and smaller dispersion is preferable, while for ,
it is pessimistic and larger dispersion is more favorable. Since

, it is immaterial how to define as far the normal
approximation (223) is concerned.
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Invoking the strong converse, we can show that the -disper-
sion of a DMC is

.
(281)

Because of the importance of channel dispersion, we note the
following upper bound (see also [16, Exercise 5.23]).

Theorem 50: For the DMC with we have

(282)

For the DMC with we have

(283)

Proof: This is a simple consequence of Lemma 62 in
Appendix E.

Since the typical blocklength needed to achieve capacity is
governed by , it is natural to ask whether for very small
capacities the upper-bound in (282) can be improved to prevent
the divergence of . Such a bound is not possible over all
with fixed alphabet sizes, since such a collection of DMCs al-
ways includes all of the BSCs for which we know that
as .

We briefly consider the normal approximation in the case of
average error probability. Recall that stands for the
maximal cardinality of a codebook with average probability of
error below . Then, dropping all codewords whose probabilities
of error are above , (see the comment at the beginning
of Section III-D), we obtain

(284)

Carefully following the proof of the converse we can conclude
that the term in the upper bound on does not
have any singularities in a neighborhood of any . So
we can claim that, for sufficiently close to 1, the expansion

(285)

holds uniformly in . Now, setting , we obtain

(286)
Expanding by Taylor’s formula and using the lower bound
on in (284) we obtain the following result.

Corollary 51: For a DMC, if , we have

(287)

(288)

We note the following differences with Strassen’s treatment
of the normal approximation for DMCs in [31]. First, the DT
bound allows us to prove that the term cannot be nega-
tive15. Second, we streamline the proof in the case by

15This estimate of the ���� term cannot be improved without additional as-
sumptions, because the BEC has zero ���� term; see Theorem 53.

using Lemma 64 to obtain the expansion. In contrast, an ex-
pansion up to the order can be obtained with consider-
ably less effort by using Lemma 63. Third, [31] argues that the
case can be treated similarly, whereas we demonstrate
that this is only true for nonexotic channels as a result of the
difference between using Lemma 63 and Lemma 64. (See the
counter-example after the proof of Lemma 63 in Appendix J and
also the discussion of exotic channels in Appendix H.) Fourth,
we prove the expansion for (i.e., for the average prob-
ability of error formalism).

3) Application to the BSC and the BEC: For the BSC and
BEC we can improve upon the term given by Theorem
49.

Theorem 52: For the BSC with crossover probability , such
that , we have

(289)

regardless of whether is maximal or average probability of
error.

Proof: Appendix K.

Interestingly, Gallager’s bound does not yield a correct
term in (54); the Feinstein, DT, and RCU bounds all yield the
correct term for the BSC; Feinstein’s bound has worse
term than the DT bound. Finally, only the RCU bound (162)
achieves the optimal term.

Theorem 53: For the BEC with erasure probability , we have

(290)

regardless of whether is maximal or average probability of
error.

Proof: Appendix K.

For the BEC, Gallager’s bound does not achieve the correct
lower-order terms in (54); Feinstein’s bound yields the correct

term but a suboptimal term; both DT bounds (Theo-
rems 17 and 22) and the RCU bound achieve the optimal
term.

B. The AWGN Channel

Theorem 54: For the AWGN channel with SNR ,
and for equal-power, maximal-power and average-power con-
straints,

(291)

where

(292)

(293)
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Fig. 8. Rate-blocklength tradeoff for the BSC with crossover probability � � ���� and maximal block error rate � � �� .

More precisely, for equal-power and maximal-power con-
straints, the term in (291) can be bounded by

(294)

whereas for average-power constraint we have

(295)

Proof: Appendix L.

The approximation in Theorem 54 (up to ) is attributed
in [7] to Shannon [3] for the case of equipower codewords.16

However, in Theorem 54 the rate is changing with , while ex-
pressions [3, eqs. (9) and (73)] are not directly applicable here
because they are asymptotic equivalence relations for fixed rate.
Similarly, an asymptotic expansion up to the term is put
forward in [47] based on a heuristic appeal to the central-limit
theorem and fine quantization of the input/output alphabets.

16A different term is claimed in [7] for the case of codebook-averaged
power which is not compatible with Theorem 54.

C. Normal Approximation versus Finite Blocklength Bounds

In Figs. 8–11, we compare the normal approximation (289)
and (290) to the tight bounds, computed in Section III-H (BSC)
and Section III-I (BEC), correspondingly. Similarly, Figs. 12
and 13 depict the normal approximation (291) for
(maximal power constraint) along with the bounds (208) and
(220) for the AWGN channel. In view of (294) and the empirical
evidence, we have chosen the following as a normal approxima-
tion for the AWGN channel:

(296)

Although generally pessimistic, the normal approximation
is excellent for blocklengths higher than 200 (BSC(0.11) and
BEC(0.5) with and AWGN, with

) and 800 (AWGN, , and
BSC(0.11), ). The conclusion from these figures is that
the normal approximation is quite accurate when transmitting at
a large fraction (say ) of channel capacity. For example,
in the Table I we show the numerical results for the blocklength
required by the converse, guaranteed by the achievability and
predicted by error-exponents and normal approximation17 for
achieving rate .

17For the BSC and the AWGN channel we use the approximation formula
(289) which has an additional ���� term. For the AWGN channel the DT
bound is replaced by the �� bound. The error-exponent approximation is � �

� ��� , where ��	� is known since the rate is above critical.



2334 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 5, MAY 2010

Fig. 9. Rate-blocklength tradeoff for the BSC with crossover probability � � ���� and maximal block error rate � � �� .

An interesting figure of merit for the AWGN channel is the
excess energy per bit, , over that predicted by channel
capacity incurred as a function of blocklength for a given re-
quired bit rate and block error rate:

(297)

where, according to the normal approximation, is the
solution to

(298)

and and are as in Theorem 54.
Fig. 14 gives a representative computation of (297)–(298)

along with the corresponding lower18 and upper bounds ob-
tained from (208) and (220) respectively. We note a good pre-
cision of the simple approximation (297), e.g., for bits
the gap to the achievability bound is only 0.04 dB. A similar
comparison (without the normal approximation, of course) for
rate 2/3 is presented in [48, Fig. 8].

