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Abstract—In this paper, we consider Harary graphs as can- In our reliability study, we will be solely concerned with

didate solutions for the design of a physical network topology
that achieves a high level of réliability using unreliable network
elements. Our network model, which is motivated by the use
of all-optical networks for high-reliability applications, is one in
which nodes are invulnerable and links are subject to failure
in a statistically independent fashion. Our reliability metrics are
the all-terminal connectedness measure and the less commonly
considered two-terminal connectedness measure. We compare in
the low and high stress regimes common commercial architec-
tures designed for all-terminal reliability in the low stress regime
with the Harary graph architecture. We focus on Harary graphs
as candidate topologies, as they have been shown to possess
attractive reliability properties, and we derive new results for
this family of graphs.

Index Terms—network reliability, network design, Harary
graphs

I. INTRODUCTION AND MOTIVATION

the connectedness measures of a network. While network
reliability metrics such as throughput or delay may be relevant
to some network applications [1], connectedness measures are
useful in situations where network performance is considered
satisfactory as long as the network remains connected, or
when the network’s ability to provide a minimal level of
service is of interest. In addition, connectedness is the relevant
metric in many high-reliability applications and in LANSs,
where capacities of network components are over-designed,
such that connectedness of nodes ensures acceptable network
performance.

Most reliability studies to date have focused on the anal-
ysis and design of networks, with emphasis on all-terminal
reliability, when links are very reliable. This is appropriate
when modelling benign component failures due to low stress,
such as normal wear of components. However, the design of

Commercial networks today are typically designed to reetworks when links are unreliable owing to high stress, which

cover from single failures at a given time, and thus provide addressed in this paper, is interesting for several reasons. In
adequate levels of reliability in the face of isolated failuresituations where the probability that a network is connected
with sparse connectedness. On the other hand, when very higlguite small, some degree of connectedness in the network
levels of reliability are desired, or in the event of a catastrophgould still allow for important functions to be carried out,
stress where a large portion of a network has failed, seich as relaying emergency signals in times of distress. For
high degree of connectedness in a network is required dgample, in an aircraft application, even a small probability of
ensure communication, since many links are needed to baclkigmnectedness could allow for adequate time for the aircraft
primary communication paths. Reliable network design must fail gracefully should it come under catastrophic stress.
therefore be revisited for applications which demand high As mentioned above, we consider both the case of low
levels of reliability or which involve high levels of stress.  and high stress. In low stress situations, we assume that link

In this work, we consider highly connected Harary graphailures occur with probability 0.2 or below, and in high stress
for local-area network (LAN) design under different levelsituations, link failures occur with probability 0.8 or above. It
of stress. The cost of rich connectedness is a secondghpuld be emphasized that we are not assuming that networks
issue in LANs in contrast to wide-area networks (WANShormally operate in this latter regime of high link failure
where connectedness is hampered by the high cost of fibgsbability. Rather, high link failure probabilities are assumed
runs. Owing to space constraints, we focus exclusively on th&en that a catastrophic stress has occurred.
family Qf Harary graphs, which possess attractive reliability \ost of the necessary background is covered in the follow-
properties. ing section. Section Ill outlines the modelling assumptions

In this paper, we employ a model in which nodes argmployed in this work. In Section IV, we present bounding
invulnerable and links are vulnerable which is particular%chniques which are valuable in the design of reliable net-
relevant to aII-OpticaI networks. In such netWOka, the hlghlyNorks Section V justifies our pursuit of Harary graphs and
reliable passive optics in network nodes are modelled as invghecializes the techniques in Section IV to Harary graphs, and
nerable graph nodes, and fiber links and transmitter/receivgfsdoing so introduces new results for this family of graphs.
which are significantly more prone to failures, are modelled
as vulnerable graph edges.

I[I. GRAPH THEORY BACKGROUND
The research in this paper was supported by: Defense Advanced Research

Projects Agency, “Robust Architectures for Multi-Service, Multi-Level Reli-  \we model a network as an undirected graiblwith n nodes
ability, Multi-Level Service and Multi-Priority WDM Local Area Networks”,

