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Abstract

We study different notions of capacity for time-slotted ALOHA systems. In these systems
multiple users synchronously send packets in a bursty manner over a common additive white
Gaussian noise (AWGN) channel. The users do not coordinate their transmissions, which may
collide at the receiver. For such a system we define both single-slot capacity and multiple-slot
capacity. We then construct a coding and decoding scheme for single-slot capacity that achieves
any rate within this capacity region. This coding and decoding scheme for a single time slot
combines aspects of multiple access rate splitting and of broadcast codes for degraded AWGN
channels. This design allows some bits to be reliably received even when collisions occur, and
more bits to be reliably received in the absence of collisions. The exact number of bits reliably
received under both of these scenarios is part of the code design process, which we optimize
to maximize the expected rate in each slot.

Next, we examine the behavior of the system asymptotically over multiple slots. We show

that there exist coding and decoding strategies such that regardless of the burstiness of the
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traffic, the system is stable as long as the average rate of the users is within the multiple access
capacity region of the channel. In other words, we show that bursty traffic does not decrease
the Cover-Wyner capacity region of the multiple access channel. A vast family of codes, which
includes the type of codes we introduce for the single-slot transmission, achieve the capacity
region, in a sense we define, for multiple-slot transmissions. These codes are stabilizing, using
only local information at each of the individual queues. The use of information regarding other

queues or the use of scheduling does not improve the multiple-slot capacity region.

1 Introduction

The flexibility of ALOHA systems, which were first proposed in 1970 by Abramson [Abr70], makes
such systems an attractive option for wireless applications, such as data transfer for nomadic com-
puting. In the original ALOHA system, users transmit packets without any knowledge of other user’s
current transmissions. If a collision among packets occurs at the receiver, those packets are discarded
and the users retransmit. The capacity of ALOHA systems and related collision systems has gener-
ally been considered in terms of packet throughput [Pip81, MM85, Ari82]. The stability region of the
ALOHA system has been extensively studied. For an infinite number of users, the system is unstable
for any input rate [Cap79]. For a finite number of users, there exist bounds and some exact results
only for the two-user case, or particular arrival processes [Ana91, RE88]. Several different control
mechanisms have been established to stabilize the operation of the ALOHA system [Riv87, HV82] or
to perform conflict resolution [Hay78, TM78, Cap79, MH85, Gal78, KG85, HB85, PTWS85, Mas81].

In order to avoid total loss of packets to collisions, several coding schemes have been proposed for
ALOHA packets [OW99, Ray81, BM94, PS87, HW98, BGB97, CLV98, SS00, Kim90, CT00]. The
purpose of such coding is to allow at least part of the data in the packets to be received correctly
despite collisions. One example is spread-ALOHA in which users appear as interference to each
other in the event of a collision. However, when careful consideration is given to the dimensions
required to spread users, spread ALOHA has been shown in [Tar95] to be detrimental to capacity
(as compared to coding without spreading). Bursty multiple-access communications have been
considered in [SS81], but the purpose there is to avoid retransmissions altogether.

The paper is organized as follows. In Section 2, we describe a simple time-slotted packetized
ALOHA-style model. In Section 3, we consider the issue of how to code over a single time-slot.
We propose a coding scheme that combines multiple-access rate splitting concepts and broadcast
codes for degraded additive white Gaussian noise channels. This scheme was presented in part in

[IMMHGO00, MG99]. In effect, we create from each user several pseudo-users. Rather than discard



all data received during a collision or code sufficiently to receive all the data even in the event of
a collision, our scheme enables a trade-off between the rates obtained in the event of a collision
and those obtained when no collision occurs. In the case of no collision, the data from all the
pseudo-users corresponding to the single transmitting user is correctly received. In the case of a
collision, only a subset of the transmitted data from a user corresponding to the data for a subset
of his pseudo-users can be received correctly. The manner in which the energy of each user is
split among its corresponding pseudo-users determines the trade-off between the rates achievable
under collisions and under no collisions. We examine how to optimize the rates allocated to the
pseudo-users when we seek to maximize the total expected rate at the receiver for a given traffic
arrival distribution in a single slot. We show that the rate benefit of splitting one user into several
pseudo-users arises mainly in the case of users with highly asymmetric energies.

In Section 4 we consider the long-term behavior of the system, using a particular definition of
capacity for the case of an arbitrarily large number of slots. We show that there exists a family of
codes for which the system is stable as long as the average rates of the users are within the multiple
access capacity region (the Cover-Wyner rate region [CT91]). Thus, despite the burstiness of the
system, the capacity of the ALOHA system is the same as that of a multiple-access system in which
both users transmit continuously. Moreover, the use of information by users or by any other entity,
such as a controller or scheduler, of the state of other users’ queues does not improve the achievable

rate region. We present our conclusions and directions for further research in Section 5.

2 Model and background

We consider a multiple-access system, as illustrated in Figure 2, where M users transmit to a single
receiver. The model is time-slotted, and each time-slot is of length 7" time-units. All the users
share a single channel with no multiplicative attenuation but which is corrupted by additive white
Gaussian noise (AWGN).

Data arrives at a given user for transmission in the form of fixed-length packets, where different
users may have different packet lengths. We define A;(j) to be the number of bits that arrive at
user ¢ in the jth time-slot, 7 € Z,. We assume that at most one packet arrives for transmission in
each time slot. Thus A;(7) equals N; or zero, where N; is the number of bits in the ith user’s packet.
The arrival of packets for transmission at a user is determined by a Bernoulli process in which, at
the start of each time-slot, a user i receives a new packet with probability p; and no packets with
probability 1 — p;. The arrival streams of the various users are mutually independent processes. In

particular, the sequence {A;(j) : k € Z,} is IID with mean E[A;(j)] = L;, i = 1,..., M, and the



average rate of bits to user i is \; := p;L; (bits per second). The vector A is the M-dimensional
vector of arrival rates, A = (A1, ..., Ay).
Moreover, we assume that the moment generating function is finite in a neighborhood of the

origin: there exists 0 > 0, and B < oo, such that
Elexp(6A;(j))] < B (1)

forall j € Z,, 1 =1,..., M. We discuss in Section 6 relaxations of these assumptions.

Let Q;(j) be the number of bits in buffer ¢ at the beginning of time-slot j, and let Q(j) =
(Q1(7)...Qum(y)) denote the vector of buffer-levels. Each user sends data from his buffer. Once a
user receives a packet for transmission, the data in that packet is queued at the user and that data
is transmitted according to certain policies, which we describe later. Each user ¢ knows the traffic
awaiting transmission in its own queue. Moreover, user ¢ may possibly have information Z;(j) at
time j regarding the contents of the queues of other users. A user’s queue contains all of its data
that has not yet been successfully transmitted, i.e. data that was never transmitted or that was
transmitted and received in error due to collisions. Each user has an infinite queue to hold data
awaiting transmission.

