
Frequency-shift keying for ultrawideband
- achieving rates of the order of capacity

Cheng Luo and Muriel Médard

Laboratory for Information and Decision Systems, EECS, MIT
77 Mass Ave, Bldg 35-303, Cambridge, MA, 02139, USA

Email: chengluo@mit.edu, medard@mit.edu

Abstract

In wideband systems that decorrelate in time and frequency, capacity can be
reached in the limit of infinite bandwidth by using impulsive frequency-shift keying
(FSK) with vanishingly small duty cycle. The richness of the codebook is then
created through the large bandwidth, thus requiring very large bandwidths in or-
der to approach capacity. We show that FSK with small duty cycle can achieve
rates of the order of capacity in ultrawideband systems with limits on bandwidth
and peak power. The richness of the codebook is then built in both time and fre-
quency. We consider single tone and two-tone FSK schemes. Our results indicate
that, for typical wireless conditions, we can achieve rates within a few dB of the
energy-limited, infinite-bandwidth capacity with these simple FSK schemes. At
high signal-to-noise ratios (SNRs), the FSK schemes are bandwidth-limited rather
than energy-limited. In the high SNR regime, multi-tone FSK is significantly less
bandwidth-limited than single-tone FSK.

1 Introduction

The capacity of the infinite-bandwidth general fading multipath-fading channel is non-
zero and is equal to the capacity of the infinite-bandwidth additive white Gaussian noise
(AWGN) channel with the same average received power constraint. This result has been
shown by Kennedy[6], Gallager[4, §8.6] and Telatar and Tse[12]. The proofs are con-
structive and use frequency-shift keying (FSK) with non-coherent detection in a system
that transmits at a vanishingly low duty cycle. This capacity-achieving transmission
scheme, which we term impulsive FSK, is thus ”peaky” both in frequency and time, a
special case of flash signaling ([13]). Such a scheme is quite different from the wideband
spread-spectrum schemes that create signals that mimic white Gaussian noise (WGN),
such as would be optimal for infinite bandwidth non-fading channel. Indeed, the use
of signals akin to WGN, which we term bandwidth-scaled, with moments that scale in-
versely with bandwidth, has been shown to yield a vanishing capacity in the limit of
infinite bandwidth ( [12], [9], [11]).

While the results of [6] and [12] only provide a capacity-achieving method for vanish-
ingly small duty cycle and infinite bandwidth, the results do not show how and how fast a
system can approach this limit. Recent results show that this limit is approached slowly.
In [13], by considering the relation among SNR, capacity and spectral efficiency, Verdú



shows that approaching capacity may require extremely large bandwidths and peak-to-
average signal ratios. A similar conclusion is reached by Lun, Médard and Abou-Faycal
in [2], [1] by considering the per codeword probability of error as a function of peak
energy, duty cycle and total bandwidth for Rayleigh and general fading channels using
impulsive FSK.

From the above discussion emerge two main themes. First, bandwidth-scaled signals,
of the type used in commercial direct-sequence code-division multiple access (DS-CDMA)
systems, perform poorly in the wideband regime for fading channels. Second, the optimal
schemes in the infinite bandwidth regime require extremely high bandwidth and peak
power to approach capacity. Both of these results may be viewed as negative results,
indicating what certain types of signaling cannot do. What, then, is the appropriate
way of transmitting for ultrawideband communications, over bandwidths of the order
of several GHz? For such bandwidths and moderate signal energy, bandwidth-scaled
signals perform poorly. On the other hand, the limitations on bandwidth and peak power
in practical systems are well below those required to approach the infinite-bandwidth
capacity.

