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Abstract—We derive bounds on the noncoherent capacity of
wide-sense stationary uncorrelated scattering (WSSUS) channels
that are selective both in time and frequency, and are underspread,
i.e., the product of the channel’s delay spread and Doppler spread
is small. The underspread assumption is satisfied by virtually all
wireless communication channels. For input signals that are peak
constrained in time and frequency, we obtain upper and lower
bounds on capacity that are explicit in the channel’s scattering
function, are accurate for a large range of bandwidth, and allow
to coarsely identify the capacity-optimal bandwidth as a function
of the peak power and the channel’s scattering function. We also
obtain a closed-form expression for the first-order Taylor series
expansion of capacity in the infinite-bandwidth limit, and show
that our bounds are tight in the wideband regime. For input
signals that are peak constrained in time only (and, hence, allowed
to be peaky in frequency), we provide upper and lower bounds
on the infinite-bandwidth capacity. Our lower bound is closely
related to a result by Viterbi (1967). We find cases where the
bounds coincide and, hence, the infinite-bandwidth capacity is
characterized exactly.

The analysis in this paper is based on a discrete-time discrete-
frequency approximation of WSSUS time- and frequency-selective
channels. This discretization takes the underspread property of the
channel explicitly into account.

Index Terms—Noncoherent capacity, underspread channels,
wideband channels.

I. INTRODUCTION AND OUTLINE

A. Models for Fading Channels

C HANNEL capacity is a benchmark for the design of any
communication system. The techniques used to compute,

or to bound, channel capacity often provide guidelines for
the design of practical systems, e.g., how to best utilize the
resources bandwidth and power, and how to design efficient
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modulation and coding schemes [1, Sec. III-C.3]. Our goal in
this paper is to analyze the capacity of wireless communication
channels that are of direct practical relevance . We believe that
an accurate stochastic model for such channels should take the
following aspects into account.

• The channel is selective in time and frequency, i.e., it ex-
hibits memory in frequency and in time, respectively.

• Neither the transmitter nor the receiver knows the instan-
taneous realization of the channel.

• The peak power of the input signal is limited.
These aspects are important because they arise from practical
limitations of real-world communication systems: temporal
variations of the environment and multipath propagation are
responsible for channel selectivity in time and frequency,
respectively [2], [3]; perfect channel knowledge at the receiver
is impossible to obtain because channel state information needs
to be extracted from the received signal; finally, realizable
transmitters are always limited in their peak output power [4].
The above aspects are also fundamental as they significantly
impact the behavior of channel capacity: for example, the
capacity of a block-fading channel behaves differently from
the capacity of a channel that is stationary in time [5]; channel
capacity with perfect channel knowledge at the receiver is
always larger than capacity without channel knowledge [6],
and the signaling schemes necessary to achieve capacity are
also very different in the two cases [1]; finally, a peak constraint
on the transmit signal can lead to vanishing capacity in the
large-bandwidth limit [7]–[9], while without a peak constraint
the infinite-bandwidth additive white Gaussian noise (AWGN)
capacity can be attained asymptotically [7], [10]–[15].

Small-scale fading can be modeled by taking the channel
to be a stochastic Gaussian linear time-varying (LTV) system
[2]; in particular, we base our developments on the widely used
wide-sense stationary uncorrelated scattering (WSSUS) model
for random LTV channels [12], [16].1

Like most models for real-world communication channels,
the WSSUS model is time continuous; however, almost all tools
for information-theoretic analysis of noisy channels require a
discretized representation of the channel’s input–output (IO)
relation. Several approaches to discretize random LTV chan-
nels have been proposed in the literature, e.g., sampling [8],
[16], [20] or basis expansion [21], [22]; all these discretized
models incur an approximation error with respect to the con-
tinuous-time WSSUS model that is often difficult to quantify.

1Information-theoretic analyses of wireless channels that do not satisfy the
WSSUS assumption, and for which—differently from the WSSUS case—the
number of stochastic degrees of freedom [17] scales sublinearly with bandwidth,
can be found, for example, in [18], [19].
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As virtually all wireless channels of practical interest are un-
derspread, i.e., the product of maximum delay and maximum
Doppler shift is small, we build our information-theoretic anal-
ysis upon a discretization of LTV channels that takes the under-
spread property explicitly into account to minimize the approx-
imation error in the mean-square sense.

B. Capacity of Noncoherent WSSUS Channels

Throughout the paper, we assume that both the transmitter
and the receiver know the channel law2 but both are ignorant of
the channel realization, a setting often called noncoherent. In the
following, we refer to channel capacity in the noncoherent set-
ting simply as capacity. In contrast, in the coherent setting the
receiver is also assumed to know the channel realization per-
fectly; the corresponding capacity is termed coherent capacity.

A general closed-form expression for the capacity of
Rayleigh-fading channels is not known, even if the channel
is memoryless [24]. However, several asymptotic results are
available. If only a constraint on the average transmitted power
is imposed, the AWGN capacity can be achieved in the infi-
nite-bandwidth limit also in the presence of fading. This result
holds for a wide variety of channel models [7], [10]–[15]. Verdú
showed that flash signaling, which implies unbounded peak
power of the input signal, is necessary and sufficient to achieve
the infinite-bandwidth AWGN capacity on block-memoryless
fading channels [14]. For the more general class of time- and
frequency-selective channels considered in the present paper,
a characterization of signaling schemes that are optimal in the
infinite-bandwidth limit is not available to date; preliminary
results are presented in [15]. If the peakiness of the input signal
is restricted, the infinite-bandwidth capacity behavior of most
fading channels changes drastically, and the limit depends on
the type of peak constraint imposed [7]–[9], [13], [25]. In this
paper, we distinguish between a peak constraint in time only
and a peak constraint in time and frequency.

1) Peak Constraint in Time: No closed-form capacity expres-
sion, not even in the infinite-bandwidth limit, seems to be avail-
able to date for time- and frequency-selective WSSUS channels.
Viterbi’s analysis [25] provides a result that can be interpreted as
a lower bound on the infinite-bandwidth capacity of time- and
frequency-selective channels. This lower bound is in the form
of the infinite-bandwidth AWGN capacity minus a penalty term
that depends on the channel’s power-Doppler profile [16]. For
channels that are time selective but frequency flat, structurally
similar expressions were found for the infinite-bandwidth ca-
pacity [26], [27] and for the capacity per unit energy [28].

2) Peak Constraint in Time and Frequency: Although a
closed-form capacity expression valid for any bandwidth is not
available, it is known that the infinite-bandwidth capacity is
zero for various channel models [7]–[9]. This asymptotic ca-
pacity behavior implies that signaling schemes that spread the
transmit energy uniformly across time and frequency perform
poorly in the large-bandwidth regime. Even more useful for
performance assessment would be capacity bounds for finite
bandwidth. For frequency-flat time-selective channels, such
bounds can be found in [29], [30], while for the more general

2This implies that the codebook and the decoding strategy can be optimized
accordingly [23].

time- and frequency-selective case treated in the present paper,
upper bounds seem to be available only on the rates achievable
with particular signaling schemes, namely, for orthogonal fre-
quency-division multiplexing (OFDM) with constant-modulus
symbols [31], and for multiple-input multiple-output (MIMO)
OFDM with unitary space–frequency codes over frequency-se-
lective block-fading channels [32].

C. Contributions

We use a discrete-time discrete-frequency approximation of
continuous-time underspread WSSUS channels, described in
[33] and refined in Section II, to obtain the following results.

• We derive, in Section III, upper and lower bounds on
capacity under a constraint on the average power and
under a peak constraint in both time and frequency. These
bounds are valid for any bandwidth, are explicit in the
channel’s scattering function, and generalize the results
on achievable rates in [31]. In particular, our bounds allow
to coarsely identify the capacity-optimal bandwidth for a
given peak constraint and a given scattering function.

• Under the same peak constraint in time and frequency, we
find, in Section III-E, the first-order Taylor series expan-
sion of channel capacity in the limit of infinite bandwidth.
This result extends the asymptotic capacity analysis for fre-
quency-flat time-selective channels in [30] to channels that
are selective in both time and frequency.

• In the infinite-bandwidth limit and for transmit signals
that are peak-constrained in time only, we recover, in
Section IV, Viterbi’s capacity lower bound [25]. In ad-
dition, we derive an upper bound that coincides with the
lower bound for a specific class of channels; hence, the
infinite-bandwidth capacity for this class of channels is
established.

The results in this paper rely on several versions of Szegö’s
theorem on the asymptotic eigenvalue distribution of Toeplitz
matrices [34], [35]; in particular, we use various exten-
sions of Szegö’s theorem to two-level Toeplitz matrices, i.e.,
block-Toeplitz matrices that have Toeplitz blocks [36], [37].
Another key ingredient for several of our proofs is the relation
between mutual information and minimum mean-square error
(MMSE) discovered by Guo et al. [38]. Furthermore, we use a
property of the information divergence of orthogonal signaling
schemes derived by Butman and Klass [39].

D. Notation

Uppercase boldface letters denote matrices and lowercase
boldface letters designate vectors. The superscripts , , and

stand for transposition, element-wise conjugation, and Her-
mitian transposition, respectively. For two matrices and

of appropriate dimensions, the Hadamard (element-wise)
product is denoted as ; to simplify notation, we use the
convention that the ordinary matrix product always precedes
the Hadamard product, i.e., means for some
matrix of appropriate dimension. We designate the identity
matrix of dimension as and the all-zero vector of
appropriate dimension as . We let denote a diagonal
square matrix whose main diagonal contains the elements of
the vector . The determinant, trace, and rank of the matrix
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are denoted as , , and , respectively, and
is the th eigenvalue of a square matrix . The function

is the Dirac distribution, and is defined as
and for all . All logarithms are to the base .
The real part of the complex number is denoted as . For
two functions and , the notation
for means that . The largest
integer smaller or equal to is denoted as . A signal
is an element of the Hilbert space of square-integrable
functions. The inner product between two signals and

is denoted as . For a random
variable (RV) with distribution , we write . We
denote expectation by , and use the notation to stress
that the expectation is taken with respect to the RV . We write

for the Kullback–Leibler (KL) divergence between
the two distributions and . Finally, stands
for the distribution of a jointly proper Gaussian (JPG) random
vector with mean and covariance matrix .