At the start of a time-slot, a user decides whether to transmit over that time-slot, and, if he
transmits, what data to transmit and how to encode that data. Packets may be transmitted as

whole packets or partial packets. Coding is subject to the following constraints:

(i) For each transmission over a time-slot, user i is restricted to using a certain maximum energy

o? over that time-slot.
(ii) User 4, if he transmits, must transmit over the whole time-slot and use codes of length 7.

(iii) At the jth time-slot, user i bases his transmission strategy on the contents of his own queue

(Qi(7)) and, if known, on information Z;(j) about other users’ queues.

(iv) To ensure synchronization at the receiver, we assume that the receiver has perfect timing

information.

(v) The receiver knows for each user, at each time-slot, whether or not that user is transmitting,
for instance through identifying tags on the packet transmissions. The absence of a tag for
a user indicates the absence of that user. We do not explicitly include such tags or their

associated overhead in our model.

Assumption (v) is reasonable if the tags are sufficiently coded, so that they will withstand

interference from all users simultaneously. Moreover, our model assumes there is no cost, in terms



of time and energy, associated with tag transmission. This is reasonable if the length of a time-slot
T is very large and the number of users is moderate, so that the bits required for encoding the user
identifiers are negligible with respect to the total number of bits in a time slot.

Detailed information regarding queue-lengths is typically important in network design [Ber00].
This is particularly important for scheduling [VTL02, UPE02], but we do not consider scheduling
in this paper. In Section 4 we find that the ith user cannot improve capacity by using information
(Qr(j — 1) : k # 1) about other users’ queues.

We do not make here explicit assumptions about what information the senders have about the
success of their transmissions. These assumptions are not necessary in Section 3, where a single
slot is considered. They become relevant in the case of several slots, as discussed in Section 4. The
main issue to consider is whether users are aware of what data was lost to collisions at the receiver.
The affect of different assumptions regarding the knowledge of the data lost to collisions will be
discussed in Section 4.

We may now present our model for the transmitted and received signals. The receiver receives
the sum of the transmissions of the users and the AWGN. The signal transmitted by user ¢ is Xj.

The output of the system at the receiver is Y, given at time unit ¢ by

Y] = Z X;[t] + Nt (2)

where the N|t]s are I[ID Gaussian and are independent of the processes {X;}. The common variance
of the {N[t]} is denoted o%.

At each time unit ¢ the {X;} are mutually independent, conditioned on queue information at
the different users. We term collision the event where more than one user transmits in a single
time-slot.

We may now describe the notion of capacity we consider in this paper to analyze the behavior
of our system. We assume the time-slots to be long enough that rates arbitrarily close to capacity
may be achieved over a single time-slot. The specific definition of this capacity for our ALOHA
channel is given below. The notion of long time slots is the same as for a single user, where rates
arbitrarily close to the single-user Shannon capacity can be achieved for codes with a sufficiently
long block length (which corresponds to one time-slot in our model). User i in time slot j sends
one codeword each from a set of K]’: codebooks M;fﬁ, k=1,... ,K;. We denote the single-slot
capacity for user ¢ in slot j, defined below, as )\f, and let ) = (A{, e ,AJM). The set ordered set
of codebooks (M;”)Zl is called the codebook C]i- for user 7 in slot 7. We say that the codebook

(C}, o ,CJM ) achieves the single-slot capacity M in slot j for slot-length T and error probability &
(is (T,&,)\) single-slot capacity achieving) if for some sets K} C 1,... K}, ... KM C (1,... ,KM)



known to both the transmitter and receiver there exists a decoding policy such that

(i) Every codeword from a codebook M;'i where & € K is decoded with probability of error & or

less.

(ii) The rate associated with that codeword transmission equals the single-slot capacity, thus for

i=1,...,M |
log (]M}")

D
KEK!

A codeword that was decoded with probability & or less is considered to have been reliably
received. We say that a codebook satisfying the conditions outlined above is (T, &N ) single-slot
capacity-achieving. Note that this definition differs from the standard capacity definition in that on
slot 7 each user need not send any codeword in its codebook C]’: with arbitrarily small probability: he
need only send a subset of his codewords with arbitrarily small probability. This subset corresponds
to a rate below the maximum associated with the full codebook, to allow for a lower rate to be
reliably received in the event of a collision.

We now define multiple-slot capacity based on this single-slot capacity definition. Assume we
now transmit over n slots. For a given T" and £ > 0, a coding and decoding policy is (T,&, )

capacity-achieving if Vi, V7, EIC; that is (T, EN ) single-slot capacity achieving and
li ! En PSS 1<i<M (3)
im — A i <1<
n—oo NI =1 7=

This notion of capacity is related to other formulations of capacity with a delay constraint or
probability of failed transmission, such as delay-limited capacity [HT98], e-capacity [VH94], capacity
versus outage [Sha97, Sha00, CTB98, OSW94] and expected capacity [EG98], which itself may be
viewed in the context of compound channels [Wol78, BPS98]. Our own model can be viewed in
terms of a compound multiple-access channel. Overviews of these other types of capacities can be
found in [Ber00, BPS98].

The meaning of capacity-achieving policies as defined above is clear in the context of error
exponents. Suppose that, for every coding strategy in the policy and every possible arrival pattern
in a slot, every user has an error exponent, bounded by ¢ > 0. Error exponents [Gal68| for multiple
access channels [Lia72] can be used to find, for large enough 7', a lower bound to possible values of
€ of the form ¢ = e, Averaging over multiple time-slots would yield better error probabilities,
similar to those obtained for fading channels, where the coding exponent reflects averaging over

several fades.



Under the assumptions spelled-out in this section we may obtain strict bounds on the set of
achievable rates. Let us suppose that p; = 1 for ¢ = 1,... ,M. We are then in the case where
users always have traffic to transmit and each user is aware of whether the other user has traffic
to transmit. Then, as long as the vector of arrival rates for the M users A = (A1 ... Ay) is strictly
inside the multiple access achievable rate region [Ahl71, Lia72], we expect the rates to be achievable.

This is the basis of the coding schemes considered in the next section.

3 Coding over a single time-slot

In this section we examine coding over a single time-slot. We illustrate the two-user case where
each buffer is known to be empty at the previous time-slot. For the analysis in this section, any
traffic to be transmitted at the current time-slot can only come from the arrival of new packets in
the previous time-slot. In the rest of this section, we refer as rate to the rate over a single slot of
length 7. We assume that each user receives packets/bits to transmit at a rate corresponding to
its single-slot capacity. This assumption can readily be relaxed by placing an additional constraint
on the capacity of a given user.