Our goal in this paper is to present a signaling scheme which achieves a capacity of
the order of the infinite-bandwidth capacity for bandwidths and peak power constraints
that are large but well below those required to achieve the infinite bandwidth capacity.
We study the performance of single-tone and multi-tone FSK schemes in Rayleigh fading
channels. These schemes maintain some of the characteristics of impulsive FSK, but build
the codebook in time as well as frequency, thus obviating the need for the vanishingly
small duty cycles of flash signaling. Our FSK scheme assumes no channel side information
at the sender or at the receiver. The multi-tone FSK schemes make greater use of the
diversity in frequency and can be applied at lower bandwidths than traditional single-tone
FSK schemes.

We consider a Rayleigh fading channel that decorrelates in time and frequency. We
study the interplay among the capacity, bandwidth, power, and ”peakiness” of the
scheme. We show that single and multi-tone FSK schemes with limited bandwidth and
”peakiness” can achieve performance that is of the same order of that of the scheme with
infinitely large bandwidth and vanishing duty cycle.

2 System model

The transmission scheme we examine is an impulsive FSK with small duty cycle and
large bandwidth. The system is studied in Rayleigh fading channel conditions, which are
common in wireless communication scenarios. Related work has considered the capacity
of FSK schemes. In [10], Stark determined the capacity of FSK schemes under non-
selective Rician fading with receiver side information. A similar system is considered in
[8] for channels with erasures. A simulator for obtaining capacity for binary FSK for a
general FIR filter was considered in [7]. However, we consider channels with decorrelation
in time and bandwidth and thus none of the above results apply to our model.

We send single-frequency signals which are selected from a large set of frequencies
and transmitted using a low duty cycle. Because we use a large set of frequencies in a
wide bandwidth, the frequency difference between two successive symbols we assume to
be greater than the coherence frequency. Moreover, the low duty cycle means successive
symbols are generally separated in time by more than a coherence time. Hence, the prob-
ability of sending two successive signals within a coherence band in the same coherence



time is negligible. We can thus assume different symbols experience independent fading.
Assume the FSK system has M frequencies. In each symbol time, a signal may be

or be not transmitted according to a probability θ (0 < θ ≤ 1). θ is the duty cycle. In
the interval in which some signal is transmitted, one of the M frequencies is sent. The
transmitted signal can expressed as

x (t) =

{
exp (2πifmt) , 0 ≤ t ≤ Ts;
0, otherwise.

(1)

where fm(1 ≤ m ≤ M) is the frequency of FSK signal and Ts is the length of symbol
interval. The received signal is

y (t) = α (t)
√

P exp {2πifmt} + n (t) (2)

where α (t) is a circularly symmetric complex Gaussian process, K is the number of
paths, P is the power of the signals, and n (t) is circularly symmetric complex Gaussian
process with double-sided power density N0

2
per dimension.

The coherence time Tc is the duration of time over which the channel remains essen-
tially time-invariant. The delay spread Td represents the uncertainty in the delay of the
paths. In this paper, we focus on the case where the symbol time, Ts, is much less than
the coherence time of the channel and the delay spread is less than the symbol time.
During the interval [Td, Ts], we can assume α (t) = A is constant, then the expression of
received signal is

y (t) = A
√

P exp {2πifmt} + n (t) (3)

where A is circularly symmetric Gaussian variable. Without loss of generality, A can be
assumed as a complex Gaussian variable with variance 1

2
per dimension.

At the receiver, we use a bank of matched bandpass filters with central frequencies
{fn} to detect signals. n (1 ≤ n ≤ M) is the index of frequencies. In a certain symbol
slot i, the output of the nth matched filter is

ỹn(t) =
∫ t

(i−1)Ts

y(τ)e2πjfn(t−τ)dτ (i − 1) Ts ≤ t ≤ iTs. (4)

Let the frequency difference between two adjacent fn’s be Fs = 1
Ts−Td

and fn be an integer

multiple of Fs. The whole bandwidth of the FSK system is F = M−1
Ts−Td

. When the mth

symbol is sent, the outputs of the nth filter at time (Ts − Td) + iTs are

ŷn = δn,mA
√

P (Ts − Td) + v̂n (5)

where v̂n is a complex Gaussian variable. The v̂ns are mutually independent and Cov[v̂n] =
(Ts − Td) N0. The normalized output of the nth matched filter is

Rn =
1√

N0 (Ts − Td)
ŷn = Sn + Zn (6)

where Zn is a complex Gaussian variable with variance 1
2

per dimension. Let ζ = P (Ts−Td)
N0

.