D. Application: Performance of Practical Codes

How does the state-of-the-art compare against the finite
blocklength fundamental limits? One such comparison is given
in Fig. 12 where the lower curve depicts the performance
of a certain family of multiedge low-density parity-check

18Another lower bound is given in [5, Fig. 3] which shows [3, (15)].

(ME-LDPC) codes decoded via a low-complexity belief-prop-
agation decoder [49]. We notice that in the absence of the
nonasymptotic finite-blocklength curves, one has to compare
the performance against the capacity alone. Such comparison
leads to an incorrect conclusion that a given family of codes
becomes closer to optimal with increasing blocklength. In
reality we see that the relative gap to the finite blocklength
fundamental limit is approximately constant. In other words,
the fraction seems to be largely blocklength
independent.

This observation leads us to a natural way of comparing two
different codes over a given channel. Over the AWGN channel
the codes have traditionally been compared in terms of .
Such comparison, although justified for a low-rate codes, un-
fairly penalizes higher rate codes. Instead, we define a normal-
ized rate of a code with codewords as (this can be extended
to discrete channels parametrized by a scalar in a natural way)

(299)

where is the smallest SNR at which the code still
admits decoding with probability of error below . The value

can be safely replaced by an approximate
value (296) with virtually no loss of precision for blocklength
as low as 100.

The evolution of the coding schemes from 1980s (Voyager) to
2009 in terms of the normalized rate is presented
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Fig. 10. Rate-blocklength tradeoff for the BEC with erasure probability � � ��� and maximal block error rate � � �� .

on Fig. 15. ME-LDPC is the same family as in [49, Fig. 12] and
the rest of the data is taken from [5]. A comparison of certain
turbo codes to Feinstein’s bound and Shannon’s converse can
be found on [48, Figs. 6 and 7].

E. Application: Maximization of ARQ Throughput

A good analytical approximation to the maximal rate achiev-
able with a given blocklength and error probability opens a
variety of practical applications. In this subsection we con-
sider a basic ARQ transmission scheme in which a packet
is retransmitted until the receiver acknowledges successful
decoding (which the receiver determines using a variety of
known highly reliable hashing methods). Typically, the size

of the information packets is determined by the particular
application, and both the blocklength and the block error
probability are degrees of freedom. A natural objective is to
maximize the average throughput (or, equivalently, minimize
the average delivery delay) given by

(300)

assuming decoding errors are independent for different retrans-
missions. The maximization in (300) is over those such
that

(301)

Note that the number of required retransmissions is geometri-
cally distributed, with mean equal to . In view of the tight-
ness of the approximation in (223), it is sensible to maximize

(302)

where and are the channel capacity and channel dispersion,
respectively. For the AWGN channel with we
show the results of the optimization in (302) in Fig. 16, where
the optimal block error rate, is shown, and Fig. 17, where
the optimal coding rate is shown. Table II shows the re-
sults of the optimization for the channel examples we have used
throughout the paper. Of particular note is that for 1000 infor-
mation bits, and a capacity- BSC, the optimal block error
rate is as high as 0.0167.

The tight approximation to the optimal error probability as a
function of in Fig. 16 is the function

(303)

obtained by retaining only the dominant terms in the asymptotic
solution as .

V. SUMMARY OF RESULTS

The main new nonasymptotic results shown in this paper are
the following.
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Fig. 11. Rate-blocklength tradeoff for the BEC with erasure probability � � ��� and maximal block error rate � � �� .

1) An exact expression (Theorem 15) for the error probability
averaged over random codes which applies in full gener-
ality. In particular, it does not put any restrictions on the
dependence of symbols within a codeword.

2) An upper bound (the RCU bound, Theorem 16) on the
achievable average error probability for randomly chosen
codes of a given size, which involves no bounding beyond
the simple union bound. Loosening of the bound leads
to the Shannon and Gallager bounds. When applied to a
random ensemble, Poltyrev’s BSC linear-code bound re-
duces to the RCU bound.

3) A simpler easier-to-compute bound (the DT bound, The-
orem 17), which unlike previous achievability bounds con-
tains no parameters to be optimized beyond the input dis-
tribution. The DT bound is tighter than the Shannon and
Feinstein bounds, and, unlike the Gallager bound, it can be
used to obtain the term in the normal approximation.
For the BEC, the DT bound is generally tighter than the
RCU bound. For channels with memory, in general the DT
bound is easier to work with than any other new bounds in
this paper; see [50].

4) A maximal error probability counterpart (Theorem 22) to
the DT bound, obtained using the technique of sequential
random coding.

5) The bound (Theorem 25) which is a maximal
error probability achievability bound based on the
Neyman–Pearson lemma that uses an auxiliary output
distribution. The bound is particularly useful in the

setting of analog channels with cost constraints, and plays
a key role in the normal approximation for the AWGN
channel.

6) An auxiliary result (Theorem 26) which leads to a
number of converse results, the most general of which
is Theorem 27 which includes as simple corollaries
the Fano inequality, the Wolfowitz converse and the
Verdú–Han converse. Another corollary is Theorem 31
which can be viewed as a distillation of the essentials of
the sphere-packing converse.

7) A tighter easy-to-compute converse bound (Theorem 38)
for the BEC that holds even with noncausal feedback.

The tightness of the achievability bounds obtained by random
coding is evidence that random-like codes (such as those arising
in modern coding theory) not only achieve capacity but also
do not sacrifice much performance for all but very short block-
lengths. Numerical results with state-of-the-art codes show that
about one half of the gap to capacity is due to the fundamental
backoff due to finite blocklength; the other half of the gap is
bridgeable with future advances in coding theory.

