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Abstract—We consider the problem of functional compression.
The objective is to separately compress possibly correlated
discrete sources such that a fixed and arbitrary deterministic
function of those sources can be computed given the compressed
data from each source. This is motivated by problems in
sensor networks and database privacy. Our architecture gives a
quantitative definition of privacy for database statistics. Further,
we show that this method can provide significant coding gains
over traditional Slepian-Wolf coding in sensor networks.

We consider both the lossless and lossy computation of a
function. Specifically, we present results of the rate regions for
three instances of the problem where there are two sources: 1)
lossless computation where one source is available at the decoder,
2) under a special condition, lossless computation where both
sources are separately encoded, and 3) lossy computation where
one source is available at the decoder.

Our general strategy extends an approach developed by
Orlitsky and Roche (2001) for the first case. We extend that result
by providing an achievability scheme that is based on the coloring
of the characteristic graph. This suggests a layered architecture
where the functional layer controls the coloring scheme, and the
data layer uses existing distributed source coding schemes. We
extend this graph coloring method to provide algorithms and
rates for all three problems.

Index Terms—Distributed source coding, functional compres-
sion, distributed computing

I. INTRODUCTION

Generally speaking, data compression considers the com-
pression of a source (sources) and its (their) recovery via
a decoding algorithm. Functional compression considers the
recovery not of the sources, but of a function of the sources.
It is a method for reducing the number of bits required to
convey relevant information from disparate sources to a third
party. The key contributions of this article are to provide
meaning to the word “relevant” in this context. We will derive
the information theoretic limits for a selection of functional
compression problems and give novel algorithms to achieve
these rates.

A. Motivations and Applications

We are motivated to study this problem mainly by two ap-
plications. First, consider medical records databases. The data
is located in several different locations. There are enormous
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amounts of private data in the databases. Some government
agency wants to release certain statistics, or functions, of the
data useful to researchers. Thinking of the data as a bit-string,
we provide a way for the agency to release a minimal set
of bits to compute a set of allowable functions. Thus, our
architecture allows for a minimal loss of privacy, given the
need to compute certain statistics.

Next, consider a network of wireless sensors measuring
temperature in a building. There are bandwidth and power
constraints for each sensor, and the sensors communicate only
with a central receiver, not with each other. The receiver
wishes only to compute the average temperature in the build-
ing. We want to determine if it is possible to compress beyond
the traditional distributed data compression rate bounds given
by Slepian and Wolf.

We can frame both of the above questions as functional
compression problems. In each case, we wish to minimize
the source description rates either to guarantee privacy or to
achieve higher compression rates (thus conserving bandwidth
and power).

We demonstrate the possible rate gains by example.

Example 1. Consider two sources uniformly and indepen-
dently producing k-bit integers X and Y ; assume k ≥ 2.
We assume independence to bring to focus the compression
gains from using knowledge of the function. First suppose
f(X,Y ) = (X,Y ) is to be perfectly reconstructed at the
decoder. Then, the rate at which X can encode its information
is k bits per symbol (bps); the same holds for Y . Thus the sum
rate is 2k bits per function-value (bpf).

Next, suppose f(X,Y ) = X + Y mod 4. The value of
f(X,Y ) depends only upon the final two bits of both X and
Y . Thus, at most (and in fact, exactly) 2 bps is the encoding
rate, for a sum rate of 4 bpf. Note that the rate advantage,
2k−4 is unbounded because we are reducing a possibly huge
alphabet to one of size 4.

Finally, suppose f(X,Y ) = X + Y mod 4 as before, but
the decoder is allowed to recover f up to some distortion.
We consider the Hamming distortion function on f . Consider
recovering f up to a Hamming distortion of 1. One possible
coding scheme would simply encode the single least significant
bit for both X and Y . Then one could recover the least
significant bit of f(X,Y ), thus achieving an encoding rate
of 1 bps per source or 2 bpf.

Using knowledge of the decoder’s final objective helps
achieve better compression rates. Example 1 is relatively
simple because the function is separable. When the function
is not separable (e.g. f(X,Y ) = |X − Y |), it is much less
obvious how to separately encode X and Y .

This article provides a general framework that, in certain
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TABLE I
RESEARCH ARTICLES ON ZERO-DISTORTION SOURCE CODING PROBLEMS

Problem types f(x, y) = (x, y) General f(x, y)

Side information Shannon [1] Orlitsky and Roche [2]

Distributed Slepian and Wolf [3] Ahlswede and Körner [4]
Körner and Marton [5]

cases, allows us to solve both the problem of finding the
best possible rates as well as coding schemes that allow for
approximations of these rates.

Example 1 showcases the three specific scenarios considered
in this article: side information with zero distortion, distributed
compression with zero distortion, and side information with
nonzero distortion. We proceed by placing our results in their
historical context.

B. Historical Context

We can categorize compression problems with two sources
along three dimensions. First, whether one source is locally
available at the receiver (call this “side information”) or
whether both sources are communicating separately (call this
“distributed”). Second, whether f(x, y) = (x, y) or is more
general. Finally, whether there is zero-distortion or non-zero-
distortion. In all cases, the goal is to determine the rates
((Rx, Ry) for distributed coding or Rx for side information
coding) at which X and Y must be encoded in order for the
decoder to compute f(X,Y ) within distortion D ≥ 0 with
high probability.

1) Zero Distortion: First, consider zero distortion. Shannon
[1] considers the side information problem where f(x, y) = x.
Slepian and Wolf [3] consider the distributed problem where
f(x, y) = (x, y). Many practical and near-optimal coding
schemes have been developed for both of the above problems
such as DISCUS codes by Pradhan and Ramchandran [6] and
source-splitting techniques by Coleman et al. [7]. We provide
the precise theorems in a later section.

Orlitsky and Roche provide a single-letter characterization
for the side information problem for a general function f(x, y).
Ahlswede and Körner [4] determine the rate region for the
distributed problem for f(x, y) = x. Körner and Marton [5]
consider zero-distortion with both sources separately encoded
for the function f(x, y) = x+y mod 2. There has been little
work on a general function f(x, y) in the distributed zero-
distortion case.

A sampling of these contributions are summarized in Table
I. The * indicates where this article contributes. Specifically,
for zero distortion, we provide a framework that leads to
an optimal modular coding scheme for the side information
problem for general functions. We give conditions under which
this framework can be extended to the distributed problem for
general functions.

2) Nonzero Distortion: Next, consider nonzero distortion
problems. Wyner and Ziv [8] considered the side information
problem for f(x, y) = x. The rate region for the case of
nonzero-distortion with both sources separately encoded is
unknown but bounds have been given by Berger and Yeung [9],

X ENCODER DECODER

Y

f̂(X,Y)

Fig. 1. The functional compression problem with side information.

Barros and Servetto [10], and Wagner, Tavildar, and Viswanath
[11]. Wagner et al. considered a specific distortion function for
their results (quadratic). In the context of functional compres-
sion, all of these theorems are specific to f(x, y) = (x, y).

Feng, Effros, and Savari [12] solved the side information
problem where the encoder and decoder have noisy informa-
tion about the sources. Yamamoto solved the side information
problem for a general function f(x, y).

A sampling of these contributions are summarized in Table
II. Specifically, for nonzero distortion, we extend the frame-
work derived for zero distortion and apply it in this more
general setting. As indicated above, the distributed setting with
nonzero distortion and a general function is quite difficult
(even the special case f(x, y) = (x, y) is not completely
solved).

C. Overview of Results

Now, we describe the three problems considered in this
article along with an overview of the results.

1) Functional Compression with Side Information: The
side information problem is depicted in Figure 1. We describe
a scheme for encoding X such that f(X,Y ) can be computed
within expected distortion D at a receiver that knows Y .

The optimal rate for the functional compression with side
information problem was given by Orlitsky and Roche in the
zero distortion case. While the resulting characterization is
complete and tight, it is difficult to calculate even for simple
source distributions. For this problem, this article provides a
new interpretation for that rate through a simple algorithm that
can be approximated with available heuristics. Computing the
Orlitsky-Roche rate requires optimizing a distribution over an
auxiliary random variable W . We provide an interpretation
of W that leads to a simple achievability scheme for the
Orlitsky-Roche rate that is modular with each module being
a well-studied problem. It can be extended to and motivates
our functional distributed source coding scheme below.

As mentioned earlier, Yamamoto gave a characterization of
the rate distortion function for this problem as an optimization
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Fig. 2. The distributed functional compression problem.

over an auxiliary random variable. We give a new inter-
pretation to Yamamoto’s rate distortion function for nonzero
distortion. Our formulation of the rate distortion function leads
to a coding scheme that extends the coding schemes for the
zero distortion case. Further, we give a simple achievability
scheme that achieves compression rates that are certainly at
least as good as the Slepian-Wolf rates and also at least as
good as the zero distortion rate.

For zero distortion, the rate is a special case of the
distributed functional compression problem considered next
where one source is compressed at entropy-rate, thus allowing
for reconstruction at the decoder.

