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The Vamos Network

Randall Dougherty, Chris Freiling, and Kenneth Zeger

Abstract— The well-studied Vamos matroid has provided propagate from the sources through the network. Each
a wealth of interesting theoretical results in matroid theay.  edge is allowed to be used at most once (i.e. at most
We use the \amos matroid to construct a new network, gymnols can travel across each edge). Special cases of

which we call the Vamos network. We then exploit the . ¢ t include li d h the edge functi
Vamos network to answer in the negative the open question Interest include finear codes, where the edge tunctions

as to whether Shannon-type information inequalities are in @nd decoding functions are linear, and routing codes,
general sufficient for computing network coding capacities where the edge functions and decoding functions simply
To accomplish this, we first determine the smallest coding copy input components to output components.
capacity upper bound that can be obtained for the \amos A" ;. ) fractional codeis a collection of edge func-
network using only Shannon-type information inequalities . - .
Then, we prove that a smaller capacity upper bound for the tlons,_ one for each edge in the network, and degodlng
Vamos network can be obtained by using a non-Shannon- functions, one for each demand of each node in the
type information inequality discovered in 1998 by Zhang network. For a(k,n) fractional code, the ratié/n is
and Yeung. This is the first published application of a called acoding rate A (k,n) fractional solutionis a
non-Shannon-type inequality to network coding. Finally, . .y fractional code which results in every receiver
we demonstrate that one can compute the exact routing = . . o
capacity and linear coding capacity of the \Amos network. be'”g able to compute its demandS_VIa its d_emand
functions. If a network has &k, n) fractional solution
over some alphabet, then we say the coding Ffgte
is achievablefor the network. A network is said to be
|. INTRODUCTION solvableif it has a(k, n) fractional solution for the case

In this paper, unless stated otherwiseyetworkis a k£ =n = 1.
directed acyclic multigraph, some of whose nodes are The coding capacity of a network with respect to an
information sources or receivers (e.g. see [18]). Associphabet.A and a classC of network codega related
ated with the sources amessageshat they generate, definition appears in [18, p. 339]) is
which are assumed to be vectorskoérbitrary elements
of a fixed finite alphabet of size at leastAt any node in  sup{— : 3 (k,n) fractional coding solution i over A}.
the network, each out-edge carries a vector afphabet
symbols which is a function (called atge functiopof If C consists of all network codes, then we simply refer to
the vectors of symbols carried on the in-edges to tfiée above quantity as theding capacityf the network
node, and/or a function of the node’s message vectordifth respect toA. If the classC of network codes
it is a source. Associated with each receiverggmands consists of all routing codes or all linear codes, then the
which are a subset of all the messages of all the sourceeding capacity is referred to as theuting capacityor
Each receiver haslecoding functionsvhich map the linear coding capacityrespectively. The coding capacity
receiver’s inputs to vectors of symbols in an attempt tof & given network is said to bachievableif there is
produce the messages demanded at the receiver. The goane fractionalk, n) solution for the network for which
is for each receiver to deduce its demanded messadés equals the capacity.
from its in-edges and sources by having information Ahlswede, Cai, Li, and Yeung [1] showed that for

a general network the linear coding capacity can be

his work was su i i i i i
the;rNationaI Scienceplggﬂtr?gat?gn,thaen(ljntsr:gubecfglrj %eefr?tr:asrefoér&gselarger than t.he routing _capaC|ty. Li, Yeu.ng’ and Cai
Communications. [11] showed in the special case of a multicast network
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depend on the alphabet size and the largest linear codamgupper bound obtainable using a certain non-Shannon-
capacity of a network over any finite field alphabet catype information inequality. To prove this result, we
be smaller than the network’s coding capacity. It was aldwst show that Shannon-type information inequalities can
shown in [3] that the routing capacity is always rationalnly produce a coding capacity upper bound as low as
achievable, and computable by an algorithm. (Theorem VII.1), and then show that a non-Shannon-
For an undirected network (i.e. using undirected edgégpe information inequality argument can produce a
for information flow), the coding capacity can be largegoding capacity upper bound ©6/11 (Theorem VII.2).
than the routing capacity. However, for undirected neAdditionally, for the Vamos network, we compute the
works where each message is demanded by exactkact routing capacity (Theorem VII.4) and the the exact
one receiver (called “multiple unicast”), it is presenthjinear coding capacity over every finite field (Theo-
unknown whether the coding capacity can be largeem VII.5). To establish these results we demonstrate
than the routing capacity. Li and Li [10] and Harveya close relationship between the Vamos network and
Kleinberg, and Rasala Lehman [6] have conjectured thie well-known Vamos matroid. Most proofs are omitted
the two capacities must always be equal for multipleere due to space limitations.
unicast undirected networks. This conjecture remains an