We have further shown the normal approximation to the max-
imal rate in the blocklength regime up to a term of for
both general discrete memoryless channels and additive white
Gaussian noise channels, and up to for both the BSC
and the BEC. While for DMCs, the approach is a refinement
of Strassen’s [31], the Gaussian channel requires a different ap-
proach. The tightness of the approximation has been illustrated
by comparison to the fixed-length bounds in Section III. It moti-
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vates the use of the channel dispersion (variance of the infor-
mation density achieved by a capacity-achieving distribution),
in conjunction with the channel capacity , as a powerful anal-
ysis and design tool. In order to achieve a given fraction of ca-
pacity with a given error probability, the required blocklength is
proportional to .

The large deviations approach (reliability function) and the
central-limit-theorem approach (dispersion) give a more refined
analysis than that using only channel capacity. We note the fol-
lowing relationships and contrasts between both approaches:

• For rates near capacity, the reliability function behaves
parabolically as

(304)

a fact that was known to Shannon as the unpublished, un-
dated, unfinished manuscript [51] reproduced in Fig. 18
shows. Therefore, channel dispersion can be obtained by
taking the second derivative of the reliability function at ca-
pacity. Since the reliability function is quite cumbersome
to obtain for most channels, channel dispersion is far easier
to obtain directly.

• According to the reliability function approximation, the
blocklength required to sustain rate is inversely
proportional to the reliability function evaluated at ,
while according to the normal approximation it is propor-
tional to

Unless is very close to (in which case the factors are
similar because of (304)) the normal approximation is sub-
stantially more accurate. In fact, even for rates substantially
below capacity, the normal approximation remains accu-
rate.

• Inherently, the large deviations approach does not capture
the subexponential behavior (i.e., the “constant” factor in
front of the exponential), which, for error probabilities and
rates of practical interest, is more relevant than the inaccu-
racy of the approximation in (304).

• The reliability function approach predicts that the block-
length required to sustain and a given desired rate scales
with , while the dispersion approach predicts that the
scaling is , which is equivalent for small and
rather more accurate otherwise.

• Often, the regime of very low (the natural habitat of
the reliability function), is not the desired one. Indeed, in
many applications the error correcting code does not carry
the whole burden of providing reliable communication; in-
stead a protocol (such as ARQ) bootstraps a moderately
low block error probability into very reliable communica-
tion (see Table II).

• For very low neither approximation is accurate unless
the blocklength is so high that the backoff from capacity
is miniscule.

APPENDIX A
BOUNDS VIA LINEAR CODES

The goal of this appendix is to illustrate how Theorems 16 and
17, which give an upper bound on average probability of error,
can also be used to derive an upper bound on maximal proba-
bility of error. To that end, we first notice that in both proofs we
relied only on pairwise independence between randomly chosen
codewords. So, the average probability of error for any other en-
semble of codebooks with this property and whose marginals
are identical and equal to will still satisfy bounds of Theo-
rems 16 and 17. In particular, for the BSC and the BEC we can
generate an ensemble with equiprobable by using a linear
code with entries in its generating matrix chosen equiprobably
on . Then, Theorems 16 and 17 guarantee the existence of
the codebook, whose probability of error under ML decoding
is small. Note that this is only possible if for some
integer . A question arises: for these structured codebooks are
there randomized ML decoders whose maximal probability of
error coincides with the average? This question is answered by
the following result.

Theorem 55: Suppose that is a group and suppose that there
is a collection of measurable mappings for each

such that

(305)

Then any code that is a subgroup of has a maximum like-
lihood decoder whose maximal probability of error coincides
with the average probability of error.

Note that (305) can be reformulated as

(306)

for all bounded measurable and all .
Proof: Define to be a measure induced by the codebook

(307)

Note that in this case induced by this dominates all of
for

(308)

Thus, we can introduce densities

(309)

Observe that for any bounded measurable we have

(310)

Indeed

(311)

(312)

(313)
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Fig. 12. Normal approximation for the AWGN channel, ��� � � ��, � � �� . The LDPC curve demonstrates the performance achieved by a particular
family of multi-edge LDPC codes (designed by T. Richardson).

where (312) follows from (306). Also for any we have

(314)

Indeed, denote

(315)

and assume that . Then, on one
hand

(316)

(317)

(318)

(319)

where (318) follows from (310). But (319) contradicts (305) and
hence and (314) is proved.

We proceed to define a decoder by the following rule: upon
reception of compute for each ; choose
equiprobably among all the codewords that achieve the max-
imal . Obviously, such decoder is maximum likeli-
hood. We now analyze the conditional probability of error given

that the true codeword is . Define two collections of functions
of , parameterized by

(320)

(321)

It is easy to see that

(322)

(323)

If we denote the unit element of by , then by (314) it is
clear that

(324)

(325)

But then, by (323) we have (326)–(329), shown at the bottom
of the next page, where (326) follows because is a unit of ,
(327) is by (306), and (328) is by (324) and (325).

The construction of required in Theorem 55 is feasible for
a large class of channels. For example, for an -ary phase-shift-
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Fig. 13. Normal approximation for the AWGN channel, ��� � �� ��, � � �� .

keying (PSK) modulated complex AWGN channel with soft de-
cisions, we can assume that the input alphabet is

; then

(330)

satisfies the requirements because depends only on
and .

We give a general result for constructing .

Theorem 56: Suppose that is a monoid, is a group
(in particular consists of only invertible elements of ) and
the channel is

(331)

with being independent of . If each
is measurable, then this family satisfies the conditions of

Theorem 55.
Proof: Indeed, for any we have

(332)

Then, on the one hand

(333)

but on the other hand

(334)

(335)

(326)

(327)

(328)

(329)
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TABLE I
BOUNDS ON THE MINIMAL BLOCKLENGTH � NEEDED TO ACHIEVE � � ���� .

It is easy to see that if we take and then
the BSC (even if the noise has memory) satisfies the conditions
of Theorem 56. For the BEC we take and

, and the usual multiplication of reals converts to
a monoid; taking the usual product – and
– we see that the BEC (even with memory) also satisfies the
conditions of Theorem 56. Similar generalizations are possible
for any additive noise channel with erasures.