2) Distributed Functional Compression: The distributed
functional compression problem is depicted in Figure 2. In this
problem, X and Y are separately encoded such that the de-
coder can compute f(X,Y ) with zero distortion and arbitrarily
small probability of error. We describe the conditions under
which the coding scheme mentioned in the previous section
can be extended to the distributed set up. Further, we provide
a less general condition depending only upon the probability
distribution of the sources under which our scheme is optimal.

Thus, we extend the Slepian-Wolf rate region to a general
deterministic function f(x, y). Our rate region is, in general,
an inner bound to the general rate region, and we provide
conditions under which it is the true rate region.

D. Organization
The rest of the article is organized as follows. Section II

gives the problem statement and presents the related technical
background necessary to understand the main results. Section
III presents those results. Section IV gives an example appli-
cation of our results to Blue Force Tracking. The proofs for
our results are given in Section V. Future research directions
and conclusions are given in Chapter VI.

II. FUNCTIONAL COMPRESSION BACKGROUND

We consider the three proposed problems within a common
framework. We borrow much of the notation from [13, Chapter
12].

A. Problem Setup
Let {Xi}∞i=1 and {Yi}∞i=1 be discrete memoryless sources

drawn from finite sets X and Y according to a joint distribution
p(x, y). Denote by p(x) and p(y) the marginals of p(x, y).

TABLE II
RESEARCH ARTICLES ON NONZERO-DISTORTION SOURCE CODING

PROBLEMS

Problem types f(x, y) = (x, y) General f(x, y)

Side information Wyner and Ziv [8] Yamamoto [14]
Feng et al. [12] *

Distributed
Berger and Yeung [9]

Barros and Servetto [10]
Wagner et al. [11]

We denote n-sequences of random variables X and Y as
X = {Xi}k+n−1

i=k and Y = {Yi}k+n−1
i=k , respectively, where

n and k are clear from context. We generally assume k = 1.
Because the sequence (x,y) was drawn i.i.d. according to
p(x, y), we can write the probability of any instance of the
sequence as p(x,y) =

∏n
i=1 p(xi, yi).

The sources encode their messages (at rates Rx, Ry ∈
[0,∞)); a common decoder uses these descriptions to compute
an approximation to a fixed deterministic function f : X ×
Y → Z or f : Xn × Yn → Zn, its vector extension, where
again n will be clear from context.

For any n, D, Rx, and Ry , we define a distributed functional
code of block length n for the joint source (X,Y ) and function
f as two encoder maps,

ex :Xn →
{

1, . . . , 2nRx
}
,

ey :Yn →
{

1, . . . , 2nRy
}
,

and a decoder map,

r :
{

1, . . . , 2nRx
}
×
{

1, . . . , 2nRy
}
→ Zn.

Consider a distortion function, d : Z × Z → [0,∞), with
vector extension

d(z1, z2) =
1
n

n∑
i=1

d(z1i, z2i),

where z1, z2 ∈ Zn. As in [8], we assume that the distortion
function satisfies d(z1, z2) = 0 if and only if z1 = z2.
(Otherwise, one can define the equivalence classes of the
function values to make this condition hold.)

The probability of error is

Pne = Pr[{(x,y) : d(f(x,y), r(ex(x), ey(y))) > D}].

A rate pair, (Rx, Ry), is achievable for a distortion D if there
exists a sequence of distributed functional codes at those rates
and distortion level such that Pne → 0 as n → ∞. The
achievable rate region is the set closure of the set of all
achievable rates. Our most general objective is to find this
achievable rate region.

B. Previous Results

We begin by defining a construct useful in formulating all
the results.

Definition 2. The characteristic graph Gx = (Vx, Ex) of X
with respect to Y , p(x, y), and f(x, y) is defined as follows:
Vx = X and (x1, x2) ∈ X 2 is in Ex if there exists a y ∈ Y
such that p(x1, y)p(x2, y) > 0 and f(x1, y) 6= f(x2, y).
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Fig. 3. Example of a characteristic graph.

Defined thus, Gx is the “confusability graph” from the
perspective of the receiver. If (x1, x2) ∈ Ex, then the de-
scriptions of x1 and x2 must be different to avoid confusion
about f(x, y) at the receiver. This was first defined by Shannon
when studying the zero error capacity of noisy channels [15].
Witsenhausen [16] used this graph to consider our problem in
the case when one source is deterministic, or equivalently,
when one encodes X to compute f(X) with 0 distortion.
The characteristic graph of Y with respect to X , p(x, y),
and f(x, y) is defined analogously and denoted Gy . When
notationally convenient and clear, we will drop the subscript.

The importance of using the characteristic graph construct
becomes clear when considering independent sets1 of the
graph. By definition of the edge set, knowledge of Y and
the independent set uniquely determines f(x, y).

We illustrate this with Example 3.

Example 3. To illustrate the idea of confusability and the
characteristic graph, consider again the sources from Example
1. Suppose both sources are uniformly and independently
generating 3-bit integers. The function of interest is f(x, y) =
x+y mod 4. Then, the characteristic graph of X with respect
to Y , p(x, y) = 1

8 for all (x, y), and f is shown in Figure 3.
There is an edge between x1 and x2 if and only if they differ
in one or both of their final two bits. This is because, given
any y, f(x1, y) = f(x2, y) if and only if x1 and x2 have the
same final two bits.

Next, we define graph entropy, which we use later to
more generally derive the rate required for communication for
problems such as in Example 3.

Definition 4. Given a graph G = (V,E) and a distribution
on the vertices V , Körner [17] defines the graph entropy as:

HG(X) = min
X∈W∈Γ(G)

I(W ;X), (1)

where Γ(G) is the set of all independent sets of G.

The notation X ∈W ∈ Γ(G) means that we are minimizing
over all distributions p(w, x) such that p(w, x) > 0 implies
x ∈ w where w is an independent set of the graph G. We now
demonstrate how this can be used to solve problems like that
given in Example 3.

1A subset of vertices of a graph G is an independent set if no two nodes
in the subset are adjacent to each other in G. With the characteristic graph,
independent sets form equivalence classes.

Example 5. Consider again the scenario in Example 1 as
presented in Example 3. For the graph in Figure 3, the
maximally independent sets are the sets with the same final
two bits. To minimize I(X;W ) = H(X) − H(X|W ), we
must maximize H(X|W ); this occurs when p(w) is nonzero
only over the 4 maximally independent sets of the graph. This
is because H(X|w) = 1 for all maximally independent w.
Therefore, we get HG(X) = 3− 1 = 2.

Witsenhausen [16] considered a graph with vertices equal
to the support of the random variable X and the edge set
defined such that x and x′ have an edge when f(x) 6= f(x′);
he showed that the graph entropy is the minimal rate at which
a single source can be encoded such that a desired function
can be computed with zero distortion. Witsenhausen’s graph
equals the characteristic graph of X with respect to Y , p(x, y),
and f(x, y) = f(x) when Y is constant.

Orlitsky and Roche [2] defined an extension of Körner’s
graph entropy, the conditional graph entropy.

Definition 6. The conditional graph entropy is

HG(X|Y ) = min
X∈W∈Γ(G)
W−X−Y

I(W ;X|Y ). (2)

The additional constraint that W −X −Y forms a Markov
chain formally enforces the constraint that W should not
contain any information about Y that is not available through
X . If X and Y are independent, HG(X|Y ) = HG(X).

Theorem 7 (Orlitisky-Roche Theorem, 2001 [2]). When G
is the characteristic graph of X with respect to Y , p(x, y),
and f(x, y), Rx ≥ HG(X|Y ) is the rate region for reliable
computation of the function f(X,Y ) with zero distortion and
arbitrarily small probability of error when Y is available as
side information.

A natural extension of this problem is the functional com-
pression with side information problem for nonzero distortion.
Yamamoto gives a full characterization of the rate-distortion
function for the side information functional compression prob-
lem [14] as a generalization of the Wyner-Ziv side-information
rate-distortion function [8]. Specifically, Yamamoto gives the
rate distortion function as follows.

Theorem 8 (Yamamoto Theorem, 1982). The rate distortion
function for the functional compression with side information
problem is

R(D) = min
p∈P(D)

I(W ;X|Y )

where P(D) is the collection of all distributions on W given
X such that W−X−Y forms a Markov chain and there exists
a g :W ×Y → Z satisfying E[d(f(X,Y), g(W,Y))] ≤ D.

This is a natural extension of the Wyner-Ziv rate-distortion
result [8]. The constraint X ∈ W ∈ Γ(G) in the definition
of the Orlitsky-Roche rate (Definition 6) specifies a subset of
distributions in P(D) which retain optimality when D = 0.

C. Graph Entropies

Our results depend on the use of more graph tools, which
we now describe. Alon and Orlitsky [18] defined the OR-
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power graph of G as Gn = (Vn, En) where Vn = V n and
two vertices (x1,x2) ∈ En ⊆ Vn × Vn if any component
(x1i, x2i) ∈ E. Thus, two blocks of source observations
are confusable if any pair of symbols in those blocks are
confusable.

