
III — More about the multicast
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Questions

• Do we really need codes?

• What alphabet sizes do we need?

• How do we find solutions?

• Bidirectional links?
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Do we really need codes?

Is the performance gap between the network coding solution and
routing, i.e. packing directed Steiner trees bounded ?

A simple example:
Sender

Rec. Rec. Rec.1 2 l

k bits

cut

n

Each receiver picks out one of

(

n

k

)

possible middle layer links
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Do we really need codes?

n

k
transfer matrix for "cut"

Sender

Rec. Rec. Rec.1 2 l

k bits

cut

n

The transfer matrix from the transmitter to the “cut” has to sat-

isfy that k × k submatrix has full rank!

⇒ The field size is at least in the same order as n

(the MDS conjecture)
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A lower bound

Theorem There exist multicast problems with T receivers such that

the minimum field size required for a solution grows as O(
√

T) .

Theorem There exist multicast problems such that the gap between

routing and network coded strategies is arbitrarily large.
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How do we find solutions for the Multicast?

� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �

M1 M M2 3Multicast network
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32

33

1

X

X
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System Transfer matrix 

� = {(v, u1, � (v)), (v, u2, � (v)), . . . , (v, uK, � (v))}

M is a | � (v)| ×K| � (v)| matrix.

mi(ξ) = det(Mi(ξ))

Choose the coefficients in F̄ so that all mi(ξ) are unequal to zero.

The degree of each mi(ξ) is at most | � (v)|
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Multicast:

An algorithm to find a vector a such that F (a) 6= 0 for a polynomial

F .

Input: A polynomial F in indeterminates ξ1, ξ2, . . . , ξn, integers: i =

1, t = 1

Iteration:

1. Find the maximal degree δ of F in any variable ξj and let i be

the smallest number such that 2i > δ.
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2. Find an element at in F2i such that F (ξ)|ξt=at
6= 0 and let

F ← F (ξ)|ξt=at
.

3. If t = n then halt, else t← t + 1, goto 2).

Output: (a1, a2, . . . , an).

The crucial step is 2) which is successful if the fieldsize is larger

than the degree of F .



Multicast:

Let (G, � ) be a multicast network coding problem with T receivers

and R symbols transmitted per time unit. There exists a solution

for (G, � ) over a finite field F2m with

m ≤ dlog2(TR + 1)e.

(A more careful analysis shows that a field F2m with m ≤ dlog2(T )e
or F ≥ T )
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Multicast:

For any multicast networking problem with T receivers there always

exists a solution over an alphabet which is at least as large as T .

Conversely:

There exist multicast networking problems with T receivers such

that the minimum alphabet size is bounded below by
√

T − o(1).

(In practice - just try the random approach...)
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A different approach...

S.-Y. R. Li, R. W. Yeung, and N. Cai. "Linear network coding". IEEE

Transactions on Information Theory , Februray, 2003

S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and L.

Tolhuizen, "Polynomial time algorithms for multicast network code

construction,"IEEE Transactions on Information Theory. Submit-

ted July 2003.

A flow based approach that carefully constructs a solution in poly-

nomial time.
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A different approach...

A solution for acyclic networks is constructed “one link at a time”

starting at the source.

Each flow to a receiver is being treated as a set of disjoint paths

with the set of edges that was processed last (the frontier set)

having to form a full rank matrix
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The algorithm of Jaggi, Sanders et al.

The frontier sets of a multicast to three receivers

[a b c]

[a b c]

[a’ b’ c’]
[a’’ b’’ c’’]

[a   b   c  ]
[a’  b’  c’ ]
[a’’ b’’ c’’]

has full rank
for all colors

A multicast network
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The algorithm of Jaggi, Sanders et al.

Theorem [Jaggi, Sanders, et al] Let (G, � ) be a multicast network

coding problem with E edges, R symbols to be transmitted simul-

taneously and T receivers. There exists a linear network coding

solution for (G, � ) over a finite field F if |F| > T . Moreover this

solution can be found in time O(E · T ·R(R + T )).

(In practice - still just try the random approach...)

The “link growth” algorithm can be modified such that it is applicable

to all the generalizations of the previous session.
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The algorithm of Jaggi, Sanders et al.

Theorem [Jaggi, Sanders, et al] Let (G, � ) be a multicast network

coding problem with E edges, R symbols to be transmitted simul-

taneously and T receivers. There exists a linear network coding

solution for (G, � ) over a finite field F if |F| > T . Moreover this

solution can be found in time O(E · T ·R(R + T )).