We combine concepts from multiple-access communications [Ahl71, 1ia72]; broadcast channels
[Cov72, Cov7h, Cov98, CTI1]; and rate splitting [GRUW95, RU96]. The basic idea behind this
approach springs from the following observation. In multiple access channels, capacity is achieved
through rate splitting. This involves first constructing wvirtual users that share available power and
that transmit independently. The receiver then decodes the received signals consecutively, so that
some users are regarded as noise to other users during decoding. After a user is decoded, the user’s
contribution to the signal is eliminated, and the noise for the remaining undecoded signal is reduced.
A similar approach is taken to achieve capacity in the degraded AWGN broadcast channel. For
broadcast AWGN channels, we superimpose two codes, a low resolution and a high resolution code.
The low resolution code is decoded by considering the high resolution code as noise. Once the low
resolution code is decoded, its contribution is eliminated. Hence, there is a similarity between the
decoding mechanism used to achieve capacity in multiple-access channels and that used in degraded
broadcast channels. In the system we consider, a user codes to transmit over two possible channels:
a channel with the other user present and a channel without the other user. Thus, our problem
bears some traits of both degraded broadcast channels and of multiple access channels.

For the model considered here, rate splitting is used to map out all points in the single-slot
capacity region by splitting the signal of a given user into two signals corresponding to two different

pseudo-users. Let us consider a specific example, where user 1 is split into two independent pseudo-



users, U] and U/, which send sequences of independent Gaussian signals with variance So? and
(1 — B)o?, respectively. In this example we assume that there is no rate splitting for user 2, which
maps to a single user, U;. As in broadcast channels, each of the users we have constructed sends
two messages on two separate signals. That is, U] sends a low resolution signal LR; and a high
resolution signal HR}, which are independent Gaussian IID sequences with variance «o}B0? and
(1—a})Bo?, respectively. U{ sends low resolution signal LR} and high resolution signal HRY, which
are independent sequences of IID Gaussian signals with variance of(1 — 8)o? and (1 — of)(1 —
B)o?, respectively. U, sends low resolution signal LRy and high resolution signal HRy, which are
independent sequences of IID Gaussian signals with variance a2 and (1 — as)o3, respectively.
Each aq,aq, 3 lies in [0,1]. These values can be optimized, which we do in the next section to
maximize average rate. Figure 3 illustrates this coding scheme, including the rate splitting into
pseudo-users and the multiple resolution signaling for each user or pseudo-user. The notations LR
and HR are the abbreviations of the low resolution and high resolution respectively, since we are in

effect using a broadcast code within our multiple access scheme.

We decode signals one after the other in the following order:
First LR}, then LRo, LR, HRY, HRy, and finally HR]. (4)

If one of the six signals is not present, the receiver proceeds to the next one. Each signal is decoded
so that all signals not yet decoded are considered noise, and signals that have been decoded and
reconstructed are cancelled. Here we assume every low resolution codeword can be decoded with
arbitrarily small probability of error regardless of collisions. The error associated with the high
resolution codewords will depend on whether or not there are collisions.

We may now present the three possible cases that arise and the corresponding decoding rules.
Each signal of the LR and HR type has a rate such that it can be decoded within the required
probability of error if the SNR is at least:



oy fo?

for LR/
o3+ (1 —a)f)o? + 0% or L
2
CY20'2
for LR
o3(1 —ag) + (1 — &) B)ot + 0% or M
0/1/(1 - B)U% "
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N

Our coding and decoding scheme is defined so that all LR signals above will always have a
sufficiently large SNR. These signals are therefore always received reliably. For the HRs, they will
not have sufficient SNR if user 1 and user 2 send at the same time. If the minimum SNR is not met

for any one of the HR signals, that signal is not decoded. We consider the following cases:

Case 1: Only user 2 transmits.

. . . . . 1 ()(20'2
o First, we decode LRy, which yields a rate whose maximum is 3 log (1 + 2 0=an) +(1_2a,1 BoTToT )

o Next, we decode signal HRy, which yields a rate whose maximum is %log (1 + (1_:—22)05) .
N

The total rate is the sum of the above two rates.

Case 2: Only user 1 transmits.

. / . . . . 1 o ﬁo’z
o First, we decode LR}, which yields a rate whose maximum is 3 log (1 + = +(1—c1v’1 5)10% -y ) :

o Second, we decode signal LR}, which yields a rate whose maximum is

1 o/’(l—[i’)a2
3 log <1 + gg(1fa2)+(171a’1ﬁfa’1’1(1*ﬁ))o¥+0?v>

o Third, we decode the signal HR/, which yields a rate whose maximum is

Llog (1 n (1—0/1’)(1—5)0f>_

(1—of))Bo? 403
o Finally, we decode HR, yielding a rate whose maximum is %log <1 + %ﬁ) .

The total rate is the sum of the above four rates.

Case 3: User 1 and 2 both transmit.

. / . . . -1 o Bo?
o First, we decode LR, yielding a rate whose maximum is 3 log <1 + U%+(1*01/15)l‘7%+012\]> .



. . . -1 o2
o Second, we decode LRy, which yields a rate whose maximum is 3 log (1 + a%(lfa2)+(1fz’lﬁ)a%+a?\,> :

o Third, we decode signal LR/, which yields a rate whose maximum is

l o/'(l—/@)02
blog (14 syrmamyr st s eees)

The total rate for user 1 is the sum of the rates of LR} and LRY. The total rate for user 2 is the
rate LRs.

Case 4: Neither user transmits, so the total rate is 0.

We define the rate variable r) as follows: u refers to the cases enumerated above, and v refers
to the users. Thus, rj is the rate for user 2 when there is no interference, and r3 is the rate for user
2 when there is interference. We have an achievable rate r? for user 1 when there is no interference
and another achievable rate r? when there is interference.

Note that our arguments can easily be extended to more than two users. Suppose that we have

M users. Every possible set of users is associated with a scenario that corresponds to only those

M
J=1

users being present. There are z(M) = > (J‘]/[) possible such scenarios. We first split the M
users into 2M — 1 virtual users. Each of these virtual users is then encoded using a z(M)—level
coding strategy. For each possible scenario, a particular set of codes will be decoded. If there are
m users present, then for each present virtual user M — m + 1 codes will be decoded. Our results
demonstrate achievability of the proposed coding scheme but not its optimality, which would require
showing some fashion of coding converse, possibly similar to the broadcast channel converse [Ber74].
Shamai [Sha00] has applied a broadcast approach, which generalizes [Sha97| to the multiple-access
case, to a general class of channels that subsumes our channel. His optimization yields the same
results as our optimization. Our results show a particular coding and decoding scheme to achieve
the results of [Sha00] and provide an explicit means of achieving a trade-off for the rates achievable
in the absence or presence of a collision. The following section explores that trade-off in the context

of expected rate. An alternate approach, in which broadcast splitting is performed before multiple-

access splitting, is given in Appendix A.