When n = m, Sn is a complex Gaussian variable with variance ζ
2

per dimension, otherwise
Sn is 0.



When the mth signal in the M frequencies is transmitted, the received |Rm|2 has the
probability density given by (7), otherwise, |Rn|2 (n �= m) has the density given by (8).

P|Rn|2 (r) =
1

1 + ζ
exp

[ −r

1 + ζ

]
(r > 0) (7)

p|Rn|2 (r) = exp [−r] (r > 0) . (8)

Keeping the system’s average power constant, a change in the duty cycle parameter θ
will affect the signal power P .

To decide which signal was transmitted, we use the maximum-a-posteriori (MAP)
rule based on the observation of |Rn|2 at the receiver. The probability system transmits
nothing in a symbol slot is 1 − θ. Assume the M signals have equal probabilities to be
transmitted, then the probability of transmitting the mth (m = 1, 2, ...,M) signal is θ

M
.

When there is no signal being transmitted in a slot, the joint probability density of(
|R1|2 , |R2|2 , .., |RM |2

)
in the slot is

p|R1|2|R2|2,..,|RM |2 (r1, r2, ..., rM ) =
∏M

i=1 exp(−ri). (9)

Otherwise, if one signal m is sent, the joint probability density in the slot should be

p (r1, r2, ..., rM) =
1

1 + ζ
exp

[ −rm

1 + ζ

]∏M
i=1,i�=m exp(−ri). (10)

The threshold used for MAP rule is

Z =
ζ + 1

ζ
ln

(
(1 + ζ)

(1 − θ) M

θ

)
. (11)

If no |Rn|2 is greater than Z, the receiver will decide that no signal was transmitted.
Otherwise, the receiver decides that the n corresponding to the largest {|Rn|2} was
transmitted.

We can determine the probability of error in this detection scheme. Let P1 denote the
probability of missing a signal, i.e. the receiver decides that nothing has been transmitted
when a signal was transmitted. P1 is

P1 =

(
1 − exp

[ −Z

1 + ζ

])
(1 − exp (−Z))M−1 . (12)

Let P2 denote the error probability of detecting a transmission in error, i.e. the receiver
decides one signal has been transmitted when actually another signal was transmitted.
P2 is given by

P2 =
∫ ∞

Z

(
1 − (1 − exp (−x))M−1

)exp
[ −x

1+ζ

]
1 + ζ

 dx

+

(
1 − exp

[ −Z

1 + ζ

]) [
1 − (1 − exp [−Z])M−1

]
. (13)

Another kind of error occurs when the receiver decides that a signal has been transmitted
when nothing was transmitted. The probability of this type of error is denoted by P3:

P3 = 1 − (1 − exp (−Z))M . (14)



The additive noise is stationary and white. The complex gain of the channel, A,
decorrelates in any two symbol slots because the symbols experience independent fading.
We compute the capacity of this system using a discrete memoryless channel(DMC)
model.

In each symbol slot, we choose to transmit nothing or one of M signals. Hence, the
discrete model has an input alphabet with size M + 1, denoted as a0, a1, a2, ..., aM .
a0 means no signal is transmitted, and aj (1 ≤ j ≤ M) means the jth FSK signal is
transmitted. The output is decided by the vector {|R1|2 , |R2|2 , |R3|2 , ..., |RM |2}.
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Figure 1: The discrete mode

The capacity of this DMC channel is

C = H
(
b
)
− H

(
b|a
)
. (15)

The capacity of the FSK system is C
Ts

. In the following section, we use numerical methods
to calculate this capacity using the error probabilities given above.