MDA972-02-1-0021; and National Science Foundation ITR/SY, “High Spedand ¢ €dges. Thencidence matrix A of an undirected graph
Wavelength-Agile Optical Networks”, 008963-001. is then x e matrix (each row corresponds to a node and each



column to an edge) with thg, j) entry defined as follows: network properties, in addition to the reliability of network
components, and thus yield a more meaningful measure of
network reliability. For this reason, this work will primarily be
concerned with probabilistic reliability criteria. Probabilistic
Two distinct nodes in an undirected graph @amnected if  reliability metrics require the concept of a probabilistic graph.
there exists a path between the nodes. An undirected grapla iprobabilistic graph is an undirected graph where each node
connected if there exists a path between every pair of distindias an associated probability of being in an operational state
nodes. A (minimal) set of edges in a graph whose remowahd likewise for each edge. In probabilistic reliability analyses,
disconnects the graph is (@rime) edge cutset. A (minimal) networks under stress are modelled as probabilistic graphs.
set of nodes which has the same property igrame) node Probabilistic reliability analyses have dealt mostly with the
cutset. The minimum cardinality of an edge cutset is #uige  probability that a subset of nodes in a network are connected
connectivity or cohesion A(G). The minimum cardinality of when links are very reliable. We thus define #i&terminal
a node cutset is thaode connectivity or connectivity x(G). reliability of a probabilistic graph as the probability that any
Analogous two-terminal metrics are the edge-connectivitwo nodes in the graph have an operating path connecting
Asq(G) and node-connectivityq(G) with respect to a pair them. If links fail in a statistically independent fashion with
of nodess andd. The two-terminal edge (respectively, nodeprobability p, then the all-terminal reliability?.(G, p) is given
connectivity of a graph is the minimum number of edgesy:
(respectively, nodes) whose removal disconnects the node pair. .

A myriad of metrics can been defined to measure the relia- _ (1 \ige—i
bility of networks. These criteria, which we now discuss, may PUGp) = L Adl-p)p @
be broadly categorized as either deterministic or probabilistic
reliability metrics.

1, if edgej is incident at node,
Qi = .
0, otherwise.

i=n—1

1-— Z Cip'(1 — p)efi 3)
i=A

A. Deterministic metrics
The cohesion and connectivity of the graph underlyin\@fhere“li denotes the number of connected subgraphs Wlth.
a network are prime examples of deterministic, all-termin&d9es, and’; denotes the number of edge cutsets of cardi-
reliability criteria. A graph having maximum cohesion is &@lity . For values ofp sufficiently close tAO zeroPecgr*,p)
max-\ graph. Similarly, a graph having maximum connectivitga” be accurately approximated by- Cp*(1 —p)* . In

is a max-y graph. The following bounds relate connectivin/iS case, an optimally reliable graph — one that achieves
and cohesion to the basic parameters of a graph [2]:

the maximumP,(G, p) over all graphs with the same number
of nodes and edges — has a minimum number of cutsets of
size A = |2e¢/n|. Therefore, in this regime of, optimally
reliable graphs are supargraphs. For values of sufficiently

) close to unity, P.(G,p) can be accurately approximated by
where § denotes the smallest node degree in the graph apd first term in (2).Ap_1(1 — p)"~1pe=m*+1, where A,_; =

d; denotes the degree of nodeHarary has shown that the, ) Therefore, for values gf sufficiently close to unity, an

bounds in (1) can be achieved through the construction 6’,5tima|ly reliable graph has a maximum number of spanning
Harary graphs [3]. tr

. . . . . . g ees'
More refined deterministic metrics for network reliability the two-terminal reliability of a probabilistic graph is the
can also be defined, such as the number of edge or node CUtﬁF’&Bability that a given pair of nodes; and d, have an

of order)\ or x i_n a _max-)\ or max-y graph, respectively. A operating path connecting them:
graph issuper-) if it is max-\ and every edge disconnecting

1 n
< D<o < — =2 1
)(_/\_(S_Tli_zldZ e/n (1)

set of order\ isolates a point of degrek. sd ° sd i e
An alternative measure of a graph's ability to remain P(G,p) = Z AL =p)'p (4)
connected is its number of spanning tre¢&). The char- e

e

= 1= G%a-p 6

1=Asd

acterization of graphs with a maximum number of trees has
been solved for sparse graphs when the number of edges is at
mostn + 3, and for dense graphs when the number of edges
is at mostn/2 less than that of the complete graph, (the Wherews, is the shortest path length between nodeand
n-node graph which has all of its nodes adjacent) [4]-[6]. d. A{* is the number of subgraphs withedges that connect
o ) nodess andd, Asq is the minimum number of edge failures
B. Probabilistic metrics required to disconnect nodesandd, andC$¢ is the number
Sometimes deterministic reliability metrics do not providef cutsets with respect to nodesand d of cardinality .
adequate measure of the susceptibility of networks to diBer the remainder of this work, unless otherwise stated, we
connection because these metrics do not account for tedefine thetwo-terminal reliability of a probabilistic graph
reliability of network components. Probabilistic reliabilityas min 4 [de(G,p)]. Note that if we wish to maximize
criteria, on the other hand, require knowledge of deterministigin, 4 [P;j‘d(G,p)] whenp is low, then the property of super-



« Edge capacities are assumed to be sufficiently large to
carry any possible network flow;
« Once an edge fails it cannot be repaired.