3.1 Maximizing the total expected rate

From the above discussion, we see that determining a coding scheme to achieve capacity is equivalent
to determining the values of 3, o), o, and ay. Given these parameters, it suffices to select random
codes satisfying WGN-like statistics. In this section, we seek to find 3, o}, of and ay to maximize

the expected rate, given by:

E(R) =pi(1 = p2)ri + p2(1 = p1)ry + pipa(ri +13) . (5)



Note that we can optimize E(R) without finding the parameters 3, o), o] and ay explicitly
[Sha97]. We carry out explicitly the optimization in terms of 3, o/, o/ and «s, because our goal is
not only to maximize mutual information for a certain coding approach, but also to show explicitly
how to design this optimal coding strategy.

We define the following two variables:
]{71 1—0416—061( ﬁ), kz 1—052

k; = 0 means we put all the signals of user 7 in LR, and k; = 1 means we put all the signals in
HR. Let us consider all the possible cases for p; and p;. When p; = py = 0, we have immediately
that F(R)me: = 0. We present the case in detail for p; = 0, po > 0 and a similar analysis yields the
solution when p; > 0, po = 0. Although these cases reduce to a single user channel, since one of
the two users transmits with zero probability, the solutions illustrate the manipulation in the more
general case where p; > 0 and ps > 2. The solutions for these more general cases, which requires
significantly more manipulation, are derived in Appendix B .

Let us examine in detail the boundary point (p1,p2) = (0,p2) with ps > 0. By the general

expression for the total expected rate in (5) we obtain

1 Q03 1 (1_&2)02
E(R) = pord — o | 210 (1 : gl |-
(R) = pary = p2 {2 n( - (1—a)B)o? + (1 —a2)0§+012v) "2 n( i oN

It follows that

N

o If ap = 0 then E(R) = ;In (1—|— U—;) Do.

o If ag # 0 then

1 Q03 1 (1 — ay)o? 1 o3
BE(R) <ps | ~1n (1 ST R S0 | I N ]
( >—p2[2“< * ranrar) ta (e 2\ )

and we achieve equality when (1 —a}3) = 0.

Hence, the optimal total expected rate for this case is
1 o2
E(R)maz = =1In (1 + 22 )pg, (6)
2 ON
where the maximum is achieved when one of the following conditions is satisfy:

o ay =0, 3, o, o can be any value in [0,1]

o as #0, f=a) =1, and of can take any value in [0, 1].



In other words, all information from user 1 will be decoded first (see Figure 3). Since user 1
does not send in this case, user 2 codes its message assuming user 1 does not exist. Expression (6)
can be seen to be the value we would expect, since it is the capacity for an AWGN channel with
noise variance o3 and signal variance o3,

In a similar way, we may verify that, for p; > 0, po = 0, the optimal total expected rate is

1 2
E(R)pas = = In (1 4 0—21) P, (7)

2 oy

where the maximum is satisfied when one of the following conditions is satisfied:
o B#L, ] #0,a=0,as=1
o f=1,a} =0, o}, as can be any value in [0, 1]
o af =0,a,0=0, a can
take any value in [0, 1]

In other words, all information from user 2 will be decoded first (see Figure 3). Since user 2 does

not send in this case, user 1 codes its message assuming user 2 does not exist.

Theorem 1 For any £ > 0, 37 € N such that VT > 7, there exists a single coding policy for two
users which is (T, &, >\;) single-slot capacity-achieving for user i = 1,2 over slot j whenever, for any
a, B €[0,1]?
(i) \j =0 and \} < LRy + HR,

or
(ii) /\f =0 and )\jl- < LR+ HR,+ LR+ HR]

or
(ili) Al < LR, + LR} and A2 < LR.

The constructive proof of this theorem follows immediately from our discussion. Note that the
analysis in this section can readily be extended to the case where the queues are known to have

some arbitrary contents at the beginning of the time-slot.



3.2 Numerical results

We conclude this section with a brief description of some numerical results in which values of &y
and ky were computed which maximize the total expected rate E(R). We consider the special case
where p; = po = p. The optimal values k1 and k, are functions of the probability p.

In each experiment the noise power was fixed, 0% = 1, but the signal powers o2, i = 1,2
were varied to show the affect of varying SNR. The most interesting cases are found in the highly
asymmetric case, with very different SNRs for different users.

Figure 4 shows results in the symmetric case in which both users have the same transmission
power, i.e., 07 = 03 = 02. In each symmetric example considered we found that the best policy is
either ky = ko = 0 or ky = ky = 1 for each p. In each example, the coding policy switches at some
value of p. Note that, as the SNR increases (o2 increases from 0.1, 10, 10*, 10" and then 10'°) this
switching point tends to p = % Thus, when the users have equal transmission probabilities and
equal transmission powers, no rate splitting between LR and HR is required.

For highly asymmetric SNRs, for some region of p, it is necessary to split at least one user to
HR and LR to achieve the maximum total expected rate. Figure 5 shows 5 examples with highly
asymmetric SNRs to approximately sysmmetric SNRs. In each of the first 3 examples there is a

region of values of p for which k; is strictly between 0 and 1.

4 Stability

Here we establish stability of the model, as viewed as a discrete-time-controlled stochastic system.
We restrict ourselves to the special case of two users, although more general situations can be readily
obtained by similar methods. Since we use coding to allow some bits to be transmitted even in the
event of a collision, our analysis of stability is very different than traditional stability analysis of
packetized ALOHA systems where collisions entail loss of all packets involved [Fer75, TB84, Haj85,
RT83, BG77, Tsy85, LK75, SE81, SM79, HV82].

On considering the dynamic model that includes bursty arrival stream to each user there are

two issues to be considered.

The impact of variability Burstiness is captured by p;, the probability, at each user, that traffic
arrives for transmission in a slot. Simple constructs show that no form of burstiness can improve
the total rate. Specifically, consider first a two-user system with no burstiness, i.e. where p; = 1 for
all © = 1,2. In that case, the system can be reduced to a system with burstiness if each user holds

back transmissions in a probabilistic manner, thus mimicking the effect of bursty arrivals. Hence,



burstiness cannot improve the total achievable rate Z?:l i, where the achievable rate vector A is
considered using the definition of Section 2.
We next find that burstiness cannot reduce the achievable rate, since users could average their

arrivals over many time slots.

