
III — More about the multicast

Sender

Rec. Rec. Rec.1 2 l

k bits

cut

n

Questions

• Do we really need codes?

• What alphabet sizes do we need?

• How do we find solutions?

• Bidirectional links?

2

Do we really need codes?

Is the performance gap between the network coding solution and
routing, i.e. packing directed Steiner trees bounded ?

A simple example:
Sender

Rec. Rec. Rec.1 2 l

k bits

cut

n

Each receiver picks out one of

(

n

k

)

possible middle layer links

3

Do we really need codes?

n

k
transfer matrix for "cut"

Sender

Rec. Rec. Rec.1 2 l

k bits

cut

n

The transfer matrix from the transmitter to the “cut” has to sat-

isfy that k × k submatrix has full rank!

⇒ The field size is at least in the same order as n

(the MDS conjecture)

4

A lower bound

Theorem There exist multicast problems with T receivers such that

the minimum field size required for a solution grows as O(
√

T) .

Theorem There exist multicast problems such that the gap between

routing and network coded strategies is arbitrarily large.

5

How do we find solutions for the Multicast?

� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �

M1 M M2 3Multicast network

Z Z
Z

Z

Z
Z
Z
Z
Z

11 12

13

21

23

22

31

32

33

1

X

X

X

2

3

System Transfer matrix

� = {(v, u1, � (v)), (v, u2, � (v)), . . . , (v, uK, � (v))}

M is a | � (v)| ×K| � (v)| matrix.

mi(ξ) = det(Mi(ξ))

Choose the coefficients in F̄ so that all mi(ξ) are unequal to zero.

The degree of each mi(ξ) is at most | � (v)|
6

Multicast:

An algorithm to find a vector a such that F (a) 6= 0 for a polynomial

F .

Input: A polynomial F in indeterminates ξ1, ξ2, . . . , ξn, integers: i =

1, t = 1

Iteration:

1. Find the maximal degree δ of F in any variable ξj and let i be

the smallest number such that 2i > δ.

7

2. Find an element at in F2i such that F (ξ)|ξt=at
6= 0 and let

F ← F (ξ)|ξt=at
.

3. If t = n then halt, else t← t + 1, goto 2).

Output: (a1, a2, . . . , an).

The crucial step is 2) which is successful if the fieldsize is larger

than the degree of F .

Multicast:

Let (G, �) be a multicast network coding problem with T receivers

and R symbols transmitted per time unit. There exists a solution

for (G, �) over a finite field F2m with

m ≤ dlog2(TR + 1)e.

(A more careful analysis shows that a field F2m with m ≤ dlog2(T)e
or F ≥ T)

8

Multicast:

For any multicast networking problem with T receivers there always

exists a solution over an alphabet which is at least as large as T .

Conversely:

There exist multicast networking problems with T receivers such

that the minimum alphabet size is bounded below by
√

T − o(1).

(In practice - just try the random approach...)

9

A different approach...

S.-Y. R. Li, R. W. Yeung, and N. Cai. "Linear network coding". IEEE

Transactions on Information Theory , Februray, 2003

S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and L.

Tolhuizen, "Polynomial time algorithms for multicast network code

construction,"IEEE Transactions on Information Theory. Submit-

ted July 2003.

A flow based approach that carefully constructs a solution in poly-

nomial time.

10

A different approach...

A solution for acyclic networks is constructed “one link at a time”

starting at the source.

