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The Vámos Network
Randall Dougherty, Chris Freiling, and Kenneth Zeger

Abstract— The well-studied Vámos matroid has provided
a wealth of interesting theoretical results in matroid theory.
We use the V́amos matroid to construct a new network,
which we call the Vámos network. We then exploit the
Vámos network to answer in the negative the open question
as to whether Shannon-type information inequalities are in
general sufficient for computing network coding capacities.
To accomplish this, we first determine the smallest coding
capacity upper bound that can be obtained for the V́amos
network using only Shannon-type information inequalities.
Then, we prove that a smaller capacity upper bound for the
Vámos network can be obtained by using a non-Shannon-
type information inequality discovered in 1998 by Zhang
and Yeung. This is the first published application of a
non-Shannon-type inequality to network coding. Finally,
we demonstrate that one can compute the exact routing
capacity and linear coding capacity of the V́amos network.

I. I NTRODUCTION

In this paper, unless stated otherwise, anetwork is a
directed acyclic multigraph, some of whose nodes are
information sources or receivers (e.g. see [18]). Associ-
ated with the sources aremessagesthat they generate,
which are assumed to be vectors ofk arbitrary elements
of a fixed finite alphabet of size at least2. At any node in
the network, each out-edge carries a vector ofn alphabet
symbols which is a function (called anedge function) of
the vectors of symbols carried on the in-edges to the
node, and/or a function of the node’s message vectors if
it is a source. Associated with each receiver aredemands,
which are a subset of all the messages of all the sources.
Each receiver hasdecoding functionswhich map the
receiver’s inputs to vectors of symbols in an attempt to
produce the messages demanded at the receiver. The goal
is for each receiver to deduce its demanded messages
from its in-edges and sources by having information
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propagate from the sources through the network. Each
edge is allowed to be used at most once (i.e. at mostn
symbols can travel across each edge). Special cases of
interest include linear codes, where the edge functions
and decoding functions are linear, and routing codes,
where the edge functions and decoding functions simply
copy input components to output components.

A (k, n) fractional codeis a collection of edge func-
tions, one for each edge in the network, and decoding
functions, one for each demand of each node in the
network. For a(k, n) fractional code, the ratiok/n is
called acoding rate. A (k, n) fractional solution is a
(k, n) fractional code which results in every receiver
being able to compute its demands via its demand
functions. If a network has a(k, n) fractional solution
over some alphabet, then we say the coding ratek/n
is achievablefor the network. A network is said to be
solvableif it has a(k, n) fractional solution for the case
k = n = 1.

The coding capacity of a network with respect to an
alphabetA and a classC of network codes(a related
definition appears in [18, p. 339]) is

sup{
k

n
: ∃ (k, n) fractional coding solution inC overA}.

If C consists of all network codes, then we simply refer to
the above quantity as thecoding capacityof the network
with respect toA. If the classC of network codes
consists of all routing codes or all linear codes, then the
coding capacity is referred to as therouting capacityor
linear coding capacity, respectively. The coding capacity
of a given network is said to beachievableif there is
some fractional(k, n) solution for the network for which
k/n equals the capacity.

Ahlswede, Cai, Li, and Yeung [1] showed that for
a general network the linear coding capacity can be
larger than the routing capacity. Li, Yeung, and Cai
[11] showed in the special case of a multicast network
(i.e. a network with a single source and each receiver
demanding all messages), the coding capacity and the
linear coding capacity are equal. It was shown in [3]
that for all networks the coding capacity is independent
of the alphabet size. Clearly the routing capacity is also
independent of the alphabet size. However, it was shown
in [4] that the linear coding capacity of a network can
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depend on the alphabet size and the largest linear coding
capacity of a network over any finite field alphabet can
be smaller than the network’s coding capacity. It was also
shown in [3] that the routing capacity is always rational,
achievable, and computable by an algorithm.

For an undirected network (i.e. using undirected edges
for information flow), the coding capacity can be larger
than the routing capacity. However, for undirected net-
works where each message is demanded by exactly
one receiver (called “multiple unicast”), it is presently
unknown whether the coding capacity can be larger
than the routing capacity. Li and Li [10] and Harvey,
Kleinberg, and Rasala Lehman [6] have conjectured that
the two capacities must always be equal for multiple
unicast undirected networks. This conjecture remains an
open question, although it was shown to be true for
certain special undirected bipartite networks by Rasala
Lehman [9].

