
6.263 Data Communication
Networks

Dina Katabi

dk@mit.edu
www.ana.lcs.mit.edu/dina

Lecture 11

2

Outline

 Content Distribution Networks
 Multicast

3

Next: Content Distribution Networks and
Content-Based Routing

 Usually, a network user is not interested in
accessing a particular machine but rather a
particular service or data object
 For example, find me the closest printer
 Find me song x

 Should we route based on content?
 Instead of advertising the destination IP address, I

advertise its <service, service attributes>
 Scalability is always a challenge

4

Example of Overlay with Content Routing:
P2P File Sharing

 Problem:
 Set of data items (files or objects) that are stored

at various machines in the network.
 Find a me particular data item

 Examples:
 Music sharing using Kaza, Napster, or Gnutella

5

How Did it Start?

 A killer application: Naptser
 Free music over the Internet

 Key idea: share the content, storage and
bandwidth of individual (home) users

Internet

6

Peer-to-Peer Model

 Each user stores a subset of files
 Each user has access (can download) files from

all users in the system
 Why is it called P2P?

 Traditionally you run only a client and download files
only from a server

• Example: Web, FTP
 Here every machine is both a client and a server

7

Main Challenge

 Find where a particular file is stored

A
B

C

D

E

F

E?

8

Other Challenges

 Scale: up to hundred of thousands or millions
of machines

 Dynamicity: machines can come and go any
time

9

3 Approaches to P2P File Sharing

 Centralized
 Napster

 Flooding-Based
 Gnutella, Kazaa

 Routing-Based
 Chord, CAN, Pastry, …

10

Centralized: Napster

 Simple centralized scheme the
Napster server maintains an index of
all files

 How to find a file:
 On startup, client contacts central server

and reports list of files
 Query the index system return a

machine that stores the required file
• Ideally this is the closest/least-loaded machine

 Fetch the file directly from peer

11

Napster: Example

A
B

C

D

E

F

m1
m2

m3

m4

m5

m6

m1 A
m2 B
m3 C
m4 D
m5 E
m6 F

E?
m5

E? E

12

Centralized: Napster

 Advantages:
 Simple
 Easy to implement sophisticated search

engines on top of the index system
 Disadvantages:

 Robustness
 Scalability
 Easy to sue!

13

Flooding: Gnutella

 On startup, client contacts any servent
(server + client) in network
 Servent interconnection used to forward control

(queries, hits, etc)
 Idea: broadcast the request
 How to find a file:

 Send request to all neighbors
 Neighbors recursively forward the request
 Eventually a machine that has the file receives the

request, and it sends back the answer
 Transfers are done with HTTP between peers

14

Gnutella: Example

 Assume: m1’s neighbors are m2 and m3; m3’s
neighbors are m4 and m5;…

A
B

C

D

E

F

m1
m2

m3

m4

m5

m6

E?

E?

E?
E?

E

15

Flooding: Gnutella

 Advantages:
 Totally decentralized, highly robust

 Disadvantages:
 Not scalable; the entire network can be swamped

with request (to alleviate this problem, each request
has a TTL)

 Especially hard on slow clients
• At some point broadcast traffic on Gnutella exceeded

56kbps – what happened?
• Modem users were effectively cut off!

16

Flooding: FastTrack (aka Kazaa)

 Modifies the Gnutella protocol into two-level hierarchy
 Supernodes

 Nodes that have better connection to Internet
 Act as temporary indexing servers for other nodes
 Help improve the stability of the network

 Standard nodes
 Connect to supernodes and report list of files
 Allows slower nodes to participate

 Search
 Broadcast (Gnutella-style) search across supernodes

 Disadvantages
 Kept a centralized registration allowed for law suits

17

Problems with the Previous Solutions

 Do not scale!
 Either flood messages or require a single database

18

Problem Abstraction
 Input:

 Large set of keys
 a number of nodes that can be connected in any way

(using an overlay)
 Output:

 Store the keys at the nodes and create the links in
an overlay s.t.