Each flow to a receiver is being treated as a set of disjoint paths

with the set of edges that was processed last (the frontier set)

having to form a full rank matrix

11

fu
ll

ra
nk

 a
t a

ll
tim

es

Flow I

e

e

1

2

Flow II

e

e

1

2

[0 1]

[1 0]

[1 0]

[0 1]

[1 0]

[0 1]

Fr
on

tie
r

Se
ts

Fr
on

tie
r

Se
ts

12

fu
ll

ra
nk

 a
t a

ll
tim

es

Flow I

e

e

1

2

Flow II

e

e

1

2

[0 1]

[1 0]

[1 0]

[0 1]

[1 0]

[0 1]

Fr
on

tie
r

Se
ts

Fr
on

tie
r

Se
ts

[? ?]
[1 0]

[0 1]

[? ?]= a[1 0] + b[0 1]

find a and b such that we have

13

fu
ll

ra
nk

 a
t a

ll
tim

es

Flow I

e

e

1

2

Flow II

e

e

1

2

[0 1]

[1 1]

[1 1]

[0 1]

[1 0]

[0 1]

Fr
on

tie
r

Se
ts

Fr
on

tie
r

Se
ts

[1 1]
[1 0]

[0 1]

[1 1]=1[1 0] + 1[0 1]

14

fu
ll

ra
nk

 a
t a

ll
tim

es

Flow I

e

e

1

2

Flow II

e

e

1

2

[0 1]

[1 1]

[1 1]

[0 1]

[1 0]

[0 1]

Fr
on

tie
r

Se
ts

Fr
on

tie
r

Se
ts

[1 1]
[1 0]

[0 1]

[0 1]

[0 1]

15

fu
ll

ra
nk

 a
t a

ll
tim

es

Flow I

e

e

1

2

Flow II

e

e

1

2

[0 1]

[1 1]

[1 1]

[0 1]

[1 0]

[0 1]

Fr
on

tie
r

Se
ts

Fr
on

tie
r

Se
ts

[1 1]

[0 1]

[1 1]

16

fu
ll

ra
nk

 a
t a

ll
tim

es

Flow I

e

e

1

2

Flow II

e

e

1

2

[0 1]

[1 1]

[1 1]

[0 1]

[1 0]

[0 1]

Fr
on

tie
r

Se
ts

Fr
on

tie
r

Se
ts

[1 1]

[0 1]

[1 1]

[1 1]

17

fu
ll

ra
nk

 a
t a

ll
tim

es

Flow I

e

e

1

2

Flow II

e

e

1

2

[0 1]

[1 1]

[1 1]

[0 1]

[1 0]

[0 1]

Fr
on

tie
r

Se
ts

Fr
on

tie
r

Se
ts

[1 1]

[0 1]

[1 1]

[1 1]

[0 1]

18

fu
ll

ra
nk

 a
t a

ll
tim

es

[1 1]

[1 1]

[0 1]

Flow I

e

e

1

2

Flow II

e

e

1

2

[0 1]

[1 1]

[1 1]

[0 1]

[1 0]

[0 1]

Fr
on

tie
r

Se
ts

Fr
on

tie
r

Se
ts

[1 1]

[0 1]

[1 1]

[0 1]

[? ?]

[? ?]=a[1 1]+b[0 1]=[1 0]

19

fu
ll

ra
nk

 a
t a

ll
tim

es

[1 1]

[1 1]

[0 1]

Flow I

e

e

1

2

Flow II

e

e

1

2

[0 1]

[1 0]

[1 1]

[1 0]

[1 0]

[0 1]

Fr
on

tie
r

Se
ts

Fr
on

tie
r

Se
ts

[1 1]

[0 1]

[1 1]

[0 1]

[1 0]

[? ?]=a[1 1]+b[0 1]=[1 0]

20

fu
ll

ra
nk

 a
t a

ll
tim

es

[1 1]

[1 1]

[0 1]

Flow I

e

e

1

2

Flow II

e

e

1

2

[0 1]

[1 0]

[1 1]

[1 0]

[1 0]

[0 1]

Fr
on

tie
r

Se
ts

Fr
on

tie
r

Se
ts

[1 1]

[0 1]

[1 0]

[0 1]

21

fu
ll

ra
nk

 a
t a

ll
tim

es

[1 1]

[1 1]

[0 1]

Flow I

e

e

1

2

Flow II

e

e

1

2

[0 1]

[1 0]

[1 1]

[1 0]

[1 0]

[0 1]