Although the routing capacity of an arbitrary network
is always computable, there is no known computationally
efficient algorithm for such a task. Unfortunately, it is
not even presently known whether or not there exist
algorithms that can compute the coding capacity or the
linear coding capacity of an arbitrary network. In fact,
computing the exact coding capacity or linear coding
capacity of even relatively simple networks can be a
seemingly non-trivial task. At present, very few exact
coding capacities have been rigorously derived in the
literature. It is also known that a arbitrary network need
not even be able to achieve its coding capacity [5].

As an alternative to determining exact coding capaci-
ties, it can be useful to determine bounds on the coding
capacity and linear coding capacity of a network. One
approach to obtaining capacity bounds (and possibly
exact capacities) is to use information theoretic entropy
arguments. The basic idea is to assume a network’s
source messages are i.i.d. uniform random variables on
some finite alphabet and then to use standard information
theory identities and inequalities to derive bounds on the
largest possible ratio of the message dimension to the
edge capacity.

However, it has been an open question whether stan-
dard Shannon-type information theoretic identities and
inequalities are sufficient for computing the exact cod-
ing capacity or linear coding capacity of an arbitrary
network, or whether they are sufficient for obtaining the
best possible capacity bounds. We answer these open
questions in the negative.

Specifically, we construct a network, which we call
the Vámos network, and demonstrate that no collection
of Shannon-type information inequalities can produce an
upper bound on the coding capacity which is as small as

an upper bound obtainable using a certain non-Shannon-
type information inequality. To prove this result, we
first show that Shannon-type information inequalities can
only produce a coding capacity upper bound as low as1
(Theorem VII.1), and then show that a non-Shannon-
type information inequality argument can produce a
coding capacity upper bound of10/11 (Theorem VII.2).
Additionally, for the Vámos network, we compute the
exact routing capacity (Theorem VII.4) and the the exact
linear coding capacity over every finite field (Theo-
rem VII.5). To establish these results we demonstrate
a close relationship between the Vámos network and
the well-known Vámos matroid. Most proofs are omitted
here due to space limitations.

II. N ETWORK FUNDAMENTALS

We will assume throughout that there is at least one
directed path from each source node to every receiver
that demands a message generated by the source node.

Suppose a networkN has message setµ, node set
ν, and edge setǫ. For each network nodex, let Zin(x)
denote the union of the set of source messages generated
by x and the set of symbols carried on the in-edges
of x, and let Zout(x) denote the union of the set of
source messages demanded atx and the set of symbols
carried on the out-edges ofx. Zin(x) andZout(x) are,
respectively, called thein-symbolsand out-symbolsat
node x. If we are considering solutions over alphabet
A, then let entropyH be defined in terms of logarithms
base|A|.

Lemma II.1. If a network has a(k, n) fractional coding
solution over alphabetA and the message components
are independent random variables uniformly distributed
overA, then

(N1) H(µ) = k|µ| and H(x) = k ∀x ∈ µ
(N2) H(x) ≤ n ∀x ∈ ǫ
(N3) H(y|Zin(x)) = 0 ∀x ∈ ν, ∀y ∈ Zout(x).

We call (N1)-(N3) thenetwork entropy conditions.

III. M ATROID FUNDAMENTALS

For a detailed background in matroid theory, the
reader is referred to reference [15].

A matroid M is an ordered pair(E, I), whereE is
a finite set andI is a set of subsets ofE satisfying the
following three conditions:

(I1) ∅ ∈ I.
(I2) If I ∈ I andJ ⊆ I,thenJ ∈ I.
(I3) If I, J ∈ I and |J | < |I|, then∃e ∈ I − J such

that J ∪ {e} ∈ I.
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The setE is called theground setand the matroidM =
(E, I) is called a matroidon E. The members ofI are
called independent setsand any subset ofE not in I is
called adependent set.

A maximal independent set of a matroid is called a
baseof the matroid. It can be shown that all bases are
equinumerous.

There are many equivalent definitions of a matroid.
One such alternate definition, which is particularly useful
for us, uses the notion of a rank function.

Let M be the matroid(E, I), let X ⊆ E, let I|X =
{I ⊆ X : I ∈ I}, and letM |X = (X, I|X). Then
M |X is a matroid and therank of X , denotedr(X), is
the size of a base ofM |X .

Lemma III.1. [15, pp. 22-23] Ifr is the rank function
of a matroid with ground setE, then the following three
conditions hold:

(R1) If X ⊆ E, then0 ≤ r(X) ≤ |X |.
(R2) If X ⊆ Y ⊆ E, thenr(X) ≤ r(Y ).
(R3) If X, Y ⊆ E, thenr(X ∪Y )+r(X ∩Y ) ≤ r(X)+

r(Y ).