A vertex coloring of a graph is any function c : V → N
of a graph G = (V,E) such that (x1, x2) ∈ E implies
c(x1) 6= c(x2). The entropy of a coloring is the entropy of the
induced distribution on colors p(c(x)) = p(c−1(c(x))) where
c−1(x) = {x̄ : c(x̄) = c(x)} and is called a color class.

Definition 9. Let A ⊂ X×Y be a high probability set (for our
purposes, any subset such that p(A) ≥ 1−ε). Define p̂(x, y) =
p(x, y)/p(A). In other words, p̂ is the distribution over (x, y)
conditioned on (x, y) ∈ A. Denote the characteristic graph
of X with respect to Y , p̂, and f as Ĝx = (V̂x, Êx) and
the characteristic graph of Y with respect to X , p̂, and f as
Ĝy = (V̂y, Êy). Note that Êx ⊆ Ex and Êy ⊆ Ey . Finally,
we say cx and cy are ε-colorings of Gx and Gy if they are
valid colorings of Ĝx and Ĝy defined with respect to some
high probability set A.

Alon and Orlitsky [18] defined the chromatic entropy of a
graph G.

Definition 10.

Hχ
G(X) = min

c is an ε-coloring of G
H(c(X)).

Well-known typicality results (e.g., [13]) imply that there
exists a high probability set for which the graph vertices
are roughly equiprobable. Thus, the chromatic entropy is a
representation of the chromatic number of high probability
subgraphs of the characteristic graph. We define a natural
extension, the conditional chromatic entropy, as follows.

Definition 11.

Hχ
G(X|Y ) = min

c is an ε-coloring of G
H(c(X)|Y ).

The above optimizations are minima and not infima because
there are only finitely many subgraphs of any fixed G, and thus
only finitely many ε-colorings regardless of ε. Later, in order
to use typicality results, we allow the block length n to grow
without bound in order to drive the error probability to zero
and therefore use Gn and study the infimum over all n.

These optimizations are NP-hard [19], but they can be
approximated using existing heuristics [20], [21]. With these
definitions and results, we can now formally describe our
results.

III. MAIN RESULTS

The proofs of the results described in this section appear in
Section V.

A. Functional Compression with Side Information (D = 0)

We begin by describing the zero distortion problem for
a single source X and function f(X). There is no side
information at the decoder. Witsenhausen [16] tells us that
the optimal rate is the graph entropy HG(X) defined earlier

X GRAPH 
COLORING

LOOKUP 
TABLE

Y

f(X,Y)
ENCODER DECODER

SLEPIAN-WOLF CODE

Fig. 4. Source coding scheme for the zero distortion functional compression
problem with side information.

in Definition 4 where G is the characteristic graph of X with
respect to the function f(X). As stated earlier, the chromatic
entropy is a representation of the chromatic number of a high
probability subgraph of the characteristic graph. Körner proved
[17] that the chromatic entropy approaches the graph entropy
as block length n grows without bound.

Theorem 12 (Körner Theorem, 1973).

lim
n→∞

1
n
Hχ
Gn(X) = HG(X). (3)

The implications of this result are that we can compute
a function of a discrete memoryless source with vanishing
probability of error by first coloring a sufficiently large power
graph of the characteristic graph of the source with respect
to the function, and then, encoding the colors using any code
that achieves the entropy bound on the colored source. The
previous approach for achieving rates close to the bound
HG(X) was to optimize with respect to a distribution over
W as in the definition of HG(X). This theorem allows us to
move the optimization from finding the optimal distribution to
finding the optimal colorings. Thus, our solution modularizes
the coding by first creating a graph coloring problem (for
which heuristics exist), and then transmitting the colors using
any existing entropy-rate code. Moreover, we can extend this
technique to the functional side information case.

Next, consider the problem of lossless functional source
coding with side information. Orlitsky and Roche proved the
optimal rate for the zero distortion functional compression
problem with side information equals HG(X|Y ). Recall from
Definition 6 that HG(X|Y ) is also achieved by optimizing a
distribution over W . Theorem 13 extends Körner’s Theorem
to conditional chromatic and conditional graph entropies.

Theorem 13.

lim
n→∞

1
n
Hχ
Gn(X|Y) = HG(X|Y )

This theorem extends the previous result to the conditional
case. In other words, in order to encode a memoryless source,
we first color a graph Gn for sufficiently large n. Then, we
encode each source symbol with its corresponding vertex’s
color. Finally, we use a Slepian-Wolf code on the sequence
of colors achieving a rate arbitrarily close to H(c(X)|Y).
This allows for computation of the function at the decoder.
The resulting code has rate arbitrarily close to the Orlitsky-
Roche bound HG(X|Y ) by Theorem 13. Figure 4 illustrates
our coding scheme.
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The Orlitsky-Roche achievability proof uses random coding
arguments and proves the existence of an optimal coding
scheme, but does not specify it precisely. Our coding scheme
allows the use of heuristics available for finding good colorings
as well as the use of optimal source codes that achieve the
conditional entropy. Finding the minimum entropy colorings
required to achieve the bound is NP-hard [22], [19], but even
simple colorings (weakly)2 improve over the bound H(X|Y )
that arises when trying to recover X completely at the receiver
by the Data Processing Inequality. This solution gives the
corner points of the achievable rate region for the distributed
functional compression problem, considered next.

B. Distributed Functional Compression (D = 0)

In this section, we prove rate bounds for the distributed
functional compression problem. The derived rate region is
always achievable and sometimes tight. The region directly
evolves from the coloring arguments discussed in the above
section.

Recall the lossless distributed functional compression prob-
lem shown in Figure 2. Our goal is to provide an achievability
scheme that extends the modular scheme given in Figure 4 for
the side information case. Again, the code first precodes the
data (coloring) and then describes the colors using existing
Slepian-Wolf source codes.

The Slepian-Wolf Theorem [3] states that in order to recover
a joint source (X,Y ) at a receiver, it is both necessary and
sufficient to encode separately sources X and Y at rates
(Rx, Ry) where

Rx ≥ H(X|Y )
Ry ≥ H(Y |X)

Rx +Ry ≥ H(X,Y ).

Denote this region as R(X,Y ).
For any n and functions gx and gy defined on Xn and Yn,

respectively, denote byRn(gx, gy) the Slepian-Wolf region for
gx(X) and gy(Y) normalized by the block length. Precisely,
Rn(gx, gy) is the set of all (Rx, Ry) where

Rx ≥
1
n
H(gx(X)|gy(Y)),

Ry ≥
1
n
H(gy(Y)|gx(X)),

Rx +Ry ≥
1
n
H(gx(X), gy(Y)).

If Y is sent at rate H(Y ), it can be faithfully recovered
at the receiver. Thus, the rate for X is HGx

(X|Y ) as given
by Orlitsky and Roche. Similarly, when Rx ≥ H(X), Ry ≥
HGy (Y |X). Therefore, we know the corner points for the rate
region for the distributed functional compression problem.

Our goal is to determine the region and give a scheme
analogous to the one given in Figure 4 that achieves all
rates in the given region. We proceed with the following
philosophy: color X and Y using the characteristic graphs

2For all functions f(X,Y), H(c(X)|Y) ≤ H(X|Y). For any non-
injective function f(X,Y) and large enough block length n, H(c(X)|Y) <
H(X|Y).

1X

X

2X

1Y

Y

2Y

Fig. 5. An illustration of the Zigzag Condition.

Gx and Gy , and encode the colored sequences using codes
achieving the Slepian-Wolf bounds. We want to characterize
when this approach is valid. In other words, we want to find the
conditions under which colorings of the characteristic graphs
are sufficient to determine f(x, y) for the zero distortion
problem.

1) Zigzag Condition: A condition which is necessary and
sufficient for the proposed coloring scheme to give a legitimate
code follows.

Condition 14 (Legitimate Coloring). For any n, consider ε-
colorings cx and cy of Gnx and Gny with associated proba-
bility distribution p̂. The colorings cx and cy and the source
distribution p̂(x, y) are said to satisfy the Legitimate Color-
ing condition if for all colors (γ, σ) ∈ cx(Xn) × cy(Yn),
and all (x1,y1), (x2,y2) ∈ c−1

x (γ) × c−1
y (σ) such that

p̂(x1,y1)p̂(x2,y2) > 0, f(x1,y1) = f(x2,y2).

Condition 14 determines whether the colorings are sufficient
for the decoder to reconstruct the desired function, but gives
little insight into how to design good colorings. The Zigzag
Condition, described next, gives conditions under which col-
orings (cx, cy) are legitimate only if cx is a coloring of Gx
and cy is a coloring of Gy .

