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for a single unicast connection chosen at he result that we establish can be interpreted as the
: imum flow of a network. For the graph model, our result
represent the maximum flow in a wired network. For the
rgraph model, it may represent the maximum flow in a

less network. This-is alt-the-more e Simcethe-hyperedges
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network size in random networ iver nodes an ns are directed

orks with rand erasure Z {ithout network coding, the multicagt, problem b comes a
ngﬂér k cadindra dom ok, Steiner packing tree problem, which i give.
etk Nevertheless, some results, such as the Kriesell conjecture,

. Chok bounds on network coding capacity gain. The Kriesell
“ ﬂ \ conjecture [8] states that network coding in undirected graphs
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robability, unaffected b

CZ Our res%s generalize t? %
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M random hypergraph unicast.

cannpt achieve more than twice the capacity of Steiner trees. It

HE recent development of netyork coding [1] has sho was subsequently proved in [9] that the gain ratio is limited to
that the capacny of multicast\connections is given by ( 6.5 rgther than 2. ln'deed—when-neavefk—eedmg’all WS a max-

sinks, thus generahzmg the unicast reXults of Ford-Fulkerson e m«mw
to multicast connections. Indeed, netwoxk coding can be used As stated in [10], allowing network coding is equp&al t to
to show Ford-Fulkerson flow from an alggbraic point of view replacing directed edges by undirected edges, with a gain ratio
[2]. The work of [3] generalized network §oding from graphs that is bounded between two finite constants. The difference
to hypergraphs, which are useful for repesenting wireless be
broadcast links, as well as to networks with Yandom erasures. gmm
For a single source and sink, the problem of \jetermining the ~ generalize to hypergraphs. However, o our knowledge, they
behavior of the max-flow in random graphs wasirst envisaged  do not extend to networks with random erasurés. Indeed, even
in [4] and in [5]. These papers present results n undirected for a single-source single-sink flow, max-flow results have not
complete graphs with capacities that are randorgly selected been shown to apply in the presence of random erasures since
with a distribution that does not depend on nody distance. several copies of the initial packet have to be send until one is
Reference [6] provides, without proof, results for thé,problem received. Therefore, e packing does noy extend to dom-
of max-flow for directed random graphs, where arcs dan only  erasure networks. , Weon LL2 S
exist in a single direction between two nodes. While the\above Our contribution is dlfferent from the scalmg laws presented
references consider only point-to-point connections without by Gupta and Kumar in [12]. The problem studied by Gupta
the use of network coding, the capacity of random graphs and Kumar is a case where the number of connections in-
using network coding was first considered in [7]. In that article, ~ creases with the number of nodes. Moreover, these connections
the first random graphs considered are directed random graphg  are disjoint unicast. In this article, we consider a finite number

built over complete graphs, where the existence of an edge\ of connections and an increasing twr%hc ze. Hence, the
scaling law results do not apply. Th@%ﬁw&%ﬁre also

from one node to another implies the existence of a reverse
edge of equal capacity. Moreover, the probability of the edge’s ¥ery different since the bottleneck in our work is the source
existence is constant. The secpn model presented in [7] is the ang the sink nodes, whereas the bottleneck in [12] consists of
geometrlc random graph. -seems to be a reldy nodes. On the other hand, our results are closer to the
ca can be reused to  percolation results of [13] about the connectivity of random
) graphs for Wthh theorem  graphs™In our work, we further characterize the strength of
as is_done-in-this-artitte ork s connecnons between two nodes in a large random graph. ‘Fhe
escribe-this1ar result
“—graphs. Moreover, we improve the result of [7] by-having the &mmms
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The rest of this article is organized as follows. In Section II
we define our random graph model and flows on graphs. In
Section III, we establish the convergence in probability of the
max-flow of our random graphs. In Section IV, we define
our random hypergraph model and flows on hypergraphs. In
Section V, we establish the convergence in probability of the
max-flow of our random hypergraphs. Finally, we conclude in
Section VI

II. MODEL OF WIRED NETWORK : RANDOM WEIGHTED
A. Definitions and Notation

DIRECTED GRAPH

1) A Weighted Directed Graph: In this M wired net-
works will be modeled by weighted directed graphs. First,
a wired network can be modeled by a directed graph if the
capacities of its links are ignored.

Definition 1: A directed graph G = (N, E) is a pair of
which the first element is the set of nodes N and the second
is the set of edges F, a subset of N x N.