Lemma III.2. [15, p. 23] Let E be a set and letr :
2E → {0, 1, 2, . . .} be a mapping satisfying(R1)−(R3).
Let I = {X ⊆ E : r(X) = |X |}. Then (E, I) is a
matroid having rank functionr.

Two matroids (E, I) and (E′, I ′) are said to be
isomorphicif there exists a bijectionf : E → E′ such
that I ∈ I if and only if f(I) ∈ I′.

IV. N ETWORKS FROMMATROIDS

Suppose a networkN has message setµ, node set
ν, and edge setǫ, and assume the messages inµ are
independent random variables uniformly distributed over
A. Let beM = (E, I) be a matroid with rank function
r. We say thatN is a matroidal network(or an M -
network) if there exists a functionf : µ ∪ ǫ → E such
that:

• (i) f is one-to-one onµ
• (ii) f(µ) ∈ I
• (iii) r(f(Zin(x))) = r(f(Zin(x) ∪ Zout(x))), for

everyx ∈ ν.

We have devised a method (omitted here to conserve
space, but to be presented at the workshop) that can be
useful for constructing anM -network from a matroid
M . Such constructions allow us to transfer various in-
teresting properties of matroids to networks. As matroid
theory is a field rich in important results, the goal
in constructing matroidal networks is to obtain some
analogues for networks.

IV-A. The V́amos Matroid and Network

The Vámos matroidis an 8-element rank-4 matroid
(E, I) with E = {1, 2, 3, 4, 5, 6, 7, 8}, and whose de-
pendent sets are the4-element sets which are copla-
nar in the three-dimensional drawing in Figure 1 (i.e.
precisely{1, 2, 3, 4}, {2, 3, 5, 6}, {1, 4, 5, 6}, {2, 3, 7, 8},
and {1, 4, 7, 8}) and all subsets ofE of cardinality at
least5.
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Fig. 1. A geometric description of the Vámos matroid.

We call the network shown in Figure 2 theVámos
network, since it is a matroidal network constructed from
the Vámos matroid. The network has13 nodes and4
message variables. Nodesn9, . . . , n13 are receiver nodes,
each demanding one source message, except forn11,
which demands two source messages. As depicted in
Figure 2, various sources generate the same messages
(e.g. messagec is generated by nodesn1, n5, n7, n10,
and n12). One could equivalently add4 new nodes to
the network, each generating a unique message, and
then connect each source node to all of the nodes in
Figure 2 which are shown to have the corresponding
source message.

The specific mappingf used to define the network
from the matroid in Figure 2 is determined by:

b → 1 c → 2

y → 3 x → 4

a → 5 w → 6

d → 7 z → 8

V. I NFORMATION INEQUALITIES

Denote the joint entropy of any set of discrete ran-
dom variablesX1, . . . , Xs over alphabetA with joint
probability mass functionp by

H(X1, . . . , Xs)

= −
∑

u1,...,us

p(u1, . . . , us) log|A| p(u1, . . . , us),
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Fig. 2. The Vámos network. Message variablesa, b, c, d are labeled
above the sources generating them. Demand variables are labeled
below the nodes demanding them.

the conditional entropy ofX1, . . . , Xs given Y1, . . . , Yt

by

H(X1, . . . , Xs|Y1, . . . , Yt) = H(X1, . . . , Xs, Y1, . . . , Yt)

− H(Y1, . . . , Yt), (1)

the mutual information between random variables
X1, . . . , Xs andY1, . . . , Yt by

I(X1, . . . , Xs; Y1, . . . , Yt)

= H(X1, . . . , Xs) − H(X1, . . . , Xs|Y1, . . . , Yt)

and the conditional mutual information between random
variablesX1, . . . , Xs andY1, . . . , Yt, givenZ1, . . . , Zw

by

I(X1, . . . , Xs; Y1, . . . , Yt|Z1, . . . , Zw)

= H(X1, . . . , Xs|Z1, . . . , Zw)

− H(X1, . . . , Xs|Y1, . . . , Yt, Z1, . . . , Zw).

It then easily follows that for any three collectionsp, q,
andr of jointly related random variables, one can write:

I(p; q) = H(p) + H(q) − H(pq)

I(p; q|r) = H(p, r) + H(q, r) − H(r) − H(p, q, r).