II. CHANNEL AND SYSTEM MODEL

A channel model needs to strike a balance between generality,
accuracy, engineering relevance, and mathematical tractability.
In the following, we start from the classical WSSUS model for
LTV channels [12], [16] because it is a fairly general, yet ac-
curate and mathematically tractable model that is widely used.
This model has a continuous-time IO relation that is difficult to
use as a basis for information-theoretic studies. However, if the
channel is underspread it is possible to closely approximate the
original WSSUS IO relation by a discretized IO relation that is
especially suited for the derivation of capacity results. In partic-
ular, the capacity bounds we derive in this paper can be directly
related to the underlying continuous-time WSSUS channel as
they are explicit in its scattering function.

A. Time- and Frequency-Selective Underspread Fading
Channels

1) The Channel Operator: The action of a wireless channel
can be described as a linear integral operator that
maps input signals into output signals according to the
IO relation [16]

(1)

Here, the kernel can be interpreted as the channel re-
sponse at time to a Dirac impulse at time . Instead of two
variables that denote absolute time, it is common in the engi-
neering literature to use absolute time and delay . This leads
to the time-varying impulse response
and the corresponding noise-free IO relation

(2)

Two more system functions that will be important in the fol-
lowing developments are the time-varying transfer function

(3)

and the Doppler-delay spreading function

(4)

In particular, if we rewrite the IO relation (2) in terms of the
spreading function as

(5)

we obtain an intuitive physical interpretation: the output signal
is a weighted superposition of copies of the input signal
that are shifted in time by the delay and in frequency by

the Doppler shift .
2) Stochastic Characterization and WSSUS Assumption: It

is sensible to model wireless channels as random: first, because
a deterministic description of the physical propagation environ-
ment is too complex in most cases of practical interest, and
second, because a stochastic description is more robust, in the
sense that systems designed on the basis of a stochastic channel
model can be expected to work in a variety of different propa-
gation environments [3]. Consequently, we assume that is a
random operator.

For mathematical tractability, we need to make additional as-
sumptions on the system functions. We take to be a
zero-mean JPG random process in and . Indeed, the Gaussian
distribution is empirically supported for narrowband channels
[2]. Even ultrawideband (UWB) channels with bandwidth up
to several gigahertz can be modeled as Gaussian distributed
[17]. By virtue of Gaussianity, is completely charac-
terized by its correlation function. Yet, this correlation func-
tion is four-dimensional and thus difficult to work with. A fur-
ther simplification is possible if we assume that the channel
process is wide-sense stationary in time and uncorrelated in
delay , the so-called WSSUS assumption [16].3 As a conse-
quence, is wide-sense stationary both in time and
frequency ; equivalently, is uncorrelated in Doppler

and delay [16]:

The function is called the channel’s (time-frequency)
correlation function, and is called the scattering func-
tion of the channel . The two functions are related by a two-di-
mensional Fourier transform

(6)

The scattering function is nonnegative and real-valued
for all and , and can be interpreted as the spectrum of the
channel process. The power–delay profile of is defined as

3The WSSUS assumption implies that for any ���� � � , the corresponding
output signal ���� in (2) is a JPG process with finite average energy [9, Propo-
sition III.1].
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and the power–Doppler profile as

The WSSUS assumption is widely used in wireless channel
modeling [1], [2], [12], [16], [40], [41]. It is in good agree-
ment with measurements of tropospheric scattering channels
[12], and provides a reasonable model for many types of mo-
bile radio channels [42]–[44], at least over a limited time du-
ration and bandwidth [16]. Furthermore, the scattering function
can be directly estimated from measured data [45], [46], so that
capacity expressions and bounds that explicitly depend on the
channel’s scattering function can be evaluated for many chan-
nels of practical interest.

B. The Underspread Assumption and Its Consequences

Because the velocity of the transmitter, of the receiver, and
of the objects in the propagation environment is limited, so is
the maximum Doppler shift experienced by the transmitted
signal. We also assume that the maximum delay is strictly
smaller than . For simplicity and without loss of generality,
throughout this paper, we consider scattering functions that
are centered at and , i.e., we remove any overall
fixed delay and Doppler shift. The assumptions of limited
Doppler shift and delay then imply that the scattering function
is supported on a rectangle of spread , i.e.,

for (7)

Condition (7) in turn implies that the spreading function
is also supported on the same rectangle with proba-

bility (w.p. ). If , the channel is said to be under-
spread [12], [16], [33]. Virtually all channels in wireless
communication are highly underspread, with
for typical land-mobile channels and as low as for
some indoor channels with restricted mobility of the termi-
nals [47]–[49]. The underspread property of typical wireless
channels is important because underspread channels have a
well-structured set of approximate eigenfunctions that can be
used to discretize the channel IO relation as described next.

1) Diagonalization Through Singular-Value Decomposition:
In information-theoretic analyses of continuous-time channels,
it is convenient to first assume that the input signal has
finite time duration and that the output signal is observed
over the same time duration [13, Sec. 8.4]. In a second step,

is taken to infinity. It is possible to incorporate these time
limitations into the channel operator by setting for

and , w.p. . The resulting operator is no
longer WSSUS; it is, however, compact if for

. Compactness implies
that the kernel of can be expressed in terms of its positive
singular values , its left singular functions , and its
right singular functions [50, Theorem 6.14.1], according
to

(8)

The sets and are complete orthonormal sets in
the range space and the input space of , respectively. Hence,
any time-limited input signal is completely characterized by its
projections onto , and, similarly, any time-limited output
signal by its projections onto . These projections to-
gether with the kernel decomposition (8) yield a countable set
of scalar IO relations, which we refer to as the diagonalization
of . The discretization method just described is used in [51]
to compute the capacity of band-limited AWGN channels and
in [13] to compute the capacity of deterministic linear time-in-
variant (LTI) channels.

Because the right and left singular functions depend on the re-
alization of , diagonalization requires perfect channel knowl-
edge at both transmitter and receiver. But this knowledge is not
available in the noncoherent setting. In contrast, if the singular
functions of the random channel did not depend on the partic-
ular channel realization, we could diagonalize without knowl-
edge of the channel realization.

While for general random LTV channels the singular func-
tions do depend on the channel realization, the situation
is different in the underspread case. In particular, we base
our discretization on the following fundamental properties
of underspread random LTV channels: these channels are
approximately normal [33], [52] (so that the singular-value
decomposition (8) can be replaced by an eigenvalue decom-
position) and their eigenfunctions can be well approximated
by deterministic functions that are well localized in time and
frequency. More precisely, any underspread channel has the
following properties [33], [41], [52].

1) Any deterministic unit-energy signal that is well local-
ized4 in time and frequency is an approximate eigenfunc-
tion of in the mean-square sense, i.e., the mean-square
error is small if is underspread.
This error can be further reduced by an appropriate choice
of , where the choice depends on the scattering func-
tion .

2) If is an approximate eigenfunction as defined in the
previous point, then so is for
any time shift and any frequency shift .

3) For any , the samples of the time-varying
transfer function are approximate eigenvalues
of corresponding to the approximate eigenfunc-
tions , in the sense that the mean-square error

is small.
A proof of these properties is given in Appendix A (see, in par-
ticular, Lemma 9 and Lemma 10).

Next, we use these properties to construct a set of determin-
istic approximate channel eigenfunctions that will be used to
discretize the channel IO relation.

2) The Set of Approximate Eigenfunctions: As approx-
imate eigenfunctions we take the Weyl–Heisenberg set

of time–frequency shifted
versions of a single well-localized prototype function .
We choose and the shift parameters and so that the

4We measure the joint time–frequency localization of a signal ���� through
the product of its effective duration and its effective bandwidth, defined in Ap-
pendix A, (62).
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resulting Weyl–Heisenberg set is orthonormal. The require-
ment that the are orthonormal and at the same time
well localized in time and frequency implies [53], as
a consequence of the Balian–Low theorem [54, Ch. 8]. Large
values of the product allow for better time–frequency
localization of , but result in a loss of dimensions in signal
space compared to the critically sampled case , for
which Weyl–Heisenberg sets that are complete in can be
constructed. The samples are approximate eigen-
values of by Property 3. Because the support of
is strictly limited in Doppler and delay , it follows from
the sampling theorem and the Fourier transform relation (4)
that the samples , taken on a rectangular grid with

and , are sufficient to characterize
exactly. We assume in the remainder of the paper that

and satisfy these Nyquist conditions.
3) Approximate Diagonalization: We consider input signals

that can be expressed as linear combinations of the functions
in the set .5 All physically realizable transmit signals
are effectively time and band limited.6 As the prototype function

is well concentrated in time and frequency by construction,
we can model the effective time and band limitation of by
using only a finite number of functions . The transmitted
signal

(9)

has, for example, effective duration and effective
bandwidth . We say that the coefficient is the
transmit symbol in the time–frequency slot . The signaling
scheme (9) can be interpreted as pulse-shaped (PS) OFDM [55].

At the receiver, we compute the projections of the noisy re-
ceived signal

(10)

where is white Gaussian noise, onto the set

(11)

The orthonormality of the set implies that the dis-
cretized noise signal is JPG, independent and identi-
cally distributed (i.i.d.) over time and frequency ; for con-
venience, we normalize the noise variance so that

for all and . By Property 3 above, the first term
on the right-hand side (RHS) of (11) can be approximated by

5Because the set �� ���� is not complete in � when �� � �, we cannot
represent all input signals in � in the form (9). We comment on this issue at
the end of this subsection.

6The effective duration and effective bandwidth of a signal are defined in
Appendix A, (62).

. The second term on the RHS of (11) can
be interpreted as intersymbol interference (ISI) and intercarrier
interference (ICI). In Appendix A, (70), we provide an upper
bound on the mean-square energy of this interference term, and
we show how this upper bound can be minimized by a careful
choice of the signal and of the grid parameters and
[20], [33], [56]. For general scattering functions, the optimiza-
tion of the triple needs to be performed numeri-
cally; a general guideline is to choose and such that (see
Appendix A)

(12)

The larger the product , the more effective the reduction
in ISI and ICI, but the larger as well the loss of dimensions in
signal space. Heuristically, a good compromise between loss of
dimensions in signal space and reduction of ISI and ICI seems to
result for [55]–[57]. Conventional OFDM systems
employing a cyclic prefix incur a similar dimension loss [56].