The users of the network will be represented by the nodes
of the directed graph, and the links by the directed edges. A
weight function is added to the model whereby, for each edge,
a weight is assigned corresponding to the capacity of the link
in the network.

Definition 2: A weighted directed graph (G = (N, E), W)
is a pair where the first element is a directed graph G and
the second is a non-negative function from N x N, with the
constraint that W, = 0 if e ¢ E. The value W, is called the
weight of the edge e.

2) Flow in a Weighted Directed Graph: Similarly to capac-
ities of links that are modeled by weights of edges, the way the
information is routed on a network between two points will be
modeled by the flow between these two points on the graph.
Hence, the capacity between two nodes of a network will be
the maximum value of flows on the corresponding graph.

Definition 3 (Flow): A flow from the source node 7 to the
sink node j in a weighted directed graph is a function f on
edges that satisfy these conditions:

1) the flow is less than the weight, i.e., for all nodes u,v,

f((u,’l))) < W(u,v); (D

2) there is no incoming flow to i and outgoing flow from
Jj, i.e., for all nodes u

f((u,1)) = £ ((G,w)) = 0; @

3) the outgoing flow from 7 is equal to the incoming flow
to j and has value F

Z FGo)= Y fwd)= 3)
()eE (wf)eE

4) conservation: for each node except i and j, the incoming
flow is equal to the outgoing flow, i.e., for all u # i, j

E f((v,u)) E f ((u,v") ()
vEN v'EN
(v,u)eE (uv')EE

)

X1

=

4

N
NEY

Fig. 1. Min-cut from the set of the right nodes to the set of the left nodes.

Definition 4 (Max-flow): The max-flow from i to j is a flow
with the maximal value. We will denote F(? ;) the value of this
flow.

Our aim will be to evaluate this max-flow in large random
graphs.

3) Cut in a Weighted Directed Graph: An easy way to
study the max-flow of a graph is to study its min-cut.

Definition 5 (Cut): A cut from the set of nodes Ny to the
set of nodes NV; is a set S of edges such that if the edges in
S are removed, then there is no directed path from u to v for
any u € Ny and v € Ny . The value of a cut is the sum of
weights of its edges.

Definition 6 (Min-cut): The min-cut from the set of nodes
Np to the set of nodes N is a cut whose value is minimum.
We denote this value C(y, v,)-

The following theorem gives the value of the min-cut from
a subset Ny of nodes to its complementary N§. It is illustrated

dy=ie figure 1.
Theorem 7: For any graph G and any subset Ny of N, we

have
Clong = 2 2 Weuwr ®)
u€No vEN§
Proof: On one side, we have
G
CiNo.Ng) S Z z Wiu,v) (6)

u€Ny ‘LJE]Vc

since the edges ((u,v)),en,. veNg are a cut from Nj to N§.
On the other side, for each u € Ny and each v € N§, we
have to remove the directed edge (u,v) (if not, there exists
the directed path (u,v) that links them and, thus, it cannot be
a cut). Then, a cut from Ny to N§ must contains the edges

(u,v). Thus,
Clong 2 D D Wuwy

u€Np vEN§

)

|
The link between the max-flow and the min-cut of a graph
is done by the min-cut max-flow theorem that was proven for
the first time by Menger on unweighted undirected graphs. A
proof for weighted directed graphs can be found in [14].
Theorem 8 (Min-cut max-flow theorem): For any weighted
directed graph G, the max-flow from 7 to j is equal to the
min-cut from {i} to {j}, i.e.,

G G
Fi iy = Canip- ®
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A corollary of this theorem links the max-flow from i to j
to the min of the min-cuts between all 2-partitions of nodes
where 7 and j are not in the same. This will be useful since
it is easier to evaluate.

Theorem 9: For any weighted directed graph G, we have

G G G
F(i'j) e NoCNI{l{ljn}.ieNo C(N“'NS)' (€
Proof: Clearly,
G ) G
FGi) S e - v, Cdio,g) (10)

since the cut from Ny to N§ is a cut from ¢ to j. Therefore,
we can apply the min-cut max-flow theorem.

On the other side, the max-flow min-cut theorem gives us
a set of edges S such that without them there is no directed
path from i to j. We denote G’ the graph G without the edges
in S. Hence, we can define the two sets of nodes NN; and N;
such that

N; = {v € N|3 a directed path from 7 to v in G'}, (11)
N; = {u € N|3 a directed path from u to j in G'}.(12)

Since there is no directed path from 7 to j, we have N; N
N; = 0. We denote N’ = N\(N; U N; U {i,5}), the set of
nodes disconnected of ¢ and j. We have that S (that is the min-
cut between 7 from j in G) is also a cut between No = N;U{i}
and N§ = N’ UN; U {j} and, hence,

(13)
B

G G
FG i) 2 Clvo,Ng)-

B. Studied Random Weighted Directed Graphs

As in many problems on random graphs, our results hold
only for random graphs that satisfy some conditions. There-
fore, in this article, results established will concern only this
type of random graphs.