The role of information Consider a two-user system where, at each time-slot, each user has
perfect knowledge of the other user’s queue state, in terms of bits awaiting transmission, as well as
of his own. We obtain a bound on the achievable rate as follows.

Consider the maximum expected total achievable rate over any time-slot, subject to the con-
straint that the probability of error in that time-slot is upper bounded by &. Standard converse

coding theorems establish upper bounds to the attainable rate. If both users transmit, and if £ > 0

2 2
o7 —12—02
N

is sufficiently small, then this maximal rate is upper bounded by %log (1 + > Suppose that
only one user, say user 1, transmits in a given time-slot. In this case the maximal achievable rate
(for this user, over any individual time-slot) is upper bounded by % log (1 + %) for all ¢ sufficiently
small. Similarly, if only user 2 transmits, the maximal achievable rate (for this user, over any indi-
vidual time-slot) is upper bounded by %log <1 + %) for all ¢ sufficiently small. Thus, for £ small
enough, the single-slot capacity region is upper bounded by the Cover-Wyner multiple-access rate
region. Hence, the same converse holds for the multiple-slot capacity region, as stated in Theorem

2 below.

Theorem 2 There exists £ > 0 such that for all 0 < & < &, there exists § > 0 such that if there
exists for some T a coding and decoding policy that is (T, &, ) multiple-slot capacity-achieving, then
1 . 2
Z)\ig—log(lJrZLfa’)Jré (8)
, 2 o
€S

for all subsets S of 1,..., M.

In conclusion, we find that neither burstiness nor queue-information can make the achievable
rate region larger than the multiple-access Cover-Wyner rate region when £ is small.

In order to prove a coding theorem that shows that the rates strictly in the interior of the Cover-
Wyner region are feasible, it is necessary to show that the queue length process is stable whenever

A lies within the Cover-Wyner region. Theorem 3 below establishes stability.

Theorem 3 Suppose the vector of arrival rates A is inside the multiple-access capacity region. Then

for some e >0, B, < 00, and any Q(0) C RZ,

lim sup E [exp (e[| Q(7)[D)] < Be . (9)

J—00



PROOF. We first establish the following version of Foster’s criterion (see [MT93]). Let the
Lyapunov function V : R2 — R, be defined as V(z) = max(zy,22), © € RY. Let Ly =
max;—1 2 [% log (1 + Z—;)] . We will show that for some 5 > 0, by < oo, and a bounded set Cy C Ri,

N

TR B (COEE IO o)

bo . Q(s) € Co
where Cy = {z € Ri cx; < Lo, i = 1,2}, and F; denotes the information, in terms of past contents
of the buffers, about our system up to time-slot s. In order to establish (10), we consider three

cases, corresponding to varying backlog at the two queues:

Case 1: Q(s) € Cy. In this case the bound is obvious for some gy < ¢ under (1) (just take an

exploration on both sides of the inequality (10)), regardless of Cj.

Case 2: Q;(s) > 1, for i = 1,2. Given our definition of Ly, both users have enough bits to send in
the next time-slot. Because A is inside the capacity region, inequality (10) holds.
Case 3:

Q(s) ¢ Cy, but only one component, Q1(s) or (QQ2(s), exceeds the threshold Ly. In these cases,
the maximum of Q;(s) and Q2(s) decreases even faster than it does in Case 2, so we preserve the
drift inequality (10).

We now set V.(z) = exp(eV(x)), where 0 < ¢ < §. In view of (10) and Lipschitz-continuity of
V' it can been shown, as in Equation (16.28) of [MT93], that the following geometric drift holds for

some < 1, b < o0,
EVA(Q(s+1) [ F,] < BV(Q(s)) +b .

This implies that for all s,

b
EVA(Q(s)] < B°V(Q(0)) + -7
g
Because A lies in the multiple-slot capacity region, the system is stable, so the vector of rates A
is achievable.

There are two other cases to consider:

(i) If on a boundary of the multiple-access capacity region, we cannot determine the stability of

the system

(i) If A is outside the multiple-access capacity region, then ||Q(j)| — oo, as j — oo, the system is

not stable in the strongest sense.



The arguments in this section can readily be extended to the case where we have more than
two users. In effect, we have shown that the bursty nature of the data does not affect the reliably
received rate, even though the transmitted rate may be affected.

To illustrate the implications of Theorem 3 we consider the following simple policy: When a
user, say user 1, empties his buffer, he backs it up very significantly, according to the specific policy.
Then, he transmits using a coding scheme that achieves a maximum total rate when both users
transmit continuously over all time-slots. User 2 follows the same scheme. For any ¢ > 0, any € > 0,

for all large enough 7', we may find a policy of this form such that

%log <1+ U%+U%> — A+ A <e€

ok

In effect, if we back up for long enough, the time spent transmitting when users are backed up
dominates, and the time spent artificially backing up queues becomes negligible. Thus, this policy
is optimal according to our definition of optimality, although it clearly is a poor choice in terms of
delay.

We can immediately find that a policy where users transmit at all times as though they were in
multiple access mode is optimal and trivially exhibits better delay characteristics than the family
of policies mentioned above.

We have not yet discussed the information users need about past collisions. In the family of
schemes described above, the information about past collisions is irrelevant, since collisions, which
almost always occur, are taken into account in the coding when transmissions occur. On the other
hand, for a scheme such as the one presented in Section 3, the knowledge of past collisions allows
retransmission of the HR components which may have been lost. This is in effect some form of
automatic retransmission request (ARQ), albeit very different from the case where complete loss
of data occurs in the case of a collision. In particular, let us assume each user knows the type
of collisions that have occurred in the past, i.e. each user knows which users transmitted in past
slots. The knowledge of past collisions provides not only ARQ but also partial knowledge of the
queue, since the users know how many bits were not successfully transmitted. If retransmission of
HR components does not take place, then we should consider a capacity definition centered around
expected received rate rather than reliably transmitted rate (to within & probability of error).

From our discussion, we may state the following coding theorem companion to Theorem 2.

Theorem 4 For any & > 0 and sufficiently large T, there exists a coding and decoding policy which
is (T, &, A) capacity-achieving for all X in the interior of the Cover-Wyner multiple access capacity

TeGION.