In summary, the observations above suggest that we can ap-
proximate the IO relation (11) by the following diagonalized IO
relation:

(13)

which is more amenable to an information-theoretic analysis.
Note that (13) no longer depends on the prototype pulse ,
but still depends on the grid parameters and .

The approximate diagonalization we presented in this section
hints at the existence of a tradeoff between time–frequency lo-
calization of (and, hence, small ISI and ICI) and loss of di-
mensions in signal space. Good localization of is crucial for
(13) to approximate (11) accurately. Small loss of dimensions
in signal space is required for the capacity of the discretized
channel (11) to be close to the capacity of the underlying con-
tinuous-time channel (10) [57], [58]. As the focus of this paper
will be on the large-bandwidth (i.e., low-signal-to-noise ratio
(SNR)) regime, where capacity is not very sensitive to a loss in
signal-space dimensions [57], we conclude that the diagonalized
IO relation (13) is a sensible approximation of (11). An infor-
mation-theoretic rigorous description of the discretization step
we presented in this section is provided in [57], [58].

C. Discrete-Time Discrete-Frequency IO Relation

The discrete-time discrete-frequency channel coefficients
constitute a two-dimensional discrete-parameter

stationary random process that is JPG with zero mean and
correlation function

(14)

The two-dimensional power spectral density of is de-
fined as

(15)
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We shall often need the following expression for in terms
of the scattering function :

(16)

where follows from the Fourier transform relation (6), and
results from Poisson’s summation formula. The variance of

each channel coefficient is given by

(17)

where follows from (16), and results because we
chose the grid parameters to satisfy the Nyquist conditions

and , so that periodic repetitions
of the compactly supported scattering function lie outside of
the integration region. Finally, follows from the change of
variables and . For ease of notation, we
normalize throughout the paper.

For each time slot , we arrange the discretized input signal
, the discretized output signal , the channel coef-

ficients , and the noise samples in corresponding
vectors. For example, the -dimensional vector that contains
the input symbols in the th time slot is defined as

The output vector , the channel vector , and the noise
vector are defined analogously. This notation allows us to
rewrite the IO relation (13) as

(18)

for all . In this formulation, the channel is a multivariate sta-
tionary process with matrix-valued correlation function

...
...

. . .
...

(19)

In most of the following analyses, we initially consider a fi-
nite number of time slots and then let . To obtain a

compact notation, we stack contiguous elements of the mul-
tivariate input, channel, and output processes just defined. For
the channel input, this results in the -dimensional vector

(20)

Again, the stacked vectors , , and are defined analogously.
With these definitions, we can now compactly express the IO
relation (13) as

(21)

We denote the correlation matrix of the stacked channel vector
by . Because the channel process is

stationary in time and in frequency, is a two-level Hermitian
Toeplitz matrix, given by

...
...

. . .
...

(22)

D. Power Constraints

Throughout the paper, we assume that the average power of
the transmitted signal is constrained as .
In addition, we limit the peak power to be no larger than times
the average power, where is the nominal peak-to-av-
erage-power ratio (PAPR).

The multivariate IO relation (21) allows to constrain the peak
power in several different ways. We analyze the following two
cases.

1) Peak Constraint in Time: The power of the transmitted
signal in each time slot is limited as

w.p. (23)

This constraint models the fact that physically realizable
power amplifiers can only provide limited output power
[4].

2) Peak Constraint in Time and Frequency: Regulatory bodies
sometimes limit the peak power in certain frequency bands,
e.g., for UWB systems. We model this type of constraint
by imposing a limit on the squared amplitude of the trans-
mitted symbols in each time–frequency slot
according to

w.p. (24)

This type of constraint is more stringent than the peak con-
straint in time given in (23).

Both peak constraints above are imposed on the input symbols
. This limitation is mathematically convenient; however,

the peak value of the corresponding transmitted continuous-time
signal in (9) also depends on the prototype signal , so
that a peak limit on does not necessarily imply that
is peak limited.
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III. CAPACITY BOUNDS UNDER A PEAK CONSTRAINT

IN TIME AND FREQUENCY

In the present section, we analyze the capacity of the dis-
cretized channel in (13) subject to the peak constraint in time
and frequency specified by (24). The link between the dis-
cretized channel (13) and the continuous-time channel (10)
established in Section II-B then allows us to express the re-
sulting bounds in terms of the scattering function of
the underspread WSSUS channel .

As we assumed that the channel process has a spec-
tral density (given in (16)), the vector process is ergodic
[59] and the capacity of the discretized underspread channel
(21) is [28, Proposition 2.1]

nat/s (25)

for a given bandwidth . Here, the supremum is taken
over the set of all input distributions that satisfy the average-
power constraint and the peak constraint
(24).

The capacity of fading channels with finite bandwidth has so
far resisted attempts at closed-form solutions [24], [60], [61],
even for the memoryless case; thus, we resort to bounds to char-
acterize the capacity (25). In particular, we obtain the following
results.

• An upper bound based on the assumption that the
receiver has perfect knowledge of the channel realization.
This bound is standard; it turns out to be useful for small
bandwidth.

• An upper bound that is useful for medium to large
bandwidth. This bound is explicit in the channel’s scat-
tering function and extends the upper bound [30, Propo-
sition 2.2] on the capacity of frequency-flat time-selective
channels to general underspread channels that are selective
in time and frequency.

• A lower bound that extends the lower bound [29,
Proposition 2.2] to general underspread channels that are
selective in time and frequency. This bound is explicit in
the channel’s scattering function only for large bandwidth.

A. Coherent Upper Bound

The assumption that the receiver perfectly knows the instan-
taneous channel realization furnishes the following standard ca-
pacity upper bound [1, Sec. III-C.1]

(26)

where . For a discretization of the WSSUS
channel different from the one in Section II-B, Médard and
Gallager [8] showed that the corresponding capacity vanishes
with increasing bandwidth if the peakiness of the input signal is
constrained in a way that includes our peak constraint (24). In
contrast, the upper bound monotonically increases in

; hence, it does not accurately reflect the capacity behavior
for large bandwidth. However, we demonstrate in Section III-D
by means of a numerical example that can be quite
useful for small and medium bandwidth.

B. An Upper Bound for Large but Finite Bandwidth

To better understand the capacity behavior at large band-
width, we derive an upper bound that captures the
effect of diminishing capacity in the large-bandwidth regime.
The upper bound is explicit in the channel’s scattering
function .

1) The Upper Bound:

Theorem 1: Consider an underspread Rayleigh-fading
channel with scattering function ; assume that
the channel input satisfies the average-power constraint

and the peak constraint
w.p. . The capacity of this channel is upper-bounded

as , where

(27a)

with

(27b)

and

(27c)

Proof: To bound , we first use the chain rule
for mutual information, . Next,
we split the supremum over into two parts, similarly as in the
proof of [30, Proposition 2.2]: one supremum over a restricted
set of input distributions that satisfy the peak constraint (24)
and have a prescribed average power for
some fixed parameter , and another supremum over
the parameter . Both steps together yield the upper bound

(28)

Next, we bound the two terms inside the braces individually.
While standard steps suffice for the bound on the first term, the
second term requires some more effort; we relegate some of the
more technical steps to Appendix B.

a) Upper bound on the first term: The output vector de-
pends on the input vector only through , so that

. To upper-bound the mutual information
, we take as JPG with zero mean and covariance matrix

. Then

(29)
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where follows from Hadamard’s inequality and from
Jensen’s inequality.

b) Lower bound on the second term: We use the fact that
the channel is JPG, so that

Next, we expand the expectation operator as follows:

(30)

where is the
integration domain because the input distribution satisfies the
peak constraint (24). Both factors under the integral are nonneg-
ative; hence, we obtain a lower bound on the expectation if we
replace the first factor by its infimum over

(31)

As the matrix is positive semidefinite, the above in-
fimum is achieved on the boundary of the admissible set
[28, Sec. VI-A], i.e., by a vector whose entries satisfy

. We use this fact and the relation
between mutual information and MMSE, discovered by Guo
et al. [38], to further lower-bound the infimum on the RHS in
(31). The corresponding derivation is detailed in Appendix B;
it results in

(32)

where , defined in (15), is the two-dimensional power
spectral density of the channel process . Finally, we
use the bound (32) in (31), and relate to the scattering
function by means of (16) to get

(33)

where in the last two steps we proceeded as in (17).

c) Completing the proof: We insert (29) and (33) in (28),
divide by , and set to obtain the following upper
bound on capacity:

(34)

As the function to maximize in (34) is concave in , the max-
imizing value is unique. To conclude the proof and obtain the
bound (27), we perform an elementary optimization over to
find the maximizing given in (27b).

The upper bound in Theorem 1 generalizes the upper bound
[31, eq. (2)], which holds only for constant modulus signals,
i.e., for signals whose magnitude is the same for all

and . The bounds (27a) and [31, eq. (2)] are both explicit
in the channel’s scattering function, have similar structure, and
coincide for when in (27b).

2) Conditions for : If , the first term
on the RHS of (27a) can be interpreted as the capacity of an ef-
fective AWGN channel with receive power and de-
grees of freedom, while the second term can be seen as a penalty
term that characterizes the capacity loss because of channel un-
certainty. We highlight the relation between this penalty term
and the error in predicting the channel from its noisy past and
future in Appendix B. For , the upper bound (27a) has
a more complicated structure, which is difficult to interpret. We
show in Appendix C that a sufficient condition for
is7

(35a)

and

(35b)

As virtually all wireless channels are highly underspread, as
, and as, typically, , condition (35a) is satisfied

in all cases of practical interest, so that the only relevant condi-
tion is (35b); but even for large channel spread , this condi-
tion holds for all SNR values8 of practical interest. As an
example, consider a system with and spread ;
for this choice, (35b) is satisfied for all SNR values less than
153 dB. As this value is far in excess of the receive SNR en-
countered in practical systems, we can safely claim that a ca-
pacity upper bound of practical interest results if we substitute

in (27a).
3) Impact of Channel Characteristics: The spread and

the shape of the scattering function are important char-
acteristics of wireless channels. As the upper bound (27) is ex-
plicit in the scattering function, we can analyze its behavior as a
function of and . We restrict our discussion to the
practically relevant case .