V. BOUNDS ON PROBABILISTIC RELIABILITY METRICS

In this sectiof, we introduce new and simple techniques
to bound the probability of connection of a network and the
probability of connection of a node pair in a network. The
quality of these bounds are illustrated for the ten node, degree
three Harary graph in Figures 5, 6, and 7.

Fig. 1. TheH(8,4) Harary graph. A. All-terminal reliability when p is low
X is a necessary condition since it ensures it is upper In this subsection, we derive upper and lower bounds for the
bounded by two =d probability that graphG is connectedP.(G, p). The general
approach we follow is based on enumeration of prime failure
C. Harary graphs events. We define prime failure event as an event in which

a subset of nodes becomes disconnected from the rest of the
dpaph through the failure of the minimal set of edges. Clearly,
prime failure events constitute only a subset of all possible

: . . raph disconnection events, since graph disconnection can also
if A is odd, then each node=1,...,|(n —1)/2] is also grap grap

di it de 9| See Fi 1% | foccur when more than a minimal set of edges fail. Therefore,
adjacent to node + [n/2]. See Figure 1 for an example of, g may obtain an upper bound f&.(G,p) by subtracting
a Harary graph. Harary graphs have the following properti

71 fom unity the probabilities of the mutually exclusive prime

failure events:
o H(n,A) hase = [nA/2], x = A= A;

Harary graphs, first presented in [3], achieve the bounds
(1). In aH(n,A) Harary graph, each node0 <i<mn—1,
is adjacent to nodes+ 1,7 +2,...,i+ [A/2](modn); and

. gj(éz., A) is regular of degreé\, unlessn and A are both P(G,p) <1— Z Bip'(1 — p)e— (6)
' EDY
e H(n,A) has one node of degre®+ 1 andn — 1 nodes . . : .
of degreeA if n and A are both odd. where B; is the number of distinct prime failure events of

_ cardinality ;. To obtain a lower bound foP.(G, p), we note
In [8], Wang and Yang determined that even degree Harafy,; oy fajlure scenario requires that at least one of the prime

graphs possess the fewest number of edge cutsets of Cardinﬂf%re events occur. Therefore, we obtain a lower bound for
i, when A < i < 2A — 3. Each cutset in the above range 0'}3

S 7 . X (G, p) by subtracting from unity the union bound of the
cardlr?alltles was shown to isolate a single node in the Haraﬁﬁme failure events:
graph.

Harary graphs, apart from the cases whereand A are - ,
both odd, belong to a more general family of graphs known P(G,p) 21~ ZBipl' ™
as circulants. Theirculant graphC,, (a1, as, . ..,ap), where =X
0 <a <ay <...<ap < (n+1)/2, hasi 4 ay,i + Itremains to determine the coefficients. If the graph under
as,...,i = ap(modn) adjacent to each nodé Owing to consideration is either trivially small, or simple and symmetric
a theorem by Mader [9], which proves that every connectés is the case with Harary networks, then closed form, analytic
node-symmetric graph has= A, all connected circulants aresolutions or bounds are obtainable; otherwise, one must resort
max-\. Furthermore, the only circulants which are not superto more general techniques.
are the cycles and the graphs,,(2,4,...,m — 1,m) with We now introduce a technigue to determine the coefficients
m > 3, andm an odd integer [10]. In [11], Wang and YangB; for general graphs. It is known that a vector representation
derive a useful result for the number of spanning trees for théthe prime failure events of a graph can be expressed in two

family of circulant graphs. ways as the modulo two sum of a subset of rows of a graph’s
incidence matrix [12]. Specifically, a prime failure event
I1l. NETWORK MODEL partitions a network into two subsets of nodes. Therefore,

As mentioned in the previous section, networks will b€ can obtain a prime failure event by adding modulo two
modelled as probabilistic graphs. In addition, we assunifae rows that correspond to each of the nodes in one of the

the following about the the graphs underlying the networt@artitions. Hence, we can find all prime failure evlents of a
considered in this paper: graph by summing modulo two the rows of tR&—" — 1