APPENDIX B
NEYMAN–PEARSON LEMMA

Lemma 57: (For example, see [42]). Consider a space and
probability measures and . Then for any there
exist and such that

(336)

and where19 the conditional probability is defined via

(337)

where equals 1 with probability independent of
. The constants and are uniquely determined by solving

the equation

(338)

Moreover, any other test satisfying either

differs from only on the set or is strictly larger

with respect to : .

APPENDIX C
BINARY HYPOTHESIS TESTING: NORMAL APPROXIMATIONS

The next pair of results help us determine the asymptotic be-
havior of the optimal binary hypothesis tests with independent
observations.

Lemma 58: Let be a measurable space with measures
and , with defined on it for . Define
two measures on : and . Denote
by the performance of the best randomized hypothesis test
discriminating between and

(339)

19In the case in which � is not absolutely continuous with respect to �, we
can define to be equal to �� on the singular set and hence to be automat-
ically included in every optimal test.

Define

(340)

(341)

(342)

(343)

Assume that all quantities are finite and . Then, for any

(344)

(345)

Each bound holds provided that the argument of lies in
.

Proof of Lemma 58: We will simply apply the Berry–Es-
seen Theorem 44 twice. We start from the lower bound. Observe
that a logarithm of the Radon–Nikodym derivative is a
sum of independent random variables by construction

(346)

Then applying (102), we have

(347)

for . Now set

(348)

which is positive since the argument of in (344) is positive.
Therefore, we let

(349)
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Fig. 14. Normal approximation for the gap for the AWGN channel, � � ���� � � �� .

Then since is a sum of independent random variables,
Theorem 44 applies and

(350)

Consequently

(351)

Substituting this bound into (347) we obtain (344).
For an upper bound, we use (103) which states that

(352)

whenever is such that

(353)

Again, set

(354)

which is strictly less than 1 since the argument of in (345)
is below 1. Similarly to (349) we choose

(355)

From the Berry–Esseen bound, we have

(356)

Consequently

(357)

Thus, this choice of is valid for (352), and (345) follows.

Note that lower bound (344) holds only for sufficiently
large. A nonasymptotic bound is provided by the following re-
sult.

Lemma 59: In the notation of Lemma 58, we have

(358)

Proof: Just as in the above argument, we start by writing

(359)

We notice that

(360)

(361)
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Fig. 15. Normalized rates for various practical codes over AWGN, probability of block error � � �� .

Thus, if we set

(362)

then

(363)

(364)

(365)

where (365) is by the Chebyshev inequality. Putting this into
(359) we obtain the required result.

APPENDIX D
EVALUATION OF FOR THE AWGN CHANNEL

Proof of Theorem 42: According to Definition (107), we
need to find the distribution that, for every , sat-
isfies

(366)

and that attains the smallest possible value of

(367)

While, in general, this is a complex problem, the symmetry
of the present case greatly simplifies the solution; we establish
rigorously the spherical symmetry of the optimum attaining ,
and also suggest how to find symmetries in other (non-AWGN)
problems of interest. We start by noting that any distribution

is completely determined by defining a function
, namely

(368)

We define the following class of functions on :

(369)

so that

(370)

Now we define another class, the subclass of spherically sym-
metric functions

(371)
We can then state the following.
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Fig. 16. Optimal block error rate � ��� maximizing average throughput under ARQ feedback for the AWGN channel with ��� � � �	. Solid curve is obtained
by using normal approximation, dashed curve is an asymptotic formula (303).

Lemma 60: For the chosen and , and for every
we have

(372)

Proof of Lemma 60: The proof of Lemma 60 first defines
a group of transformations of (an orthogonal group
in this case) that permutes elements of the family of measures

and that fixes . Then the optimum in
the definition of can be sought as a function that
is constant on the orbits of (this is the class ).

Since , the inequality

(373)

is obvious. It remains to be shown that

(374)

We will show that for every there is a function
with . The claim (374) then fol-

lows trivially.
Define to be the isometry group of a unit sphere . Then

, the orthogonal group. Define a function on
by

(375)

Since is compact, is finite. Moreover, it defines
a distance on and makes a topological group. The group
action defined as

(376)

is continuous in the product topology on . Also, is
a separable metric space. Thus, as a topological space, it has a
countable basis. Consequently, the Borel -algebra on
coincides with the product of Borel -algebras on and :

(377)

Finally, is continuous and hence is measurable with re-
spect to and thus is also a measurable mapping with
respect to a product -algebra.

It is also known that is compact. On a compact topological
group there exists a unique (right Haar) probability measure
compatible with the Borel -algebra , and such that

(378)

Now take any and define an averaged function
as

(379)

Note that as shown above is a positive measurable mapping
with respect to corresponding Borel -algebras.
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Fig. 17. Optimal coding rate maximizing average throughput under ARQ feedback for the AWGN channel with ��� � � ��. Solid curve is obtained using
normal approximation.

Then by Fubini’s theorem, the function is also
positive measurable. Moreover

(380)

Define for convenience

(381)

Then

(382)

(383)

Change of the order of integration is possible by Fubini’s the-
orem because is a bounded function. By the change of
variable formula

(384)

By the definition of we have, for every measurable set ,
and the measure is fixed under all

isometries of :

(385)

But then

(386)

(387)

(388)

(389)

This proves that

(390)

It is important that implies . In general terms,
without AWGN channel specifics, the above argument shows
that in the space of all measures on the subset
is invariant under the action of .