7More precisely, we derive in Appendix C a less restrictive sufficient condi-
tion for ��� � � �, which implies (35a) and (35b).

8Recall that we normalized � � �.
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a) Channel spread: For fixed shape of the scattering func-
tion, the upper bound decreases with increasing spread

. To see this, we define a normalized scattering function
with unit spread, so that

By a change of variables, the penalty term can now be written
as

(36)

Because is monotonically increasing in
for any positive constant , the penalty term in-
creases with increasing spread . As the first term in (27a)
does not depend on , the upper bound decreases with
increasing spread.

b) Shape of the scattering function: For fixed spread ,
the scattering function that results in the lowest upper bound

is the “brick-shaped” scattering function
for . We prove this claim

in two steps. First, we apply Jensen’s inequality to the penalty
term in (27c)

(37)

Second, we note that a brick-shaped scattering function achieves
this upper bound.

The observation that a brick-shaped scattering function mini-
mizes the upper bound sheds some light on the common
practice to use and , rather than in the design of a
communication system. A design on the basis of and is im-
plicitly targeted at a channel with brick-shaped scattering func-
tion, which yields the lowest upper bound for fixed and .

C. Lower Bound

1) A Lower Bound in Terms of the Multivariate Spectrum of
: To state our lower bound on capacity, we require the

following definitions.
• Let denote the matrix-valued power spectral density

of the multivariate channel process , i.e.,

(38)

• Let denote the coherent mutual information of
a scalar, memoryless Rayleigh-fading channel

with , additive noise ,
and zero-mean constant-modulus input signal, i.e.,

w.p. .

Theorem 2: Consider an underspread Rayleigh-fading
channel with scattering function . Assume that
the channel input satisfies the average-power constraint

and the peak constraint
w.p. . The capacity of this channel is lower-bounded

as , where

(39)

Proof: We obtain a lower bound on capacity by com-
puting the mutual information for a specific input distribution.
A simple scheme is to send symbols that have zero mean,
are i.i.d. over time and frequency slots, and have constant
magnitude, i.e., for
and . The average-power constraint is then
satisfied with equality. We denote a -dimensional input
vector that follows this distribution by ; this vector has entries

that are first stacked in frequency and then in time,
analogously to the definitions of and in Section II-C.

We use the chain rule for mutual information and the fact
that mutual information is nonnegative to obtain the following
bound:

(40)

Next, we evaluate the two terms on the RHS of the above in-
equality separately. The first term satisfies

(41)

where we set and for arbitrary and
because (i) the input vector has i.i.d. entries, and (ii) all

channel coefficients have the same distribution. The second term
equals

(42)

where follows from the identity
for any and of appropriate dimension [62,

Theorem 1.3.20], and follows from the constant modulus
assumption. We now combine the two terms (41) and (42), set

, divide by , and take the limit to obtain
the following lower bound:

(43)
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The correlation matrix is two-level Toeplitz, with blocks
that are correlation matrices , as shown in (22)
and (19), respectively. Hence, we can explicitly evaluate the
limit on the RHS of (43) and express it in terms of an integral
over the matrix-valued power spectral density of the mul-
tivariate channel process . By direct application of [37,
Theorem 3.4], an extension of Szegö’s theorem (on the asymp-
totic eigenvalue distribution of Toeplitz matrices) to two-level
Toeplitz matrices, we obtain

(44)

The lower bound that results upon substitution of (44) into (43)
can be tightened by time-sharing [29, Corollary 2.1]: we allow
the input signal to have squared magnitude during a
fraction of the total transmission time, where ;
for the remaining transmission time, the transmitter is silent, so
that the constraint on the average power is satisfied.

The evaluation of in (39) is complicated by two facts:
(i) the quantity in the first term on the RHS of
(39) needs to be evaluated for a constant-modulus input; (ii)
the eigenvalues of in the second term (the penalty term)
cannot, in general, be derived in closed form. While efficient
numerical algorithms exist to evaluate the coherent mutual in-
formation for constant-modulus inputs [63], nu-
merically computing the eigenvalues of the matrix
is challenging when is large. In the following lemma, we
present two bounds on the second term on the RHS of (39) that
are easy to compute.

Lemma 3: Let

(45)

Then, the penalty term in (39) (for the case ) can be
bounded as follows:

(46)

Furthermore, the following asymptotic results hold.
• The penalty term in (39) and its lower bound in (46)

have the same Taylor series expansion around the point
.

• For scattering functions that are flat in the Doppler domain,
i.e., that satisfy9

(47)
the upper and lower bounds in (46) have the same Taylor
series expansion around the point .

9The division by �� in (47) follows from the normalization � ��.

Proof: See Appendix D.

The bounds (46) on the penalty term allow us to further bound
. If we replace the penalty term in (39) by its upper bound

in (46), we obtain the following lower bound on and,
hence, on capacity:

(48)

The lower bound can be evaluated numerically in a
much more efficient way than because the coefficients

can be computed from the samples
through the discrete Fourier transform (DFT). If, instead, we
replace the penalty term in (39) by its lower bound in (46) we
obtain

(49)

Furthermore, for large bandwidth we can replace
in (49) by its second-order Taylor series expansion [14, The-
orem 14] to obtain the approximation

(50)

It follows from Lemma 3 that and have the same
Taylor series expansion around , so that

for large enough . Furthermore, for scat-
tering functions that satisfy (47) (e.g., a brick-shaped scattering
function), also and have the same Taylor series
expansion around . Hence,

for large enough , for scattering functions that sat-
isfy (47).

D. Numerical Example

We next evaluate the bounds in the previous section for the
following set of practically relevant system parameters.

• Brick-shaped scattering function with maximum delay
0.5 s, maximum Doppler shift 5 Hz, and

corresponding spread .
• Grid parameters 0.35 ms and 3.53 kHz, so that

and , as suggested by the design
rule (12).

• Receive power normalized with respect to the noise spec-
tral density

1 W/ Hz
s

These parameter values are representative for several different
types of systems. For example:
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Fig. 1. The upper bounds � �� � in (26) and � �� � in (27), as well as the lower bound � �� � in (48), and the large-bandwidth approximations of � �� � in
(49) and (50) for � � � and a brick-shaped scattering function with spread � � �� .

(a) An IEEE 802.11a system with transmit power of 200 mW,
path loss of 118 dB, and receiver noise figure [64] of 5 dB;
the path loss is rather pessimistic for typical indoor link
distances and includes the attenuation of the signal, e.g.,
by a concrete wall.

(b) A UWB system with transmit power of 0.5 mW, path loss
of 77 dB, and receiver noise figure of 20 dB.

Fig. 1 shows the upper bounds in (26) and
in (27), as well as the lower bound in (48), and the
large-bandwidth approximations in (49) and in
(50), all for . As brick-shaped scattering functions are flat
in the Doppler domain, i.e., they satisfy the condition in (47),
it follows from Lemma 3 that the difference between
and the lower bound in (48) vanishes as .
For our choice of parameters, this difference is so small, even
for finite bandwidth, that the curves for and the lower
bound cannot be distinguished in Fig. 1. As

, the lower bound is fully character-
ized as well.

The upper bound and the lower bound take
on their maximum at a large but finite bandwidth; beyond this
critical bandwidth, additional bandwidth is detrimental and the
capacity approaches zero as bandwidth increases further. In
particular, we can see from Fig. 1 that many current wireless
systems operate well below the critical bandwidth. It can
furthermore be verified numerically that the critical bandwidth
increases with decreasing spread, consistent with our analysis
in Section III-B.3. Furthermore, the gap between upper and
lower bounds increases with increasing .

For bandwidth smaller than the critical bandwidth,
comes quite close to the coherent-capacity upper bound ;
this seems to validate, at least for the setting considered, the

standard receiver design principle to first estimate the channel
and then use the resulting estimates as if they were perfect.

The approximate lower bound in (50) is accurate for
bandwidth above the critical bandwidth and very loose other-
wise. Furthermore, and seem to fully charac-
terize in the large-bandwidth regime. We will make this
statement precise in the next section, where we relate
and to the first-order Taylor series expansion of
around the point .

E. Capacity in the Infinite-Bandwidth Limit

The plots in Fig. 1 of the upper and the lower bounds seem
to coincide for large bandwidth; yet it is not clear a priori if the
bounds allow to characterize capacity in the limit . To
address this question, we next investigate if and
have the same first-order Taylor series expansion in around
the point .

Because the upper bound in (27) takes on two dif-
ferent values, depending on the value of the parameter
in (27b), its first-order Taylor series is somewhat tedious to de-
rive. We state the result in the following lemma and provide the
derivation in Appendix E.

Lemma 4: Let

(51)

Then, the upper bound (27) in Theorem 1 admits the following
first-order Taylor series expansion around the point :

(52a)
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where

if

if .

(52b)

We show in Appendix F that the Taylor series expansion of the
lower bound in (39) does not have the same first-order
term . This result is formalized in the following lemma.

Lemma 5: The lower bound (39) in Theorem 2 admits the
following first-order Taylor series expansion around the point

:

(53a)

where

(53b)

As in (52b) and in (53b) are different, the two bounds
and do not fully characterize in the wide-

band limit. In the next theorem, we show, however, that the
first-order Taylor series of in Lemma 4 indeed correctly
characterizes for .

Theorem 6: Consider an underspread Rayleigh-fading
channel with scattering function . Assume that
the channel input satisfies the average-power constraint

and the peak constraint
w.p. . The capacity of this channel has a

first-order Taylor series expansion around the point
equal to the first-order Taylor series expansion in (52).

Proof: We need a capacity lower bound different from
with the same asymptotic behavior for as

the upper bound . The key element in the derivation
of this new lower bound is an extension of the block-constant
signaling scheme used in [30] to prove asymptotic capacity
results for frequency-flat time-selective channels. In particular,
we use input signals with uniformly distributed phase whose
magnitude is toggled on and off at random with a prescribed
probability; hence, information is encoded jointly in the am-
plitude and in the phase. In comparison, the signaling scheme
used to obtain encodes information in the phase only.
We present the details of the proof in Appendix G.