(In practice - still just try the random approach...)

The “link growth” algorithm can be modified such that it is applicable

to all the generalizations of the previous session. Example: “Two-

Level Multicast”
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Two-Level Multicast

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

[001]

[100]

[010]

[100]

[100]

[010] [010]

[001] [001]

[010]

[100]
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Two-Level Multicast

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

[001]

[010]

[100]

[010] [010]

[001] [001]

[010]

[101]

[101] [101] [100]

full rank for all frontier sets
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Two-Level Multicast

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

[010]

[100]

[011] [010]
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Two-Level Multicast

a b c

a,b,c a,b a,b,c

[101]
[001] A= [100]

[010]

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

a b c

a,b,c a,b a,b,c

[010]

[100]

[011] [001]

[111] 111]

[011]

[101]

[101]

[001]

[011]

[001]

[001]

[001]

[101]

[101]

[011]

[111]

[111][111]

[011]

[101]
[011]
[111]
[001]

[101] [001]

Reencode [a,b,c]  as A[abc]   such that  T
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An anlysis of random assignments is done in the next session.

The flow based algorithm is inherently more efficient than a pure

random assignment.

How do we pack flows with as much overlap as possible?

But first: The case of bidirectional links!

(Zongpeng Li, Baochun Li, Dan Jiang, Lap Chi Lau. "On Achieving

Optimal End-to-End Throughput in Data Networks: Theoretical and

Empirical Studies," Technical Report, University of Toronto, May

2004)
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Bidirectional links — A case where network coding does not help

a

b

a

a

b

a

b

a

a

b directional links: rate of transmission 0.5 symbols per time unit 

bi−directional links: Rate of transnmission is bounded by 6/7
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Bidirectional links

Steiner Tree Packing for Multicast Problems:

Find the set of all Steiner trees � , i.e. trees connecting all re-
ceivers with a source in a multicast group.

For a link e and T ∈ � :

I(e, T ) =

{

1 e is part of T

0 otherwise

The central problem: Find λ(T ) ∈ R+ maximizing
∑

T∈ �

λ(T ) such that
∑

T∈ �
λ(T )I(e, T ) ≤ C(e)

for all links e.
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Bidirectional links

Without network coding: One symbol per time unit

With network coding: Two symbols per time unit 

With network coding: ?

Without network coding: ?

A case where network coding does help (even though it's not much)
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Bidirectional links

Without network coding: One symbol per time unit

With network coding: Two symbols per time unit 

With network coding: Two symbols per time unit (min cut)

Without network coding: ?

A case where network coding does help (even though it's not much)
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Bidirectional links

Packing the below trees yields
a rate of 1.5 symbols per time unit
(1.875 optimal [Li,Li,Lau])
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Bidirectional links

Without network coding: One symbol per time unit

With network coding: Two symbols per time unit 

With network coding: Two symbols per time unit (min cut)

Without network coding: 1.875symbols per time unit 

A case where network coding does help (even though it's not much)
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Bidirectional links

[Li,Li,Lau] The ratio between the multicast rates achievable with or

without network coding in bidirectional networks is bounded by a

factor of two.

(The point of network coding here is really complexity!)
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Bidirectional links

[Li,Li,Lau] The ratio between the multicast rates achievable with or

without network coding in bidirectional networks is bounded by a

factor of two.

(The point of network coding here is really complexity!)
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Bidirectional links - An Example

With network coding we achieve a capacity of 2 symbols per time

unit

Without network coding we achieve a throughput of 1.786 symbols

per unit time

This comes at a cost of optimizing over 119104 Steiner trees [Li,Li,Lau]
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Bidirectional links

He crucial step in a network coding solution for the multicast prob-

lem in bidirectional links is to find the best (bidirectional) flows

corresponding to each receiver. To this end we formalute a linear

program:

Each link e carries two flows (direction + and −) f
(`)
+ (e) and f

(`)
− (e)

due to receiver `.