Fr
on

tie
r

Se
ts

Fr
on

tie
r

Se
ts

[1 1]

[0 1]

[1 0]

[0 1]

[1 0]

22

fu
ll

ra
nk

 a
t a

ll
tim

es

[1 1]

[1 1]

[0 1]

Flow I

e

e

1

2

Flow II

e

e

1

2

[0 1]

[1 0]

[1 1]

[1 0]

[1 0]

[0 1]

Fr
on

tie
r

Se
ts

Fr
on

tie
r

Se
ts

[1 1]

[0 1]

[1 0]

[0 1]

[1 0]

[1 0]

23

The algorithm of Jaggi, Sanders et al.

The frontier sets of a multicast to three receivers

[a b c]

[a b c]

[a’ b’ c’]
[a’’ b’’ c’’]

[a b c]
[a’ b’ c’]
[a’’ b’’ c’’]

has full rank
for all colors

A multicast network

24

The algorithm of Jaggi, Sanders et al.

Theorem [Jaggi, Sanders, et al] Let (G, �) be a multicast network

coding problem with E edges, R symbols to be transmitted simul-

taneously and T receivers. There exists a linear network coding

solution for (G, �) over a finite field F if |F| > T . Moreover this

solution can be found in time O(E · T ·R(R + T)).

(In practice - still just try the random approach...)

The “link growth” algorithm can be modified such that it is applicable

to all the generalizations of the previous session.

25

The algorithm of Jaggi, Sanders et al.

Theorem [Jaggi, Sanders, et al] Let (G, �) be a multicast network

coding problem with E edges, R symbols to be transmitted simul-

taneously and T receivers. There exists a linear network coding

solution for (G, �) over a finite field F if |F| > T . Moreover this

solution can be found in time O(E · T ·R(R + T)).

(In practice - still just try the random approach...)

The “link growth” algorithm can be modified such that it is applicable

to all the generalizations of the previous session. Example: “Two-

Level Multicast”

26

Two-Level Multicast

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

[001]

[100]

[010]

[100]

[100]

[010] [010]

[001] [001]

[010]

[100]

27

Two-Level Multicast

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

[001]

[010]

[100]

[010] [010]

[001] [001]

[010]

[101]

[101] [101] [100]

full rank for all frontier sets

28

Two-Level Multicast

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

[010]

[100]

[011] [010]

[001] [001]

[011]

[101]

[101] [101] [100]

[001]

[011]

29

Two-Level Multicast

a b c

a,b,c a,b a,b,c

[101]
[001] A= [100]

[010]

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

[010]

[100]

[011] [001]

[111] 111]

[011]

[101]

[101]

[001]

[011]

[001]

[001]

[001]

[101]

[101]

[011]

[111]

[111][111]

[011]

[101]
[011]
[111]
[001]

[101] [001]

Reencode [a,b,c] as A[abc] such that T

30

An anlysis of random assignments is done in the next session.

The flow based algorithm is inherently more efficient than a pure

random assignment.

How do we pack flows with as much overlap as possible?

But first: The case of bidirectional links!

(Zongpeng Li, Baochun Li, Dan Jiang, Lap Chi Lau. "On Achieving

Optimal End-to-End Throughput in Data Networks: Theoretical and

Empirical Studies," Technical Report, University of Toronto, May

2004)

31

Bidirectional links — A case where network coding does not help

a

b

a

a

b

a

b

a

a

b directional links: rate of transmission 0.5 symbols per time unit

bi−directional links: Rate of transnmission is bounded by 6/7

32

Bidirectional links

Steiner Tree Packing for Multicast Problems:

Find the set of all Steiner trees � , i.e. trees connecting all re-
ceivers with a source in a multicast group.

For a link e and T ∈ � :

I(e, T) =

{

1 e is part of T

0 otherwise

The central problem: Find λ(T) ∈ R+ maximizing
∑

T∈ �

λ(T) such that
∑

T∈ �
λ(T)I(e, T) ≤ C(e)

for all links e.
33

Bidirectional links

Without network coding: One symbol per time unit

With network coding: Two symbols per time unit

With network coding: ?