Similar to the low-SNR capacity behavior of discrete-time
frequency-flat time-selective channels [30], the first-order
Taylor series coefficient in (52b) takes on two different forms
as a function of the channel parameters. However, the link
in (16) between the discretized channel and the WSSUS
channel allows us to conclude that , and
thus , holds for virtually all channels
of practical interest. In fact, by Jensen’s inequality, we have
that (with equality for brick-shaped scattering
functions); as a consequence, , and a
sufficient condition for is . For
typical values of (e.g., ) and typical values of

(e.g., ), this latter condition is satisfied for any
admissible .

We state in Lemma 5 that the first-order term in the Taylor
series expansion of the lower bound does not match the
corresponding term of the Taylor series expansion of capacity.
Yet, the plots of the upper and the lower bounds in Fig. 1 seem to
coincide at large bandwidth. This observation is not surprising
as the ratio

approaches for and fixed as grows large. For ex-
ample, we have for the same parameters we used
for the numerical evaluation in Section III-D, i.e., ,

, and .

IV. INFINITE-BANDWIDTH CAPACITY UNDER A PEAK

CONSTRAINT IN TIME

So far, we have considered a peak constraint in time and
frequency; we now analyze the case of input signals subject
to a peak constraint in time only, according to (23). The av-
erage-power constraint remains in force. In
addition, we focus on the infinite-bandwidth limit. By means of
a capacity lower bound that is explicit in the channel’s scattering
function, we show that the phenomenon of vanishing capacity
in the wideband limit can be eliminated if we allow the transmit
signal to be peaky in frequency. Furthermore, using the same ap-
proach as in the proof of Theorem 1, we obtain an upper bound
on the infinite-bandwidth capacity that, for , differs
from the corresponding lower bound only by a Jensen penalty
term. The two bounds coincide for brick-shaped scattering func-
tions when .

The infinite-bandwidth capacity of the channel (13) is defined
as

(54)

where the supremum is taken over the set of all input distri-
butions that satisfy the peak constraint (23) and the constraint

on the average power.

A. Lower Bound

We obtain a lower bound on by evaluating the mutual
information in (54) for a specific signaling scheme. As signaling
scheme, we consider a generalization of the on–off frequency-
shift keying (FSK) scheme proposed in [65]. The resulting lower
bound is given in the following theorem.

Theorem 7: Consider an underspread Rayleigh-fading
channel with scattering function ; assume that
the channel input satisfies the average-power constraint

and the peak constraint
w.p. . The infinite-bandwidth capacity of this channel is

lower-bounded as , where

(55)

and denotes the power-Doppler profile
of the channel.

Proof: See Appendix H.
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For , the lower bound in (55) coincides with Viterbi’s
result on the rates achievable on an AWGN channel with com-
plex Gaussian input signals of spectral density , modu-
lated by FSK tones [25, eq. (39)]. Viterbi’s setup is relevant
for our analysis because, for a WSSUS channel with power-
Doppler profile , the output signal that corresponds to an
FSK tone can be well-approximated by Viterbi’s transmit signal
whenever the observation interval at the receiver is large and the
maximum delay of the channel is much smaller than the ob-
servation interval [13, Sec. 8.6]. The proof technique used to
obtain Theorem 7 is, however, conceptually different from that
in [25]. On the basis of the interpretation of Viterbi’s signaling
scheme provided above, we can summarize the proof technique
in [25] as follows: first, a signaling scheme is chosen, namely
FSK, for transmission over a WSSUS channel; then, the re-
sulting stochastic process at the channel output is discretized by
means of a Karhunen–Loève decomposition; finally, the achiev-
able rates in [25, eq. (39)] are computed by means of an error
exponent analysis of the discretized stochastic process and by
means of [13, Lemma 8.5.3]—Szegö’s theorem on the asymp-
totic eigenvalue distribution of self-adjoint Toeplitz operators.
To prove Theorem 7, on the other hand, we first discretize the
WSSUS underspread channel; the rate achievable for a specific
signaling scheme, which resembles FSK, then yields the infi-
nite-bandwidth capacity lower bound (55). The main tool used
in the proof of Theorem 7 is a property of the information di-
vergence of FSK constellations, first presented by Butman and
Klass [39].

For , i.e., when the input signal is subject only to an
average-power constraint, in (55) approaches the infinite-
bandwidth capacity of an AWGN channel with the same receive
power, as previously demonstrated by Gallager [13]. The sig-
naling scheme used in the proof of Theorem 7 is, however, not
the only scheme that approaches this limit when no peak con-
straints are imposed on the input signal. In [15], we presented
another signaling scheme, namely, time-frequency pulse posi-
tion modulation, which exhibits the same behavior. The proof
of [15, Theorem 1] is similar to the proof of Theorem 7 in Ap-
pendix H.

B. Upper Bound

In Theorem 8, we present an upper bound on and identify
a class of scattering functions for which this upper bound and
the lower bound (55) coincide if . Differently from
the lower bound, which can be obtained both through Viterbi’s
approach and through our approach, the upper bound presented
below is heavily built on the discretization of the continuous-
time WSSUS underspread channel presented in Section II-B.

Theorem 8: Consider an underspread Rayleigh-fading
channel with scattering function ; assume that
the channel input satisfies the average-power constraint

and the peak constraint
w.p. . The infinite-bandwidth capacity of this channel is

upper-bounded as , where

(56)

Proof: See Appendix J.

As the upper bound (56) is a decreasing function of , and as
has to satisfy the Nyquist condition , the upper

bound is minimized when . For this value of ,
Jensen’s inequality applied to the second term on the RHS of
(56) yields

(57)

Hence, for , the upper bound (56) and the lower
bound (55) differ only by a Jensen penalty term. It is interesting
to observe that the Jensen penalty in (57) is zero whenever the
scattering function is flat in the delay domain, i.e., whenever

is of the form10

(58)

In this case, the upper and lower bounds coincide and the infinite
bandwidth capacity is fully characterized by

(59)

Expressions similar to (59) were found in [28] for the capacity
per unit energy of a discrete-time frequency-flat time-selective
channel, and in [26], [27] for the infinite-bandwidth capacity
of the continuous-time counterpart of the same channel; in all
cases a peak constraint is imposed on the input signals.

V. CONCLUSION

The underspread Gaussian WSSUS channel with a peak
constraint on the input signal is a fairly accurate and general
model for wireless channels. Despite the model’s mathematical
elegance and simplicity, it appears to be difficult to compute
the corresponding capacity. To nonetheless study capacity as a
function of bandwidth, we have taken a three-step approach: we
first constructed a discretized and diagonalized IO relation that
approximates the IO relation of the underlying continuous-time
WSSUS channel; in a second step, we derived capacity upper
and lower bounds on the basis of this discretized model, and in a
third step, we expressed these bounds in terms of the scattering
function of the original continuous-time WSSUS channel.

The capacity bounds derived in this paper are explicit in
the channel’s scattering function, a quantity that can be ob-
tained from channel measurements. Furthermore, the capacity
bounds may serve as an efficient design tool even when the
scattering function is not known completely, and the channel
is only characterized coarsely by its maximum delay and
maximum Doppler shift . In particular, one can assume that
the scattering function is brick-shaped within its support area

10The division by �� in (58) follows from the normalization � � �.



380 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 1, JANUARY 2010

and evaluate the corresponding bounds.
A brick-shaped scattering function results in the lowest upper
bound for given and . Furthermore, the bounds are par-
ticularly easy to evaluate for brick-shaped scattering functions
and result in analytical expressions explicit in the channel
spread . Extensions of the capacity bounds for input signals
subject to a peak constraint in time and frequency to the case of
spatially correlated MIMO channels are provided in [66].

The multivariate discrete-time channel model considered in
this paper, , and the corresponding
capacity bounds are also of interest in their own right, without
the connection to the underlying WSSUS channel. The indi-
vidual elements of the vector do not necessarily need to
be interpreted as discrete frequency slots; for example, the
block-fading model with correlation across blocks in [67] can
be cast into the form of our multivariate discrete-time model as
well. As our model is a generalization of the time-selective, fre-
quency-flat channel model, it is not surprising that the structure
of our bounds for the case of a peak constraint both in time and
frequency, and a peak constraint in time only, is similar to the
corresponding results in [29], [30], and [26]–[28], respectively.
The key difference between our proofs and the proofs in [26],
[28], [30] is that our derivation of the upper bounds (27) and
(56) (see Appendix B and Appendix J, respectively) is based on
the relation between mutual information and MMSE. Compared
to the proof in [28, Sec. VI], our approach has the advantages
that it can easily be generalized to multiple dimensions—in our
case time and frequency—and that it provides the new lower
bound (71).

Numerical evaluation indicates that our bounds are surpris-
ingly accurate over a large range of bandwidth. For small band-
width, and hence high SNR, however, the bounds cease to be
tight, and a refined analysis along the lines of [5], [67] is called
for. In this regime, capacity is sensitive to loss of dimensions in
signal space [57], [58]. Hence, more care needs to be exercised
in the choice of the Weyl–Heisenberg set; in particular, mini-
mizing ISI and ICI only, as done in Section II-B, might result in
loose capacity bounds. Tight bounds over a large range of SNR
values of practical interest are obtained in [58], on the basis of
the nondiagonalized IO relation (11).

The diagonalization presented in Section II-B.3 can be ex-
tended to WSSUS channels with non-compactly supported scat-
tering function, as long as the area of the effective support of
the scattering function is small [52]. The capacity bounds cor-
responding to a non-compactly supported scattering function
are, however, more difficult to evaluate numerically because of
aliasing in (16). A challenging open problem is to characterize
the capacity behavior of overspread channels, i.e., channels with
spread . The major difficulty resides in the fact that a
set of deterministic eigenfunctions can no longer be used to di-
agonalize the random kernel of the channel.

APPENDIX A

A. Approximate Eigenfunctions and Eigenvalues of the
Channel Operator

The construction of the diagonalized IO relation (13) relies
on the following two properties of underspread operators.

• Time and frequency shifts of a time- and frequency-local-
ized prototype signal matched to the channel’s scat-
tering function are approximate eigenfunctions
of .

• Samples of the time-varying transfer function are
the corresponding approximate eigenvalues.