Definition 10: Random weighted directed graphs studied in
this article satisfy these conditions:

1) an edge exists with probability p; ;

2) the weight of an edge is distributed as a random variable

of density function fy and of mean g, i.e., for all nodes
uv,

1 if w=0,
p [ fw(z)dz else;

P Wy 2 0) = {

(14)

3) for each subset Ny of nodes, the edges implied in the

min-cut from Ny to N§ are independent, i.e., for all No
subset of NV,

15)

Theorems established in this paper are pro only for

(Wen)) weng.ve e are independent.

ditions-on random graphs, bu
class of random graphs, there exist several simpler subc]asses
We watl present four of them, the last three are special cases
of the first one and are already studied in the literature.

© .
@_® W.p. 1 0-‘ W.p. P2

Fig. 2. The distribution of the existence of the edges of two nodes u and v.

W.p. Po

1) For the first class, for each pair of nodes {u,v}, we
associate po, (v, the probability for two nodes to be not
linked (i.e., (u,v) and (v,u) do not exist), we denote
P1,{u,v} the probability to have the edge (u,v) (resp.
(v,u)) without (v,u) (resp. (u,v)) and py (v} to have
the two edges (u,v) and (v,u) (as illustrated figure 2)
such that py {40} + P2,(u,v} = P1- Then, the capacities
Wiy,v) and W, .,y can be independent and distributed
like a random variable of density function fy, or can be
the same Wy, . distributed like a random variable of
density function fy .

If, for all nodes u,v, pl.{u,v} =0 and W(u.v) = W(v.u)’
then the model obtained is the one discussed in [7] where
edges are two-w. d"kquges and each two-way edge has the
same capacity two directions. This could be easily
transformed on an weighted undirected graph.

If, for all nodes u,v, ps (v} = 0, then we obtain the
model discussed in [61,wherc edges are one-sided. This
can be seen like a random weighted undirected graph
where sides of directed edges are chosen independently
and uniformly. M

If, for all nodes %,v, p1,(u,0} = P1(L=P1), P2,{uv} =P}
and W(, ) and .. are independent, then we obtain
what we could an Erdos-Rényi weighted random
graph Jsince all directed edges are independent in this
case.

2)
3)

4)

III. UNICAST AND MULTICAST TYPES ON RANDOM
GRAPHS

A. Unicast

The unicast problem consists in determining the maximum
of information that can be sent from a source node i to a sink
node j in a network. In our model of wired network, it is
equivalent to evalua qhe value of the max-flow F from a
node i to a node j. The aim of this section will be to evaluate
the value of the max-flow FG' in a large random graph G
as defined before. 0 r‘zﬁt,,mally care how these two nodes
are chosen &huaum ¢ symmetry-ef-the_graph.

S Serfic results about e umcasmmom graph already
exist. Grimett and Welsh, in [4], established results about
particular type of random graphs when the probability p; is
fixed. Suen, in [6], established, for random graphs where an
edge between two nodes is unique and has a unique direction,
a more prec Hygsult since p; can converge quickly to O but
he did notgvt the proof, neither—+eference. More recently,
Ramamoorthy et al. in [7] established some results also for
random graphs where edges between two nodes are inevitably
two in opposite directions and for a fixed p;. This two kinds
of random graphs will be two sub-classes of random graphs
we study here. The aim of this section is to give and prove a
theorem that improves these results, as follows.
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Theorem 11: We take a random weighted directed graph
with n + 1 nodes. We take i and j to be two nodes, 7 is the
source and j the sink. If

n
M
Inn

and, for all subset of nodes Ny of N such that i € No and
J ¢ No,

(16)

(W(“'v))uENo pene are independent (17)
’ 0
then
FG .
(i,3) P, 1 (18)
npip

In particular, the min-cut is around the source i or the sink
j. Therefore, in a random network, the capacity is limited by

what happens locally around thc source and the sink an not M

in the rest o?ethe nctw?’rk sy

Wc.= obab] 14'; Better—foi-the-condition (16) since, to
have  the—ee of the random graph we just need that
there’ exists-c > 1 such that f2L — c and, moreover, for a
constant weight, this condition is just there exists ¢ > 1 such
that 2L — 32c as we can see in the following proof.