open. questiqn, although it .was'shown to be true for II. NETWORK FUNDAMENTALS
certain special undirected bipartite networks by Rasala ) )
Lehman [9]. We will assume throughout that there is at least one

Although the routing capacity of an arbitrary networidirected path from each source node to every receiver
is always computable, there is no known computationalfft démands a message generated by the source node.
efficient algorithm for such a task. Unfortunately, it is SUPPOSe a network/ has message set, node set
not even presently known whether or not there exi& and edge set. For each network node, let Z;, ()
algorithms that can compute the coding capacity or tfienote the union of the set of source messages'generated
linear coding capacity of an arbitrary network. In fact?y © and the set of symbols carried on the in-edges
computing the exact coding capacity or linear codingf » and letZ,,;(z) denote the union of the set of
capacity of even relatively simple networks can be $0Urce messages demanded @nd the set of symbols
seemingly non-trivial task. At present, very few exactarried on the out-edges ot Z;,(x) and Zo..(z) are,
coding capacities have been rigorously derived in t{SPectively, called then-symbolsand out-symbolsat
literature. It is also known that a arbitrary network neefde z. If we are considering solutions over alphabet
not even be able to achieve its coding capacity [5]. A, then let entropyd be defined in terms of logarithms

As an alternative to determining exact coding capack?—aseM"

ties, it can be useful to determine bounds on the codin@mma I1.1. If a network has gk, n) fractional coding
capacity and linear coding capacity of a network. Ongolution over alphabe#4 and the message components

approach to obtaining capacity bounds (and possibite independent random variables uniformly distributed

exact capacities) is to use information theoretic entropyer A, then
arguments. The basic idea is to assume a netwomi) H(p) = klu| and H(z) = k Vo € p
source messages are i.i.d. uniform random variablejfg) H(z)<n Vzece

some fi_nite gl_phabet gnd the_n.to use stgndard informay igg) H(y|Zin(2)) =0 Vi € v, Yy € Zow(2).
theory identities and inequalities to derive bounds on the

largest possible ratio of the message dimension to thewe call (N1)-(N3) thenetwork entropy conditions
edge capacity.

However, it has been an open question whether stan- m
dard Shannon-type information theoretic identities and
inequalities are sufficient for computing the exact cod- For a detailed background in matroid theory, the
ing capacity or linear coding capacity of an arbitraryeader is referred to reference [15].
network, or whether they are sufficient for obtaining the A matroid M is an ordered pai(£, Z), where E is
best possible capacity bounds. We answer these opefinite set and’ is a set of subsets df satisfying the
guestions in the negative. following three conditions:

Specifically, we construct a network, which we callll) 0 € Z.
the Vamos network, and demonstrate that no collecti¢k?) If 7 € Z andJ C I ,thenJ € 7.
of Shannon-type information inequalities can produce &3) If I,J € Z and|J| < |I|, then3e € I — J such
upper bound on the coding capacity which is as small as thatJ U {e} € 7.

. M ATROID FUNDAMENTALS
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The setE is called theground setand the matroidi/ = IV-A. The \Amos Matroid and Network

(E,T) is called a matroicbn E. The members of are  The vamos matroidis an 8-element rankt matroid
calledindependent setand any subset of not inZ is (E,I) with E = {1,2,3,4,5,6,7,8}, and whose de-
called adependent set pendent sets are thé-element sets which are copla-

A maximal independent set of a matroid is called ar in the three-dimensional drawing in Figure 1 (i.e.
basgof the matroid. It can be shown that all bases algrecisely{1,2,3,4},{2,3,5,6},{1,4,5,6},{2,3,7,8},
equinumerous. and {1,4,7,8}) and all subsets off of cardinality at

There are many equivalent definitions of a matroidegsts.

One such alternate definition, which is particularly useful
for us, uses the notion of a rank function.