Without network coding: ?

A case where network coding does help (even though it's not much)

34

Bidirectional links

Without network coding: One symbol per time unit

With network coding: Two symbols per time unit

With network coding: Two symbols per time unit (min cut)

Without network coding: ?

A case where network coding does help (even though it's not much)

35

Bidirectional links

Packing the below trees yields
a rate of 1.5 symbols per time unit
(1.875 optimal [Li,Li,Lau])

36

Bidirectional links

Without network coding: One symbol per time unit

With network coding: Two symbols per time unit

With network coding: Two symbols per time unit (min cut)

Without network coding: 1.875symbols per time unit

A case where network coding does help (even though it's not much)

37

Bidirectional links

[Li,Li,Lau] The ratio between the multicast rates achievable with or

without network coding in bidirectional networks is bounded by a

factor of two.

(The point of network coding here is really complexity!)

38

Bidirectional links

[Li,Li,Lau] The ratio between the multicast rates achievable with or

without network coding in bidirectional networks is bounded by a

factor of two.

(The point of network coding here is really complexity!)

39

Bidirectional links - An Example

With network coding we achieve a capacity of 2 symbols per time

unit

Without network coding we achieve a throughput of 1.786 symbols

per unit time

This comes at a cost of optimizing over 119104 Steiner trees [Li,Li,Lau]

40

Bidirectional links

He crucial step in a network coding solution for the multicast prob-

lem in bidirectional links is to find the best (bidirectional) flows

corresponding to each receiver. To this end we formalute a linear

program:

Each link e carries two flows (direction + and −) f
(`)
+ (e) and f

(`)
− (e)

due to receiver `.

41

Maximize: f

Constraints for all `

f
(`)
+ (e) + f

(`)
− (e) ≤ c(e)

∑

f(`) flowing into reveiver `

f(`) = f

∑

f(`) flowing out of the source

f(`) = f

∑

f(`) flowing into node i

f(`) =
∑

f(`) flowing out of node i

f(`)

42

Summary:

• For directed networks the “coding gain” is unbounded

• We “really” need codes

• The necessary multicast fieldsize is bounded as
√

T ≤ |F| ≤ T

• Two basic methods to find solutions: algebraic and recursively

assigning edges

• A natural method: “random assignment” (more about this shortly)

43

• For bidirectional link the coding gain is bounded by 2

• The main advantage of network coding in complexity.

• More about linear programs shortly!

Randomized network coding
• The effect of the network is that of

a transfer matrix from sources to
receivers

• To recover symbols at the receivers,
we require sufficient degrees of
freedom – an invertible matrix in the
coefficients of all nodes

• The realization of the determinant
of the matrix will be non-zero with
high probability if the coefficients
are chosen independently and
randomly

• Probability of success over field F ≈

• Randomized network coding can use
any multicast subgraph which
satisfies min-cut max-flow bound
for each receiver [HKMKE03,
HMSEK03, WCJ03] for any number
of sources, even when correlated
[HMEK04]

j

j

jmhj

hj

jmij

ij

jmjm XYYY !!! ++=

j

ijY hjY

jX

Endogenous inputs

Exogenous input

F

1
1!

Randomized network coding

• [HKMKE03, HMSEK03] For a feasible d-receiver multicast con
nection problem on a network with

• independent or linearly correlated sources
• a network code in which code coefficients for links are chosen

independently and uniformly over
• the success probability is at least

• Error bound is of the order of the inverse of the field size, so
error probability decreases exponentially with codeword length

Proof outline

• Recall transfer matrix for each receiver must be non-singular
• We show an equivalent condition connected with bipartite

matching: the Edmonds matrices

(in the acyclic delay-free case) (in the case with delays) are non-
singular

Proof outline

• This shows that if links have random coefficients, the determinant
polynomial has maximum degree in the random variables and is linear
in each of these variables