Condition 15 (Zigzag Condition). A discrete memoryless
source {(Xi, Yi)}i∈N with distribution p(x, y) satisfies the
Zigzag Condition if for any ε and some n, (x1,y1), (x2,y2) ∈
Tnε , there exists some (x̃, ỹ) ∈ Tnε such that (x̃,yi), (xi, ỹ) ∈
Tnε

2
for each i ∈ {1, 2}, and (x̃j , ỹj) = (xij , y(3−i)j) for some

i ∈ {1, 2} for each j.

Figure 5 illustrates the Zigzag Condition. If a solid line
connects two values, then the pair is in Tnε . If a dashed line
connects two values, then the pair is in Tnε

2
. Thus, the Zigzag

Condition is quite strict in the sense that many pairs must
be typical. For any source that does not satisfy the Zigzag
Condition, coloring Gnx and Gny independently still allows the
decoder to uniquely determine the function but may use more
rate than required because it treats as jointly typical (xn, yn)
pairs that are unlikely to occur together.

2) Rate Region: Let Sε =
⋃∞
n=1

⋃
(cn

x ,c
n
y )Rn(cnx , c

n
y )

where for all n, cnx and cny are ε-colorings of Gnx and Gny .
Let S be largest set that is a subset of Sε for all ε > 0. Let S̄
be the set closure of S . Finally, let R be the rate region for
the distributed functional compression problem. We can now
state the rate region in the notation just given.

Theorem 16. For any ε > 0, Sε is an inner bound to the rate
region, and thus, S is an inner bound to the rate region. In
other words, R ⊆ S. Moreover, under the Zigzag Condition,
the rate region for the distributed functional source coding
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problem is R = S̄.

Theorem 16 extends Theorem 13 to the distributed case by
showing that optimal (independent) coloring of characteristic
graphs Gnx and Gny always yields a legitimate code, describing
a family of problems for which these codes guarantee an
optimal solution. While the above result is not a single letter
characterization, any non-trivial (non-injective) coloring does
better than the Slepian-Wolf rates, by the Data Processing
Inequality (cf. [13]).

The Orlitsky-Roche bound is consistent with our region at
Ry = H(Y ) by the following argument. If Ry = H(Y ),
then cy(y) = y for all y typical with some x. Thus, the
rate Rx must be Rx ≥ 1

nH(cx(X)|Y) which is minimized at
HGx

(X|Y ) by Theorem 13.
Next, we derive a characterization of the minimum joint

rate, Rx +Ry in terms of graph entropies.

Corollary 17. Under the Zigzag Condition, if there is a unique
point that achieves the minimum joint rate, it must be Rx +
Ry = HGx

(X) +HGy
(Y ).

In this case, each encoder uses only its corresponding
marginal (p(x) or p(y)) when encoding. The resulting rates
are H(cx(x)) and H(cy(y)), respectively.

When the jointly optimal rate is not unique, Theorem 18
bounds the difference between the minimal sum-rate and
HGx

(X) +HGy
(Y ).

Theorem 18. Let IGx(X;Y ) = HGx(X) − HGx(X|Y ) be
the graph information of X and Y for the graph Gx. Let
IGy

(Y ;X) = HGy
(Y )−HGy

(Y |X) be the graph information
of Y and X for the graph Gy . Let Rxy equal the minimal
sum-rate, Rx +Ry . Then, under the Zigzag Condition:[
HGx(X) +HGy (Y )

]
−Rxy ≤ min

{
IGx(X;Y ), IGy (Y ;X)

}
.

Thus, for the case in Corollary 17, the mutual information
of the minimum entropy colorings of Gnx and Gny goes to zero
as n→∞:

lim
n→∞

1
n
I(c(X); c(Y)) = 0.

If the independent sets of Gx are large, then HGx
(X)

and HGx
(X|Y ) are close, and IGx

(X;Y ) is close to zero.
Therefore, coloring followed by fixed block length compres-
sion (using p(x), not p(x, y)) is not too far from optimal by
Theorem 18. (Similarly, for Gy .) Another case when the right
hand side of Theorem 18 is small is when X and Y have small
mutual information. In fact, if X and Y are independent, the
right hand side is zero and Corollary 17 applies.

The region given in Theorem 16 has several interesting
properties. First, it is convex by time-sharing arguments for
any two points in the region. Second, when there is a unique
point (Rx, Ry) achieving the minimal sum-rate, we can give
a single-letter characterization for that point (Corollary 17).
When it is not unique, we have given a simple bound on
performance.

Figure 6 presents a possible rate region for the case where
the minimal sum rate is not uniquely achieved. (For ease of
reading, we drop the subscripts for Gx and Gy and write G
for both.)

RX

RY

H(X)HG(X)HG(X|Y)

HG(Y|X)

HG(Y)

H(Y)

Fig. 6. An example rate region for the zero distortion distributed functional
compression problem.

The “corners” of this rate region are (HGx
(X|Y ), H(Y ))

and (H(X), HGy (Y |X)), the Orlitsky-Roche points, which
can be achieved with graph coloring, in the limit sense, as
described earlier. For any rate Rx ∈ (HGx

(X|Y ), H(X)),
the joint rate required is less than or equal to the joint rate
required by a time-sharing of the Orlitsky-Roche scheme. The
inner region denoted by the dotted line is the Slepian-Wolf
rate region.

The other point we characterize is the minimum joint rate
point (when unique) given as (HGx(X), HGy (Y )). Thus, we
have given a single-letter characterization for three points in
the region.

C. Functional Compression with Side Information (D > 0)

We now consider the functional rate distortion problem;
we give a new characterization of the rate distortion function
given by Yamamoto. We also give an upper bound on that rate
distortion function which leads to an achievability scheme that
mirrors those given in the functional side information problem.

Recall the Yamamoto rate distortion function (Theorem 8).
According to the Orlitsky-Roche result (Theorem 7), when
D = 0, any distribution over independent sets of the charac-
teristic graph (with the Markov chain W −X − Y imposed)
is in P(0). Any distribution in P(0) can be thought of as a
distribution over independent sets of the characteristic graph.

We claim that finding a suitable reconstruction function, f̂ ,
is equivalent to finding the decoding function g on W × Y
from Theorem 8.

For any m, let Fm(D) denote the set of all functions f̂m :
Xm × Ym → Zm such that

lim
m→∞

E[d(f(X,Y), f̂m(X,Y))] ≤ D.

To prove the claim, we consider blocks of length mn. The
functions in the expectation above will be on Xmn × Ymn.

Let F(D) =
⋃
m∈N Fm(D). Let G(f̂) denote the charac-

teristic graph of X with respect to Y, p(x,y), and f̂ for any
f̂ ∈ F(D). For each m and all functions f̂ ∈ F(D), denote
for brevity the normalized graph entropy 1

mHG(f̂)(X|Y) as
HG(f̂)(X|Y ).
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Theorem 19.

R(D) = inf
f̂∈F(D)

HG(f̂)(X|Y )

Note that G(f̂) must be a subgraph of the characteristic
graph Gm (for appropriate m) with respect to f . Because
Gm is finite, there are only finitely many subgraphs. Thus,
for any fixed error ε and associated block length m, this
is a finite optimization. This theorem implies that once the
suitable reconstruction function f̂ is found, the functional side
information bound (and achievability scheme) using the graph
G(f̂) is optimal in the limit.

Unfortunately, F(D) is an (uncountably) infinite set, but
the set of graphs associated with these functions is countably
infinite. Moreover, any allowable graph dictates an ordinal
function, but it has no meaning in terms of distortion. Given
the ordinal function f̂ , choosing the cardinal values that min-
imize expected distortion is a tractable optimization problem.
This shows that if one could approximate f with f̂ , the
compression rate may improve (even when f̂ is not optimal).

The problem of finding an appropriate function f̂ is equiv-
alent to finding a new graph whose edges are a subset of
the edges of the characteristic graph. This motivates Corollary
20 where we use the a graph parameterized by D to look
at a subset of F(D). The resulting bound is not tight, but it
provides a practical tool for tackling a very difficult problem.

Define the D-characteristic graph of X with respect to Y ,
p(x, y), and f(x, y), as having verticies V = X and the
pair (x1, x2) is an edge if there exists some y ∈ Y such
that p(x1, y)p(x2, y) > 0 and d(f(x1, y), f(x2, y)) > D.
Denote this graph as GD. Because d(z1, z2) = 0 if and only if
z1 = z2, the 0-characteristic graph is the characteristic graph,
i.e. G0 = G.

Corollary 20. The rate HGD (X|Y ) is achievable.

Constructing this graph is not computationally difficult
when the number of vertices is small. Given the graph, we
have a set of equivalence classes for f̂ . One can then optimize
f̂ by choosing those values for the equivalence classes that
minimize distortion. However, any legal values (values that
lead to the graph GD) will necessarily still have distortion
within D. Indeed, this construction guarantees not only that
expected distortion is less than or equal to D, but also that
maximal distortion is always less than or equal to D. There
are many possible improvements to be made here.

Theorem 13 and the corresponding achievability scheme,
Corollary 20, gives a simple coding scheme that may poten-
tially lead to large compression gains.