Let M be the matroid E,Z), let X C E, letZ|X =
{ICX:Ie€1}, andletM|X = (X,Z]X). Then
M|X is a matroid and theank of X, denotedr(X), is
the size of a base a¥/| X.

Lemma lll.1. [15, pp. 22-23] Ifr is the rank function
of a matroid with ground seF, then the following three
conditions hold:

(R1) If X C E, then0 < r(X) < |X|.

(R2) If X CY C E, thenr(X) <r(Y). Fig. 1. A geometric description of the Vamos matroid.
(R3) If X, Y C E, thenr(XUY)+r(XNY) <r(X)+
r(Y). We call the network shown in Figure 2 théamos

network since it is a matroidal network constructed from
the Vamos matroid. The network hag nodes andi
message variables. Nodes, . . ., n13 are receiver nodes,
each demanding one source message, exceph{fQr
which demands two source messages. As depicted in
Two matroids (E,Z) and (E’,Z’) are said to be Figure 2, various sources generate the same messages
isomorphicif there exists a bijectiory : E — E’ such (e.g. message is generated by nodes,, ns, nr, n1g,
that7 € Z if and only if f(I) € Z'. and ny3). One could equivalently add new nodes to
the network, each generating a unique message, and
then connect each source node to all of the nodes in
Figure 2 which are shown to have the corresponding
Suppose a networ®/ has message set, node set ggurce message.
v, and edge set, and assume the messagesuirare  The specific mapping’ used to define the network
independent random variables uniformly distributed ovgfom the matroid in Figure 2 is determined by:
A. Let be M = (E,Z) be a matroid with rank function

Lemma I1.2. [15, p. 23] Let £ be a set and let :
2F —{0,1,2,...} be a mapping satisfyingR1)— (R3).
LetZ = {X C E: r(X) = |X|}. Then(E,Z) is a
matroid having rank functiom.

IV. NETWORKS FROMMATROIDS

r. We say that\ is a matroidal network(or an M- b—1 c—2
networR if there exists a functiorf : ; Ue — E such y— 3 x—4
that: a—5 w— 6
e (i) f is one-to-one onu d—7 » 58
o (i) fp) ez
o (iii) r(f(Zin(2)) = r(f(Zin(z) U Zout(x))), for
everyzx € v.

We have devised a method (omitted here to conserve V. INFORMATION INEQUALITIES
space, but to be presented at the workshop) that can b&enote the joint entropy of any set of discrete ran-

useful for constructing am/-network from a matroid dom variablesX,,..., X, over alphabet4 with joint
M. Such constructions allow us to transfer various irprobability mass functiop by
teresting properties of matroids to networks. As matroid
- - e (X1, Xs)
theory is a field rich in important results, the goal
in constructing matroidal networks is to obtain some =— > p(u1,...,us)log 4 plua, ..., us),

analogues for networks. ULyeensls
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abcd It then easily follows that for any three collectiopsg,

andr of jointly related random variables, one can write:
w I(p;q) = H(p) + H(q) — H(pq)
I(p;qlr) = H(p,r) + H(q,r) — H(r) — H(p,q,7).
We will make use of the following basic information the-

oretic facts [18] (where, ¢, andr are each collections
of jointly related random variables):

H(p) < H(p,q) )
H(p,q) < H(p) + H(q) 3)
H(plg) >0 4)

H(p) >0 (5)

I(p;q) > 0. (6)

An information inequalityis any inequality of the form

Z CiH (Xg(i,1), Xg(i,2),---) = 0

(wheres is a positive integer] < ¢(i,7) < s for all 4
and j, and eachC; is a real number) that holds for all
joint distributions of X, ... X,. Since all conditional
entropies and all conditional mutual informations can be
written in terms of only joint entropies, any linear in-
equality involving conditional entropies and conditional
mutual informations is an information inequality.

The information inequalities in (2)-(6) were originally
given in 1948 by Shannon [17] (they follow from the
convexity of the logarithm function) and can all be

Fig. 2. The Vamos network. Message variabies, c, d are labeled Obtained as special cases of the inequality [18]
above the sources generating them. Demand variables agéedab
below the nodes demanding them. I(p;qlr) > 0. (7)

A Shannon-type information inequality any informa-

the conditional entropy ok, .... X, givenYi.....Y, tion inequality that is (or can be rearranged to be) of the
by T "7 form (where eachy; is a nonnegative real number):

H(X1,. . Xo|Yi, V) = H(X1, .., Xs, Yi,.. ., Y0 ZQI(PMH”) > 0.
—HMW,...,Y), @) ' - .