• We want the product of the d receivers' determinant polynomials to be
nonzero

• We can show inductively, using the Schwartz-Zippel Theorem, that for
any polynomial

 of degree
• in which each has exponent at most , if are

chosen independently and uniformly at random from ,
then the polynomial evaluates to 0 with probability at most

• Particular form of the determinant polynomials gives rise to a tighter
bound than the Schwartz-Zippel bound for general polynomials of the
same total degree

Erasure reliability

• Packet losses in networks result from
– congestion,
– buffer overflows,
– (in wireless) outage due to fading or change in topology

• Prevailing approach for reliability: Request retransmission
• Not suitable for

– high-loss environments,
– multicast,
– real-time applications.

Erasure reliability

• Alternative approach: Forward Error Correction
(FEC)
– Multiple description codes
– Erasure-correcting codes (e.g. Reed-Solomon,

Tornado, LT, Raptor)
• End-to-end: Connection as a whole is viewed as a

single channel; coding is performed only at the source
node.

Erasure reliability – single flow

End-to-end erasure coding: Capacity is packets per unit time.

As two separate channels: Capacity is packets per unit time.
- Can use block erasure coding on each channel. But delay is a problem.

Network coding: minimum cut is capacity
- For erasures, correlated or not, we can in the multicast case deal with average
flows uniquely [Lun et al. 04, 05], [Dana et al. 04]:

- Nodes store received packets in memory
- Random linear combinations of memory contents sent out
- Delay expressions generalize Jackson networks to the innovative packets
- Can be used in a rateless fashion

()()
BCAB
!! "" 11

()
BCAB
!! "" 1,1min

Erasure reliability

• For erasures, correlated or not, we can in the
multicast case deal with average flows uniquely
[LME04], [LMK05], [DGPHE04]

• We consider a scheme [LME04] where
– nodes store received packets in memory;
– random linear combinations of memory contents

sent out at every transmission opportunity
(without waiting for full block).

• Scheme gets to capacity under arbitrary coding at
every node for
– unicast and multicast connections
– networks with point-to-point and broadcast links.

Scheme for erasure reliability

• We have k message packets w1, w2, . . . , wk (fixed-length vectors
over Fq) at the source.

• (Uniformly-)random linear combinations of w1, w2, . . . , wk injected
into source’s memory according process with rate R0.

• At every node, (uniformly-)random linear combinations of
memory contents sent out;
– received packets stored into memory.
– in every packet, store length-k vector over Fq representing

the transformation it is of w1, w2, . . . , wk — global encoding
vector.

Coding scheme

• Since all coding is linear, can write any packet x as a linear
combination

of w1, w2, . . . , wk:
• The vector γ is the global encoding vector of x.
• We send the global encoding vector along with x, in its header,

incurring a constant overhead.
• The side information provided by γ is very important to the

functioning of the scheme.

Outline of proof

• Keep track of the propagation of innovative packets - packets whose
auxiliary encoding vectors (transformation with respect to the n
packets injected into the source’s memory) are linearly independent
across particular cuts.

• Can show that, if R0 less than capacity and input process is Poisson,
then propagation of innovative packets through any node forms a
stable M/M/1 queueing system in steady-state.

• So, Ni, the number of innovative packets in the network is a time-
invariant random variable with finite mean.

• We obtain delay expressions using in effect a generalization of
Jackson networks for the innovative packets

Comments for erasure reliability

• Particularly suitable for
– overlay networks using UDP, and
– wireless packet networks (have erasures and can

perform coding at all nodes).
• Code construction is completely decentralized.
• Scheme can be operated ratelessly - can be run

indefinitely until successful reception.

Average number of transmissions required per packet in random networks of varying
size. Sources and sinks were chosen randomly according to a uniform distribution.
Paths or subgraphs were chosen in each random instance to minimize the total
number of transmissions required, except in the cases of end-to-end retransmission
and end-to-end coding, where they were chosen to minimize the number of
transmissions required by the source node.