D. Possible Extensions

In all of the above problems, our achievability schemes
are modular, providing a separation between the computation
of the function and the lossless compression of the function
descriptors.

The computation module is a graph coloring module. The
specific problem of interest for our scheme is NP-hard [22],
[19], but there is ample literature providing near-optimal graph
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−81.836

−81.834

−81.832

−81.83

−81.828

−81.826

−81.824

−81.822

−81.82

Fig. 7. Blue Force Tracking Data.

coloring heuristics for special graphs or heuristics that work
well in certain cases [20], [21].

The lossless correlation module is a standard entropy coding
scheme such as a Slepian-Wolf code. There are many practical
algorithms with near-optimal performance for these codes. For
example DISCUS codes [6] and source-splitting techniques
[7].

Given the separation, the problem of functional compression
becomes more tractable. While the overall problem may still
be NP-hard, one can combine the results from each module to
provide heuristics that are good for the specific task at hand.

We note that our results treat only two sources X and
Y . Lossless distributed source codes for the more general
scenario of N sources exists in the literature [13, p. 415].
Thus, it seems likely that given a suitable extension of the
graph coloring technique and the Zigzag Condition, our results
would generalize to N sources. We focus on the two-source
scenario because, as with Slepian-Wolf, it gives many insights
into the problem. We leave the extension to future work.

IV. SIMULATION RESULTS

In this section, we present an application of the work pre-
sented in the previous sections. We consider a sensor network
scenario in which there are several sources communicating
with some central receiver. This receiver wishes to learn some
function of the sources.

Specifically, we consider Blue Force Tracking, which is
a GPS system used by the U.S. Armed Forces to track
friendly and enemy movements. Sometimes the nodes in the
system communicate with each other, and sometimes they
communicate with some central receiver, such as a UAV, which
is the case considered here.

We present preliminary experimental results for the algo-
rithm given for the distributed functional compression. We
obtained tracking data from SRI International.3 This data

3We thank Dr. Aaron Heller for providing the data, available at: http://
www.ai.sri.com/ajh/isat.
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represents GPS location data. It includes information on vari-
ous mobiles, including latitude and longitude coordinates. We
ignored the other information (e.g., altitude) for the purpose of
this simulation. See Figure 7. The blue represents the trajectory
through time of one vehicle, and the red curve represents the
trajectory of the other.

We focused on these two mobiles, our sources. We as-
sume that our sources are the positional differences (i.e.
∆-encoding), X1 and X2, where each is actually a pair,
(∆X1,LAT,∆X1,LON) and (∆X2,LAT,∆X2,LON), of the latitude
and longitude data. The use of ∆-encoding assumes that
the positional differences form a Markov chain, a common
assumption. Our goal is to test the hypothesis that there can
be significant encoding gains with even very simple coloring
schemes when a function and not the full sources need to be
recovered. We consider three relative proximity functions4 for
our analysis:

fLAT(X1,X2) = 1|∆X1,LAT−∆X2,LAT|<Z ,

fLON(X1,X2) = 1|∆X1,LON−∆X2,LON|<Z ,

f(X1,X2) = 1√
(∆X1,LAT−∆X2,LAT)2+(∆X1,LON−∆X2,LON)2<Z

.

Thus, the functions are 1 when the sources change their
relative position by less than Z (along some axis or both),
and 0 otherwise. To compare the results of our analysis with
current methods, we consider the joint rate R1 +R2 where X1

is communicated at rate R1 and X2 is communicated at rate
R2. There are several means of rate reduction summarized in
Figure 8.

First, the most common (in practice) means of communica-
tion is to actually communicate the full index of the value. This
means that if X1 takes M1 possible values and X2 takes M2

possible values, each source will communicate those values
using logM1 bits and logM2 bits, respectively. Thus, the joint
rate is logM1M2. This is clearly inefficient.

Second, we can immediately reduce the rate by compressing
each source before communication. Therefore the rate for X1

would be H1 = H(X1), and the rate for X2 would be H2 =
H(X2). The joint rate would be H1 + H2. This is strictly
better than the first method unless the sources are uniformly
distributed.

Third, we can further reduce the rate using correlation, or
Slepian-Wolf, encoding. We could use any of the techniques

4We would have liked to use a true proximity function, but then we could
not form a valid comparison because our uncolored rate would be in terms
of ∆-encoding, but our coloring would necessarily have to be in terms of an
encoding of the true position. Therefore, we examine functions that measure
how far two mobiles moved towards or away from each other relative to their
previous distance, a kind of distance of positional differences.
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Fig. 9. Empirical probability versus rate.

already developed to achieve near optimal rates, such as
DISCUS codes [6] and source-splitting [7]. The joint rate
would be H12 = H(X1,X2). This is strictly better than the
second method unless the sources are independent.

Fourth, we could use our coloring techniques from Section
III-B. If we considered each source communicating its color
to the central receiver, the joint rate will be Hχ

1 + Hχ
2 =

H(c1(X1)) + H(c2(X2)). This may not be better than the
above third method, though it certainly will be for independent
sources. It will always be better than the second method.

Finally, we could use Slepian-Wolf coding over the colors to
achieve a joint rate of Hχ

12 = H(c1(X2), c2(X2)), which will
be strictly better than the third method unless c1 and c2 are
both injective and strictly better than the fourth method unless
c1(X1) and c2(X2) are independent. Thus, the rate relations
are as follows:

logM1M2 ≥ H1 +H2 ≥
H12

Hχ
1 +Hχ

2
≥ Hχ

12.

In our simulations, we test various values of Z to see how
the likelihood p = P [fLON(X1,X2) = 1], which changes with
Z affects the rate reduction.5 Intuitively, we expect that as
p becomes more extreme and approaches either 0 or 1, the
rate reduction will become more extreme and approach 100%.
(Because if fLON = 1 or fLON = 0 with probability 1, there
is nothing to communicate and the rate required is 0. This
is shown in Figure 9 where we plot the empirical probability
p = p(Z) versus the rate Hχ

12.
We expect it would be more symmetric about 1/2 if we used

optimal encoding schemes. However, we are only considering
G = G1 (no power graphs) when coloring, as well as a quite
simple coloring algorithm. Had we used power graphs, our rate
gains would be higher, though the computational complexity
would increase exponentially with n. Our coloring algorithm
was a simple greedy algorithm that did not use any of the
probability information nor was it an ε-coloring. We expect
better gains with more advanced graph coloring schemes.

5We only show our results for fLON for brevity. The intuition remains for
f and fLAT.
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TABLE III
EMPIRICAL RESULTS FOR OUR ENCODING SCHEME.

Rates log M1M2 H1 + H2 H12 Hχ
1 + Hχ

2 Hχ
12

f(X1,X2) 9.32 (0%) 7.93 (15%) 7.78 (17%) 5.44 (42%) 5.29 (43%)

fLAT(X1,X2) 9.32 (0%) 7.93 (15%) 7.78 (17%) 3.38 (64%) 3.37 (64%)

fLON(X1,X2) 9.32 (0%) 7.93 (15%) 7.78 (17%) 3.55 (62%) 3.53 (62%)

In Table III, we present the rate results for the various stages
of compression in Figure 8. All units are in bits. In the table,
we use the values of Z that provide the lowest rate reductions;
in other words, we use the worst case rates by testing various
Z as in Figure 9. The percentage next to each number shows
the percentage decrease in rate. Thus, for the first column, we
see 0%, and in the second we see

1− 7.93
9.32

≈ 0.149 ≈ 15%.

We can see that the sources are close to independent, as H12

is only slightly smaller than H1 + H2. Therefore, there is
not much gain when considering the correlation between the
sources. Nevertheless, the coloring provides a great deal of
coding gain. For the simpler fLAT and fLON, the rate has been
reduced almost threefold.

This provides evidence that our techniques can indeed lead
to large rate gains. For the more simple functions, the rate has
been reduced over 60%. Further, considering that the indices
are often sent without compression, it is worth noting that even
simple compression is 15% better.

V. PROOFS AND ANCILLARY RESULTS

In this section, we provide full proofs of all our previously-
stated results.

A. Functional Compression with Side Information

We recall Theorem 13:

lim
n→∞

1
n
Hχ
Gn(X|Y) = HG(X|Y ). (4)

To prove this, we borrow proof techniques from Körner [17],
and Orlitsky and Roche [2]. We first state some more typicality
results. We use the notion of ε-strong typicality.

Lemma 21. Suppose (X,Y) is a sequence of n random
variables drawn independently and according to the joint
distribution p(x, y), which is the marginal of p(w, x, y). Let
an n-sequence W be drawn independently according to its
marginal, p(w). Suppose the joint distribution p(w, x, y) forms
a Markov Chain, W −X − Y . Then, for all ε > 0, there is a
ε1 = k ·ε, where k depends only on the distribution p(w, x, y),
such that for sufficiently large n,

1) P [X /∈ Tnε ] < ε1, P [Y /∈ Tnε ] < ε1, and P [(X,Y) /∈
Tnε ] < ε1,

2) For all x ∈ Tnε , P [(x,W) ∈ Tnε ] ≥ 2−n(I(W ;X)+ε1).
3) For all y ∈ Tnε , P [(y,W) ∈ Tnε ] ≤ 2−n(I(W ;X)−ε1).
4) For all (w,x) ∈ Tnε ,

P [(w,Y) ∈ Tnε |(x,Y) ∈ Tnε ] ≥ 1− ε1.