But and thus for every . So,
from (384) and (390), we conclude

(391)
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TABLE II
OPTIMAL BLOCK ERROR RATE FOR PACKET SIZE � � ���� BITS

Together with (380) this establishes that . Now, the
measure is also fixed under any :

(392)

Then replacing with in (384), we obtain

(393)

(394)

It remains to show that ; but, this is a simple conse-
quence of the choice of . Indeed for any

(395)

(396)

(397)

(398)

In the last equality we used a change of measure and the invari-
ance of under right translations. Thus, must be constant on
the orbits of and hence, depends only on the norm of . To
summarize, we have shown that belongs to and

(399)

Proof of Theorem 42 (Continued): By Lemma 60 we obtain
a value of by optimizing over spherically symmetric func-
tions. First, we will simplify the constraints on the functions in

. Define and as in the proof of Lemma 60. As we
saw in that proof, each transformation carries one mea-
sure into another . Also in this particular
case, but this is not important. What is important, however, is
that if then . If we define

(400)

then, additionally, the action of on is transitive. This opens
the possibility that the system of constraints on might
be overdetermined. Indeed, suppose that satisfies

(401)

for some . Then for any measure there is a
transformation such that

(402)

But then

(403)

Here the last equality follows from the fact that all members of
are spherically symmetric functions and as such are fixed

under : . That is, once a symmetric satisfies

(404)

for one , it automatically satisfies the same inequality
for all . So we are free to check (404) at one arbitrary
and then conclude that . For convenience we choose

(405)

Since all functions in are spherically symmetric we will
work with their radial parts:

(406)

Note that induces a certain distribution on ,
namely

(407)

(as previously the ’s denote i.i.d. standard Gaussian random
variables). Similarly, induces a distribution on

, namely,

(408)

Finally, we see that is

(409)

–a randomized binary hypothesis testing problem with
.

Finally, we are left to note that the existence of a unique op-
timal solution is guaranteed by the Neyman–Pearson lemma
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Fig. 18. [51] reproduced in its entirety.

(Appendix B). To conclude the proof we must show that the so-
lution of (211) exists and thus that is an indicator function
(i.e., there is no “randomization on the boundary” of a likeli-
hood ratio test). To that end, we need to show that for any the
set

(410)

satisfies . To show this, we will first show that each
set is finite; then, its Lebesgue measure is zero,
and since is absolutely continuous with respect to Lebesgue
measure we conclude from the monotone convergence theorem
that

(411)

Note that the distribution is a scaled -distribution with
degrees of freedom; thus (e.g., [43, (26.4.1)]) the PDF of

is indeed given by (212). The distribution is the noncentral
-distribution with degrees of freedom and noncentrality pa-

rameter, , equal to . Thus (see [43, (26.4.25)]) we can write
the PDF of as expressed in (213). Using these expressions
we obtain

(412)

The coefficients are such that the series converges for any
. Thus, we can extend to be an analytic function

over the entire complex plane. Now fix a and
denote

(413)

By the continuity of the set is closed. Thus, is compact.
Suppose that is infinite; then there is sequence con-
verging to some . But then from the uniqueness theorem
of complex analysis, we conclude that over the entire
disk . Since cannot be constant, we conclude that

is finite.
To enable non-AWGN applications of the bound, let us

summarize the general ideas used to prove Lemma 60 and The-
orem 42. The proof of Lemma 60 first defines a group of trans-
formations of (an orthogonal group in this case) that per-
mutes elements of the family of measures
and that fixes . Then the optimum in the definition of can
be sought as a function that is constant on the or-
bits of (this is the class ). Carrying this idea forward,
in the proof of Theorem 42 we note that the action of on

is transitive and thus a set of conditions
on can be replaced by just one

(414)
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for any . If is conveniently chosen, then computation of
is a matter of solving a single randomized binary hypothesis

testing problem between two memoryless distributions.

Lemma 61: For every there are constants and
such that for all sufficiently large and all ,

(415)

Proof: Recall that is determined by a binary hypothesis
testing problem between and , as defined by (407)
and (408). We will omit indices where it does not cause
confusion. Also in this proof all exponents are to the base
. The argument consists of two steps.

Step 1) There is a such that for all the

Radon–Nikodym derivative is upper bounded by a

constant on the set

(416)

Step 2) Since the measures have mean , by the
Chernoff bound there is a constant such that

(417)

Now choose any set such that . Then

(418)

(419)

But then

(420)

(421)

(422)

(423)

(424)

This establishes the required inequality. The rest is devoted to
proving Step 1, namely

on (425)

We have already discussed some properties of in (412).
Here, however, we will need a precise expression for it, easily
obtainable via (212) and (213):

(426)

where is the modified Bessel function of the first
kind.

We will consider only the case in which is even. This is
possible because in [44] it is shown that

(427)

for all . Thus, if is odd then an upper bound is obtained
by replacing with . Now for integer index

the following bound is shown in [45]:

(428)

Note that we need to establish the bound only for ’s that are
of the same order as , . Thus, we will change the
variable

(429)

and seek an upper bound on for all inside some interval
containing .

Using (428) and the expression

(430)

in (426) can be upper bounded, after some algebra, as

(431)

Here the term is uniform in for all on any finite interval
not containing zero, and

(432)

A straightforward excercise shows that a maximum of
is attained at and

(433)

Thus

(434)

In particular (425) holds if we take, for example,
and .

In fact, the Radon–Nikodym derivative is bounded for all ,
not only and, hence

(435)

instead of the weaker (415). But showing that this holds for all
complicates the proof unnecessarily.
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APPENDIX E
CONTINUITY ON THE SIMPLEX

Our first results are concerned with properties of
and .

Lemma 62: The functions , and
are continuous on . Functions and coin-
cide on . The following inequality holds:

(436)
where

,
.

(437)

Proof: First, note that , and
are well-defined and finite. Indeed, each one is a sum of finitely
many terms. We must show that every term is well-defined. This
is true since, whenever or or

, we have and thus

and

are both equal to zero by convention. On the other hand, if
then and thus is a well-de-

fined finite quantity. Second, take a sequence . Then we
want to prove that each term in is continuous, i. e.,

(438)

If then this is obvious. If then this is
also true since the argument of the logarithm is bounded away
from 0 and . So, we assume and we must show
that then the complete quantity also tends to 0. For
we notice that

(439)

Thus,

(440)

But then

(441)

(442)

This is also true for assuming the convention
. Now continuity follows from the fact that

is continuous for when defined as 0 for
. Thus, continuity of is established.