. subsets of the rows the incidence matrix which yield distinct
« Nodes are invulnerable;

° Edges _f.a'l In a statlstlcally mdependent fashion with 1In the discussion that follows, we assume that all graphsfanegular
probability p; and have maximum connectivity.



partitions of the network The B; coefficients are determinedD. Two-terminal reliability when p is high

by si_mply co_unting the numbe_r of distinct prime failure events Whenp is high, most of the links in a network have failed

obtained which have cardinality and the underlying graph has relatively few edges. In such
sparsely connected graphs, the disconnection of nedeyd

B. Two-terminal reliability when p is low d is nearly equivalent to a set of edge-disjoint paths between

If instead of the probability that grapti — (N, E) is s and d all having failed. To be precise, the disconnection

connected”.(G, p), we desire the probability that nodes! € of node_:s_s_and d actually implies the failure of a set_ oh
sd . —._edge-disjoint paths betweenandd, but the converse is not
N are connectedP?“(G, p), we can use an approach similar

. \ . . ) necessarily true. This is because each of the edge-disjoint paths
to that of Section IV-A to obtain the following bounds: can fail but there may still exist a path betweeandd through

e e the use of segments of the failed disjoint paths. Hence, we can
1= ) B <PG.p)<1— > Bip'(1—p)"  lower boundP:%(G, p) as follows:
e e (®) PG, p) > 1 — Pr(A edge-disjoint paths fail)
where B;? is the number of distinct prime failure events A
with respect to nodes and d of cardinality 7, and Ay, is =1- H Pr(path: fails)
the minimum number of edge failures required to disconnect i=1 (11)

nodess andd.

In order to determine the coefficient8;?, we use an =1-
approach similar to that of Section IV-A. Since we are only =1
interested in prime failure events 6fwhich disconnect nodes where!; is the length of theith edge-disjoint path, and the
s and d, we add modulo two to the row correspondingsto second and third lines follow from the independence of edge
all possible subsets of the remaining rows of the incidentailures.
matrix, except for the row corresponding do Clearly, there ~ The value of mip, [P:4(G,p)] when p is sufficiently
are 2”2 such possible subsets. This will provide us with high corresponds to a node pair with shortest path length
binary vector representation of all possible prime failure everggual to the graph diameté(G). A simple lower bound for

=

[1—(1-p)"]

which disconnect andd. min, 4 [P34(G, p)] is (1—p)k(@, which is just the probability
that the shortest path between the most distant node pair is
C. All-terminal reliability when p is high available:
We approach the task of boundirg (G, p) in the regime (1=p)" <ming 4 [P3(G,p)] . (12)

of high p in an analogous fashion to Section IV-A. The events A tighter lower bound for min,; [P(:ed(G,p)] can be derived

of interest here, however, are the existence of spanning tr‘ﬁ%ﬁwg (11) if the lengths or an upper bound on the lengths of

rather than prime failure events. A lower bound (G p) iS e edge-disjoint paths joining the most distant node pair is
obtained by summing the events that correspond to a spanniigiisple.

tree existingand the remaining links in the network being
inoperative: V. ANALYSIS OF HARARY GRAPHS

In this section, we specialize the results of the previous sec-
tion to the family of Harary graphs. We focus on Harary graphs

An upper bound fofP, (G, p) can be obtained be invoking thebecau:se they possess good reliability properties, particularly in

union bound on the spanning tree events: the low p regime.
P 9 ' We showed in Section II-B that whenis sufficiently low, a

necessary condition faf.(G, p) and min 4 [P:4(G, p)] to be
maximized is thaty must be supek. Among superx graphs,
It now remains to determingG). Fortunately, this is a well even degree Harary graphs are especially good wieriow,

studied problem, and(G) is known to be the determinant Ofsince they achieve the fewest number of cutsets of cardinality
an (n — 1) x (n,— 1) matrix T(G) whose (i, /) entry is i, when\ <4 < 2A — 3. Furthrmore, as we show in the next

defined as follows [13]: subgection, Harary graphs possess good rgliabi!ity properties
relative to commercial architectures, especially in the jow
d;, ifi=j, regime.
t;j =< —1, if iandj are adjacent,
0, otherwise.