Part 1 follows from [13, Lemma 13.6.1], parts 2 and 3
follow from [13, Lemma 13.6.2], and part 4 follows from [13,
Lemma 14.8.1].

1) Lower Bound: Consider any n and the corresponding
OR-product graph Gn. Let c be an ε-coloring of Gn that
achieves Hχ

Gn(X|Y), i.e.

Hχ
Gn(X|Y) = H(c(X)|Y ).

As stated earlier, a minimum entropy coloring exists because
the set of all colorings on a graph with a finite number of
verticies (here, fewer than |X |n) is finite. With this color-
ing, we prove that there is a scheme that encodes at rate
1
nH

χ
Gn(X|Y) such that the decoder can compute f(X,Y)

with small probability of error. Proving that would establish
achievability of the rate 1

nH
χ
Gn(X|Y). Theorem 7 proves that

no achievable rate can be below HG(X|Y ). This will give us
the following lemma.

Lemma 22.

lim inf
n→∞

1
n
Hχ
Gn(X|Y) ≥ HG(X|Y ).

Proof: For any n > 0, let c, as above, denote a coloring on
Gn that achieves Hχ

Gn(X|Y), for G the characteristic graph of
X with respect to Y , p(x, y), and f(x, y). Let Σ = {c(x) : x ∈
Xn}, the set of all colors. For every color σ ∈ Σ and y ∈ Yn,
let g(σ,y) = f(x̄,y) where x̄ ∈ c−1(σ) = {x : c(x) = σ}
with p(x̄,y) > 0. If no such x̄ exists, g is undefined.

Consider (x,y) as an instance of the source. Thus,
p(x,y) > 0. Suppose c(x) = σ and y are available at
the decoder where c is defined as above. Then, there is a
decoding error when g(σ,y) 6= f(x,y). This is true only if
there exists some x̄ ∈ Xn such that c(x̄) = σ, p(x̄,y) > 0,
and f(x̄,y) 6= f(x,y). However, because c(x̄) = c(x), it is
true that (x, x̄) /∈ E, where E is the edge set of Gn. Therefore,
for all ȳ ∈ Yn with p(x, ȳ)p(x̄, ȳ) > 0, it must be true that
f(x, ȳ) = f(x̄, ȳ). This means f(x̄,y) = f(x,y) for all
x̄ ∈ c−1(σ) with p(x̄,y) > 0. Thus, g(σ,y) = f(x,y). This
shows that the side information along with just the color is
sufficient to determine f .

It remains to be seen how to make c(x) and y available at
the decoder. Recall that if a source is encoded at a rate equal to
its entropy, it can be recovered to arbitrarily small probability
of error at the decoder. Thus, having Y available at the decoder
as side information is the same as encoding Y at rate greater
than H(Y ). Recall the Slepian-Wolf Theorem [3] on sources
C and Y states that if Ry > H(Y ), an encoding with rate
Rc > H(C|Y ) suffices to recover (C, Y ) at the decoder.
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We consider our source as (c(X),Y). Thus, an encoding
of rate at least H(c(X)|Y) suffices to recover the func-
tions with arbitrary probability of error. Encoders (and cor-
responding decoders) exist by the Slepian-Wolf Theorem.
Let ẽ : Σm →

{
1, . . . , 2mRc

}
be such an encoding with

r̃ :
{

1, . . . , 2mRc
}
× Ynm → Σm × Ynm its corresponding

decoder. Thus, the idea here is to first color n-blocks of the
source. Then, one encodes m-blocks of the colors. The overall
rate will be 1

mH(c(X)|Y)).
Formally, fix some n ∈ N. Suppose ε > 0. With an encoder

as above, let m be such that

Pr [r̃(σ,Y) 6= (σ,Y)] < ε. (5)

To show achievability, we need to prove that there exists an
encoder e : Xnm → {1, . . . , 2mH(c(X)|Y)} and a decoder r :
{1, . . . , 2mH(c(X)|Y )}×Ynm → Znm such that the probability
of error is also small:

Pr [r(e(X),Y) 6= f(X,Y)] < ε. (6)

To prove this, define our encoder as

e(x1, . . . ,xm) = ẽ(c(x1), . . . , c(xm)).

Then define the decoder as

r(e(x1, . . . ,xm), (y1, . . . ,ym)) = (g(c(x1),y1), . . . , g(c(xm),ym)),

when r̃ correctly recovers the pair (c(xi),yi) and is undefined
otherwise.

The probability that r̃ fails is less than ε by (5). If r̃ does not
fail, then, as described earlier, the function will be correctly
recovered. Thus, we have shown (6).

Therefore, for any n, the rate 1
nH

χ
Gn(X|Y) is achievable.

Thus,

lim inf
n→∞

1
n
Hχ
Gn(X|Y) ≥ HG(X|Y ),

completing our proof of the lower bound.
2) Upper Bound: Next, we prove that the encoding rate

required to recover c(X) given Y is at most HG(X|Y ):

Lemma 23.

lim sup
n→∞

1
n
Hχ
Gn(X|Y) ≤ HG(X|Y ).

Proof: Suppose ε > 0, δ > 0. Suppose n is (sufficiently
large) such that: (1) Lemma 21 applies with some ε1 < 1, (2)
2−nδ < ε1, and (3) n > 2 + 3

2ε1
.

Let p(w, x, y) be the distribution that achieves the
HG(X|Y ) with the Markov property W − X − Y . (This
is guaranteed to exist by Theorem 7.) Denote by p(w),
p(x), and p(y) the marginal distributions. For any integer M ,
define an M -system (W1, . . . ,WM ) where each Wi is drawn
independently with distribution p(w) =

∏n
i=1 p(wi).

Our encoding scheme will declare an error if (x,y) /∈ Tnε .
This means that the encoder will code over ε1 colorings of the
characteristic graphs. By construction, this error happens with
probability less than ε1. Henceforth assume that (x,y) ∈ Tnε .

Next, our encoder will declare an error when there is no i
such that (Wi,x) ∈ Tnε . This occurs with probability

Pr[(Wi,x) /∈ Tnε ∀i]
(a)

≤
M∏
i=1

Pr[(Wi,x) /∈ Tnε ]

(b)
= (1− Pr[(W,x) ∈ Tnε ])M

(c)

≤
(

1− 2−n(I(W ;X)+ε1)
)M

(d)

≤ 2−M ·2
−n(I(W ;X)+ε1)

where (a) and (b) follow because the Wi are independent and
identically distributed, (c) follows from Lemma 21 part 2, and
(d) follows because for α ∈ [0, 1], (1−α)n ≤ 2−nα. Assuming
M > 2n(I(W ;X)+ε1+δ),

Pr[(Wi,x) /∈ Tnε ∀i] ≤ 2−δn < ε1,

because n is large enough such that the final inequality holds.
Henceforth, fix an M -system (W1, . . . ,WM ) for some M >
2n(I(W ;X)+ε1+δ). Further, assume there is some i such that
(Wi,x) ∈ Tnε .

For each x, let the smallest (or any) such i be denoted as
ĉ(x). Note that ĉ is an ε1-coloring of the graph Gn. For each
y, define:

S(y) = {ĉ(x) : (x,y) ∈ Tnε },
Z(y) = {Wi : (Wi,y) ∈ Tnε },
s(y) = |S(y)|,
z(y) = |Z(y)|.

Then, s(y) =
∑M
i=1 1i∈S(y), because our coloring scheme ĉ

is simply an assignment of the indices of the M -system. Thus,
we know

E[s(Y)] =
M∑
i=1

Pr[i ∈ S(Y)].

Similarly, we get z(y) =
∑M
i=1 1Wi∈Z(y). Thus,

E[z(Y)] =
M∑
i=1

Pr[Wi ∈ Z(Y)]

≥
M∑
i=1

Pr[Wi ∈ Z(Y) and i ∈ S(Y)]

=
M∑
i=1

Pr[i ∈ S(Y)]P [Wi ∈ Z(Y)|i ∈ S(Y)]

We know that if i ∈ S(Y), there is some x such that ĉ(x) = i
and (x,Y) ∈ Tnε . For each such x, we must have (by
definition of our coloring), (Wi,x) ∈ Tnε . For each such x
where (Wi,x) ∈ Tnε ,

Pr[Wi ∈ Z(Y)|i ∈ S(Y)] = Pr[(Wi,Y) ∈ Tnε |(x,Y) ∈ Tnε ]
≥ 1− ε1
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by Lemma 21 part 4. Thus, we have E[z(Y)] ≥ (1 −
ε1)E[s(Y)]. This, along with Jensen’s inequality, imply

E[log s(Y)] ≤ logE[s(Y)]

≤ logE
[
z(Y)
1− ε1

]
.