To establish continuity of we are left to prove that

is continuous in . Let us expand a single term here:

First notice that if then continuity of this term fol-
lows from the fact that the argument of the logarithm is bounded
away from 0 and for all with . So we are left
with the case . To that end let us prove the inequality
for :

(443)

From here continuity follows as we can see that
because and are

continuous at zero.
We now prove inequality (443). From (439), we see that

(444)

(445)

Then,

(446)

(447)

Thus, is continuous in .
To establish continuity of , we again consider a

single term:

(448)

If then this term is equal to zero regardless of
, and thus is continuous in . Assume . Take

. If then is bounded away from 0
and thus tends to . Similarly, for any
such that we have that is also bounded
away from 0. Thus, tends to .

We now assume that and must prove that (448)
tends to 0. Using the inequality , we
obtain

(449)
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(450)

Application of (443) immediately proves that the second term
in the last inequality tends to zero. Continuity of the first term
is established exactly like (438) with (440) replaced by

(451)

This proves continuity of .
Finally, and coincide on for the reason

that, under any capacity-achieving distribution it is known that

(452)

Indeed, then

(453)

(454)

(455)

(456)

To prove (436) consider the following chain of inequalities:

(457)

(458)

(459)

(460)

(461)

(462)

(463)

where (459) is because is always
nonnegative, and (462) follows because each term in square-
brackets can be upper-bounded using the following optimiza-
tion problem:

(464)

Since the has unbounded derivative at the origin, the
solution of (464) is always in the interior of . Then it is
straightforward to show that for the solution is actu-
ally . For it can be found directly that

. Finally, because of the symmetry, a similar argu-
ment can be made with replaced by and hence in (436)
we are free to choose the best bound.

APPENDIX F
PROOF OF LEMMA 46

A. Proof

Using Minkowski’s inequality and the notation
, we have

(465)

(466)

(467)

(468)

(469)

where (467) follows from .

APPENDIX G

A. Proof of Lemma 47

By Theorem 44 we have for any and

(470)

(471)

(472)

On the other hand

(473)

(474)

Using (472) and we get (262) since
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(475)

APPENDIX H
AN EXOTIC DMC

Let

(476)

Now denote by the unique negative root of the equation

(477)

Then, replace the last column of with the column (only two
decimals shown)

(478)

The resulting channel matrix is

(479)

This matrix has full rank and so the capacity achieving distri-
bution is unique. A simple observation shows that equiprobable

is achievable by taking . Finally, the
conditional entropies are all equal to as
a consequence of the choice of . It follows that is the
unique capacity achieving distribution. One can also check that

and . So is indeed an ex-
otic channel. In fact, it can be shown that there is a sequence
of distributions such that Feinstein’s lower bound for this
channel exhibits behavior. Note that for an ex-
otic channel and it is not optimal to choose that
achieves and in Theorem 45,
rather the optimal will depend on . The intuition behind this
is that for small it might be beneficial to choose such that

but because for the
term is positive and proportional to .

This example has illustrated that the conditions for ex-
otic channels are quite hard to satisfy (especially, making

but so that does not participate in capacity
achieving distributions); hence the name exotic.

APPENDIX I
PROOF OF THEOREM 48

We must consider four cases separately:
1) and ;

2) and ;
3) and ;
4) and .

Compared to Strassen [31] we streamline the treatment of case
1 by using Lemma 64 and add the proofs for cases 3 and 4. The
main idea for solving case 2 is due to Strassen.

The aim is to use Theorem 31 with . To do so
we need to select a distribution on and compute

. Notice that the theorem is con-
cerned only with codebooks over some fixed type. So, if
is a product distribution then does not depend
on and thus

(480)

For this reason, we will simply write , and even
, since the distribution will be apparent.

Case 1: Denote the closed -neighborhood of the set of ca-
pacity-achieving distributions, , as

(481)

Here denotes Euclidean distance between vectors of .
We fix some to be determined. First, we find

small enough so that everywhere on we have
. This is possible by the continuity of

; see Lemma 62 in Appendix E. Without loss of
generality, we can assume that does not have inaccessible
outputs, i.e., for every there is an such that

. Then, it is well known that for any
the output distributions coincide, i.e., ,
and also that this unique dominates all . Since all
outputs are accessible, this implies that , .
Now for each , the function is linear in the input
distribution , and thus there is some such that in the
closed -neighborhood of we have for all

. Set . Fix and . Choose the
distribution , i.e.

(482)

Then by Theorem 31 and the argument above, we have

(483)

where is any element of . The idea for lower bounding
is to apply Lemma 58 if and Lemma 59 (both

in Appendix C) otherwise. In both cases, and
. Note that there are occurrences of

among the ’s, occurrences of , etc. Thus, the
quantities defined in Lemma 58 become

(484)

(485)

Suppose that ; then, applying Lemma 59 we obtain

(486)
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(487)

(488)

where

(489)

(490)

Since we can see that, even with , there exists
such that for all the RHS of (488) is below the RHS

of (272). So this proves (272) for . Now, consider
. Recall that in Lemma 58 is in fact

(491)

which, as shown in Lemma 62, is continuous on the compact set
and thus has a finite upper bound:

(492)

On the other hand, over we have .
In summary, we can upper bound in Lemma 58 as

(493)

Thus, we are ready to apply Lemma 58, namely to use (344) with
and to conclude that, for sufficiently

large

(494)

For large, depending on , we can expand using
Taylor’s formula. In this way, we can conclude that there is a
constant such that

(495)

Then for such and a constant (recall (490)) we have

(496)

To conclude the proof we must maximize the RHS over
. Note that this is the case treated in Lemmas 63 and 64.