P.(G,p) 2 t(G)(1 —p)"~'pe T )

P.(G,p) < (G)1—p)" " (10)

A. Comparison of Harary graphs and commercial networks

We now conduct a comparison among Harary graphs —

our candidate topology — and some topologies employed in
2Note that if we sum modulo two the rows of alf* possible subsets, pology polog ploy

then we are counting every partitioning scenario twice, including the null aﬁ\tpm_m?rmal networks — dual-homed switch graphs, rnngs, and
complete partitions. multi-rings.
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Probability of disconnection

Fig. 2. Dual-homed switch topology (Ethernet).

The dual-homed switch architecture is illustrated in Fic 107

ure 2. In this topology, each node is connected to a prime /?153223
- . . . -16 .
and a secondary switch through a dedicated link. In additic 10 10" 1(‘)_3 10‘_2 1(;_1 0°

the two switches are bridged. Communication between a nc Probability of link failure (p)

pair can be carried out via any available path. Switched

Ethernet is a very common example of the dual-homed switEls- 3 _Probability of disconnection verspgor the 14 node Ethernet, ring,
architecture [14], and we will therefore refer to the duaﬂomm'”n@J andH (14, 4) graphs wherp < 1/2.

homed switch architecture simply as Ethernet. Imamulti- ,,on-1 _ 11469 x 10° spanning trees and the ring only

ring graph, there are: undirected edges between nodes thaf — 14 spanning tress. With respect to two-terminal reliability,
would otherwise have one undirected edge in a ring grapfihernet achieves the best performance of all, owing to its
Multi-ring graphs are fairly accurate representations of tW@fameter of two. H(14,4) has the next best two-terminal
fiber unidirectional path-switched rings (UPSRs) wher= 1, performance with a diameter of four, whereas the ring and
and four-fiber bidirectional path-switched rings (BLSRs) whejhe double ring possess diameters|of2| = 7.
m = 1,2 [13]. The comparison conducted in this subsection substantiates
In our comparison, each graph supports 14 nodes and #ig claim that Harary graphs possess reliability advantages
degree of the multi-ring and the Harary graph is four. Weelative to topologies employed in present-day commercial
further assume that nodes, including the two switches jietworks. In fact, Harary graphs outperformed the other
the Ethernet topology, are invulnerable and that the Etherngpologies except when two-terminal reliability in the high
bridge reliability is identical to that of the other links in thep regime was considered. Of course, the price paid for the
network. better reliability of Ethernet in this respect is the cost of the
Figure 3 depicts the performance of the topologies whawitches. We conclude that there is a significant reliability
p < 1/2. The Harary graphH (14,4) is seen to achieve advantage in strategic positioning of link capacity, as in a
the best all- and two-terminal reliability performance of alHarary graph, rather than adding redundant backup links. It
the topologies considered? (14, 4) outperforms the double should be noted, however, that wheiis high it is possible to
ring because the reliability of Harary graphs scales mofiad circulant graphs with the same number of nodes and edges
weakly than that of multi-rings with the number of nodesyhich possess more spanning trees and smaller diameters, and
and it outperforms Ethernet and the ring largely due to iteence better reliability performance wheris high, than the
higher node degree. With respect to all-terminal reliabilitg,orresponding Harary graphs [16].
H(14,4), since it is supek, possesses = 14 cutsets of
ort(ier f())ur, whereas the double ring, the other degree fo%'rA useful Hf?lrar.y graph resuit .
topology, possessd$) = 91 cutsets of order four. Ethernet's Before beginning our analysis of Harary graphs, we prove
all-terminal reliability performance is largely governed by it&" intuitive and useful theorem regarding this family of graphs.

n = 14 cutsets of order two, and the ring by if§) = 91

cutsets of order two. For two-terminal reliability, the numbef "€orem 1 Conhsider a Harary graph H("fv A), where A is
of cutsets of order four is two inff(14,4), whereas it is SVen- Partition the n nodes into a subset of j nodes 5; and

n%/4 = 49 for the double ring. The number of cutsets oft Subset of n — j nodes S,,;, where j < n — j. Then, the
order two is two in Ethernet, whereas itii€/4 = 49 in the MINIMUM number of eqges joining 5; to S,_; oceurs when
fing. the j nodes in S; (and hence, the n — j nodes in S,,_;) are

In Figure 4, the performance of the topologies is plotte%onsecutlvely numbered (modulo ).

when p > 1/2. Again, with respect to all-terminal relia- To prove the theorem, we need the following lemma:

bility, H(14,4) outperforms the other topologies considered,

owing to its larger number of spanning tred$(14,4) has Lemma 1 Partition the n nodes of the H (n, A) Harary graph
1.9898 x 10% spanning trees, whereas the double ring hasto a subset of j < n — j nodes S;, and a subset of n — j