P

cuiada wlos b
The proof follows what-we can-see—in [4] and [7].

P(E8 <1-¢) 0P We carry out a proof by
'/ steps. First, we will prove the result for fw that is a Dirac
delta function (i.e., the random variable for the weight is a
Bernouilli of parameter p;). Then, we generalize for fy that
is a finite sum of Dirac delta functions. Finally, we conclude
the proof by approximating a general fy by a sum of Dirac
delta functions.
i X a) For fw a Dirac Function: We look,first, arepartition
of fy = d, as a Dirac delta function (i.e., if the edge (u,v)
exists then its weight is the value of this Dirac delta function
). We will assume that p = 1 (we can do that since p is
independent of » and multiplying all the edges by p multiply
the flow by pu).

First, a lemma is needed. It is about the probability for the
min-cut C(GNO Ney to be less than npip when Ny # {i} and

70

5 # {0}

Lemma 12: For any N, subset of N such that i € Ny, but
No # {i}, and j € N§, but N§ # {j}, with |[No| = k+1 (we
remark that 1 < k < n — 2), we have

k(n—k—-1
= (Cg"o,-’vé) = npm) < exp (——(——8—)171) . (19

Proof: We have

C(GNO‘NS) = Z Z W(u.v)-

u€Np vEN§

(20)

Sl
Moreover, #ke (W(u.)) ,eno.ve g AT independent and
identically distributed as Bernouilli Variables, we have that

AlSHTD e 5

C(Nn Ng) mnfbutedtnkc)”a blnomnal(of mean |[Np|(n+1—
|N0|)E [W(,, v] = (k+1)(n — k)p. Hence,

G
B (C(No.Ng) < np[>
G
=P (Cony < E [C(GND.N.;)]

~ (B [CGomgp] — 1)) @1
=P (C&O.Ng) <E [C(GND.N;;)]
—((k+1)(n—k) —n)p) (22)
=L (C(Ct;vo.wg) <E [C(leo.fvg)]
—k(n—k—1)p) (23)
(k(n— k= 1py?
<o (0= Bee) o
(see [15],p.12 or [16],p.26)
< exp (—k("—';—”—l)pz) . 25)

(W ets, - - { ’e |
Then, we continue the proof by looking what happens for
the min-cut not around the source.

in C S e S
(NocN\{j}.iezzig.wo;e{i}-zvg#{j) (No,NG) = pl)
= P (3N, C N\{j},i € No, No # {i}, N§ # {5},

Clo.Ng) < TP (26)
n—-2
n—1 kn—k-1)
5 ( 2 ) i (-————8 pl) @)
n—1
" Z (n - 1>IB(n—1)"—’£—1(1—;§1) 19 (28)
k
k=0
<2(1++B)" -2 (see [7) (29)
where 3 = exp (_(_n—s_l)pl)

Then, since o DPL _, o, there exists N such that for all

L N, n(n—1)
(n—1)p; > 32In(n —1). (30)
Moreover, ";’“ Y, cercllio % (él) yA ir;//

(14 +/B)" ! ~exp ((n —1)exp (-E";lﬁlﬁ)) . (31

Since for all n > N,

(n-lm
(n—l)exp(—— T )

Sl D <_32 In(n — 1)) 32)

16
n-—1
“n-1)2 e
Al 34)
n—1
Therefore,
21+ /A" 1-2-2-2=0. (35)
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Finally, we obtain

(36)

Now, around the source ¢ and the sink j, we have, by the
law of large number

P ( min
NoCN\{j},i€No,No#{i},N§#{j}

P (C((fi} gy S (- C)npz) -0, 37
(Cu:)c unp =@ —f)npz) - 0. (38)

Q‘ 7
Then, b femma 37 in the appendix, we obtain
W% 47 NP B (F(?.j) o e)nm) - 0. (39)
. slor? |
The case u # 1 is deduced by observing that F(l y =
uF(?."j) where G’ is the same graph as G with link&"capacity
1 instead of p, then

M~

FS&
P < Gd) F'(x H <= e)nm) - 0. (40)
7

b) For fw a sum of Dirac delta functions: We suppose
that fyr = Y -, g0y, is a sum of Dirac delta functions. We
can assume that p; < --- < py,. Clearly,

m
DY @1)
k=1

k
We split the graph in m subgraphs G /where the edge®® .. ote G the 7- approxnmauon of G We have F