41



Maximize: f

Constraints for all `

f
(`)
+ (e) + f

(`)
− (e) ≤ c(e)

∑

f(`) flowing into reveiver `

f(`) = f

∑

f(`) flowing out of the source

f(`) = f

∑

f(`) flowing into node i

f(`) =
∑

f(`) flowing out of node i

f(`)
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Summary:

• For directed networks the “coding gain” is unbounded

• We “really” need codes

• The necessary multicast fieldsize is bounded as
√

T ≤ |F| ≤ T

• Two basic methods to find solutions: algebraic and recursively

assigning edges

• A natural method: “random assignment” (more about this shortly)
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• For bidirectional link the coding gain is bounded by 2

• The main advantage of network coding in complexity.

• More about linear programs shortly!



Randomized network coding
• The effect of the network is that of

a transfer matrix from sources to
receivers

• To recover symbols at the receivers,
we require sufficient degrees of
freedom – an invertible matrix in the
coefficients of all nodes

• The realization of the determinant
of the matrix will be non-zero with
high probability if the coefficients
are chosen independently and
randomly

• Probability of success over field F ≈

• Randomized network coding can use
any multicast subgraph which
satisfies min-cut max-flow bound
for each receiver [HKMKE03,
HMSEK03, WCJ03] for any number
of sources, even when correlated
[HMEK04]
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Randomized network coding

• [HKMKE03, HMSEK03] For a feasible d-receiver multicast con
nection problem on a network with

• independent or linearly correlated sources
• a network code in which code coefficients for   links are chosen

independently and uniformly over
• the success probability is at least

• Error bound is of the order of the inverse of the field size, so
error probability decreases exponentially with codeword length



Proof outline

• Recall transfer matrix for each receiver must be non-singular
• We show an equivalent condition connected with bipartite

matching: the Edmonds matrices 

(in the acyclic delay-free case) (in the case with delays) are non-
singular



Proof outline

• This shows that if   links have random coefficients, the determinant
polynomial has maximum degree    in the random variables and is linear
in each of these variables

• We want the product of the d receivers' determinant polynomials to be
nonzero

• We can show inductively, using the Schwartz-Zippel Theorem, that for
any polynomial

 of degree
• in which each      has exponent at most   , if              are

chosen independently and uniformly at random from        ,
then the polynomial evaluates to 0 with probability at most

• Particular form of the determinant polynomials gives rise to a tighter
bound than the Schwartz-Zippel bound for general polynomials of the
same total degree



Erasure reliability

• Packet losses in networks result from
– congestion,
– buffer overflows,
– (in wireless) outage due to fading or change in topology

• Prevailing approach for reliability: Request retransmission
• Not suitable for

– high-loss environments,
– multicast,
– real-time applications.



Erasure reliability

• Alternative approach: Forward Error Correction
(FEC)
–  Multiple description codes
– Erasure-correcting codes (e.g. Reed-Solomon,

Tornado, LT, Raptor)
• End-to-end: Connection as a whole is viewed as a

single channel; coding is performed only at the source
node.



Erasure reliability – single flow

End-to-end erasure coding: Capacity is                          packets per unit time.

As two separate channels: Capacity is                    packets per unit time.
- Can use block erasure coding on each channel. But delay is a problem.

Network coding: minimum cut is capacity
- For erasures, correlated or not, we can in the multicast case deal with average
flows uniquely [Lun et al. 04, 05], [Dana et al. 04]:

- Nodes store received packets in memory
- Random linear combinations of memory contents sent out
- Delay expressions generalize Jackson networks to the innovative packets
- Can be used in a rateless fashion

( )( )
BCAB
!! "" 11

( )
BCAB
!! "" 1,1min



Erasure reliability

• For erasures, correlated or not, we can in the
multicast case deal with average flows uniquely
[LME04], [LMK05], [DGPHE04]

• We consider a scheme [LME04] where
– nodes store received packets in memory;
– random linear combinations of memory contents

sent out at every transmission opportunity
(without waiting for full block).

• Scheme gets to capacity under arbitrary coding at
every node for
– unicast and multicast connections
– networks with point-to-point and broadcast links.



Scheme for erasure reliability

• We have k message packets w1, w2, . . . , wk (fixed-length vectors
over Fq) at the source.

• (Uniformly-)random linear combinations of w1, w2, . . . , wk injected
into source’s memory according process with rate R0.

• At every node, (uniformly-)random linear combinations of
memory contents sent out;
– received packets stored into memory.
– in every packet, store length-k vector over Fq representing

the transformation it is of w1, w2, . . . , wk — global encoding
vector.