In this appendix, we make these claims more precise and give
bounds on the mean-square approximation error—averaged
with respect to the channel’s realizations—for both approxi-
mate eigenfunctions and eigenvalues. The results presented in
the remainder of this appendix are not novel, as they already
appeared elsewhere, sometimes in different form [33], [41],
[52], [55]; the goal of this appendix is to provide a self-con-
tained exposition.

1) Ambiguity Function: The design problem for can be
restated in terms of its ambiguity function , which is
defined as [68]

Without loss of generality, we can assume that is normal-
ized, so that . For two signals and

, the cross-ambiguity function is defined as

The following properties of the (cross-) ambiguity function are
important in our context.

Property 1: The volume under the so-called ambiguity sur-
face is constant [69]. In particular, if has unit
energy, then

Property 2: The ambiguity surface attains its maximum
magnitude at the origin: , for
all and . This property follows from the Cauchy–Schwarz
inequality, as shown in [54].

Property 3: The cross-ambiguity function between the two
time- and frequency-shifted signals
and is given by

(60)

where the last step follows from the change of variables
. As a direct consequence of (60), we have

(61)

Property 4: Let the unit-energy signal have Fourier
transform , and denote by and defined as

(62)
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the effective duration and the effective bandwidth of . Then
and are proportional to the second-order derivatives of

at the point [69]

Property 5: For the channel operator in Section II-A

where in we used (5).

Properties 1 and 2, which constitute the radar uncertainty
principle, imply that it is not possible to find a signal with
a corresponding ambiguity function that is arbitrarily
well concentrated in and [69]. The radar uncertainty prin-
ciple is a manifestation of the classical Heisenberg uncertainty
principle, which states that the effective duration and the ef-
fective bandwidth (both defined in (62)) of any signal in
satisfy [54, Theorem 2.2.1]. In fact, when
has effective duration , and effective bandwidth , the cor-
responding ambiguity function is highly concentrated
on a rectangle of area ; but this area cannot be made ar-
bitrarily small.

2) Approximate Eigenfunctions:

Lemma 9 ([33, Ch. 4.6.1]): Let be a WSSUS channel
with scattering function . Then, for any unit-energy
signal , the mean-square approximation error incurred by
assuming that is an eigenfunction of is given by

(63)

Proof: We decompose as follows:

(64)

Here, the last step follows because has unit energy by as-
sumption. We now compute the two terms in (64) separately.
The first term is equal to

(65)

where follows from (5), from the WSSUS property, and
from the energy normalization of . For the second term

we have

(66)

where follows from Property 5 and follows from the
WSSUS property. To conclude the proof, we insert (65) and (66)
into (64).

The error in (63) is minimized if is chosen so that
over the support of the scattering

function. If the channel is highly underspread, we can replace
on the RHS of (63) by its second-order Taylor series

expansion around the point ; Property 4 now
shows that good time and frequency localization of is nec-
essary for to be small. If is taken to be real and even,
the second-order Taylor series expansion of around the
point takes on a particularly simple form because
the first-order term is zero, and we can approximate
around as follows [69]:

Hence, when is real and even, good time and frequency
localization of is also sufficient for to be small.

3) Approximate Eigenvalues:
Lemma 10 ([41], [52]): Let be a WSSUS channel

with time-varying transfer function and scat-
tering function . Then, for any unit-energy signal

, the mean-square approximation
error incurred by assuming that is an eigenvalue of
associated to is given by

Proof: We use Property 5 and the Fourier transform rela-
tion (4) to write as

(67)

Here, follows from (61) and is a consequence of the
WSSUS property.

Similarly to what was stated for in the previous sec-
tion, also in this case good time and frequency localization
of leads to small mean-square error if the channel is
underspread.
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B. OFDM Pulse Design for Minimum ISI and ICI

In Section II-B, we introduced the concept of a PS-OFDM
system that uses an orthonormal Weyl–Heisenberg transmission
set , where , and provided
the criterion (12) for the choice of the grid parameters and

to jointly minimize ISI and ICI. In this section, we detail
the derivation that leads to (12). Let denote
the noise-free channel output when the channel input is a
PS-OFDM signal given by

For mathematical convenience, we consider the case of an infi-
nite time and frequency horizon, and assume that the input sym-
bols are i.i.d. with zero mean and ,

.
We want to quantify the mean-square error incurred by as-

suming that the projection of the received signal onto the
function equals , i.e., the error

where the expectation is over the channel realizations and the
input symbols. We bound as follows:

where holds because for any two complex numbers and
we have that . The error is the same
as the one computed in Lemma 10. The error results from
neglecting ISI and ICI and can be bounded as follows:

(68)

where follows because the are i.i.d. and zero mean,
and because . We now provide an expres-
sion for that is explicit in the channel’s

Fig. 2. The support set of the periodized scattering function in (70) are the rect-
angles with crisscross pattern, while the area on which the ambiguity function
� ��� �� should be concentrated to minimize � is shaded in grey.

scattering function

(69)

Here, follows from Property 5, from the WSSUS prop-
erty, and from Property 3. We finally insert (69) into (68)
and obtain

(70)
This error is small if the ambiguity surface of
takes on small values on the periodically repeated rectangles

, except for the
dashed rectangle centered at the origin (see Fig. 2). This condi-
tion can be satisfied if the channel is highly underspread and if
the grid parameters and are chosen such that the solid rec-
tangle centered at the origin in Fig. 2 has large enough area to
allow to decay. If has effective duration and
effective bandwidth , the latter condition holds if ,
and . Given a constraint on the product , good
localization of , both in time and frequency, is necessary for
the two inequalities above to hold.

The minimization of in (70) over all orthonormal
Weyl–Heisenberg sets is a difficult task; numerical
methods to minimize are described in [56]. The simple rule
on how to choose the grid parameters and provided in (12)
is derived from the following observation: for known and

, and for a fixed product , the area of
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the solid rectangle centered at the origin in Fig. 2 is maximized
if [33], [55], [56]

APPENDIX B

Lemma 11: Let be a stationary random process with
correlation function

and spectral density

Furthermore, let , and denote
the covariance matrix of by . This
covariance matrix is Hermitian Toeplitz with entries

. Then, for any deterministic -dimensional vector
with binary entries and for any , the following
inequality holds:

(71)

Furthermore, in the limit , the above inequality is sat-
isfied with equality if the entries of are all equal to .

Remark 1: The second statement in Lemma 11, i.e., that the
infimum can be achieved by an all- vector in the limit ,
was already proved in [28, Sec. VI-B]. The proof in [28] relies
on rather technical set-theoretic arguments, so that it is not easy
to see how the structure of the problem—the stationarity of the
process —comes into play. Therefore, it is cumbersome
to extend the proof in [28] to accommodate two-dimensional
stationary processes as used in this paper. Here, we provide an
alternative proof that is significantly shorter, explicitly uses the
stationarity property, can be directly generalized to two-dimen-
sional stationary processes (see Corollary 13 below), and yields
the new lower bound (71) as an important additional result.

Our proof is based on the relation between mutual informa-
tion and MMSE discovered by Guo et al. [38]. In the following
lemma, we restate, for convenience, the mutual information-
MMSE relation for JPG random vectors.11

Lemma 12: Let be a -dimensional random vector that
satisfies , and let be a zero-mean JPG vector,

, that is independent of . Then, for any deter-
ministic -dimensional vector

(72)

11For a proof of Lemma 12, see [38, Sec. V-D].

The expression on the RHS in (72) is the MMSE obtained
when is estimated from the noisy observation .

Proof of Lemma 11: We first derive the lower bound (71)
and then show achievability in the limit in a second
step. To apply Lemma 12, we rewrite the left-hand side (LHS)
of (71) as

(73)

where is a JPG vector. Without loss of gen-
erality, we assume that the vector has exactly nonzero
entries, with corresponding indices in the set . Let

; then

(74)

Here, follows from the relation between mutual information
and MMSE in Lemma 12 in the form given in [38, eq. (47)].
Equality holds because has exactly nonzero entries
with corresponding indices in , and because the components
of the observation that contain only noise do not influence the
estimation error. The argument underlying inequality is that
the MMSE can only decrease if each is estimated not just
from a finite set of noisy observations of the random process

, but also from noisy observations of the process’ infinite
past and future. This is the so-called infinite-horizon noncausal
MMSE [70]. Finally, we obtain because the process
is stationary and its infinite horizon noncausal MMSE is, there-
fore, the same for all indices [70, Sec. V.D.1].

The infinite-horizon noncausal MMSE can be expressed in
terms of the spectral density of the process [70, eq.
(V.D.28)]

(75)

To obtain the desired inequality (71), we insert (75) into (74),
and (74) in (73), and note that the resulting lower bound does
not depend on . We have, therefore, established a lower bound
on the LHS of (71) as well. We finally integrate over and get

(76)
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To prove the second statement in Lemma 11, we choose in
(73) to be the all- vector for any dimension , and evaluate the
limit of the LHS of (73) by means of Szegö’s theorem
on the asymptotic eigenvalue distribution of a Toeplitz matrix
[34], [35]

(77)

This shows that the lower bound in (71) can indeed be achieved
in the limit when is the all- vector.

Our proof allows for a simple generalization of Lemma 11 to
two-dimensional stationary processes, which are relevant to the
problem considered in this paper. The generalization is stated in
the following corollary.

Corollary 13: Let be a random process that is
stationary in and with two-dimensional correlation function

and two-dimensional
spectral density

Furthermore, let

let the -dimensional stacked vector

and denote the covariance matrix of by
. This covariance matrix is a two-level Toeplitz matrix.

Then, for any -dimensional vector with binary entries
and for any , the following inequality holds:

(78)

Furthermore, in the limit , the above inequality is
satisfied with equality if the entries of are all equal to .

Proof: Without loss of generality, we assume that the
vector has exactly nonzero elements, with corresponding
indices in the set . The arguments used in the proof of
Lemma 11 directly apply, and we obtain

where . To complete the proof,
we use the two-dimensional counterpart of (75) —the closed-
form expression for the two-dimensional noncausal MMSE [71,
eq. (2.6)]—and we compute the two-dimensional equivalent of

(77) by means of the extension of Szegö’s theorem to two-level
Toeplitz matrices provided, e.g., in [36].