10 g ‘ which achieves a smaller number of external edges than the
number achieved by a consecutive arrangemeritiof nodes
4 o in Lemma 1.
" T If we can find a node irf} ; which contains at leash /2
T edges toS;,_;_;, then we move this node t§;,_, ;. This
N 7 creates a partitioning of the graph infoand n — j nodes
which achieves fewer edges joining the two partitions than a
consecutive arrangement. This would contradict our induction
hypothesis, implying that a consecutive arrangement of nodes
is optimal.
3 Now, let us consider the case where there does not exist a
node inS?, ; which contains at leash /2 edges toS;,_;_;.
We proceed by finding a pair of consecutive nodes in the
graph such that one of the nodesbelongs toS},; and the
TTR. Harary other nodev belongs toS;,_, ;. Examining the window of
06 065 07 o075 o8 08 09 oo 1 A+ 1 consecutive nodes centered:gtour assumption that
Probability of link failure (p) there does not exist a node &, , which has at leasf/2
edges taS;,_;_, requires that at leash /2 + 2 nodes in this
window belong taS} . ;. We now consider the window af +1
consecutive nodes centeredvatSince the window formed by
the union ofu andv’s windows of lengthA +1 has sizeA +2
nodes, there can be at ma&y¥2 nodes in this larger window
that belong toS;,_; ;. By moving v to S’ ,, we create a
partitioning of the graph intg + 2 andn — j — 2 nodes which

—— ATR, Ethernet
10 ; —— TTR, Ethernet
—e— ATR, Ring
—— TTR, Ring
107°H —— ATR, Multi-ring
—— TTR, Multi-ring
ATR, Harary

Probability of connection
=
o

Fig. 4. Probability of connection versysfor the 14 node Ethernet, ring,
double-ring andH (14, 4) graphs wherp > 1/2.

nodes S, _;, such that the nodes in S; (and hence the nodes
in S,—;) are consecutively numbered (modulo n). Then, the
number of edges joining S; to S,,_; is:

A ‘ if j =1, achieves fewer edges joining the two partitions than that of the
in=2(3), if2<j<|A/2]+1, (13) Sj,, andsS;_; , partitioning, and hence, fewer than that of
[A/2]%2 + [A/2], otherwise. a consecutive arrangement paindn — j nodes. Note that by

. o ' movingv to S ;, we have not created a node s, ; which
Proof. The case off = 1 is trivial. When2 < j < |A/2]+1, possesses at leadt/2 edges to the other partition. This is
a consecutive partition of nodes allows the nodes if; 10~ pecause the + 1 nodes initially in.S;,, only gain internal
be fully connected. In this case, the number of edges joini@gjges by moving to S/, andv now possesses fewer than
Sj to S,_; follows from the fact that the total number ofA /2 edges to the other partition. Thus, we can continue in
edge endpoints incident af;’s nodes isjA and that the this way — finding a pair of consecutive nodes in different
total number of edge endpoints in a fully connected subgraghrtitions and moving one node to the other partition, always
of j nodes is2(3). For the remaining case, when the nodegecreasing the number of edges connecting the partitions, until
are consecutively arranged, the nodes at either end ofthe\ye have increased the size of our initial partitionjohodes
partition posses§A /2] connections td,,;, the nodes which g 5, — j nodes. At this point, we have created a partitioning of
are second from either end of the partition posgess2]| —1  the graph intoj andn — j nodes which achieves fewer edges
connections toS,_;, and so on. Hence, the total numbefoining the partitions than the partitioning of the graph in our

of edges joiningS; to S, is the constan S12/?1i = induction hypothesis, which was assumed to be optimal. This
([A/2]2 4+ [A/2]), as required] is a contradiction, implying that a consecutive arrangement of
We are now ready to prove Theorem 1: nodes is optimal]

Proof of Theorem 1. The case of = 1 is trivial. Consider now ] o ]
the case o2 < j < A/2-+1. Note that minimizing the number C- All-terminal reliability when p is low
of edges joiningS; to S,,—; is equivalent to maximizing the Every graph disconnection scenario can be viewed as a
number of internal edges shared by the nodes of one of thertitioning of the graph into two subsets of nodes which are
partitions. Wher2 < j < A/2 + 1, a consecutive partition of disconnected. Now, since a partition pfconsecutive nodes
J nodes allows the nodes ) to be fully connected, yielding minimizes the number of edges joining; to S,_; in an
the maximum number of internal connections, and hence tieen degree Harary graph, the probability that a partitiopn of
minimum number of external edges. nodes becomes disconnected from a partitios,of; nodes is