5 Delay issues

Our results indicate that there is a family of transmission strategies that achieve rates arbitrarily
close to the multiple access channel capacity region boundary without sharing queue information
and without adapting the strategy to the burstiness of the traffic. One cannot, however, interpret
our results to mean that it is useless for users to have queue information, or to adapt coding
to traffic arrival characteristics, such as burstiness. Our analysis has not considered the issue of
delay. Recent work has considered power and delay trade-offs in fading channels [Ber00]. However,
in that analysis, users had perfect knowledge of each others’ queues. Our results indicate that
queue information and adaptive coding are not important from a capacity point of view, but it is
reasonable to assume they are useful from a delay point of view. In particular, there exists a trade-
off between delay and energy. This trade-off is explored in [Ber00] for fading channels, but under the
assumption of perfect knowledge of all the queues and centralized control. Such centralized control is
not appropriate for our ALOHA-style model, in which transmissions are essentially uncoordinated.
The trade-off between delay and energy in the case of no or very limited queue information in the
same system setting as this paper is investigated in [CMO01]. Queue information need not be detailed
and coding may not need to be designed to depend as closely on channel and queue knowledge as
in Section 3. Consider the following family of policies, partially explored in [CMO01]. Each user i
transmits a single bit when its queue passes above or below a certain threshold of bits, say sufficient
to transmit the maximum single user rate over a single time-slot. In a manner similar to that in
Section 3, the users adapt their coding to the known conditions of the other queues, for instance
transmitting in multiple access mode when all users are above the queue threshold. This family
of policies is optimal with respect to many-slot capacity. For this family of policies, there is a
trade-off between, on the one hand, delay, in terms of time-slots, and, on the other hand, energy,
rate, queue information and coding complexity. A topic of further interest when considering delay
is determining to what extent placing constraints on average delay, for instance in terms of expected

number of slots, affects our achievable rates.

6 Discussion and conclusions

We have considered the case of ALOHA systems where some measure of interference cancellation
can occur at the receiver. We have shown one such scheme, for the case of a single time-slot. This
scheme works by combining notions from broadcast codes and rate-splitting and adapts coding to
the burstiness of the system. This method in effect relies on having several overlaid codes. When we

consider many slots, we have seen that the capacity region, in the sense we defined, is the same as



the Cover-Wyner multiple-access capacity region. Moreover, we have shown that there is a family of
policies that achieve capacity without any queue information being shared among users and without
adapting coding to burstiness of the system. In effect, our results indicate that burstiness does not
affect capacity. Interestingly, this insight, without the capacity and coding constructs in this paper,
has been present in some of Abramson’s work for many years [Abr77, Abr86|.

Our results make several assumptions regarding data arrival, coding, lack of channel-fading,
etc. Several extensions are possible. For instance, we may consider different types of data arrival,
with some constant streams and some bursty arrivals as in [CT00]. The coding methods can be
readily adapted for different arrival distributions, and the stability results should only depend, for
well-behaved distributions, on the average arrival rate of data. We may consider shorter time-
slots and coding over more than a single slot, either with interleaving or without. The results of
Section 3 would then be changed considerably, but those of Section 6 would not be affected, since
we could create super-slots by amalgamating time-slots. Fading, particularly block-fading where
fading intervals are an integer number of time-slots and the fading parameters are known at the
sender and the receiver, may be easily included in the coding method. Stability would then have to
take into account the type of time-variations of the channel. The values of £ would also vary with

fading and time slots.

Acknowledgements The authors would like to acknowledge useful discussions with D.P. Taylor,
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A Appendix

In this approach, we reverse the order of the rate-splitting and do not rate-split multiple access for
the high-resolution users. As in broadcast channels, each of the users we have constructed sends two
messages on two separate signals. That is, U; sends signals LR; and HR;, which are independent

WGN signals with variance ;0% and (1 — aq)o?, respectively. U, sends signal LRy and HR,, which

are independent WGN signals with variance ayos and (1 — ay)o3, respectively. The low-resolution
component of user 1 is then divided into two independent virtual users for multiple access purposes.
Hence, we have Uppys and Upgy», which send independent WGN signals with variance 3y 07 and
(1 — B1)ayo?, respectively. There is no rate splitting for the low-resolution component of user 2.
Each aq, ag, £y lies in [0, 1].

Figure 1 illustrates this coding scheme.

The notations LR and HR are the abbreviations of low resolution and high resolution, respec-



User 1

_~LRL 0,

N HR1 (1-a)o?

HR2 (1-0,) 02

- LR1 0,0]

-~ HR1 (I-0))o?

27 2
N LR2'  (1-B)oo?
~HR2 (1-0,)0?

Figure 1: Representation of the proposed new coding scheme.

tively, since we are in effect using a broadcast code within our multiple access scheme. We decode

signals one after the other in the following order:

First LR}, then LRy, LR}, HR4, and finally HRx.

(11)

If one of the five signals is not present, the receiver proceeds to the next one. Each signal is

decoded so that all signals not yet decoded are considered noise, and signals that have been decoded

and reconstructed are cancelled. Here we assume the signal can be decoded with over a time slot

of length T with probability of error less than or equal to &.

Each signal of the LR and HR type has a rate such that it can be decoded within the required

probability of error if the SNR is at least:

54150'%

NR.- = for LR,
S RLva o5+ (1 —af)o? + 0% or L
)
0420'2 ~
SNR; ., = = for LR
ER2T (1~ Gn)o2 + (1 — anf)o? + 0% ?
dl(l - B) ~. "
NR!- = for LR
S RLR’l (]_ — &2)0’% -+ (1 — 6[1)0'% + 0'12\[ or 1
1 —ay)o? ~
SNR}fR,l = % for HRl
ON
1 — aw)o? -
SNRyp, = # for HRy
ON

Hence, the low-resolution and high-resolution rates that may be achieved are as follows:



5 1 1
Rrpy = 2 log, (1 + SNR/[RJ) + 92 logy (1 + SNR/IGRJ) (17)
- 1
Rpr1 = 5 logy(1 4+ SN Ryp ) (18)
~ 1
Rrro = 9 logy(1+ SN R, (19)
~ 1
Rypo = 9 logy(1+ SN Rypp 5) (20)

It can be shown that any rate achieved with the first scheme given in the paper can be achieved
with this scheme. Consider a set of allocations of o}, o, as, B for the first scheme. We may choose

dl,ob,ﬁ so that

RL~R,1 = Rrr1 (21)
Ruri = Rura (22)
RLNR,Q = RiRr2 (23)
RI;R,Z = Ruro2 (24)
To prove this, let us first set R;R,g = Rpp2 by setting
6(2 = (9. (25)

Next, we may attempt to set RH~R,1 = Rpypri. Note that from the properties of the AWGN
channel capacity function, C'(,Izv (Py) —|—C'012V+P1 (Py) = Cy2 (Py + Py), where Cy (z) = %10g2 (1 + %)

2
N

Hence,
Rpry = Rypy + Ripy = Cog, ((B(1 = ay) + (1= B)(1 — af)) o7) (26)
and we may allow Ryp, = Rypg, by setting 1 —a; = 8(1 — o) + (1 — 8)(1 — oY), or equivalently,
ay = (1 - B)ay + Ba). (27)

Next, we attempt to set RLNR,Q = Rppr2 by choosing our final degree of freedom, 3, accordingly.