(u,v) exists and have weight uy if it is the case in the ongmal
graph G. The subgraphs G* are all random graphs with pf =
mqx and with f§, = d,,, hence, the previous result can be
applied. This split implies

G % G*
FGn2) FGj “2)
k=1

Indeed, z %{&e the union of the edges given by the

right te a flow for the original graph. Hence,

P (ng) <(1- e)nplp)

k=1
P (Z F§y < Z (1-¢) npzqwk>
k=1 k=1
<P, (3 F(,,) <( f)npzqwk) 45)
m
< 3 P(FS) < (01— Onpgem) (46)

>
Il

1

3

0=0.
1

i
i

@7 P<F(u) S

c) For a general fw: We wilBapproximate a general fy
by a finite sum of Dirac delta functions. We have a first lemma
about the approximation of the infinite tail of the distribution.

Lemma 13: There exists M such that, for all z > M,

/ (t—2)fw(t)dt < e. (48)
Proof: For all m > 0, we have
[Ce-ameas [Cuwma @
= /0 tt)dt  (50)
= pu—p=0. (51)

|
Thus, we approximate the function fy by a sum of Dirac
delta functions fyy HkSTmr A4S f,’

X m=[M/e]-1 (n+1)e
fw = Z (/ fw(z) d:v) One
k=0 ne
o0

515 </ fw(z) dﬂf) Omsr)e-  (52)

(m+1)e

We have
u—265ﬂ=/ fu(@)dz < p. (53)
0

Thanks to this approximation, we can conclude the proof in

the general case. Let > € > 0. We denote n = W” and
¢=1-- (1—c)—1— , >()smce0<e<3We
< F8

( +J) (C%)]

since G is the same graph with less capacity. Hence,

FG FG
P( (d) 9 _ ><P< Gd) 1—e'>—>0. (54)
npiji -

Now,
La— ey _Tal¢) (55)
Iz Iz
>1—e (56)
Therefore,
FG.
P<M<1—c>—>0. 7
npip
By this part of the proof, we learn that the probability for
thc min-cut to be less that the cut around the source
oes to infinity.
Wl p(Ein > 5 h th
wil 3P i l + € o finish the gonvergence in
probability, i For that,
we consider directly any function fyy. G S
Cliiy.giyey» thus

npip

@i 4o
zZ‘
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However, —‘-U—I-U— is the sum of n independent random
variables whose mean is p. Then we obtain, by the law of
large numbers,

MZHe)—»o. (59)

CG
P(

npip
That _concludes-theproof. ﬁ

C. Multicast-Iypes @;;:BI M’ Unpolen &> htﬂtla/f i

We obtained results for the unicast p m in random
graphs. Thanks to network coding, we wesll‘extend them in
different types of multicast. We refer to [2] for the definitions
of different types of multicast that we recall below.

1) Multicast: First, we look the usual multicast that is
between one source node 7 and r sink nodes J = {jk }x=1,....r
that want all the information. We denote F}/;) the max-flow
between the source and all this nodes. The result is

Theorem 14:

M
Fan s,

npip
Qdine Q{M
This thecorem tel=us that the max-flow is only dependent,

for the multicast, of the capacities around the source and the
sinks.

Proof: For each sink node ji, we have

(60)

G
F(']k) By 61)
npip
Then, by lemma 37 ifﬂ’up-pﬁ,
FM FG .
(i,J) g (1,5x) __p) 14 (62)
npp k=l,..r NP
|

2) 2-layer Multicast:

Definition 15: In the 2-layer multicast problem, a source
node has all the information and there 3§ two types of sink
nodes. The first type wants just a part of the information

whereas the second type jwants all the information. F%
ample, a lele!ﬁw&fﬁa/é—seud&-a—sth a normal y

for the first ly}? and in a high definition quality for the second
type.

In the 2-layer multicast case, there is always one source
node i and = sink nodes J = {jx} but one of them W’ Jj1ydoes
not want all information but just a fraction e of it. We denote

F(‘}fJ\{ ;13> the maximal flow for the sink nodes jo,. .., G
We have
Theorem 16:
M
Finin o 4 ©3)
npp
(64)

and e can take any value between 0 and 1.
Proof: The same proof as before. H

3) Disjoint Multicast:

Definition 17: In the disjoint multicast problem, one source
node has all the information, but each sink node just wants a
fraction of information disjoint from the information needed
by each sink node.