APPENDIX C

In this appendix, we show that a sufficient condition for

(79)

with defined in (27c), is that

and

or that

For notational convenience, we set . The necessary
and sufficient condition under which (79) holds can be restated
as

or, equivalently, as

(80)

We now use Jensen’s inequality as in (37) to upper-bound
the LHS of (80) and get the following sufficient condition for

:

(81)

We next distinguish between two cases: and
.

Case : We use the inequality

to lower-bound the RHS of (81) and obtain the following suffi-
cient condition for :

This condition can be expressed in terms of as

(82)

Case : We further upper-bound the LHS of
(81) by means of the inequality

for all
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and get the following sufficient condition for :

This condition is satisfied for all as long as

(83)

If we combine (82) and (83), the sufficient condition (35)
follows.

APPENDIX D
PROOF OF LEMMA 3

1) Upper Bound: We restate the penalty term in (39) in the
more convenient form12

(84)

We seek an upper bound on (84) that can be evaluated efficiently,
even for large , and that is tight in the limit . To
obtain such a bound, we need to solve two problems: first, the
eigenvalues of the Toeplitz matrix are difficult to
compute; second, the determinant expression in (84) needs to
be evaluated for all . To upper-bound (84), we
will replace by a suitable circulant matrix that is asymp-
totically equivalent [35] to . Asymptotic equivalence guar-
antees tightness of the resulting bound in the limit .
As the eigenvalues of a circulant matrix can be computed ef-
ficiently via the DFT, the first problem is solved. To solve the
second problem, we use Jensen’s inequality.

We shall need the following result on the asymptotic equiva-
lence between Toeplitz and circulant matrices.

Lemma 14 ([72]): Let be an Hermitian Toeplitz
matrix. Furthermore, let be the DFT matrix, i.e., the matrix

with columns

where . Construct from the matrix the di-
agonal matrix so that the entries on the main diagonal of
and on the main diagonal of are equal. Then, and the
circulant matrix are asymptotically equivalent, i.e., the
Frobenius norm [62, Sec. 5.6] of the matrix
goes to zero as .

Our goal is to upper-bound a function of the form
(see (84)). Because is unitary, and

by Hadamard’s inequality

(85)

Since and are asymptotically equivalent, we expect
the difference between the LHS and the RHS of the inequality

12For simplicity and without loss of generality, we set � � �.

(85) to vanish as grows large. We formalize this result in the
following lemma, which follows from Szegö’s theorem on the
asymptotic eigenvalue distribution of Toeplitz matrices.

Lemma 15: Let be a sequence that satisfies
for all and has Fourier transform

Let be the Hermitian Toeplitz matrix constructed as

...
...

. . .
...

(86)

Then, the function admits the following
th-order Taylor series expansion around the point :

(87)

Furthermore, let and be as in Lemma 14. Then,
has the same th-order Taylor

series expansion around as .
Proof: Let be the essential supremum of , i.e., is

the smallest number that satisfies for all , except on a
set of measure zero. Then for any , the eigenvalues
of the matrix satisfy [35, Lemma 6]. We now use the
expansion

for

to rewrite as

for (88)

To compute the Taylor series expansion of around
we need to evaluate and its derivatives for

. We observe that Szegö’s theorem on the asymptotic
eigenvalue distribution of Toeplitz matrices implies that [35,
Theorem 9]

(89)

Consequently, it follows from (88) that
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and, for the th derivative

The proof of the first statement in Lemma 15 is therefore con-
cluded. The second statement follows directly from the asymp-
totic equivalence between and (see Lemma 14) and
from [35, Theorem 2].

To apply the bound (85) to our problem of upper-bounding
the penalty term (84), we need to compute the diagonal
entries of . Similarly to (86), we denote the en-
tries of the power spectral density Toeplitz matrix as

. As a consequence of (19) and (38),
is Hermitian, i.e., . Furthermore, again by
(19) and (38), each entry is related to the discrete-time
discrete-frequency correlation function according to

(90)

where follows from the Fourier transform relation (6), and
the Poisson summation formula as in (16), and in we used
that is zero outside . Consequently, the th
element on the main diagonal of , which we denote
as , can be expressed as a function of the entries of
as follows:

(91)

where we set and used . We can now
establish an upper bound on the penalty term (84) in terms of
the , by following the same steps as in (85)

(92)

Here, follows from the change of variables and
holds because is zero for outside , and

because, by assumption , so that
is zero whenever ; hence, by (90) and (91), also
and are zero for outside .

We proceed to remove the dependence on . To this end, we
further upper-bound (92) by Jensen’s inequality and obtain the
desired upper bound in (46)

(93)

where we set

As we have, by (90), that

it follows from (91) that

as defined in (45).
As a consequence of Lemma 15, the penalty term (84) and

its upper bound in (92) have the same Taylor series expansion
around the point . The upper bound on the penalty
term given on the RHS of (93) has, instead, the same Taylor
series expansion around the point as (84) only when
the Jensen penalty in (93) is zero. This happens for scattering
functions that are flat in the Doppler domain, or, equivalently,
that satisfy (47).

We next provide an explicit expression for the Taylor series
expansion of the penalty term (84) around ; this expres-
sion will be needed in the next section, as well as in Appendix F.
As the Fourier transform of the sequence

is the two-dimensional power spectral density
defined in (15), we have by Lemma 15 that
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(94)

where in the last step we first used (16) and then proceeded as
in (17).

2) Lower Bound: To lower-bound the penalty term (84), we
use Lemma 11 in Appendix B for the case when is an -di-
mensional vector with all- entries and obtain

(95)

where in the last step we again first used (16) and then
proceeded as in (17). We next show that the penalty term
(84) and its lower bound (95) have the same Taylor series
expansion (given in (94)). For any fixed the function

is nonnegative, and mono-
tonically increasing in . Hence, by the Lebesgue’s monotone
convergence theorem [73, Theorem 11.28], we can compute
the Taylor series expansion of the lower bound (95) by first
expanding the logarithm inside the integral on the RHS of (95)
into a Taylor series, and then integrating with respect to and

. The resulting Taylor series expansion coincides with the
Taylor series expansion of (84) stated in (94).

APPENDIX E
PROOF OF LEMMA 4

To prove Lemma 4, we need to evaluate ,
where is the upper bound in (27). Our analysis is sim-
ilar to the asymptotic analysis of an upper bound on capacity in
[30, Proposition 2.1], with the main difference that we deal with
a time- and frequency-selective channel whereas the channel
analyzed in [30] is frequency flat. We start by computing the
first-order Taylor series expansion of in (27c) around

. This first-order Taylor series expansion follows di-
rectly from Appendix D, and is given by

(96)

We now use (96) to evaluate the minimum in (27b)

(97)

where we used the Taylor series expansion
for to obtain equality . As

we need to distinguish two cases.
• If , we get , so that, for

sufficiently large bandwidth, the upper bound (27a) can be
expressed as

(98)

Consequently, we obtain the first-order Taylor series
coefficient

• If , we get

so that for sufficiently large bandwidth

(99)

We now use the Taylor series
for on the RHS of (99) to get

(100)

where follows from the Taylor series expansion of
in (96). Hence, the first-order Taylor series coeffi-

cient of the upper bound is given by

Both cases taken together yield (52).

APPENDIX F
PROOF OF LEMMA 5

To prove Lemma 5, we need to evaluate ,
where is the lower bound (39). The first term in (39)
is the coherent mutual information of a scalar Rayleigh-fading
channel with zero-mean constant-modulus input. This mutual
information has the following first-order Taylor series expan-
sion around [14, Theorem 14]

(101)
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We now analyze the second term in (39); its Taylor series
expansion around (for the case ) is given in
(94). If we truncate this expansion to first order and take into
account the factor , we obtain

(102)

where is defined in (51). We then combine (101) and (102)
to get the desired result

APPENDIX G
PROOF OF THEOREM 6

To prove Theorem 6, we need to find a lower bound on
whose first-order Taylor series expansion matches that

of the upper bound given in (52). To obtain such a lower
bound, we compute the mutual information for a specific input
distribution that (slightly) generalizes the input distribution
used in [30]. For a given time duration and bandwidth

, we shall first specify the distribution of the input sym-
bols that belong to a generic rectangular block in the
time–frequency plane, where and are fixed and ,

, and then describe the joint distribution of all input
symbols in the overall rectangle; transmission over the

rectangle is denoted as a channel use. Within a
block, we use i.i.d. zero-mean constant-modulus signals. We
arrange these signals in a -dimensional vector in the
same way as in (20), i.e., we stack first in frequency and then in
time. Finally, we let the input vector for the block be

, where is a binary RV with distribution

with probability
with probability .

This means that the i.i.d. constant-modulus vector undergoes
on-off modulation with duty cycle . The above signaling
scheme satisfies the peak constraint (24) by construction. The
covariance matrix of the input vector is given by

so that for , the signaling scheme also satisfies the
power constraint . In the remainder
of this appendix, we assume that . The IO relation for
the transmission of the block can now be written as

where the -dimensional stacked output vector , the corre-
sponding stacked channel vector , and the stacked noise vector

are defined in the same way as the stacked input vector . Fi-
nally, we define the correlation matrix of the channel vector

as .
Let now and . In a channel use,

we let the -dimensional input vector with entries

be constructed as follows: we use out of the en-
tries of to form subvectors, each of dimension , and
we leave the remaining entries unused. For

and , the th sub-
vector is constructed from the entries of in the set

Finally, we assume that the subvectors are independent and
are distributed as , so that

Hence, the vector satisfies both the average-power constraint
and the peak constraint (24) in Section II-D. Finally, we have

(103)

where follows from the chain rule of mutual information
(the intermediate steps are detailed in [30, Appendix A]), and in

we used

Because we are only interested in the asymptotic behavior of
the lower bound (103), it suffices to analyze the second-order
Taylor series expansion of around . As the
entries of are peak-constrained, and is a proper complex
vector, we can use the expansion derived in [74, Corollary 1] to
obtain13

(104)

In the following, we analyze the two trace terms separately.
The first term is:

(105)

Here, results from the following relation between Hadamard
products and outer products

13Differently from [74, Corollary 1], the Taylor series expansion is for � �
�; furthermore, we have � � �, and the SNR is given by � � ���� .
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In we used that and are Hermitian, and follows
from the identity [75, p. 42]

We obtain as the Hadamard product is commutative, and
holds because the entries of the matrix are all

equal to w.p. given that .
The second term on the RHS of (104) can be readily evaluated

as follows:

(106)

where the last equality holds because we normalized
(see Section II-C).