Coding for packet losses - unicast

Further Results on Coding for Reliable
Communication over Packet Networks

Desmond Lun, MIT Muriel Médard, MIT Ralf Koetter, UIUC
Michelle Effros, CalTech

9 September 2005

MIT Laboratory for Information and Decision Systems

An example: Slotted Aloha wireless network

1

2

3

MIT Laboratory for Information and Decision Systems 1

An example: Slotted Aloha wireless network

1

2

3

• Prob. q0: neither 1 nor 2 transmits

MIT Laboratory for Information and Decision Systems 1

An example: Slotted Aloha wireless network

1

2

3

• Prob. q1: 1 transmits, 2 does not

MIT Laboratory for Information and Decision Systems 1

An example: Slotted Aloha wireless network

1

2

3

• Prob. q1: 1 transmits, 2 does not

– Prob. p10: packet is received by neither 2 nor 3

MIT Laboratory for Information and Decision Systems 1

An example: Slotted Aloha wireless network

1

2

3

• Prob. q1: 1 transmits, 2 does not

– Prob. p12: packet is received by 2 but not 3

MIT Laboratory for Information and Decision Systems 1

An example: Slotted Aloha wireless network

1

2

3

• Prob. q1: 1 transmits, 2 does not

– Prob. p13: packet is received by 3 but not 2

MIT Laboratory for Information and Decision Systems 1

An example: Slotted Aloha wireless network

1

2

3

• Prob. q1: 1 transmits, 2 does not

– Prob. p123: packet is received by 2 and 3

MIT Laboratory for Information and Decision Systems 1

An example: Slotted Aloha wireless network

1

2

3

• Prob. q2: 2 transmits, 1 does not

MIT Laboratory for Information and Decision Systems 1

An example: Slotted Aloha wireless network

1

2

3

• Prob. q2: 2 transmits, 1 does not

– Prob. p20: packet is not received by 3

MIT Laboratory for Information and Decision Systems 1

An example: Slotted Aloha wireless network

1

2

3

• Prob. q2: 2 transmits, 1 does not

– Prob. p20: packet is received by 3

MIT Laboratory for Information and Decision Systems 1

An example: Slotted Aloha wireless network

1

2

3

• Prob. q12: both 1 and 2 transmit

MIT Laboratory for Information and Decision Systems 1

An example: Slotted Aloha wireless network

1

2

3

• Prob. q12: both 1 and 2 transmit → collision

• Behavior of links is correlated

MIT Laboratory for Information and Decision Systems 1

An example: Slotted Aloha wireless network

1

2

3

• What is the capacity?

• How is it achieved?

MIT Laboratory for Information and Decision Systems 2

Results

• We consider the following operation:

– nodes store received packets in memory
– send random linear combinations of memory at every opportunity

• Scheme is capacity achieving for

– unicast or multicast connections
– lossy wireline or wireless packet networks

• Traffic model is very general

• Error exponents for Poisson traffic with i.i.d. losses

MIT Laboratory for Information and Decision Systems 3

Coding over packets

1. Code only for resilience against erasures, not for errors

2. Side-information can be included in headers

3. Transmissions often not synchronized

MIT Laboratory for Information and Decision Systems 4

Model: Wireline networks

• Directed graph G = (N ,A)

• Arc (i, j): lossy point-to-point link

– packets injected at i according to some process
– packets received at j with average rate zij

• Meaning of average rate:

– Aij(τ): number of packets received between time 0 and time τ on arc
(i, j)

lim
τ→∞

Aij(τ)
τ

= zij a.s.