In the disjoint multicast case, we have, always, one source
and r sink nodes J = {jx}, but each node j) just wants a
disjoint fraction ¢ of the total information sent by the source
node. We denote F(l 7 the maximal flow that the source can
send. We have

Theorem 18:
F2
) 2 4 (65)
npip
Proof: For all I, subset of {1,...,7}, we want
max Cliy, (iulker) 2 Y GFR) (66)

el
Dividing by np;p and taking the limit in probability, we

obtain

(l J)
1> € | im———. (67)

(5o

Then FD
n(z;jj 1. (68)
I

| |

4) Multisource-Multicast:

Definition 19: In the multisource-multicast problem, the
information is split between several source nodes (and not
only one node) and each sink node wants all the information
of each source node.

In the multisource-multicast problem, we have ¢ inde-
pendent source nodes I = {ix}g=1,., and 7 sink nodes

= {jx' }x=1.... »- Each sink node wants all the information
sent by the source ¢ nodes. We denote F{{ ;, the maximal flow
transmitted by all the sources (i.e., recewed by each node).
We have

Theorem 20: ke

=GR, (69)
np i

Proof: The multisource problem with one sink node is the
same problem as the disjoint multicast problem if the edges are
inverted. Hence, we have, if we denote F( i) the maximal
flow between all the source nodes I and the sink node Ik

FD
=(dw) By, (70)
npi
By F} ;) = miny F7 ; , and [emma 37,
FM
T(1J) p 2. an
npip
|

This section concludes the results about wired networks
modeled by random graphs. We have seen that, for our class
of random graphs, the min-cut is around the source or the
sink. Therefore, in random graphs, the max-flow is local and
independent from the rest of the graph. Moreover, network
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coding, in the case of multicast, is superior to routing. Indeed,
it is only necessary to examine cuts around the source and the
sink (i.e., local conditions) to determine the maximum amount
of information that can be sent by using the random linear
network coding developed in [17]. On the contrary, if routing
is used, we have to study the whole random network (i.c.,
global condition) to determine how many Steiner spanning
trees can be built,

Now- #1 study the flow in random hypergraphs. To our
knowledge, this work is the first proposal to extend the results
from random graphs to hypergraphs. In the first section, we
present the model of studied random hypergraphs and, in the
second section, we establish asymptotic flows in some random
hypergraphs.

IV. MODEL OF RANDOM WIRELESS NETWORK : RANDOM
WEIGHTED DIRECTED HYPERGRAPH

Wired networks were studied using random weighted di-
rected graphs since a user in a wired network can send
different information on his links. However, in a wireless
network, a node broadcasts information to its neighbors. To
model this, hyp?aphs are associated to wireless networks

D oot @ 2Lty ap ol W
a o~
A. Definitions and Notation 4 e

1) Weighted Directed Hypergraph. In this section, the
most general definition of directed hypergraphs and weighted
directed hypergraphs are given, but the hypergraphs studied
later are more specific and their properties are given later in
this section.

Definition 21: A directed hypergraph H = (N, E) is a pair
where the first element N is a set of nodes and the second
element E is a set of edges. An edge is a pair (U, V'), where
U and V are subsets of V.

Definition 22: A weighted directed hypergraph (H =
(N,E),W) is a pair where the first element is a directed
hypergraph H and the second element is a non-negative
function from P(N) x P(N) x P(N) (where P(N) is the set
of all the subsets of V) with the constraint that Wy, v,y =0
if (U,V) ¢ E or V' is not a subset of V.

In this work, we focus on the following sub-class of
weighted directed hypergraphs to model wireless network.

E‘QQ Meﬁnmon 23: Weighted directed hypergraphs stuéted have

\properties

1) the edge has only one node u as sender, i.e., for all edge
U, v),

Ul =1 (ie., U = {u}); (72)

2) a sender u can send to only one set of receiver nodes
U, i.e., for all node u

({u},U) € E

({u},U) € E (o)

}=>U=U';

3) a weight w(,,) < 1 is associated to each pair (u,v)
of nodes (this weight represents the probability for the

Sty rlhiti

node u to transmit well to the node v). Then we obta; @Wbﬁ

the weight of the sub-edge ({u},V,V’) fetivas (2

Wiy, vivny = H H W) (1 — Weu,v)) -
VEV! veV\V/
(74)

The weight W((,} v,v+) is the probability that the node
w transmits in a lossless fashion only to the nodes in the
subset V’ of V.

This model of hypergraphs corresponds to a network of
wireless broadcast channels without interference and with
independent packet erasures for the receiver nodes. The two
notions of flow and cut are transportable to hypergraphs as
shown below.