3 Bounds on capacity

Before we discuss the capacity of our system, we first consider some bounds on this
capacity. From [12], we know that the capacity of the Rayleigh fading channel is the
same as that of the AWGN channel in the limit of infinite bandwidth. So a tight bound
on capacity is

C =
Ts − Td

Ts

F ln(1 +
P

2N0F
) (16)

where F is the bandwidth of the system, P is the average signal power, N0 is single-
sided power density per dimension for additive noise. The factor Ts−Td

Ts
is introduced

because the effective time of transmission is [Td, Ts]. When F goes to infinity, the bound
approaches (1 − Td

Ts
) P

2N0
. We term this bound the limited energy bound.

Another bound on capacity is deduced from the discrete model of the system. Owing
to the limited number of input symbols, an upper bound on capacity is given by

C ≤ ln(M + 1)

Ts

. (17)

This bound is tight when power is very large, as we shall see in following discussion. We
denote this bound as the limited bandwidth bound.



4 Numerical results for FSK

A high peak signal power makes transmission reliable. When the bandwidth is very large,
which means there is a large number of transmission symbols, we need to improve the
peak power of the signal to get reliable transmission. However, when the average received
signal power is constant, we should lower the signal duty cycle in order to improve the
peak signal power, which will put a limitation on the data rate. Hence, we need to adjust
the duty cycle parameter θ to optimize the system capacity. In our simulation, all results
are optimized with respect to θ.
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Figure 2: Capacity vs. System Bandwidth. Ts = 10µs, Td = 1µs.

In Figure 2, we fix P
2N0

and let the symbol time Ts be 10µs, and find, as expected, that
the capacity increases with the bandwidth of system. However, it grows very slowly, and
has roughly a gap of 2dB with the infinite bandwidth bound when the system bandwidth
is between 1MHz and 10THz. Note that our scheme achieves at moderate bandwidths
capacities very close to those achievable under very large bandwidths.
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Figure 3 shows the capacity vs. power performance under different bandwidth con-
straints. We see that it is only for very large power that the limited bandwidth bound
is below the limited energy bound on the capacity. Thus, for moderate received power,
the limitation in bandwidth does not hamper our scheme, which achieves capacities of
the order of the limited energy bound.

The symbol time Ts is also an important parameter for the FSK system. On the
one hand, the greater Ts, the greater ζ, which will reduce the error probability, and
thus improve capacity. On the other hand, increasing Ts will lower the symbol rate. If
the average power and bandwidth are fixed, we can adjust Ts to maximize the capacity.
With two different bandwidths, we show how symbol time Ts affects capacity in Figure
4, where P

2N0
is 2500.
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Figure 4: Capacity vs. Symbol Time Ts.
P

2N0
= 2500, Td = 1µs.

Assume the noise density parameter N0 is fixed. Our numerical results indicate that,
when power is reduced, the peaks of the curves move to the right, which means that
a greater symbol time improves system capacity when average signal power is lower.
Another observation is that the duty cycle for optimizing capacity is a non-decreasing
function of power.

For high power, the limited bandwidth bound begins to affect our performance. For
lower power, θ decreases and Ts increases. When the power is very small, we need
vanishingly a low duty cycle and very long Ts to reach the maximum.

5 Multi-tone FSK

Now we introduce a modulation scheme which we term multi-tone Frequency Shift Keying.
We use several frequencies at a time in transmitting a symbol instead of one frequency
per symbol scheme. When several frequencies are used in the representation of a symbol,
the size of the symbol alphabet is increased. For example, if there are M frequency points
we can use in a certain bandwidth, and we use two frequencies at a time to represent
a symbol, then the size of the alphabet is M(M − 1)/2 which is greater than M when
M ≥ 3. On the other hand, the power of the transmission at each frequency is reduced
in order to maintain the overall transmission power constant.



We first establish the fact that multi-tone FSK can be used to achieve capacity in the
infinite bandwidth limit. The discussion below proves the following theorem. The proof
is similar to the method used in [12], which proves the analogous result for FSK.