Coding scheme

• Since all coding is linear, can write any packet x as a linear
combination

of w1, w2, . . . , wk:
• The vector γ is the global encoding vector of x.
• We send the global encoding vector along with x, in its header,

incurring a constant overhead.
• The side information provided by γ is very important to the

functioning of the scheme.



Outline of proof

• Keep track of the propagation of innovative packets - packets whose
auxiliary encoding vectors (transformation with respect to the n
packets injected into the source’s memory) are linearly independent
across particular cuts.

• Can show that, if R0 less than capacity and input process is Poisson,
then propagation of innovative packets through any node forms a
stable M/M/1 queueing system in steady-state.

• So, Ni, the number of innovative packets in the network is a time-
invariant random variable with finite mean.

• We obtain delay expressions using in effect a generalization of
Jackson networks for the innovative packets



Comments for erasure reliability

• Particularly suitable for
–  overlay networks using UDP, and
– wireless packet networks (have erasures and can

perform coding at all nodes).
• Code construction is completely decentralized.
• Scheme can be operated ratelessly - can be run

indefinitely until successful reception.



Average number of transmissions required per packet in random networks of varying
size. Sources and sinks were chosen randomly according to a uniform distribution.
Paths or subgraphs were chosen in each random instance to minimize the total
number of transmissions required, except in the cases of end-to-end retransmission
and end-to-end coding, where they were chosen to minimize the number of
transmissions required by the source node.

Coding for packet losses - unicast



Further Results on Coding for Reliable
Communication over Packet Networks

Desmond Lun, MIT Muriel Médard, MIT Ralf Koetter, UIUC
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An example: Slotted Aloha wireless network
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An example: Slotted Aloha wireless network
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• Prob. q0: neither 1 nor 2 transmits
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An example: Slotted Aloha wireless network
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• Prob. q1: 1 transmits, 2 does not

– Prob. p123: packet is received by 2 and 3
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An example: Slotted Aloha wireless network
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An example: Slotted Aloha wireless network
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– Prob. p20: packet is not received by 3
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An example: Slotted Aloha wireless network
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An example: Slotted Aloha wireless network
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• Prob. q12: both 1 and 2 transmit → collision

• Behavior of links is correlated
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An example: Slotted Aloha wireless network
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• What is the capacity?

• How is it achieved?
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Results

• We consider the following operation:

– nodes store received packets in memory
– send random linear combinations of memory at every opportunity

• Scheme is capacity achieving for

– unicast or multicast connections
– lossy wireline or wireless packet networks

• Traffic model is very general

• Error exponents for Poisson traffic with i.i.d. losses

MIT Laboratory for Information and Decision Systems 3



Coding over packets

1. Code only for resilience against erasures, not for errors

2. Side-information can be included in headers

3. Transmissions often not synchronized

MIT Laboratory for Information and Decision Systems 4



Model: Wireline networks

• Directed graph G = (N ,A)

• Arc (i, j): lossy point-to-point link

– packets injected at i according to some process
– packets received at j with average rate zij

• Meaning of average rate:

– Aij(τ): number of packets received between time 0 and time τ on arc
(i, j)

lim
τ→∞

Aij(τ)
τ

= zij a.s.
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Model: Wireless networks

• Directed hypergraph H = (N ,A)

• Hyperarc (i, J): lossy broadcast link

– packets injected at i according to
some process

– packets received by set of nodes
K ⊂ J with average rate ziJK

i

J

K
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Idea of proof

1 2 3

• Node 2: x1 → (1, 0, 0), x2 → (0, 1, 0), x3 → (0, 0, 1)
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Idea of proof

1 2 3

• Node 2 behaves like a queue

– If (1, 2) faster than (2, 3), queue unstable, (2, 3) is bottleneck
– If (2, 3) faster than (1, 2), queue stable, (1, 2) is bottleneck

MIT Laboratory for Information and Decision Systems 7



Idea of proof

• Two links → one path of arbitrarily many links

• One path → flow (superposition of paths)

• Flow (wireline networks) → hypergraph flow (wireless networks)

• Single flow (unicast) → superposition, or union, of flows (multicast)

• Some points:

– Packet transformation must be described to decoder (side information)
– Decoding equates to matrix inversion
– Rateless operation is possible

MIT Laboratory for Information and Decision Systems 8



An example: Slotted Aloha wireless network

1
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• What is the capacity?