MIT Laboratory for Information and Decision Systems 5

Model: Wireless networks

• Directed hypergraph H = (N ,A)

• Hyperarc (i, J): lossy broadcast link

– packets injected at i according to
some process

– packets received by set of nodes
K ⊂ J with average rate ziJK

i

J

K

MIT Laboratory for Information and Decision Systems 6

Idea of proof

1 2 3

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2: x1

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2: x1

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2: x1, x2

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2: x1, x2

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2: x1, x2, x3

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2: x1 → (1, 0, 0), x2 → (0, 1, 0), x3 → (0, 0, 1)

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2: (1, 0, 0), (0, 1, 0), (0, 0, 1)

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2: (1, 0, 0), (0, 1, 0), (0, 0, 1)

• Node 3: (α11, α12, α13)

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2: (1, 0, 0), (0, 1, 0), (0, 0, 1)

• Node 3: (α11, α12, α13)

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2: (1, 0, 0), (0, 1, 0), (0, 0, 1)

• Node 3: (α11, α12, α13), (α21, α22, α23)

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2: (1, 0, 0), (0, 1, 0), (0, 0, 1)

• Node 3: (α11, α12, α13), (α21, α22, α23)

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2: (1, 0, 0), (0, 1, 0), (0, 0, 1)

• Node 3: (α11, α12, α13), (α21, α22, α23), (α31, α32, α33)

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2: (1, 0, 0), (0, 1, 0), (0, 0, 1)

• Node 3: (α11, α12, α13), (α21, α22, α23), (α31, α32, α33)

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2: (1, 0, 0), (0, 1, 0), (0, 0, 1)

• Node 3: (α11, α12, α13), (α21, α22, α23), (α31, α32, α33)

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2: (1, 0, 0), (0, 1, 0), (0, 0, 1)

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2: (1, 0, 0), (0, 1, 0), (0, 0, 1)

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2: (1, 0, 0), (0, 1, 0), (0, 0, 1)

• Node 3: (α11, α12, α13)

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2: (1, 0, 0), (0, 1, 0), (0, 0, 1)

• Node 3: (α11, α12, α13)

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2: (1, 0, 0), (0, 1, 0), (0, 0, 1)

• Node 3: (α11, α12, α13), (α21, α22, α23)

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2: (1, 0, 0), (0, 1, 0), (0, 0, 1)

• Node 3: (α11, α12, α13), (α21, α22, α23)

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2: (1, 0, 0), (0, 1, 0), (0, 0, 1)

• Node 3: (α11, α12, α13), (α21, α22, α23), (α31, α32, α33)

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2: (1, 0, 0), (0, 1, 0), (0, 0, 1)

• Node 3: (α11, α12, α13), (α21, α22, α23), (α31, α32, α33)

MIT Laboratory for Information and Decision Systems 7

Idea of proof

1 2 3

• Node 2 behaves like a queue

– If (1, 2) faster than (2, 3), queue unstable, (2, 3) is bottleneck
– If (2, 3) faster than (1, 2), queue stable, (1, 2) is bottleneck

MIT Laboratory for Information and Decision Systems 7

Idea of proof

• Two links → one path of arbitrarily many links

• One path → flow (superposition of paths)

• Flow (wireline networks) → hypergraph flow (wireless networks)

• Single flow (unicast) → superposition, or union, of flows (multicast)

• Some points:

– Packet transformation must be described to decoder (side information)
– Decoding equates to matrix inversion
– Rateless operation is possible

MIT Laboratory for Information and Decision Systems 8

An example: Slotted Aloha wireless network

1

2

3

• What is the capacity?

• How is it achieved?

MIT Laboratory for Information and Decision Systems 9

An example: Slotted Aloha wireless network

1

2

3

• Rate of packets over cut:

q1(p12 + p13 + p123)

MIT Laboratory for Information and Decision Systems 9

An example: Slotted Aloha wireless network

1

2

3

• Rate of packets over cut:

q1(p13 + p123) + q2p23

MIT Laboratory for Information and Decision Systems 9

An example: Slotted Aloha wireless network

1

2

3

• Our scheme achieves rates less than minimum cut:

R < C = min(q1(p12 + p13 + p123), q1(p13 + p123) + q2p23)