2) Flow:

Definition 24: The flow from 7 to j in an hypergraph is a
function f on edges such that

1) it cannot send more than one bit per edge

f<y (75)
2) j does not send information
F({5} 7)) (76)

3) for all nodébv except i, we have that the outgoing flow (5 }’W ‘7

~isdegsstiran the incoming flow
(({’U}, V)) S Z w(u,v)f ((Uv U)) S

u€N\{v}

(n

The value F of the flow is the value of the incoming flow
in j
> wnf ({u} 1) 78)

ueN\{j}

Definition 25: The max-flow is a flow with a maximal value
in the hypergraph. We denote this value F

The max-flow as before corresponds to the maximum infor-
mation that can be sent from the source to the sink.

3) Cut:

Definition 26: A cut from the set of nodes Ny to the set
of nodes N; is a set of sub-edges S such that if we delete
these sub-edges, there is no directed path from a node in Ny
to a node in N;j. The value of the min-cut is the sum of the
weights of the sub-edges in S.

Definition 27: The min-cut from Ny to Ny is a cut from Ny
to N; with the minimal value. We denote this value C(’fvov Ny)*

As before, the min-cut max-flow theorem connects the
notion of cut and flow in an hypergraph asserting that the
max-flow from i to j is equal to the min-cut from {i} to {5}
(ie., FH C( {il, ) As before, we have two theorems
about tﬁle min-cut in I!Iypergraphs ~thatHeokttke thcorems 7
and_9 that hetd—-for-gfaphs.

Theorem 28: For any hypergraph H and any subset Ny of
N, we have

C(’fV().AVg) s Z L H (]' 53 w(uvv))

u€Ny vE N6

(79

M?w
WN‘)

Mq)

=



NEATPAGEINFO:id=413AB54B-F803-499C-909B-6FDC1DC7CB2D


Theorem 29: For any weighted directed hypergraph H, we
have
H  _ H
Eins (NouNg)- (80)

min C
) D N\{5}.i€No
Proof Gf'¥icovém=38? The proof holds like 4 the
graph case, b sider the subedges (({u},{v € N|

v € U}),en, Where ({u},U) € E it correspondito the
edges ((u,v)),en,.vene in the graph case. These sub-edges
are a cut from Ny to ng for the hypergraph, so

C(l}lvo.Né) < Z (1 = H (1- w(u,u))) . @81)
u€ Ny vENE

On the other side, we need to remove the directed edges
(u,v) for all w € Np and v € N§ and the minimum
weight to remove all of that is to consider the sub-edges
((u,{v € N§lv € U})) e n,» and, so

(82)

Clhong = X (1- II (- wew)

u€Np vENE

|
Proof of theorem 29: Since a cut from Ny to N§ is a
cut from {i} to {7}, we have

min

Fiy <
J NoCN\{j},i€e No

Clio,Ne)- 83)

To prove the other side, the max-flow min-cut theorem gives
us a set of sub-edges S such that without them, there is not
a directed path from i to j. Ny is builthke thc/set of nodes
such that there exists a directed path from ¢ to them in the
hypergraph H' that is the hypergraph H in which we remove

the sub-edges of S, i.e.,

No = {u € N|3 a directed path from i to u in H'} U {i}.
(84)
We denote N; = N§. Then, the only sub-edges from Nj to
N; in H are in the cut S. Indeed, if not, there exists a directed
path from a node u € Ny to a node v € Ny in H’, but there
is a directed path from i to w in H' (u is in Np), therefore
there exists a directed path from 7 to v in H' and v is in Ny
(contradiction). Then, S is a cut from Ny to N§ and so

H H
Fii.5) 2 C(No,Ng)- 85)

B. Random Weighted Directed Hypergraph

Definition 30: We can associate a graph to the hypergraph
that Qﬁoﬁl study in—‘ﬁa@%}ng—uby. For-a#f node u, we
create the edges ((u,v))veu‘({u)vu)ebﬂ and the weight for the
edge (u,v) is the weight w, ) as in figure 3.

Then we have a bijection between the set of graphs with
weights less than 1 and the set of the hypergraphs studied.