Virtually every known result in information theory that
the mutual information between random variablesiakes use of an information inequality only makes use
Xq,...,X,andYy,...,Y; by of Shannon-type information inequalities.

Information inequalities provide a powerful tool for
(X, X Vi, V) analyzing the capacity and solvability of networks. In
=H(X4y,...,Xs) - HXq,...,X:Y1,....Y) particular, one can derive capacity bounds for a network
. . . by assuming its sources are random variables and using
anq the conditional mutual mformatlo_n between randogﬁ’e fact that network nodes obey the entropy conditions
variablesX;, ..., X; andYy,...,Y;, givenZy,..., Z, given in Lemma I1.1.
by Suppose a network/ has message sgt (with mes-
I(X1,..., X Y1, .. Y| Z0, .., Zw) sages of dimensiot), and edge set (with edges of
— H(X X, |7 Z) capacityn). We will say that a numbeB is a Shannon-
Tseves s 1s---9 4w 3 K
type capacity upper bourfdr the network if the network
—H(Xy, . XY, Y 20 Z). entropy conditions in Lemma Il.1, together with the
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Shannon-type information inequality (7) applied to alare generally insufficient for computing the coding ca-
p,q,r C pUe, imply that k& < Bn. In this case, the pacity of a network.
coding capacity of\V" must be at mosB, because if we
take any(k,n) fractional solution to the network with V|, M ATROIDAL NETWORK CAPACITY BOUND FROM
alphabetA, and let the elements qgf be independent SHANNON-TYPE INFORMATION INEQUALITIES
random variables uniformly distributed ovel, then the Lemma VI.1. [18, p.297] Let E be a finite collection
resulting joint entropies will satisfy the network entropyy¢ iqinty related discrete random variables. Then the
conditions and the Shannon-type inequalities, and mlfahowing “polymatroidal axioms” hold:
therefore satisfyt/n < B.
Thus, a Shannon-type capacity bound must not req l_rll) H(®) =0
! H2) If X CY C E, thenH(X) < H(Y)

non-Shannon-type information inequalities for its deri
tion. In particular, one can demonstrate that a nunbe $)If X, ¥ € E then H(X UY) + H(X NY) <
H(X)+ H(Y).

is not a Shannon-type capacity upper bound by finding
positive integers: andn with k/n > B, and findinga  The polymatroid axioms (H1)-(H3) are known [18,

mapping H : 2Y¢ — R such that (N1)-(N3) and (7) p.297] to be equivalent to the Shannon-type inequalities.
(for all p,q,r C uUe) are satisfied when replacing

by H Lemma VI.2. For any matroidal network, the least

upper bound on the coding capacity obtainable from
Lemma V.1. Suppose a network has a messagehich Shannon-type information inequalities is at least

is demanded by a nodg and is produced by exactly
one upstream source nodeof y. If there is a unique
directed path fromz to y, then the coding capacity of
the network is at most.

Proof. Let M be a matroid and let/ be ani/-network;
we will show that any Shannon-type capacity upper
bound for AV must be at least. Let . and ¢ be the
message set and edge set/dt Let f be the given
We note that Lemma V.1 can readily be generalizedapping fromyu U ¢ to the ground sefe of M. The
to the case where all paths in a network from some paank functionr of M satisfies condition$R1) — (R3)
ticular message go through one specific (“bottlenecki) Lemma I11.1. Hence, if we assign a vali&(Y) to
edge. each subset” of pUe by letting H(Y) = »(f(Y)), then
Any information inequality that cannot be derivedd will satisfy the entropy conditionsH1) — (H3) and
from (7) will be called anon-Shannon-type informationhence all of the Shannon-type information inequalities.
inequality. It is known [18, p. 308] that all information Also, r(f(z)) = 1 foreachX € yandr(f(u)) = |u|, SO
inequalities containing three or fewer random variablesetwork condition (N1) is satisfied with= 1. Similarly,
are Shannon-type inequalities. The first known non<{f(z)) < 1 for eachz € ¢, so network condition (N1)
Shannon-type information inequality was published iis satisfied withn = 1. Furthermore, for any) € p U e
1998 by Zhang and Yeung and is stated in the followingnd X C uUe, if y is an out-edge or demanded message
lemma. To date, it is the only published unconstraineaf a node whose in-edges and source messages are the
non-Shannon-type information inequality for four ranset X, then part (iii) of the definition of ‘matroidal’
dom variables. givesr(f(XuU{y})) = r(f(X)), which implies network
condition (N3). Thus, the network conditions in (N1)-
(N3) are satisfied withfk = n = 1. So the Shannon
inequalities and the network conditions do not imply
k < Bn for any B < 1, and hence ndB < 1 is a
2I(X3; Xy) < I(X1; Xo) + I(X1; X3X4) Shannon-type capacity upper bound fdt |