Finally, (using a Taylor series expansion) we know log 1
1−ε1 ≤

ε2 = 2ε1 + 1
2 when 0 < ε1 < 1. Thus,

E[log s(Y)] ≤ logE[z(Y)] + ε2, (7)

We compute

E[z(Y)] =
M∑
i=1

P [(Wi,Y) ∈ Tnε ]

= M · P [(Wi,Y) ∈ Tnε ]

because the Wi are i.i.d. Therefore,

E[z(Y)] ≤M · 2−n(I(W ;Y )−ε1) (8)

by Lemma 21 part 3.
By the definition of S(y), we know that determining ĉ given

Y = y requires at most log s(y) bits. Therefore, we have

H(ĉ(X)|Y) ≤ E[log s(Y)]. (9)

Putting it all together, we have

Hχ
Gn(X|Y)

(a)

≤ H(ĉ(X)|Y)
(b)

≤ E[log s(Y)]
(c)

≤ logE[z(Y)] + ε2

(d)

≤ log
(
M · 2−n(I(W ;Y )−ε1)

)
+ ε2

(e)
= log

(
2n(I(W ;X)−I(W ;Y )+2ε1+δ) + 1

)
+ ε2

(f)

≤ n(I(W ;X)− I(W ;Y ) + 2ε1 + δ) + 1 + ε2

where (a) follows by definition of the conditional chromatic
entropy, (b) follows from inequality (9), (c) follows from
inequality (7), (d) follows from inequality (8), (e) follows
by setting M = d2n(I(W ;X)+ε1+δ)e, and (f) follows because
log(α+ 1) ≤ log(α) + 1 for α ≥ 1.

For Markov chains W −X − Y ,

I(W ;X)− I(W ;Y ) = I(W ;X|Y ).

Thus, for our optimal distribution p(w, x, y), we have

Hχ
Gn(X|Y) ≤ n(HG(X|Y ) + 2ε1 + δ) + 1 + ε2

Because n > 2 + 3
2ε1

, 1+ε2
n < ε1. Thus, 1

nH
χ
Gn(X|Y) ≤

HG(X|Y ) + 3ε1 + δ. This completes the proof for the upper
bound:

lim sup
n→∞

1
n
Hχ
Gn(X|Y) ≤ HG(X|Y ).

The lower and upper bounds, Lemmas 22 and 23, combine
to give Theorem 13:

lim
n→∞

1
n
Hχ
Gn(X|Y) = HG(X|Y ).

B. Distributed Functional Compression

Recall Theorem 16 states that the achievable rate region
for the distributed functional compression problem, under the
Zigzag Condition (Condition 15), is the set closure of the set
of all rates that can be realized via graph coloring.

We prove this by first showing that if the colors are available
at the decoder, the decoder can successfully compute the
function. This proves achievability. Next, we show that all
valid encodings are ε-colorings of the characteristic graphs
(and their powers). This establishes the converse.

1) Achievability: We first prove the achievability of all rates
in the region given in the theorem statement.

Lemma 24. For sufficiently large n and ε-colorings cx and
cy of Gnx and Gny , respectively, there exists

f̂ : cx(Xn)× cy(Yn)→ Zn

such that f̂(cx(x), cy(y)) = f(x,y) for all (x,y) ∈ Tnε .

Proof: Suppose (x,y) ∈ Tnε , and we have colorings cx
and cy . We proceed by constructing f̂ . For any two colors
γ ∈ cx(Xn) and σ ∈ cy(Yn), let x̂ ∈ c−1

x (γ) and ŷ ∈ c−1
y (σ)

be any (say the first) pair such that p(x̂, ŷ) ∈ Tnε . Define
f̂(γ, σ) = f(x̂, ŷ). There must be such a pair because certainly
(x,y) qualifies.

To show this function is well-defined on elements in the
support, suppose (x1,y1) and (x2,y2) are both in Tnε . Sup-
pose further that cx(x1) = cx(x2) and cy(y1) = cy(y2).
Then, we know that there is no edge (x1,x2) in the high
probability subgraph of Gnx or (y1,y2) in the edge set of
the high probability subgraph of Gny by definition of graph
coloring.

By the Zigzag Condition, there exists some (x̃, ỹ) such that
(x̃,y1), (x̃,y2), (x1, ỹ), (x2, ỹ) ∈ Tnε

2
. We claim that there is

no edge between (xi, x̃) or (yi, ỹ) for either i. We prove this
for (x1, x̃) with the other cases following naturally. Suppose
there were an edge. Thus, there is some ŷ such that f(x1, ŷ) 6=
f(x̃, ŷ). This implies that f(x1j , ŷj) 6= f(x̃j , ŷj) for some j.
Define ỹ′ as ỹ in every component but the j-th, where it is
ŷj .

We know that for all (x, y) ∈ X × Y ,

|ν(x1,ỹ)(x, y)− p(x, y)| ≤ ε

2|X ||Y|
by definition of ε

2 -typicality. Therefore,

|ν(x1,ỹ′)(x, y)− p(x, y)| ≤ ε

2|X ||Y|
for all (x, y) such that y 6= ŷj and y 6= ỹj .

Next, we can choose n large enough such that n > 2|X ||Y|
ε .

Then, for y = ŷj or y = ỹj , the empirical frequency changes
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by at most 1
n . Thus, for all (x, y) (including y = ŷj and

y = ỹj), we have

|ν(x1,ỹ′)(x, y)− p(x, y)| ≤ ε

2|X ||Y|
+

1
n
≤ ε

|X ||Y|

Thus, ỹ′ is ε-typical with both x1 and x2. By construction,
f(x1, ỹ′) 6= f(x2, ỹ′). Therefore, there must be an edge in the
high probability subgraph between (x1,x2), an impossibility.
Thus, there is no edge (x1, x̃). The others follow similarly.

Thus, by definition of the graph,

f(x1,y1) = f(x̃,y1) = f(x̃, ỹ) = f(x2, ỹ) = f(x2,y2).

Therefore, our function f̂ is well-defined and has the desired
property.

Then, Lemma 24 implies that we can successfully compute
our function f given colors of the characteristic graphs. Thus,
if the decoder is given colors, it can look up f based on its
table of f̂ . The question is now of faithfully (with probability
of error less than ε) transmitting these colors to the receiver.
However, when we consider the colors as sources, we know
the achievable rates.

Lemma 25. For any n, ε-colorings cx and cy of Gnx and
Gny , respectively, the achievable rate region for joint source
(cx(X), cy(Y)) is the set of all rates, (Rcx, R

c
y), satisfying:

Rcx ≥ H(cx(X)|cy(Y)),
Rcy ≥ H(cy(Y)|cx(X)),

Rcx +Rcy ≥ H(cx(X), cy(Y)).

Proof: This follows directly from the Slepian-Wolf The-
orem [3] for the separate encoding of correlated sources.

Suppose the probability of decoder error for the decoder
guaranteed in Lemma 25 is less than ε

2 . Then the total error
in the coding scheme of first coloring Gnx and Gny , and then
encoding those colors to be faithfully decoded at the decoder
is upper bounded by the sum of the errors in each stage. Thus,
Lemmas 24 and 25 together to show that the probability that
the decoder errs is less than ε for any ε provided large enough
n (and block size m on the colors).

Finally, in light of the fact that n source symbols are
encoded for each color, the achievable rate region for the
problem under the Zigzag Condition is the set of all rates
(Rx, Ry) such that

Rx ≥
1
n
H(cnx(X)|cny (Y)),

Ry ≥
1
n
H(cny (Y)|cnx(X)),

Rx +Ry ≥
1
n
H(cnx(X), cny (Y)).

where cnx and cny are achievable ε-colorings (for any ε > 0).
Thus every (Rx, Ry) ∈ Sε is achievable for all ε > 0.
Therefore, every (Rx, Ry) ∈ S is achievable.

2) Converse: Next, we prove that any distributed functional
source code with small probability of error induces a coloring.

Suppose ε > 0. Define for all (n, ε),

Fnε = {f̂ : Pr[f̂(X,Y) 6= f(X,Y)] < ε}.

This is the set of all functions that equal f to within ε proba-
bility of error. (Note that all achievable distributed functional
source codes are in Fnε for large enough n.)

Lemma 26. Consider some function g : X × Y → Z . Any
distributed functional code that reconstructs g with zero-error
(with respect to a distribution p(x, y)) induces colorings on the
characteristic graphs of X and Y with respect to g, p(x, y),
and Y and X , respectively.