We will make use of the following basic information the-
oretic facts [18] (wherep, q, andr are each collections
of jointly related random variables):

H(p) ≤ H(p, q) (2)

H(p, q) ≤ H(p) + H(q) (3)

H(p|q) ≥ 0 (4)

H(p) ≥ 0 (5)

I(p; q) ≥ 0. (6)

An information inequalityis any inequality of the form
∑

i

CiH(Xg(i,1), Xg(i,2), . . .) ≥ 0

(wheres is a positive integer,1 ≤ g(i, j) ≤ s for all i
and j, and eachCi is a real number) that holds for all
joint distributions of X1, . . .Xs. Since all conditional
entropies and all conditional mutual informations can be
written in terms of only joint entropies, any linear in-
equality involving conditional entropies and conditional
mutual informations is an information inequality.

The information inequalities in (2)-(6) were originally
given in 1948 by Shannon [17] (they follow from the
convexity of the logarithm function) and can all be
obtained as special cases of the inequality [18]

I(p; q|r) ≥ 0. (7)

A Shannon-type information inequalityis any informa-
tion inequality that is (or can be rearranged to be) of the
form (where eachci is a nonnegative real number):

∑

i

ciI(pi; qi|ri) ≥ 0.

Virtually every known result in information theory that
makes use of an information inequality only makes use
of Shannon-type information inequalities.

Information inequalities provide a powerful tool for
analyzing the capacity and solvability of networks. In
particular, one can derive capacity bounds for a network
by assuming its sources are random variables and using
the fact that network nodes obey the entropy conditions
given in Lemma II.1.

Suppose a networkN has message setµ (with mes-
sages of dimensionk), and edge setǫ (with edges of
capacityn). We will say that a numberB is a Shannon-
type capacity upper boundfor the network if the network
entropy conditions in Lemma II.1, together with the
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Shannon-type information inequality (7) applied to all
p, q, r ⊆ µ ∪ ǫ, imply that k ≤ Bn. In this case, the
coding capacity ofN must be at mostB, because if we
take any(k, n) fractional solution to the network with
alphabetA, and let the elements ofµ be independent
random variables uniformly distributed overA, then the
resulting joint entropies will satisfy the network entropy
conditions and the Shannon-type inequalities, and must
therefore satisfyk/n ≤ B.

Thus, a Shannon-type capacity bound must not require
non-Shannon-type information inequalities for its deriva-
tion. In particular, one can demonstrate that a numberB
is not a Shannon-type capacity upper bound by finding
positive integersk and n with k/n > B, and finding a
mappingĤ : 2µ∪ǫ → R such that (N1)-(N3) and (7)
(for all p, q, r ⊆ µ ∪ ǫ) are satisfied when replacingH
by Ĥ .

Lemma V.1. Suppose a network has a messagez which
is demanded by a nodey and is produced by exactly
one upstream source nodex of y. If there is a unique
directed path fromx to y, then the coding capacity of
the network is at most1.

We note that Lemma V.1 can readily be generalized
to the case where all paths in a network from some par-
ticular message go through one specific (“bottleneck”)
edge.

Any information inequality that cannot be derived
from (7) will be called anon-Shannon-type information
inequality. It is known [18, p. 308] that all information
inequalities containing three or fewer random variables
are Shannon-type inequalities. The first known non-
Shannon-type information inequality was published in
1998 by Zhang and Yeung and is stated in the following
lemma. To date, it is the only published unconstrained
non-Shannon-type information inequality for four ran-
dom variables.

Lemma V.2. [19] For any jointly related discrete ran-
dom variablesX1, X2, X3, X4 the following information
inequality holds:

2I(X3; X4) ≤ I(X1; X2) + I(X1; X3X4)

+3I(X3; X4|X1) + I(X3; X4|X2).

Furthermore, this inequality cannot be derived purely
from Shannon-type information inequalities.

In what follows, we will exploit Lemma V.2 to obtain
an upper bound on the coding capacity of the Vámos
network and we will then show that this bound is
strictly tighter than any such bound obtainable using
only Shannon-type information inequalities. Thus, we
demonstrate that Shannon-type information inequalities

are generally insufficient for computing the coding ca-
pacity of a network.

VI. M ATROIDAL NETWORK CAPACITY BOUND FROM

SHANNON-TYPE INFORMATION INEQUALITIES

Lemma VI.1. [18, p.297] LetE be a finite collection
of jointly related discrete random variables. Then the
following “polymatroidal axioms” hold:

(H1) H(∅) = 0
(H2) If X ⊆ Y ⊆ E, thenH(X) ≤ H(Y )
(H3) If X, Y ⊆ E, then H(X ∪ Y ) + H(X ∩ Y ) ≤

H(X) + H(Y ).