For the remaining case wherd/2 + 2 < j < n/2, we maximized when the partition gf nodes are consecutive. We
carry out the proof by induction. We may use our resuttan therefore form an upper bound for the probability of graph
for j = A/2 + 1 as our base case. Now, assume that disconnection (and hence, a lower bound for the probability of
consecutive arrangement gf nodes achieves the minimumgraph connection) by upper bounding the probabilitpand
number of external edges. Let us now proceed by contradictiSp_; becoming disconnected by the consecutive case, and then
by assuming the existence of a partitiSh, ; of j + 1 nodes employing a union bound on these events. Furthermore, since
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— ATR, simulated 15 — TTR, simulated
10'12 L T T 10 L T T
-4 -3 -2 -1 0 -4 -3 -2 -1 0
10 10 10 10 10 10 10 10 10 10
Probability of link failure (p) Probability of link failure (p)

Fig. 5. Probability of graph disconnection verspdor H(10,3). “ATR, Fig. 6.  Worst-case probability of node pair disconnection versu®r
simple lower bound” refers tap® (1—p)¢—2, “ATR, general, lower bound” H(10,3). “TTR, simple lower bound” refers t@p®(1 — p)¢=2, “TTR,
refers to (6), “ATR, general, upper bound” refers to (7), “ATR, summatiorgeneral, lower bound” refers to the right inequality of (8), “TTR, general,
upper bound” refers to (14), and “ATR, closed form, upper bound” refers tepper bound” refers to the left inequality of (8), “TTR, summation, upper
(15). bound” refers to (16), and “TTR, closed form, upper bound” refers to (17).

the H(n,2| £ |) Harary graph is a subgraph of thi(n,A) interested in partitions of the network nodes that result in
Harary graph, the all-terminal reliability of an odd degrefiodess and d residing in different partitions. Hence, we
Harary graphs is lower bounded by the all-terminal reliabilityhodify (14) to obtain:

of the Harary graph with degree one less. Thus, a lower bound

for P.(G,p) for a Harary grapht (n, A) is: A2+

—9\ . ,
PsdG >1— 2A 2 n zA—Z()
(G, p) > P> + ; (Z.l)p 2

lAa/2]+1 n ) n/2] (16)
P >1— A iA—2(, n/2 B
e(G,p) > np= + ; (Z.)P ’ 20y <’? Q)pm/z12+m/21 _
n/2] (14) i=njpe2 N
n 2
+ Z ( .)pmm Haz In a manner similar to Section V-C, we can derive a slightly

i=|A/2]+2 looser upper bound foP:¢(G, p) [16]:

Because prime failure events were used to derive (14), the

bound is tight for lowp. We can derive a slightly looser lower . A Al /mn—2 A
bound for P,(G, p) by bounding some of the terms in (14) Fe‘(G.p) =1~ (2]? +2 {gJ ( B ) (p*277
[16]: : :
A ; . _pla/2] +rA/21) 4 plA/21%+A/2] (17)
P, >1-— — 2A-2
N G (N e (222) )
2 2 | 252 ] ’
_pla/2) +(A/21) 4 pla/217+1a/2] (15) 2
1 n The quality of these bounds is illustrated in Figure 6 for the
{2”1 + 5( 9 ) —n— 1D . ten node, degree three Harary graph. As in the all-terminal
/2] case, the two-terminal upper bounds are quite tight for values

The quality of these bounds is illustrated in Figure 5 for thef p less than approximately 0.2.

ten node, degree three Harary graph. The more useful upper

bounds on the probability of disconnection are tighter than tie All-terminal reliability when p is high

:cower Iboundfs. IFurth(hermore, the;e uplper t;ounds are quite tlghlt:Or highp, we boundP, (G, p) using the approach outlined

or values ofp less than approximately 0.2. in Section IV-C, which requires knowledge of the number of

D. Two-terminal reliability when p is low spanning trees in a graph. We specialize Wang and Yang's
The derivation of a lower bound for the node pair COﬂnECtid’ﬁsﬁlt [11] for tr;]e .number of spanning trees in circulant graphs

probability P*¢(G, p) is virtually identical to that ofP.(G, p) to Harary graphs:

for low p in Section V-C. The difference is that we are only



10 length of pathi for i = h+1,...,A/2 is given by:

| =g | 1

Finally, the length of path for i = A/2+1,..., A is given
by:
n—h—i+1 .
li = IVA/Q—‘ -+ ]. — 6A/2+1(Z).