Note that

Ripa = Ca%+(17&1)0%+(17d2)a§+dl(1713)0% <d203> (28)
Rira = Cp2 4 (1-ay)o?+(1—a)od+(1-gale? (@207) (29)

Hence, we may equate these two rates by setting a1 (1 — 5)o? = (1 — )02, or equivalently,



Boly
(1= pB)af + Bay

G = (30)

We still must check that with these values of 3, a;, and d», we in fact arrive at our final set of

rates matching: RL~R71 = Rppr1. Let us now verify this:

RL~R71 - Ca?V+a +a(1-f)o (0416‘71) + 002 +(1—62)od+(1—61)0? (dl(l - B)”%) (31)
= CU§V+JQ+( L(1=B)+(1-G1))) o (541@71) + Co2 4 (1-az)o+(1-a1)o? (541(1 — ﬂ)(ﬁ) (32)

- Ca?\z+og+(a1(1 —B)+(1-a1)))o? (5041‘71) + Co2+(1-a2)02+(1-G1)? (0‘/1/(1 - 5)‘7%) (33)

= Gy 2 +03+(af (1-B)+B(1—af)+(1-B) (1-a}) ) o 2 (Bayot) + (34)

Co2 (1 an)od+(B(1—af 1+ (1-) (1-a}))o? (o (1 = B)ai) (35)

2

= CUIQ\,—HT%—&-(l 041/6) (ﬁalal) + C 21— a2)02+(1 ah B—af (1 ﬁ))af (0/1/(1 - 5>01) (36>

= Rip,+ Rig, (37)

= Rrra (38)

where the third equation is due to (25), the third equation is due to the fact that &3 = o/, and
a1(1 — 3) = o/ (1 — ) (combine ((27) and (30)), the fourth is due to (27). Note that this collapses
the previous 2(2M — 1) = 4M — 2 virtual users into M + 2M — 1 = 3M — 1 virtual users.

B Appendix

In this appendix we maximize expected capacity for all the remaining cases of p; and p,.

B.1 Maximum total expected rate for boundary probabilities

Case 1: Only one p; = 1.
We first consider the case where p; = 1, and 0 < py < 1. By the general expression for the total

expected rate in (5), we obtain (omitting certain algebraic steps)

E(R) = (1—pa)ri+pa(r} +73)

1 o2 402+02)(1—a, B)o2+03)) 1 o402 +02
S (1 - p2)§ In ( 1((1 Zalé\301+02+1-aN)1012\,N ) + 2 In ((1—0/1ﬁ_1a’1’(?l—61)\30%+012\,> b2
o2
< %ln<1+$> 1ln<1—|— 2+U >p2



We achieve equality when as = 1, (1—a/ ) =1 and (1-a)8—af(1—-03)) =0 (i.e., ky = ks = 0).

So the total expected rate for this case is
1 o? 1 o2
E(R)maz==In 1+ —F | +=In(14+ "2 | po, 39
(B = g (1 2 ) + 30 (14 2507 ) )
where 3 =0, of = ay = 1, o) can take any value in [0, 1].

For the case where 0 < p; < 1, p, = 1, we obtain in a similar fashion that:

2 2

1 o
—In(1+ =2)+ =1In(1 !
2n( +012V)—|—2n( +

where 3 = o) = ay = 1, o] can take any value in [0, 1].

E(R)max = 2 )pl 9

03 + 0%
Case 2: p; =1 and p, = 1.
The total expected rate can be shown to be the same as the maximum total rate for the multiple
access channel, thus satisfying our conditions for stability discussed in Section 2. Hence,
1 ol + o5
E(R)maz == 5 In (1 + 2 y

ON

(40)

where (1 — o} —af(1—0)) =0, (1 —ay) =0.

B.2 Maximum total expected rate for interior probabilities

We now consider the case where the vector p lies in the interior of the simplex: 0 < p; < 1 and

0 < p2 < 1. By the general expression for the total expected rate in (5) (omitting algebraic steps)
E(R) = pi(1—p2)ri +pa(l = pi)ry + pipa(r] +13)

= pr(1=p2)(rf = 7i +79) + pa(1 = p1)(ry = 75 +73) + papa(ri +73)

= pird +pari + pi(L = pa) (1] —1f) + a1l = p1)(ry —13)

— i (02 +02+0%)(1-0} B)o? +(1—az)o3 +o%)
13 M\ (0=t B)ottot+o%) (1—as f—a) (1-B)o + (1—az)o3 +0%)

1 o2
+p2§ In (1 + (1—a3,8)0%+?12—a2)05+al2v)
—o! B—a’ (1— 0.2 —a 0_2
—|—p1(1 —pg)%ln (1 + (1—ay B 01%(1 B)) 1) +p2(1 _pl)% In <1 + %)

For simplicity we consider in detail only the special case where p; = ps = p. For the case p; # ps,

see [Hua00]. We note that the conclusion in either case is the same: The optimum (ky, k2) occurs
on the boundary of its domain.
For the special case 0 < p; = ps = p < 1, the total expected rate can be written as
E(R) = p(ri+r3)+p(l—p)(ri—ri+ry—r)

U%—i—a%—f—a?\,

- pl
= ppln ((1fa’1,87a’1’(175))0%(1*0‘2)"5*"12\7>

i —p) [ (1 1 Ootiof0ome) | ap ()| (oo

52




Given the definition in Section 3.1: k; =1 — o} — o (1 — 3), ka = 1 — ap, we obtain:

2
E(R):p%ln( ";“L“?JQUNQ)JFpa—p) Em(u’ﬁ;“)+§1n(1+’f2"2>}. (41)

kio7 + koos + 0%, oy o3

According to their definitions, k; and ks are independent and may take values in [0, 1], so we
get a maximization problem of a two-variable function over a closed region. The maximum points
are either on the boundary or the relative maxima inside the region. Next, we prove that there are
no relative maxima inside the region.