+3I(X3, X4|X1) + I(X3,X4|X2)

Lemma V.2. [19] For any jointly related discrete ran-
dom variablesX, X5, X3, X4 the following information
inequality holds:

o _ _ VIl. BOUNDS ONCODING CAPACITY OF THE VAMOS
Furthermore, this inequality cannot be derived purely NETWORK

from Shannon-type information inequalities. In general, the routing capacity of an arbitrary net-

In what follows, we will exploit Lemma V.2 to obtain work can in principle be determined using a linear
an upper bound on the coding capacity of the Vamgsogramming approach [3], although the computational
network and we will then show that this bound isomplexity can be prohibitive for even relatively small
strictly tighter than any such bound obtainable usingetworks. It is thus generally non-trivial to efficiently
only Shannon-type information inequalities. Thus, wedetermine the routing capacity. In addition, there are
demonstrate that Shannon-type information inequalitipsesently no known techniques for computing the coding
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capacity or the linear coding capacity of an arbitrarfheorem VII.4. The routing capacity of the &mos
network? In fact, the linear coding capacity of a networknetwork is2/5.

depends, in general, on the finite field alphabet used [4llheorem VIL5. The

whereas the routing capacity and coding capacity do r‘\c/)t
depend on the alphabet size [3]. However, :somewha%1
surprisingly, the exact routing capacity and linear coding
capacity of the Vamos network can be computed, and thg;
linear coding capacity of the Vamos network turns out
to be independent of the finite field alphabet. 2l

In what follows, we first determine the best possible
upper bound on the coding capacity of the Vamogs]
network, under the restriction that we only use Shannon-
type information inequalities. Then we show that the Up1g)
per bound on the coding capacity of the Vamos network
can be improved if we allow the use of non-ShannonES]
type information inequalities. Specifically, we exploieth
Zhang-Yeung non-Shannon-type information inequality
given in Lemma V.2 and obtain a smaller upper bounje]
on the coding capacity of the Vamos network than i
obtainable using Shannon-type information inequalities.
To the best of our knowledge, this is the first publishe%
application of a non-Shannon-type information inequal-
ity to network coding. Finally, we compute the exact[g]
routing capacity and the exact linear coding capacity of
the Vamos network.

Theorem VII.1. The least upper bound on the coding[g]

capacity of the ¥¥mos network that can be derived purely
from Shannon-type information inequalitieslis

Proof. By Lemma VI.2 the least upper bound is greatd#0l
than or equal tol. Since there is a unique path in the
Vamos network from the source node to the node [11]
n12 Which demands messagkg the capacity can no be

greater tharl (by Lemma V.1). ] [12]

The following theorem demonstrates that non-
Shannon-type information inequalities can give tighte13]
upper bounds on a network’s capacity than can only
Shannon-type information inequalities. In patrticular,
Shannon-type information inequalities do not by themsz4]
selves guarantee that the Vamos network is unsolvable,
whereas adding one non-Shannon inequality indeed con-
firms the unsolvability of the network (since the codingis)

capacity is strictly smaller thah). 116

Theorem VII.2. The coding capacity of the &hos [17]
network is at most0/11.

Corollary VII.3. Shannon-type information inequalities[18]
are in general insufficient for determining the codingig)

capacity of a network.

1An exception is for multicast networks, where it is knowntttiee  [20]
coding capacity equals the linear coding capacity and ispctable
[11].

linear coding capacity of the

mos network over every finite field5g6.
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