We want to use the latter one and need to check its conditions.
From the definitions of and we can see that
they are infinitely differentiable functions on . This is be-
cause all terms have arguments bounded away from

0 and by the choice of . Consequently, the conditions of
Lemma 64 on are automatically satisfied. We must now check
the conditions on . To that end, we can think of as
a function of , and write and for the gradient
vector and Hessian matrix correspondingly. To check the con-
ditions on in Lemma 64 it is sufficient to prove that for any

:
1) , which is the set of all -vectors

such that ;
2) the largest nonzero eigenvalue of is negative and

bounded away from zero uniformly in the choice of
.

We first show why these two conditions are sufficient. It
is known that consists of all distributions that satisfy
two conditions: 1) ; and 2) only when

. Now take some and denote by
the projection of onto a compact . Then write

(497)

where is projection of onto and
is orthogonal to . Note that . By
Taylor’s expansion we have

(498)

Here we have used the fact that . Since
but is not in for any , we conclude that

shifting along must involve inputs with .
But then decays linearly along this direction, i.e., there
is some constant such that

(499)

(500)

((500) assumes ). Then, substituting (500) into expansion
for and upper bounding by zero we obtain

(501)

where is the absolute value of the maximal nonzero eigenvalue
of . We will show that is uniformly bounded away from
zero for any . So we see that indeed decays not
slower than quadratically in .

Now we need to prove the assumed facts about the Hessian
. The differentiation can be performed without complica-

tions since on we always have . After some
algebra we get

(502)

Thus, for any vector we have

(503)
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(504)

(505)

where we have denoted formally ,
which is a vector of dimension . From (505) we can see that
indeed if and only if . In addition, the
maximal nonzero eigenvalue of is always smaller than

for all . Consequently, Lemma 64 applies
to (496), and thus

(506)
This implies (272) if we note that .

Case 2: The idea is to apply Theorem 31, but this time we
fix the output distribution to be for all types
(before we chose different for each type ).
It is well-known that

(507)

This fact is crucial for proving the bound.
Note that is defined and finite since all
. Denote a special subset of nonzero-variance inputs as

(508)

And also for every denote which
is the number of nonzero-variance letters in any . Also
note that there are minimal and maximal variances

such that for all .
Since is a product distribution

(509)

for all . We are going to apply Lemmas 58 and 59,
Appendix C, and so need to compute , and an upper
bound on . We have

(510)

(511)

To upper bound we must lower bound and upper bound
. Note that

(512)

For , we can write

(513)

Here, the ’s are all finite and iff . Thus,
for there is one maximal , and we
have

(514)

Then, we see that

(515)

So we apply Lemma 58 with

(516)

Using (344) and lower bounding via (516) we have

(517)

Now, it is an elementary analytical fact that it is possible to
choose a and such that

(518)

We now split types in into two classes, and

(519)

Here is chosen so that . Then, for all types in
, we have

(520)
Notice also that with this choice of and , the argument of

in (517) is positive and the bound is applicable to all types
in . Substituting (507) we have, for any

(521)

Now notice that (this is the key difference with
Case 4) and also that

(522)

Finally, for we have

(523)

Now for types in we have and thus

(524)
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So Lemma 59 yields

(525)

In summary, we see that in both cases, and , inequalities
(523) and (525) imply (272) for .

Case 3: The proof for this case is analogous to that for Case
1, except that when applying Lemma 64 we must choose

because the sign of is positive this time. An
additional difficulty is that it might be possible that
but . In this case the bound (493) is no longer appli-
cable. What needs to be done is to eliminate types inside
with small variance

(526)

where

(527)

Then, for types in we can apply the fixed-blocklength bound
in Lemma 59. For the remaining types in the argument
in Case 1 works, after is replaced by in (493).

Case 4: Fix a type and use .
Then, a similar argument to that for Case 2 and Lemma 59 yields

(528)
for all . We need to maximize the RHS of this bound
over . This can be done similarly to Lemma 64. The
problem here, however, is that for . Thus,
even though is differentiable in some neighborhood
of , is not. This is how a term of order can
appear. Indeed, suppose that there is some direction along
which decays quadratically, while is
linear. For example

(529)

(530)

Then it is not hard to see that

(531)

Such a direction can only exist if all the conditions of the exotic
DMC are satisfied. This can be proved by computing gradients
of and .

APPENDIX J
AUXILIARY MAXIMIZATION LEMMAS

This appendix is concerned with the behavior of the max-
imum of for large , for arbitrary continuous

and .

Lemma 63: Let be a compact metric space. Suppose
and are continuous. Define

(532)

and

(533)

Then,

(534)

The message of this lemma is that, for continuous and ,

(535)

where is found by first maximizing and then maxi-
mizing over the set of maximizers of .

If we assume more about and , then a stronger result can be
stated. The assumptions below essentially mean that is twice
differentiable near with negative-definite Hessian and is
differentiable. Without such assumptions Lemma 63 appears to
be the best possible result; see the example after the proof of
Lemma 63 below.

Lemma 64: In the notation of previous lemma, denote

(536)

(537)

where is a metric. Suppose that for some and some
constants and we have

(538)

(539)

for all . Then

(540)

Proof of Lemma 63: Denote

(541)

(542)

Then (534) is equivalent to a pair of statements:

(543)

(544)

which we are going to prove. First we note that because of the
compactness of both and are bounded. Now

(545)

which implies

(546)
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which in turn implies

(547)

On the other hand, if we take to be any maximizing
then

(548)

Thus

(549)

and the first statement is proved. Now define

(550)

which is also compact. Thus, there exists an (possibly
nonunique) maximizing on :

(551)

(552)

By definition

(553)

Thus

(554)

On the other hand, is continuous on , so that

(555)

Then notice that

(556)

(557)

where the last inequality follows because . Now we
see that

(558)

Denoting

(559)

there exists a sequence such that

(560)

For that sequence we have

(561)

Since the ’s all lie in the compact , there exists a conver-
gent subsequence20:

(562)

We will now argue that . As we have just shown,

(563)

where

(564)

Thus, since is bounded

(565)

where the last step follows from the continuity of . So indeed

(566)
Now we recall that

(567)

and by taking the limit as , we obtain

(568)

(569)

(570)

So we have shown

(571)

Lemma 63 is tight in the sense that term cannot be im-
proved without further assumptions. Indeed, take
and for some on . Then, a simple
calculation shows that

(572)

and the power of can be arbitrary close to .
Lemma 63 can be generalized to any finite set of “basis

terms”, instead of . In this case, the only requirement
would be that .