Take the derivatives of F(R) in Equation (41) over k; and ko, we get

OF(R) 1 o2 1 o?
=—— —p(l —p)———— 42
ok, kalaf + kood + 0% * 2p( P) kio? + 0%’ (42)
OE(R) 1 0% N 1 (1-p) o5 (43)
By letting 8§]§R) = 0 and 8§k2 = 0, we determine an extreme point: kiy = (11);# , kog =
(lpg—g) Taking the second order derivatives of F(R) at this point yields:
O?E(R) 1 ot 1 ot
B I L vy e e R e (w3
1 |(k1oks0) 1007 + k2003 + 0y) (kroof + o)
1 ot 1 ot
= §p po po_l 9 2 2p<1 - p> pot . 9 2
(1 12Vp+1 12vp+UN) <1—12Vp+UN>
1 ot 1
= —p(1-2p)P—+(1-—)<0 44
- 2P (1- ) (44)
0?E(R) 1 o Oy 1
) = —p(1—-2p)*=2(1-——) <0 (45)
ak% [(k10,k20) 2 O?V l—p
Ok10K3 | (k1,h20) 2" (haoo? + k;2002 +ok)? 2 oN
Ok 0k, [(k10,k20) 2 O-jl\/
From £y = W>O$p<05:(1 1Lp)2<1,wehave
O?E(R) O?E(R) B O?E(R) O?’E(R) <0 (48)
8]{% [(k10,k20) ak% |(k10,k20) Ok10k; [(k10,k20) Ok2 0k, |(k10,k20) .

The results in (44)-(48) imply (kio, k2o) is not a relative extremum, and the maximum points

are on the boundary, i.e, k; =0, or ks =0, or k; = 1, or ks = 1. We consider four cases:

Case 1: If k; = 0, then from (43), we know that, for this case,

OE(R) 1 o3 1 o3

= ——p—= —p(1 —
8k2 2pk20'% + U]2V + 2]9( p)

— <0
kool + 03

then F/(R) is a decreasing function of k.

So when ks = 0, we achieve the relative maximum of E(R) on line k; = 0.



Case 2: If ky = 0, then from (42), we know that, for this case,

OE(R) 1 o? 1 o?

— sy 01 Lt —
Ok, 2pk10f + 0% * 2p( P) kio? + 0%

< 0.

So when k; = 0, we achieve the relative maximum of E(R) on line ky = 0. From Cases 1 and 2,

the relative maximum on the boundary k; =0 or ks =0 is

1 2 2
E(R)* = —pln (1 + 2 J;%) : (49)
2 o
Case 3: If ky = 1, then from (43), we know that, for this case,
OE(R) 1 o3 1 o3
— - Sp1l-p)—22 50
ak’Q 2p0'% + kQU% + 0]2\] + 2p< p) k‘zdg + 0']2V ( )

For different p in [0, 1], we have the following three possibilities:
0.2
L P S oy

OE(R)
ko

> 0 implies that, when ko = 1, we get the relative maximum:

E(R)" = p(1— p) Bln <1+%) —|—%1n <1+%)} . (51)

2 0% < P S ”% JE(R) 1*1’)‘7%*1)0%

= 0 implies that, when ky = (

, we get the relative

: a%—}-a%—i—a?\, — a%—i—af\, Oko po3
maximum:
1 0?4+ 02+ 03 1 o? 1 —p)o?
E(R)" = -pln (p( L ) +-p(l—p)|In{1+— |+ # . (52)
2 o 2 oN POy
0.2
3 p 2 02+102
ag}ga) < 0 implies that, when ko = k; = 0, we get the relative maximum:
1 2 2
E(R)* = =pln (1 + 2 J;UQ) : (53)
2 oN
Case 4: If ky = 1, then from (42), we know that, for this case,
OE(R) 1 o3 1 o2
= —= —p(l —p)—— . 54
3k1 2p]€10'%+0'%+0']2v + 2p( p>k10’%—|—0']2v ( )

For different p in [0, 1], we have the following three possibilities:

2

Lps oot
ag’é?) > 0 implies that, when k; = 1, we get the relative maximum:

E(R)* = p(1—p) Bln (1+‘7—§) —i—%ln (1+0—§)} (55)

ON ON
2 o < p < o3 _ 9E(R) _ 0, hence when k; = (=p)o—pok, we get the relative
. a%—&-o%—&-o?\, =P = a%—l—a?\] ks — 1= paf ) &

maximum:

E(R)" = Spin (p("% i 025 i UJQV)) + i —p) {m (1 + %) +1n ((1_—2)03)} . (56)

PO




3.p=

9E(R) < 0, hence when k; = ko = 0, we get the relative maximum:

Okt
1 o2 4 o2
E(R)*=—pln(1 L "2
vy = o (142 22)

2,2
gy toy

Based on the discussions above, the maximum expected rate for the case p; = ps = p is:

Case 1. 02 = 02 = o2

A. p< 5 2+ 32—, E(R) e = max((49), (51)), here (49) and (51) are the equation numbers.
B. 5fmr <P < pTrs B(R)mar = max((49), (52) = (56)).
C.p> 2+02 , B(R)maz = (49).

Case 2. 0% > 03

2 2
A i
. PR
toytoy oytoy

< oz B(R)mas = max((49), (51)).

2 2

b. Uf—i—g#cﬁv <p< Uf—f—:#a?\,’ E(R)ma:r; = max((49), (51)7 (56))
C. o‘%ﬂ?#a?\, < P < 051—20'12\;’ E(R)max = max((49), (52), (56))
d e <p < 22, B(R)a = max((49), (51))
c. p > 0_%110_?\77 E(R)max == (49)
o2 o2
B oot 2 3

E(R)maz = max((49), (51)).

<%
P> et

0.2 2

b. el <P < 3z E(R) ez = max((49), (51), (56)).
2 0.2

C. 2+02 <p< W’ E(R)max = max((49), (51))

d. (ﬁﬂ;’m <p< 2+ >, E(R)mae = max((49), (52)).

e p> 7y, E(R)mas = (49).

Case 3. 0? < 02, our conclusions are similar to those of 2.
2 2
We can see, for the extreme case where p; = py =1 > 211 -~ and 5?0%’

1 2 2
B(R)as = (49) = 5 In (1 + 01; 02)
N

which is the capacity of the multiple access channel.
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Figure 3: Representation of the coding scheme.
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Figure 4: k; and ky which maximize E(R) in several symmetric cases: 0?2 = o3 = 0.1, 10, 10, 107
and 10, with % = 1.
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Figure 5: k; and ky which maximize E(R) in several asymmetric cases: User 2 has power o3 =
1,3,5,7 and 9. In all cases User 1 has power has power ¢? = 10 and the noise has power o3 = 1.