These path lengths can now be substituted into (11) to obtain
1 a lower bound forP%(G, p).
e TR e o : When p is high, Pg’d(G,p) is minimized for node pairs
—— ATR, simulated } 73 which are most distantly placed id:. For even degree
TR lower bound 1 Harary graphs, such node pairs have indices which differ by

— [(n —1)/2]. The diameter of even degree Harary graphs is

thus [ £[251]|. For odd degree Harary graphs, most distantly

placed nodes can be shown to have indices which differ

Fig. 7. Probability of graph connection and worst-case probability of nodey [(n + A — 3)/4], with a resulting graph diameter of

pair connection versup for H(10,3). “ATR, lower bound” refers to (9), 2 ntA-—3 - .
“ATR, upper bound” refers to (10), and “TTR, lower bound” refers to (18). | A-1 { 4 -I - Thus, using (12), we have the following

lower bound for mig 4 [P:%(G, p)] for Harary graphs:

Probability of connection

-7 i L L L L !
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Probability of link failure (p)

10

Lemma 2 The number of spanning trees in the degree A

Harary graph is: (1= )" < min, 4 [P24(G,p)] (18)
LIt 4l sin? (jm/n)} if Aiseven,  where,
HG) =9 LI [aXh) sin? (jim/n) — (—1)7 + 1}, [2[2517], if A is even,
it A KG) =4 2, 7
if A is odd. [ﬁ ["+§—3H , if Ais odd.

The quality of these bounds is illustrated in Figure 7 for th‘?he quality of this bound is illustrated in Figure 7 for the
ten node, deg_ree three Harary graph. ten node, degree three Harary graph. Note that as the number

_In general, it appears th_at ngary graphs have fewgr SP® nodesn increases relative to the degrée odd degree
ning trees than many of its circulant counterparts with tr’|§‘larary graphs possess diameters which are approximately half
same number of nodes and edges. qu example, the Har large as even degree Harary graphs. Furthermore, because
g_rath(10,4) possesses 30250 spanning trees, whereas i ary graphs are defined such that nodes are connected to
circulantC1o(1, 3) POSSESSes 40500 spanning trees. Fo_r_ val Fdir nearest neighbors, the diameter of Harary graphs are
of p very close to unlty.th|§ translates o a prabability o enerally larger than other circulant graphs with the same
connectlon for (10, 4) which '3 smaller than that aF10(1, 3) number of nodes and edges. For example, the Harary graph
by approximatelyl0250(1 — p)°. H(30,4) has diameter eight, whereas the circuléiyt (4, 5)
has diameter four.

It is interesting to consider the relationship between a

When the probability of link failurep is high, we bound graph’'s diameter and its number of spanning trees. Although
the probability of node pair connection using the techniqugesmaller diameter does not necessarily imply a larger number
outlined in Section IV-D. This technique requires knowledg@f spanning trees, or vice versa, there does seem to exist
of the edge-disjoint path lengths between nodesdd. We an inverse correlation between these properties. The intuition
consider Harary graphs of even degree only, as the casepghind this trend is that for the same number of nodes and
odd degree is considerably more complex. ligj denote edges, the nodes of a graph with a larger diameter are generally
the node separation of and d. Define the paramete as more distant from one another. The result is that there are
min (dsq, n — dsa). By inspecting the structure of even degregewer combinations of edges of the graph that could form

F. Two-terminal reliability when p is high

Harary graphs, the length of patffior i = 1,...,min(h,A/2)  spanning trees since there are more constraints on the edges
is found to be: in order that more distant nodes be connected. Hence, the
h—i+1 number of spanning trees generally decreases with diameter

li = {T/?w +1—61(i) when the number of nodes and edges is held constant. Thus,

whenp is high, graphs which have good all-terminal reliabil-
where the functiond, (i) equals unity when its argumerit ity performance generally have good two-terminal reliability
equalsz and is otherwise equal to zero.X/2 > h, then the performance, and vice versa.



VI. CONCLUSION

In this paper, we justified Harary graphs as candidate
topologies for high-reliability applications by virtue of their
excellent performance in the low regime, and their attrac-
tiveness relative to present-day commercial architectures. We
also established general reliability bounds which are useful in
the design of communication networks. Our reliability study
addressed the often neglected hjglegime, in which network
diameter and number of spanning trees were identified as the
key figures of merit. Our reliability study was also specialized
to Harary graphs, which yielded new results for this family of
graphs.
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