• Minimize the time it takes to find a key
• Minimize the amount of information the nodes need to store
• Fairly distribute the load among the nodes (storage load and

response to queries)
• Minimize the work needed to maintain the system when

nodes join or leave

 We are looking for a good solution, not
necessarily the optimal

19

Attempts at Finding a Solution

 First hash the keys so that the space of keys
after hashing is balanced

 Each node is responsible for a range of keys
 How does a node find the node which stores

keyi?
 Each node stores a list of all nodes and their ranges

• unscalable
 A distributed tree

• But root node will have to receive all queries, which causes
congestion

 Distributed Hash Tables (DHT): Chord, CAN, ..

20

Chord

 Associate to each node and item (e.g. file) a
unique id in an uni-dimensional space

 Goals
 Scales to hundreds of thousands of nodes
 Handles rapid arrival and failure of nodes

 Properties
 Routing table size O(log(N)) , where N is the total

number of nodes
 Guarantees that a file is found in O(log(N)) steps

21

Based on : Consistent Hashing [Karger 97]

N32

N90

N105

K80

K20

K5

Circular 7-bit
ID space

Key 5
Node 105

A key is stored at its successor: node with next higher ID

22

Routing: Chord Basic Lookup

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

Each node stores a pointer to its successor;

In the worst case, lookups take N overlay hops

23

Routing: “Finger table” - Faster Lookups

N80

½¼

1/8

1/16
1/32
1/64
1/128

Each Node Stores log(N) pointers;

In worst case, lookups take log (N) overlay hops

24

Data Structure

 Assume identifier space is 0..2m

 Each node maintains
 Finger table

• Entry i in the finger table of n is the first node that
succeeds or equals n + 2i

 Predecessor node
 An item identified by id is stored on the

successor node of id

25

Chord Example

 Assume an
identifier space
0..8

 Node 1 joinsall
entries in its finger
table are initialized
to itself

0
1

2

3
4

5

6

7
i id+2i succ
0 2 1
1 3 1
2 5 1

Succ. Table

26

Chord Example

 Node 2 joins

0
1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 1
2 5 1

Succ. Table

i id+2i succ
0 3 1
1 4 1
2 6 1

Succ. Table

27

Chord Example

 Nodes 0, 6 join

0
1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 6

Succ. Table

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

28

Chord Examples

 Nodes: 1, 2, 0, 6
 Items: 7, 1

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 6

Succ. Table

7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

29

Query
 Upon receiving a query

for item id, a node
 Check whether it stores

the item locally
 If not, forwards the

query to the closest node
in its successor table to
id 0

1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 6

Succ. Table

7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

query(7)

30

Node Joining

 Node n joins the system:
 node picks a random identifier, id
 node performs n’ = lookup(id)
 node->successor = n’

31

Discussion

 Advantage
 log(N) overlay hops and log(N) storage at each node

 Problems: Each hop in a overlay-based P2P
network can be expensive
 No correlation between neighbors and their location
 A query can repeatedly jump from Europe to North

America, though both the initiator and the node
that store the item are in Europe!

Multicast

33

 Unicast is one-to-one
 Multicast is one-to-many, or many-to-many
 Applications of Multicast

 Single sender to many receivers
• Online TV
• Publish-subscribe
• Web-cache updates

 Many senders to many receivers
• Interactive learning
• Teleconferencing

Multicast

34

Why do we need multicast routing?

Src Src

35

IP Multicast

 Multicast Addressing: we need to identify the
intended receivers of a multicast, which we
call the multicast group
 Each group has an ID

• an IP address with a multicast prefix
 Note that the group is location-independent (i.e., an

IP multicast address is a name not an address)
 Multicast Routing: allows routers to learn how

to deliver multicast packets and where to
duplicate them

36

IP Multicast Semantics

 Analogy:
 Each multicast address is like a radio frequency, on

which anyone can transmit, and to which anyone can
tune-in.

 Sender sends to the multicast IP address
 Receivers can join or leave the multicast group

at will
 Routers deliver packets from sender to

receivers
 Why this model?