MIT Laboratory for Information and Decision Systems 9

Conclusion

• Considered simple random linear coding scheme

• Showed rate optimality under very general conditions

• Derived error exponents for Poisson traffic with i.i.d. losses

• Main challenge: Improve on simple scheme

– memory requirements
– decoding complexity
– side-information overhead

MIT Laboratory for Information and Decision Systems 10

File downloads

 Files (Users) arrive according to a Poisson process with rate γ
 Each file contains K packets to be broadcast to all receivers
 A single packet can be transmitted in one time slot
 Users are admitted/rejected based on their delay constraints.
 Ci[t] 2 {0,1} are i.i.d. Bernoulli(c) distributed, and unknown

File download

 Files are broadcast in a FIFO fashion:
 Transmission of the next file starts only after the

transmission of the current file is complete
 Each receiver sends an ACK once it can reconstruct all the

packets in the file
 Elastic Traffic: Users have no delay constraint, hence every

incoming user is admitted for service
 Inelastic Traffic: Each user has a delay constraint associated with it

and is admitted only if the mean waiting time is lower than its
constraint

 Random Network Coding (RNC) is the optimal coding strategy
 Round Robin (RR) Scheduling is the optimal scheduling

strategy.

Delay issues and coding

P2 P1P3

X
X

X
t = 4t = 3t = 2t = 1

P1

P1

P2

P2

P3

P3

P1

P1

P2

P2

P3

P3

P1

P3

P2

P1 + P2 + P3

P1 + P2 + P3

P1 + P2 + P3

Delays can be improved in cases, such as star networks,
where throughput is not improved

No throughput advantage
in star topology

[Eryilmaz et al. 06]

Results – Elastic Traffic

 m1
RNC, RR(N,K) = Mean service time under RNC and RR

policies
 G(N,K) = m1

RNC/m1
RR is the relative gain of using RNC as

opposed to RR
 We show [Ahmed et al. 07] that

 There is no scaling gain in N
 The relative gain of RNC can be made arbitrarily large for a

dense network by setting the file size K large enough.

Numerical Results – Elastic Traffic

 The numerical computations confirm the predictions of the
asymptotic result.

Results – Inelastic Traffic

 Scaling delay with respect to N is no longer the right measure
 System becomes an M/G/1 system, where the service time

distribution depends on the transmission strategy being employed
 For an admitted traffic rate of λ, mean waiting time is given by

 Each user has a delay constraint Θ that is distributed uniformly
between 0 and dmax

 Only users that observe a mean delay E[D] · Θ enter the system

where mi is the ith moment of the service time distribution

Numerical Results – Inelastic Traffic

Admitted traffic rate λ with varying delay constraints for N=50,
K=20

 RNC can serve significantly more delay constrained traffic
compared to RR under the same network setting

Numerical Results – Inelastic Traffic

Number of supportable users as a function of delay
constraints for RNC and RR

x 107

Main Results

 Elastic Traffic:
 No scaling gains in N
 Gains can be made arbitrarily high by picking large K

 Inelastic Traffic:
 For a fixed dmax, scaling laws do not make sense: we

always have λ(N) ! 0.
 Need to look at scaling with dmax
 With scheduling, the traffic is essentially restricted to being

elastic
 Coding allows us to serve significant inelastic traffic

 We have only used feedback to indicate file
completion – is that the missing piece for delay?

Feedback for reliability

Parameters we consider:
• delay incurred at B: excess time, relative to
the theoretical minimum, that it takes for k packets
to be communicated, disregarding any delay due to
the use of the feedback channel
• block size
• feedback: number of feedback packets used
(feedback rate Rf = number of feedback messages / number of received packets)
• memory requirement at B
• achievable rate from A to C

Feedback for reliability

Follow the approach of [Pakzad et al. 05], [Lun et al. 06]

Scheme V allows us to achieve the
min-cut rate, while keeping the average memory
requirements at node B finite

note that the feedback delay for Scheme V is
smaller than the usual ARQ (with Rf = 1) by a
factor of Rf

feedback is required only on link BC

[Fragouli et al. 07]

