
6.263 Data Communication
Networks

Dina Katabi

dk@mit.edu
www.ana.lcs.mit.edu/dina

Lecture 11

2

Outline

 Content Distribution Networks
 Multicast

3

Next: Content Distribution Networks and
Content-Based Routing

 Usually, a network user is not interested in
accessing a particular machine but rather a
particular service or data object
 For example, find me the closest printer
 Find me song x

 Should we route based on content?
 Instead of advertising the destination IP address, I

advertise its <service, service attributes>
 Scalability is always a challenge

4

Example of Overlay with Content Routing:
P2P File Sharing

 Problem:
 Set of data items (files or objects) that are stored

at various machines in the network.
 Find a me particular data item

 Examples:
 Music sharing using Kaza, Napster, or Gnutella

5

How Did it Start?

 A killer application: Naptser
 Free music over the Internet

 Key idea: share the content, storage and
bandwidth of individual (home) users

Internet

6

Peer-to-Peer Model

 Each user stores a subset of files
 Each user has access (can download) files from

all users in the system
 Why is it called P2P?

 Traditionally you run only a client and download files
only from a server

• Example: Web, FTP
 Here every machine is both a client and a server

7

Main Challenge

 Find where a particular file is stored

A
B

C

D

E

F

E?

8

Other Challenges

 Scale: up to hundred of thousands or millions
of machines

 Dynamicity: machines can come and go any
time

9

3 Approaches to P2P File Sharing

 Centralized
 Napster

 Flooding-Based
 Gnutella, Kazaa

 Routing-Based
 Chord, CAN, Pastry, …

10

Centralized: Napster

 Simple centralized scheme  the
Napster server maintains an index of
all files

 How to find a file:
 On startup, client contacts central server

and reports list of files
 Query the index system  return a

machine that stores the required file
• Ideally this is the closest/least-loaded machine

 Fetch the file directly from peer

11

Napster: Example

A
B

C

D

E

F

m1
m2

m3

m4

m5

m6

m1 A
m2 B
m3 C
m4 D
m5 E
m6 F

E?
m5

E? E

12

Centralized: Napster

 Advantages:
 Simple
 Easy to implement sophisticated search

engines on top of the index system
 Disadvantages:

 Robustness
 Scalability
 Easy to sue!

13

Flooding: Gnutella

 On startup, client contacts any servent
(server + client) in network
 Servent interconnection used to forward control

(queries, hits, etc)
 Idea: broadcast the request
 How to find a file:

 Send request to all neighbors
 Neighbors recursively forward the request
 Eventually a machine that has the file receives the

request, and it sends back the answer
 Transfers are done with HTTP between peers

14

Gnutella: Example

 Assume: m1’s neighbors are m2 and m3; m3’s
neighbors are m4 and m5;…

A
B

C

D

E

F

m1
m2

m3

m4

m5

m6

E?

E?

E?
E?

E

15

Flooding: Gnutella

 Advantages:
 Totally decentralized, highly robust

 Disadvantages:
 Not scalable; the entire network can be swamped

with request (to alleviate this problem, each request
has a TTL)

 Especially hard on slow clients
• At some point broadcast traffic on Gnutella exceeded

56kbps – what happened?
• Modem users were effectively cut off!

16

Flooding: FastTrack (aka Kazaa)

 Modifies the Gnutella protocol into two-level hierarchy
 Supernodes

 Nodes that have better connection to Internet
 Act as temporary indexing servers for other nodes
 Help improve the stability of the network

 Standard nodes
 Connect to supernodes and report list of files
 Allows slower nodes to participate

 Search
 Broadcast (Gnutella-style) search across supernodes

 Disadvantages
 Kept a centralized registration  allowed for law suits 

17

Problems with the Previous Solutions

 Do not scale!
 Either flood messages or require a single database

18

Problem Abstraction
 Input:

 Large set of keys
 a number of nodes that can be connected in any way

(using an overlay)
 Output:

 Store the keys at the nodes and create the links in
an overlay s.t.