Next, we insert the trace terms (105) and (106) into the
second-order expansion of mutual information in (104), which,
together with the lower bound in (103), results in the following
lower bound on , valid for any fixed
and :

(107)

where in the last step we used

If we now take and sufficiently large, the RHS of (107)
can be made arbitrarily close to its limit for and

. This limit admits a closed-form expression in . In
fact

(108)

Here, follows because is Hermitian and its eigen-
values are real. The matrix is two-level Toeplitz and

its entries belong to the sequence with two-dimen-
sional power spectral density defined in (15); then,
follows from the extension of (89) to two-level Toeplitz matrices
provided in [36]. Finally, to obtain we proceed as in (17). If
we now replace (108) in (107) for and , we
obtain

(109)

If we choose whenever , and
otherwise, the limit (109) equals the first-order

Taylor series coefficient of the upper bound in (52b).
Hence, the first-order Taylor series expansion of the lower
bound (107) can be made to match the first-order Taylor series
expansion of the upper bound (27) as closely as desired.

APPENDIX H
PROOF OF THEOREM 7

To obtain a lower bound on , we compute the rate achiev-
able in the infinite-bandwidth limit for a specific signaling
scheme. Similarly to the proof of Theorem 6 in Appendix G,
it suffices to specify only the distribution of the input symbols
that belong to a generic rectangular block in the time–frequency
plane. Differently from Appendix G, we take the generic block
to be of dimension , where is fixed and .
We denote the input symbols in each time–frequency slot of
the block as and arrange them in a vector
where—differently from Section II-C—we first stack along
time and then along frequency. The -dimensional vector that
contains the input symbols in the th frequency slot is defined
as

and the -dimensional vector that contains all symbols in
the block is

(110)

We define the stacked channel vector , the stacked noise vector
, and the stacked output vector in a similar way. The IO

relation corresponding to the block is

(111)

Finally, we denote the correlation matrix of the channel vector
by ; this matrix is again two-level Toeplitz. Within the
block, we use a signaling scheme that is a generalization of the
on–off FSK scheme proposed in [65].

Definition 16: Let for denote
a -dimensional vector with entries that satisfy

. We transmit each with proba-
bility , for , and the all-zero

-dimensional vector with probability .

Fig. 3 shows the time–frequency slots occupied by the symbol
for . Steps similar to the one detailed in Appendix G

(see (103)) yield the following lower bound on :

(112)
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Fig. 3. Slots in the time–frequency plane occupied by the symbol ��� for the
case � � �.

Since this lower bound holds for any finite , we can tighten
it if we take the supremum over ; this leads to

(113)

We next decompose the mutual information in (113) as the dif-
ference of KL divergences [76, eq. (10)]

(114)

and evaluate the two terms separately. As

we can use the closed-form expression for the KL divergence of
two JPG random vectors and
[14, eq. (59)]

(115)
Thus, the expected divergence in (114) can be expressed as

(116)

The last step follows because each nonzero vector is transmitted
with probability in the signaling scheme of Definition
16, and because the diagonal entries of are normalized to

. We next exploit the structure of the signaling scheme, and
the fact that the correlation matrix is two-level Toeplitz, to
simplify the determinant in the second term on the RHS of (116)
as

(117)

for all , and where

and . We next insert our intermediate re-
sults (114), (116), and (117) into the lower bound (113) to obtain

(118)

In Appendix I it is shown that

To conclude, we simplify the second term on the RHS of (118)
as

Here, in we used Lemma 11 in Appendix B for the case
when is a -dimensional vector with all- entries, as well as

Finally, holds because is compactly supported on
, and . A change of variables

yields the final result.

APPENDIX I

Lemma 17: Consider a channel with IO relation14

where the -dimensional vectors , , , and are defined
as in (110), i.e., stacking is first along time and then along fre-
quency. Then

(119)

for the signaling scheme in Definition 16 of Appendix H.
Proof: Let and be the probability density func-

tions (PDFs) associated with the probability distributions
and , respectively. By definition of the KL divergence

(120)

14To keep the notation compact, in this appendix we drop the tilde notation
(cf. (111)).
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For the signaling scheme in Definition 16, the PDF of the
output vector can be written as

(121)

The output random vector has the same distribution as the
noise vector when . Hence,

. To express (120) in a more convenient form, we define the
following RV:

We can express the KL divergence (120) as a function of the RV
as follows:

To prove Lemma 17, it suffices to show that the sequence of
RVs where

converges to in mean as . To prove this result, we first
show that converges to w.p. . Then we argue that
the sequence forms a backward submartingale [77, pp. 474 and
499] so that it converges to also in mean by the submartingale
convergence theorem [78, Sec. 32.IV].

A. Convergence w. p.

The RVs turn out to be i.i.d. for .
As this result is rather tedious to prove, we postpone its proof to
Appendix I-C. It is straightforward to prove that these RVs have
mean . In fact

The i.i.d. and the unit-mean properties of imply—by the
strong law of large numbers—that

w.p.

and, as the function is continuous, we have by
[73, Theorem 4.6] that

w.p.

B. Convergence in Mean

As the RVs are i.i.d., the sequence and
the decreasing sequence of -fields , where is the
smallest -field with respect to which the random variables

are measurable, form a backward
(or reverse) submartingale [77, pp. 474 and 499]. This re-
sult follows because the pair is a
backward martingale [77, p. 499], and because the function

is convex.
Since is a backward submartingale and

converges to w.p. as , converges to as
also in mean. This result follows by the backward

submartingale convergence theorem below.

Theorem 18 (see [78, Sec. 32.IV]): Let be a backward
submartingale with respect to a decreasing sequence of -fields

. Then converges w.p. and in mean to if
and only if and .

To conclude the proof, we need to show that the technical
conditions in Theorem 18 hold, i.e., that the sequence
satisfies

(122)

and

(123)

The first inequality follows from Jensen’s inequality and be-
cause the have mean

for any . The second inequality is proven in Appendix I-D.

C. The Random Variables are i.i.d.

To show that the RVs

are i.i.d., we first rewrite as

(124)
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where we set

(125)

and where, as usual, To
obtain (124) we apply the determinant equality (117) to simplify
the denominator. For the numerator, we used that, for the sig-
naling scheme in Definition 16, the matrix
is block diagonal, with blocks equal to and one block
equal to . Hence, its inverse is also block
diagonal, with blocks equal to and one block equal
to . Next, we use (124) to express the ratio as

(126)
This last result implies that each depends only on the
random noise vector . As the noise is white, the random
vectors are i.i.d. for all . Hence, the RVs are i.i.d.
as well.

D. Proof of Inequality (123)

As for all , we have that
; hence

We next upper-bound as follows:

(127)

Here, is a consequence of the convexity of the function
, and in we used that . If we take the expec-

tation on both sides of (127), we get

where follows because for all ; in
we used (124) and (126), while to obtain we first integrated
over and then we used the triangle inequality and
that is positive definite with eigenvalues larger or equal to

(see (125)). The last inequality holds because satisfies the
trace constraint , which implies that its
eigenvalues are bounded.

APPENDIX J
PROOF OF THEOREM 8

We use the decomposition of mutual information as a differ-
ence of KL divergences (114), and upper-bound in
(54) because the KL divergence is nonnegative

(128)

As in the proof of Theorem 1, we rewrite the supremum over the
distributions in the set as a double supremum over
and over the restricted set of input distributions that satisfy
the average-power constraint and the peak
constraint (23). Then, we use the closed-form expression for the
KL divergence of two multivariate Gaussian vectors (115) and
we follow the same arguments as in the proof of Theorem 1

(129)

The infimum in (129) has the same structure as the infimum (31)
in the proof of Theorem 1. Hence, as is positive semidefi-
nite, we can conclude that the infimum (129) is achieved on the
boundary of the admissible set. Differently from the proof of
Theorem 1, however, the input signal is subject to a peak con-
straint in time so that the admissible set is defined by the two
conditions

w.p. (130)

Hence, a necessary condition for a vector to minimize
is the following: for any

fixed , the transmit symbol may be different from
only for at most one discrete frequency . An example of such
a vector is shown in Fig. 4. Even if the structure of the vector
minimizing the second term on the RHS of (129) is known,
the infimum (129) does not seem to admit a closed-form ex-
pression. We can obtain, however, the following closed-form
lower bound on the infimum if we replace the constraint

w.p. in (130) with the less stringent
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Fig. 4. The entries, in the time–frequency plane, of a vector ��� that satisfies the
necessary condition to minimize ��� ��� ���� � ������ ���� 	 ������ in (128)
for the case � 
 �.

constraint w.p. for all and . The infimum
of over the vectors that
belong to the new admissible set can be bounded as in (32),
after replacing by and proceeding as in (17)

(131)

To conclude the proof, we insert (131) into (129) and obtain the
desired upper bound (56).

ACKNOWLEDGMENT

The authors would like to thank Gerald Matz for his contribu-
tions in early stages of this work and for interesting discussions
on the modeling of wireless channels.

REFERENCES

[1] E. Biglieri, J. Proakis, and S. Shamai (Shitz), “Fading channels:
Information-theoretic and communications aspects,” IEEE Trans. Inf.
Theory, vol. 44, no. 6, pp. 2619–2692, Oct. 1998.

[2] R. Vaughan and J. Bach Andersen, Channels, Propagation and An-
tennas for Mobile Communications. London, U.K.: IEE, 2003.

[3] D. N. C. Tse and P. Viswanath, Fundamentals of Wireless Communi-
cation. Cambridge, U.K.: Cambridge Univ. Press, 2005.

[4] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and
Design of Analog Integrated Circuits, 4th ed. New York: Wiley, 2001.

[5] A. Lapidoth, “On the asymptotic capacity of stationary Gaussian fading
channels,” IEEE Trans. Inf. Theory, vol. 51, no. 2, pp. 437–446, Feb.
2005.

[6] M. Médard, “The effect upon channel capacity in wireless communica-
tions of perfect and imperfect knowledge of the channel,” IEEE Trans.
Inf. Theory, vol. 46, no. 3, pp. 933–946, May 2000.
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