• How is it achieved?
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An example: Slotted Aloha wireless network
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• Rate of packets over cut:

q1(p12 + p13 + p123)
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An example: Slotted Aloha wireless network

1

2

3

• Rate of packets over cut:

q1(p13 + p123) + q2p23
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An example: Slotted Aloha wireless network

1

2

3

• Our scheme achieves rates less than minimum cut:

R < C = min(q1(p12 + p13 + p123), q1(p13 + p123) + q2p23)
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Conclusion

• Considered simple random linear coding scheme

• Showed rate optimality under very general conditions

• Derived error exponents for Poisson traffic with i.i.d. losses

• Main challenge: Improve on simple scheme

– memory requirements
– decoding complexity
– side-information overhead

MIT Laboratory for Information and Decision Systems 10



File downloads

 Files (Users) arrive according to a Poisson process with rate γ
 Each file contains K packets to be broadcast to all receivers
 A single packet can be transmitted in one time slot
 Users are admitted/rejected based on their delay constraints.
 Ci[t] 2 {0,1} are i.i.d. Bernoulli(c) distributed, and unknown



File download

 Files are broadcast in a FIFO fashion:
 Transmission of the next file starts only after the

transmission of the current file is complete
 Each receiver sends an ACK once it can reconstruct all the

packets in the file
 Elastic Traffic: Users have no delay constraint, hence every

incoming user is admitted for service
 Inelastic Traffic: Each user has a delay constraint associated with it

and is admitted only if the mean waiting time is lower than its
constraint

  Random Network Coding (RNC) is the optimal coding strategy
  Round Robin (RR) Scheduling is the optimal scheduling

strategy.



Delay issues and coding

P2 P1P3

X
X

X
t = 4t = 3t = 2t = 1

P1

P1

P2

P2

P3

P3

P1

P1

P2

P2

P3

P3

P1

P3

P2

P1 + P2 + P3

P1 + P2 + P3

P1 + P2 + P3

Delays can be improved in cases, such as star networks, 
where throughput is not improved 

No throughput advantage
in star topology

[Eryilmaz et al. 06]



Results – Elastic Traffic

 m1
RNC, RR(N,K) = Mean service time under RNC and RR

policies
 G(N,K) = m1

RNC/m1
RR is the relative gain of using RNC as

opposed to RR
 We show [Ahmed et al. 07] that

 There is no scaling gain in N
 The relative gain of RNC can be made arbitrarily large for a

dense network by setting the file size K large enough.



Numerical Results – Elastic Traffic

 The numerical computations confirm the predictions of the
asymptotic result.



Results – Inelastic Traffic

 Scaling delay with respect to N is no longer the right measure
 System becomes an M/G/1 system, where the service time

distribution depends on the transmission strategy being employed
 For an admitted traffic rate of λ, mean waiting time is given by

 Each user has a delay constraint Θ that is distributed uniformly
between 0 and dmax

 Only users that observe a mean delay E[D] · Θ enter the system

where mi is the ith moment of the service time distribution



Numerical Results – Inelastic Traffic

Admitted traffic rate λ with varying delay constraints for N=50,
K=20



 RNC can serve significantly more delay constrained traffic
compared to RR under the same network setting

Numerical Results – Inelastic Traffic

Number of supportable users as  a function of delay
constraints for RNC and RR

x 107



Main Results

 Elastic Traffic:
 No scaling gains in N
 Gains can be made arbitrarily high by picking large K

 Inelastic Traffic:
 For a fixed dmax, scaling laws do not make sense: we

always have λ(N) ! 0.
 Need to look at scaling with dmax
 With scheduling, the traffic is essentially restricted to being

elastic
 Coding allows us to serve significant inelastic traffic

 We have only used feedback to indicate file
completion – is that the missing piece for delay?



Feedback for reliability

Parameters we consider:
• delay incurred at B: excess time, relative to
the theoretical minimum, that it takes for k packets
to be communicated, disregarding any delay due to
the use of the feedback channel
• block size
• feedback: number of feedback packets used
(feedback rate Rf = number of feedback messages / number of received packets)
• memory requirement at B
• achievable rate from A to C



Feedback for reliability

Follow the approach of [Pakzad et al. 05], [Lun et al. 06]

Scheme V allows us to achieve the
min-cut rate, while keeping the average memory
requirements at node B finite

note that the feedback delay for Scheme V is
smaller than the usual ARQ (with Rf = 1) by a
factor of Rf 

feedback is required only on link BC

[Fragouli et al. 07]