Theorem 1 Multi-tone FSK can achieve the capacity of the multipath fading channel
without bandwidth constraint which is

(1 − Td

Ts

)
Pa

N0

. (18)

The average received power of the system is Pa.

Proof: We analyze the scheme with two frequencies first, which can be called 2-tone
FSK. We will prove this theorem in 2-tone FSK case, and then extend to the general
multi-tone FSK case.

Suppose we wish to transmit one of M(M−1)/2 messages in a 2-tone FSK system. We
pick two frequencies from the M frequency points we can use and send them in the same
power level. Assume the total received signal power is P , which is averaged upon two
frequencies, so each frequency has power P/2. We have already discussed the probability
density of the signal power after a sinusoid waveform passed through a multipath fading
channel. Using previous results, we know |Ri|2 and |Rj|2 which are proportional to the
expected received power of two frequencies have probability density

P|Rn|2 (r) =
1

1 + ζ
exp

[ −r

1 + ζ

]
(r > 0, n = i or j) (19)

where ζ = P (Ts − Td) /(2N0). When corresponding frequency is not sent, |Rn|2 has
density

p|Rn|2 (r) = exp [−r] (r > 0) . (20)

To transmit a message, we will repeat the transmission of two corresponding fre-
quencies on N disjoint time intervals to average over the fading of the channel. The
receiver will get |Rn,k|2 for each possible frequency 1 ≤ n ≤ M and each disjoint interval
1 ≤ k ≤ N . The decoder will form the decision variables

Sn =
1

N

N∑
k=1

|Rn,k|2 (21)

A threshold rule will be used to decide on a message: if exactly two Sn’s exceed
A = 1 + (1 − ε)P (Ts − Td)/(2N0), then the corresponding message will be declared
to be transmitted. Otherwise, a decoding error will be declared. ε ∈ (0, 1) is a fixed
constant which can be arbitrarily small. By ergodicity of the fading process, the two
time averages corresponding to the two frequencies sent will exceed the threshold with
probability arbitrarily close to 1 for any ε > 1 as N gets large.

If there is another Sn which is greater than A, then an error occurs. We will bound
the probability Pr[Sn ≥ A] using a Chernoff bound

Pr[Sn ≥ A] ≤ [exp(−sA)E[exp(s |Rn|2)]]N = exp(−NΦ(A)) (22)

where

Φ(A) = sup
s

[sA − ln(E[exp(s |Rn|2)])]
= sup

s
[sA + ln(1 − s)])]

= A − 1 − ln(A) (23)



Using the union bound, the probability that one of the averages Sn(n �= i, j) exceeds A
is bounded by

(M − 1) exp(−NΦ(A)) = exp(−N [Φ(A) − 1

N
log(M − 1)]). (24)

The probability decays to zero exponentially in N as long as

1

N
ln(M − 1) < A − 1 − ln(A) (25)

We know ln(M − 1) < ln M , so when 1
N

ln(M) < A− 1− ln A, (25) will also be satisfied.
Then the union bound will decay to zero in N as long as

1

N
ln(M − 1)M < 2(A − 1 − ln A) (26)

Substituting the value for A, (26) can be rewritten as

1

NTs

ln
M(M − 1)

2
≤ (1 − ε)(1 − Td

Ts

)
P

N0

− 1

NTs

ln 2

− 2

Ts

ln[1 + (1 − ε)
P (Ts − Td)

2N0

] (27)

We transmit information in a fraction θ(0 < θ < 1) of time. During this time, the signal
power P equals to Pa/θ, and the rest of the time the transmitter transmits nothing. This
scheme will maintain the average power to be Pa. The data rate that the scheme achieves
is

θ

NTs

ln
M(M − 1)

2
< (1 − ε)(1 − Td

Ts

)
Pa

N0

− θ

NTs

ln 2

− 2θ

Ts

ln[1 + (1 − ε)
Pa(Ts − Td)

2θN0

] (28)

Let θ approach 0 and ε be chosen arbitrarily small, this rate will achieve

(1 − Td

Ts

)
Pa

N0

(29)

The proof for 2-tone FSK case is finished. For Multi-tone FSK case, we can prove that

θ

NTs

ln

(
M
K

)
< (1 − ε)(1 − Td

Ts

)
Pa

N0

− θ

NTs

ln K!