The polymatroid axioms (H1)-(H3) are known [18,
p.297] to be equivalent to the Shannon-type inequalities.

Lemma VI.2. For any matroidal network, the least
upper bound on the coding capacity obtainable from
Shannon-type information inequalities is at least1.

Proof. Let M be a matroid and letN be anM -network;
we will show that any Shannon-type capacity upper
bound forN must be at least1. Let µ and ǫ be the
message set and edge set ofN . Let f be the given
mapping fromµ ∪ ǫ to the ground setE of M . The
rank functionr of M satisfies conditions(R1) − (R3)
in Lemma III.1. Hence, if we assign a valueH(Y ) to
each subsetY of µ∪ǫ by lettingH(Y ) = r(f(Y )), then
H will satisfy the entropy conditions(H1)− (H3) and
hence all of the Shannon-type information inequalities.
Also, r(f(x)) = 1 for eachX ∈ µ andr(f(µ)) = |µ|, so
network condition (N1) is satisfied withk = 1. Similarly,
r(f(x)) ≤ 1 for eachx ∈ ǫ, so network condition (N1)
is satisfied withn = 1. Furthermore, for anyy ∈ µ ∪ ǫ
andX ⊆ µ∪ǫ, if y is an out-edge or demanded message
of a node whose in-edges and source messages are the
set X , then part (iii) of the definition of ‘matroidal’
givesr(f(X∪{y})) = r(f(X)), which implies network
condition (N3). Thus, the network conditions in (N1)-
(N3) are satisfied withk = n = 1. So the Shannon
inequalities and the network conditions do not imply
k ≤ Bn for any B < 1, and hence noB < 1 is a
Shannon-type capacity upper bound forN . �

VII. B OUNDS ONCODING CAPACITY OF THE V ÁMOS

NETWORK

In general, the routing capacity of an arbitrary net-
work can in principle be determined using a linear
programming approach [3], although the computational
complexity can be prohibitive for even relatively small
networks. It is thus generally non-trivial to efficiently
determine the routing capacity. In addition, there are
presently no known techniques for computing the coding
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capacity or the linear coding capacity of an arbitrary
network.1 In fact, the linear coding capacity of a network
depends, in general, on the finite field alphabet used [4],
whereas the routing capacity and coding capacity do not
depend on the alphabet size [3]. However, somewhat
surprisingly, the exact routing capacity and linear coding
capacity of the Vámos network can be computed, and the
linear coding capacity of the Vámos network turns out
to be independent of the finite field alphabet.

In what follows, we first determine the best possible
upper bound on the coding capacity of the Vámos
network, under the restriction that we only use Shannon-
type information inequalities. Then we show that the up-
per bound on the coding capacity of the Vámos network
can be improved if we allow the use of non-Shannon-
type information inequalities. Specifically, we exploit the
Zhang-Yeung non-Shannon-type information inequality
given in Lemma V.2 and obtain a smaller upper bound
on the coding capacity of the Vámos network than is
obtainable using Shannon-type information inequalities.
To the best of our knowledge, this is the first published
application of a non-Shannon-type information inequal-
ity to network coding. Finally, we compute the exact
routing capacity and the exact linear coding capacity of
the Vámos network.

Theorem VII.1. The least upper bound on the coding
capacity of the V́amos network that can be derived purely
from Shannon-type information inequalities is1.

Proof. By Lemma VI.2 the least upper bound is greater
than or equal to1. Since there is a unique path in the
Vámos network from the source noden1 to the node
n12 which demands messaged, the capacity can no be
greater than1 (by Lemma V.1). �

The following theorem demonstrates that non-
Shannon-type information inequalities can give tighter
upper bounds on a network’s capacity than can only
Shannon-type information inequalities. In particular,
Shannon-type information inequalities do not by them-
selves guarantee that the Vámos network is unsolvable,
whereas adding one non-Shannon inequality indeed con-
firms the unsolvability of the network (since the coding
capacity is strictly smaller than1).

Theorem VII.2. The coding capacity of the Vámos
network is at most10/11.

Corollary VII.3. Shannon-type information inequalities
are in general insufficient for determining the coding
capacity of a network.

1An exception is for multicast networks, where it is known that the
coding capacity equals the linear coding capacity and is computable
[11].

Theorem VII.4. The routing capacity of the V́amos
network is2/5.

Theorem VII.5. The linear coding capacity of the
Vámos network over every finite field is5/6.
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