Proof: Suppose we have encoders ex and ey , decoder d,
and characteristic graphs Gnx and Gny . Then by definitions,
a zero-error reconstruction implies that for any (x1,y2),
(x2,y2) such that if p(x1,y1) > 0, p(x2,y2) > 0, ex(x1) =
ex(x2), and ey(y1) = ey(y2), then

f(x1,y1) = f(x2,y2) = r(ex(x1), ey(y1)). (10)

We now show that ex and ey are valid colorings of Gnx and
Gny . We demonstrate the argument for X . The argument for
Y is analogous. We proceed by contradiction. If it were not
true, then there must be some edge with both vertices with the
same color. In other words, there must exist (x1,x2,y) such
that p(x1,y)p(x2,y) > 0, ex(x1) = ex(x2), and f(x1,y) 6=
f(x2,y). This is impossible (by taking y1 = y2 = y in
equation (10)). Hence, we have induced colorings of the
characteristic graphs.

We now show that any achievable distributed functional
code also induces an ε-coloring of the characteristic graphs.

Lemma 27. All achievable distributed functional codes induce
ε-colorings of the characteristic graphs.

Proof: Let g(x,y) = r(ex(x), ey(y)) ∈ Fnε be such a
code. Then, we know that a zero-error reconstruction (with
respect to p) of g induces colorings, ex and ey , of the
characteristic graphs with respect to g and p by Lemma 26. Let
the set of all (x,y) such that g(x,y) 6= f(x,y) be denoted as
C. Then because g ∈ Fnε , we know that Pr[C] < ε. Therefore,
the functions ex and ey restricted to C are ε-colorings of Gx
and Gy (by definition).

Thus, the Lemma 26 and Lemma 27 establish Theorem 16
in full.

3) Minimal Joint Rate: Recall Corollary 17 states that
under the zigzag condition, when there is a unique point
achieving the minimum joint rate, it must be Rx + Ry =
HGx(X) +HGy (Y ).

Proof: First, we recall the rate pair (HGx
(X), HGy

(Y ))
can be achieved via graph colorings. This is true by the
achievability result of Theorem 16 along with Theorem 12,
which states that graph colorings can achieve each of HGx

(X)
and HGy

(Y ). In the achievability proof above, we showed that,
under the zigzag condition, any coloring scheme will lead to
achievable rates. Therefore, (HGx(X), HGy (Y )) is in the rate
region. (Note, that we have not yet used the uniqueness of the
minimum.)

Suppose (Rx, Ry) achieves the minimum joint rate. By
Theorem 16, this must be in some Slepian-Wolf region
for the colors. Because it is a minimum, we must have
Rx + Ry = 1

nH(cnx(X), cny (Y)). This can be achieved with
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Rx = 1
nH(cnx(X)) and Ry = 1

nH(cny (Y)|cnx(X)) or with
Rx = 1

nH(cnx(X)|cny (Y)) and Ry = 1
nH(cny (Y)).

By assumption, there is only one such point, thus we must
have 1

nI(cnx(X); cny (Y)) → 0 as n → ∞. Thus, the minimal
rate is 1

nH(cnx(X)) + 1
nH(cny (Y)) → Rx + Ry as n → ∞.

We know for all n, HGx
(X) + HGy

(Y ) ≤ 1
nH(cnx(X)) +

1
nH(cny (Y)) by Theorem 12.

Therefore, we must have that the minimum achievable joint
rate is HGx

(X) +HGy
(Y ).

This corollary implies that minimum entropy colorings have
decreasing mutual information as n increases. Thus, the closer
we are to the optimum via graph coloring, the less complicated
our Slepian-Wolf codes must be. In the limit, because mutual
information is zero, each source only needs to code to entropy.
Thus, the Slepian-Wolf codes are unnecessary when achieving
the minimal joint rate. (Nevertheless, finding the minimum
entropy colorings is, again, NP-hard.)

Next in Theorem 18, we consider the case when the
minimum is not uniquely achievable.

Proof: The joint rate must always satisfy:

Rx +Ry =
1
n
H(cnx(X), cny (Y))

=
1
n
H(cnx(X)) +

1
n
H(cny (Y)|cnx(X))

≥HGx
(X) +

1
n
H(cny (Y)|X)

≥HGx
(X) +HGy

(Y |X)

The first inequality follows from the Data Processing In-
equality on the Markov chain cny (Y) −X − cnx(X), and the
second follows by definition of the conditional graph entropy.
Similarly, we get:

Rx +Ry =
1
n
H(cnx(X), cny (Y))

=
1
n
H(cnx(X)|cny (Y)) +

1
n
H(cny (Y))

≥HGx
(X|Y ) +HGy

(Y )

Thus, the difference between the optimal rate (Rx + Ry),
and the rate given in Corollary 17 is bounded by the following
two inequalities:[
HGx

(X) +HGy
(Y )
]
− [Rx +Ry] ≤ HGx

(X)−HGx
(X|Y )[

HGx
(X) +HGy

(Y )
]
− [Rx +Ry] ≤ HGy

(Y )−HGy
(Y |X)

C. Functional Rate Distortion

In this section, we prove Theorem 19 and Corollary 20 for
the functional rate distortion problem.

We restate Theorem 19 for completeness:

R(D) = min
f̂∈F(D)

HG(f̂)(X|Y )

Proof: We prove that the given characterization is valid
by first showing the rate HG(f̂)(X|Y ) is achievable for any
f̂ ∈ F(D), and next showing that every achievability scheme
must be in F(D).

By Orlitsky and Roche, we know that the rate HG(f̂)(X|Y )
is sufficient to determine the function f̂(X,Y) at the receiver.
By definition,

lim
n→∞

E[d(f(X,Y), f̂(X,Y))] ≤ D.

Thus, the rate HG(f̂)(X|Y ) is achievable.
Next, suppose we have any achievable rate R, with cor-

responding sequence of encoding and decoding functions en1
and en2 respectively. Then the function f̂(·, ·) = en2 (en1 (·), ·)
is a function f̂ : Xn × Yn → Zn with the property (by
achievability) that limn→∞E[d(f(X,Y), f̂(X,Y))] ≤ D
(again because as n→∞, ε is driven to 0). Thus, f̂ ∈ F(D),
completing the proof of Theorem 19.

Next we prove Corollary 20, which states that HGD (X|Y )
is an achievable rate. We show this by demonstrating that any
distribution on (W,X, Y ) satisfying W − X − Y and X ∈
W ∈ Γ(GD) also satisfies the Yamamoto requirement (i.e. is
also in P(D)).

Proof: Suppose p(w, x, y) is such that p(w, x, y) =
p(w|x)p(x, y), or W −X−Y is a Markov chain. Further sup-
pose that X ∈ W ∈ Γ(GD). Then define g(w, y) = f(x∗, y)
where x∗ is any (say, the first) x ∈ w with p(x∗, y) > 0.
This is well-defined because the nonexistence of x such that
p(x, y) > 0 is a zero probability event, and x ∈ w occurs with
probability one by assumption.

Further, because w is an independent set, for any x1, x2 ∈
w, one must have (x1, x2) /∈ ED, the edge set of GD.
By definition of GD, this means that for all y ∈ Y
such that p(x1, y)p(x2, y) > 0, it must be the case that
d(f(x1, y), f(x2, y)) ≤ D. Therefore,

E[d(f(X,Y ), g(W,Y ))] = E[d(f(X,Y ), f(X∗, Y ))] ≤ D

because both X ∈W and X∗ ∈W are probability 1 events.
We have shown that for a given distribution achieving the

conditional graph entropy, there is a function g on W × Y
that has expected distortion less than D. In other words, any
distribution satisfying W −X − Y and X ∈ W ∈ Γ(GD) is
also in P(D). Further, any such distribution can be associated
with a coding scheme, by Orlitsky and Roche’s work [2],
that achieves the rate I(W ;X|Y ). When the distribution is
chosen such that I(W ;X|Y ) is minimized, this is by definition
equal to HGD (X|Y ). Thus, the rate HGD (X|Y ) is achievable,
proving Corollary 20 and providing a single-letter upper bound
for R(D).

VI. CONCLUSION

This article considered the problem of coding for computing
in new contexts. We considered the functional compression
problem with side information and gave novel solutions for
both the zero and nonzero distortion cases. These algorithms
gave an explicit decoupling of the computing from the cor-
relation between the sources as a graph coloring problem.
We proved that this decoupling is rate optimal. We extended
this encoding scheme to the distributed functional compression
with zero distortion. We gave an inner bound to the rate region,
and gave the conditions under which the decoupling is optimal
in the distributed case.
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We never considered the nonzero distortion distributed
functional compression problem mainly because even the case
of f(x, y) = (x, y) is unsolved. Nevertheless, it is our hope
that the methods discussed in this article will yield new results
for the more general problem.

All of our results concern two sources. An extension of these
results to M sources seems plausible. However, the graph
constructs used rely heavily on the two source structure and
would need to be modified to deal with M sources. We leave
that to future work.

Finally, we examined the applicability of our results. For
Blue Force Tracking, we saw that even simple coloring
schemes yielded large compression gains (64%).

In summary, this article is about modeling the distillation
of relevant information from disparate sources. We hope the
work presented herein serves as a step towards more research
in this area.
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