• Minimize the time it takes to find a key
• Minimize the amount of information the nodes need to store
• Fairly distribute the load among the nodes (storage load and

response to queries)
• Minimize the work needed to maintain the system when

nodes join or leave

 We are looking for a good solution, not
necessarily the optimal

19

Attempts at Finding a Solution

 First hash the keys so that the space of keys
after hashing is balanced

 Each node is responsible for a range of keys
 How does a node find the node which stores

keyi?
 Each node stores a list of all nodes and their ranges

• unscalable
 A distributed tree

• But root node will have to receive all queries, which causes
congestion

 Distributed Hash Tables (DHT): Chord, CAN, ..

20

Chord

 Associate to each node and item (e.g. file) a
unique id in an uni-dimensional space

 Goals
 Scales to hundreds of thousands of nodes
 Handles rapid arrival and failure of nodes

 Properties
 Routing table size O(log(N)) , where N is the total

number of nodes
 Guarantees that a file is found in O(log(N)) steps

21

Based on : Consistent Hashing [Karger 97]

N32

N90

N105

K80

K20

K5

Circular 7-bit
ID space

Key 5
Node 105

A key is stored at its successor: node with next higher ID

22

Routing: Chord Basic Lookup

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

Each node stores a pointer to its successor;

In the worst case, lookups take N overlay hops

23

Routing: “Finger table” - Faster Lookups

N80

½¼

1/8

1/16
1/32
1/64
1/128

Each Node Stores log(N) pointers;

In worst case, lookups take log (N) overlay hops

24

Data Structure

 Assume identifier space is 0..2m

 Each node maintains
 Finger table

• Entry i in the finger table of n is the first node that
succeeds or equals n + 2i

 Predecessor node
 An item identified by id is stored on the

successor node of id

25

Chord Example

 Assume an
identifier space
0..8

 Node 1 joinsall
entries in its finger
table are initialized
to itself

0
1

2

3
4

5

6

7
i id+2i succ
0 2 1
1 3 1
2 5 1

Succ. Table

26

Chord Example

 Node 2 joins

0
1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 1
2 5 1

Succ. Table

i id+2i succ
0 3 1
1 4 1
2 6 1

Succ. Table

27

Chord Example

 Nodes 0, 6 join

0
1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 6

Succ. Table

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

28

Chord Examples

 Nodes: 1, 2, 0, 6
 Items: 7, 1

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 6

Succ. Table

7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

29

Query
 Upon receiving a query

for item id, a node
 Check whether it stores

the item locally
 If not, forwards the

query to the closest node
in its successor table to
id 0

1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 6

Succ. Table

7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

query(7)

30

Node Joining

 Node n joins the system:
 node picks a random identifier, id
 node performs n’ = lookup(id)
 node->successor = n’

31

Discussion

 Advantage
 log(N) overlay hops and log(N) storage at each node

 Problems: Each hop in a overlay-based P2P
network can be expensive
 No correlation between neighbors and their location
 A query can repeatedly jump from Europe to North

America, though both the initiator and the node
that store the item are in Europe!

Multicast

33

 Unicast is one-to-one
 Multicast is one-to-many, or many-to-many
 Applications of Multicast

 Single sender to many receivers
• Online TV
• Publish-subscribe
• Web-cache updates

 Many senders to many receivers
• Interactive learning
• Teleconferencing

Multicast

34

Why do we need multicast routing?

Src Src

35

IP Multicast

 Multicast Addressing: we need to identify the
intended receivers of a multicast, which we
call the multicast group
 Each group has an ID

• an IP address with a multicast prefix
 Note that the group is location-independent (i.e., an

IP multicast address is a name not an address)
 Multicast Routing: allows routers to learn how

to deliver multicast packets and where to
duplicate them

36

IP Multicast Semantics

 Analogy:
 Each multicast address is like a radio frequency, on

which anyone can transmit, and to which anyone can
tune-in.

 Sender sends to the multicast IP address
 Receivers can join or leave the multicast group

at will
 Routers deliver packets from sender to

receivers
 Why this model?