20This is the only place where we use the metric-space nature of�. Namely
we need sequential compactness to follow from compactness. Thus, Lemma 63
holds in complete generality for an arbitrary compact topological space� that
is first-countable (i.e., every point has a countable neighborhood basis).
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Proof of Lemma 64: Because of the boundedness of ,
the points must all lie in for sufficiently large. So, for
such we have

(573)

(574)

We can now bound the term in brackets by using conditions in
the lemma:

(575)

(576)

Now we see that we have a quadratic polynomial in the variable
. Since it has a maximum equal to

. Then

(577)

and we see that residual term is . This establishes (540).

APPENDIX K
REFINED EXPANSIONS FOR THE BSC AND BEC

A. Proof of Theorem 52

The converse bound was computed in Section III-H in (180)
and (173). To analyze the asymptotics of we proceed as in
the proof of Theorem 48, Case 1. Similarly to (496), we obtain

(578)

Note that because of Theorem 28 this upper bound holds even
if is an average probability of error.

We now return to the achievability part. In order to obtain the
constant in the term we use Theorem 33, as none of the
other bounds is tight enough to yield the right term. First,
denote

(579)

Then (162) implies the existence of an code (maximal
probability of error) with

(580)

We will argue that (580) implies a lower bound on with a
matching term.

Without loss of generality, assume ; choose any
and set

(581)

(582)

where denotes the Berry–Esseen constant for a binomial
distribution

(583)

and is a constant (guaranteed to exist according [46]) such
that for all

(584)

Then from Berry–Esseen Theorem 44 we obtain

(585)

It is also clear that for all sufficiently large we have .
Now, observe the following inequality, valid for
and :

(586)

Consider any such that , then

(587)

(588)

(589)

(590)

(591)

(592)

If then by (592)

(593)

We can now see that (580) implies that

(594)
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Indeed, choose . Then from (585) and (593) it follows
that

(595)

(596)

(597)

(598)

Finally, we must upper bound up to terms. This is
simply an application of (586):

(599)

(600)

(601)

For sufficiently large will become larger than
; thus for such we have and hence

(602)

Using Stirling’s approximation we obtain the inequality

(603)

Substituting from (582) and applying Taylor’s formula to
implies

(604)

Finally, applying Taylor’s formula to , we conclude

(605)

Substituting this into (594) we obtain the sought-after expan-
sion.

B. Proof of Theorem 53

The achievability part of (290) is established by (276). The
converse in Theorem 48 yields the wrong term; instead,
we use the stronger converse in Theorem 38 (which holds for
average error probability). Since any code must satisfy
this bound then we must simply find so large that the left-
hand side (LHS) is larger than a given . We can then conclude

that is upper bounded by such . We observe that by
(584)

(606)

Then, denote by the usual Berry–Esseen constant for a bino-
mial distribution, and set

(607)
Then from Berry–Esseen Theorem 44, we obtain

(608)

Finally from (606) we conclude that

(609)
and hence

(610)

(611)

where (611) follows from Taylor’s formula.

APPENDIX L
PROOF OF THEOREM 54

It is convenient to split the proof of Theorem 54 into three
parts. We first address the converse parts.

Theorem 65: For the AWGN channel with SNR and
and equal-power constraint we have

(612)

where the capacity and dispersion are defined in (292) and
(293).

Proof: Take and as in Section III-J.
There we have shown that, for any the distribution of

is the same as that of in (205). Thus, using (106),
we have for any ,

(613)

(614)

with

(615)
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and the ’s are i.i.d. standard normal. Note that and

(616)

(617)

(618)

(619)

Furthermore, define

(620)

(621)

Then for we have

(622)

For such choose

(623)

Then from Theorem 44, we have

(624)

(625)

On substituting (625) into (613) we obtain

(626)

Using Theorem 31, this implies

(627)

From Taylor’s theorem, for some ,
we have

(628)

Without loss of generality, we assume that ,
for all (otherwise just increase until this
is true). Since is a continuous function on , we can
lower bound by

(629)

where . Note that is a con-

tinuous function of and . This results in

(630)

Substituting this bound into (627) and defining

(631)

we arrive at

(632)

Corollary 66: For the AWGN channel with SNR and for
each , we have

(633)

(634)

Proof: By Lemma 39 we have

(635)

Therefore from (612) and Taylor’s theorem we get (633).
To prove (634) we set

(636)

(637)

where and are continuous functions defined in (621) and
(631). Now set and use Lemma 39. Then for
all according to Theorem 65 we have

(638)

(639)

(640)

After repeated use of Taylor’s theorem we can collect all ,
and terms into , and (634) follows.

Theorem 67: For the AWGN channel with SNR and for
, we have

(641)

Obtaining an expansion up to would only require
Lemma 43. However, to refine the term to requires a
certain lower bound on uniform in because we
need to set instead of .
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Proof of Theorem 67: We will use all the notation of the
proof of Theorem 65, but redefine

(642)

Note that for sufficiently large and the definition of
in (623) is meaningful.

As in (625) we conclude that

(643)

In other words, we have proven that for

(644)

we obtain

(645)

for sufficiently large and any . Therefore, by setting

(646)

we have

(647)

(648)

(649)

(650)

where the (649) is by Lemma 47.
Finally, we use general Theorem 25 with to obtain

(651)

For the chosen Lemma 61 gives

(652)

This inequality, together with (650), yields

(653)

It is easy to see that and,
thus, for we have

(654)

Proof of Theorem 54: Expansion (291) is implied by (294)
and (295). The lower bounds in (294) and (295) follow from
(641). The upper bound in (294) is given by (612) for equal-
power constraint and by (633) for maximal-power constraint.
The upper bound in (295) is proved by (634).
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