− Kθ

Ts

ln[1 + (1 − ε)
Pa(Ts − Td)

KθN0

] (30)

where K is the number of frequencies we used to transmit a message. In general, K <<
M . Let θ approach 0 and ε be chosen arbitrarily small, this rate will also achieve (29).

As the discussion before, we can call this capacity bound as Limited energy bound for
multi-tone FSK.

We now present numerical results to study the performance of multi-tone FSK. We
restrict ourselves to the 2-tone case. First, we set up a discrete system model. The
transmitter sends one of M(M − 1)/2 messages which contains two equal power sinusoid



waveforms with different frequencies or sends nothing. At the receiver, a bank of matched
filters with central frequencies fn(1 ≤ n ≤ M) are used to detect signals. The detector
decodes the message based on |Rn|2. According to the MAP rule, we use following
strategy for decoding: select the two largest |Rn|2’s, add them together, and get the
sum. We then compare the sum to a threshold Z. If the sum is greater than Z, then
the message corresponding to the two frequencies are declared transmitted. Otherwise,
the decoder declares that nothing was transmitted. The threshold is determined by the
MAP rule

Z =

(
1 + ζ

ζ

)
ln

[
(1 + ζ)2 1 − θ

θ

(
M
2

)]
(31)

The discrete model associated with this decoding scheme has M(M − 1)/2 + 1 inputs
and M(M − 1)/2 + 1 outputs. With probability θ, the transmitter transmits one of
M(M−1)/2 messages. Each message has an input probability 2θ

M(M−1)
. With probability

1 − θ, it transmits nothing. The distribution of |Rn|2 is known and the decoding rule is
determined, so the transition probabilities can be get. The mutual information of the
system is optimized on the probability of input, and thus equals capacity for our input
alphabet, input distribution constraint and channel transition probabilities.

Similarly to the FSK case, the limited bandwidth bound of multi-tone FSK can be
deduced from discrete model:

C ≤
ln

((
M
K

)
+ 1

)
Ts

. (32)

Let Td = 1µs, Ts = 10µs, and F = 1MHz, we compare the capacity of 2-tone FSK
system and that of FSK system in different P

2N0
. Suppose we can use the optimal θ in

transmission which means the capacities are optimized on θ. The simulation result is
shown in Figure 5. The capacity of 2-tone FSK system is less than that of FSK system
where the limited energy bound is a main limitation for FSK system. When P

2N0
is very

large, the limited bandwidth bound will limit the system performance mainly. In this
region, the capacity of 2-tone FSK will exceed that of FSK, because Multi-tone FSK has
higher limited bandwidth bound.

The limited bandwidth bound will increase with M while the limited energy bound is
not changed with bandwidth. Figure 6 shows how the capacities of 2-tone FSK and FSK
are changed with M . We use Ts = 0.1s and P

2N0
= 40 here.

6 Conclusions

When the received signal power is very large, the limited bandwidth bound will mainly
constrain the capacity of the FSK system in a Rayleigh fading channel. Otherwise,
the capacity grows slowly with bandwidth, and is nearly 2 dB lower than the infinite
bandwidth bound for bandwidths commensurate with general mobile communication
conditions. Using a moderate bandwidth, we can approach the capacity achieved by
using very large bandwidth. To achieve the best performance in such a FSK system, we
need to select optimal symbol time and duty cycle. Large θ and small Ts are needed for
high SNR, small θ and long Ts are needed for low SNR. Multi-tone FSK can get a higher
capacity than FSK when bandwidth is limited and power can be very large.
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