Definition 31: The-random-hypergraphs-that we study are
just~the—hypergraphs associated—to-the—random-graphs previ-
ously-studiedTherefore, the random hypergraphs studied will
have these properties:

Fig. 3. On the left, there is a node with its outgoing links for the graph
whose weights are less than 1. On the right, the corresponding hyperedge for
the hypergraph where weights are the probability to the receiver node to get

Ue

the information without error. Crm.
Irenitre,
f d ({u}, V) =
1) for each nodg u the directed hyperedge ({u},U) is ,p
distributed ﬁémthat, for all node v, Zh“
Tt
PveU)=m; (86) M}/‘
%0
2) the weights over the edges is distributed ldee that, for
all nodes wu,v ?"M%
1 fw=0 F
R (w(u.v) > ’LU) — o0 i 9!/%
p [, fw(z)dr else; ‘
3/ @ (Mo
3) m'mze?ﬁonditions of independence over the weights
thet are, for mo subset of N, /% 7” ‘
; L
(w(u~v))ue Nowens A€ independent. (88) e

V. UNICAST AND MULTICAST TYPES ON RANDOM
HYPERGRAPHS

A. Unicast

hor
In this section, we @il consider flows on random weighted
directed hypergraphs. To the best knowledge of the authors,
there is no mention of such hypergraphs in prior literature.
Theorem 32: We take a random weighted directed hyper-
graph with n + 1 nodes. We take i and j two nodes, i is the
source node and j the sink node. If
np
Inn
and, for all Ny subset of N such that i € Ny and j ¢ N,

(90)

) (89)

(W(u)) yeng vens are independent

then
©n

This shows a similar result as for random graphs, i.c., the
capacity is limited by the capacity of the source (and only the
source here) and not by the rest of the hypergraph.

in hue Shp®
ﬂEEmW

We ve thetwo-sides-to-shew the probabili

H P
F(,-'j) = 1.

/\vait? il-omd

the second part, we prove the second convergence through the
law of large numbers. The most important idea in this proof
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is that we wilt compare graphs and hypergraphs and we will

show that for two corresponding cuts, the difference between

the value of this cut and the cut around the source is bigger

for hypergraphs than for graphs. ) ﬁm wﬂ;ub\
1 P(Ff,) <1-¢) 40 T

(i) S prove it, we need to
consider, first, fi ke there exists w,, such that, for

all w < wyy, '7"( ety o :
fw@w)=0. ctaclilfem
(> )

92)
\v

Then, we witl gt}g]frpalize for W‘&Jv R . )
W fw: The proof bégins by a lemma
that that jif a cut around a node is less than 1 — ¢ in the
random hypergraph, then it is also the case in the associated
random graph.

Lemma 33: For all ¢, there exists nmay such that for all
N 2> Nmax, for all £ < n—1 and for all sequences (wy)

q=1,...,k*
we have

1- — €. (93)

k k

=1 W,
(1—wq)51—c=>@<1

& npip

)
—

Proof: We prove, first, an easier result where k is fixed.
For all ¢, for all k and for all sequences (wq),_, . there
€XiStS Nmax,k such that for all n > npyax i,

k
Zq:l Wq <
npip

L=
q

k
l-wy) £1-e=> 1-e 94)
=1
That is clear since
° Ontone hand, we have 1— H';=1 (1 —wg)-vatds constant.
k

w.
¢ On the other hand, ;n”%" @M converges 1o 0 as n —
0o.

Now, we derive an upper-bound for k. To upperbound k,
we need the special form of the distribution,

k
(1—wm)* > JJ(1 - w) 2 € 95)
q=1
Thus,
Ine
k< In(1 —w,,) ©6)

Therefore, now, we can switch Vk and 3nmay, by taking
Mmax = MaX < . lligpm Mmax, k- =

Now, we wil prove that the probability for a node « to have
acut around it less than 1—e is less probable in the hypergraph
than in the graph divided by np;u. For all v € N\{u}, we
denote [, ,) thf-.-"andom variable that is 1 if the edge (u,v)
exists and 0 else.| Then, for all n > npa.y, for all subset Ny

olicedals

Cmitr 42

of N, i € No with |[No| = k +1,

P (C(h{'u}.Ng) <1l- e)

= 1oH 2
/{0‘1}"‘”‘ C((“LNS)S] S

[pm 1=k

(dpl(u-v))ueNg (de)UENS (97)

= 1 =
/(o.l)n_k 1—Hu(1-‘<u.v>%vv>)ﬂl-f
[pm 1~k

Suslfmu' )(MI’ (dpl(u.v))veNS (de)veNg

5ty
\/ S / 12 ¢ Hu,v)Y(u,v)
{0,1}n—k veNE (w W

(pm . 1In—k P

/

(98)

1—¢

(dpl(u,u))veNg (de)UENOC (99)

1<
- N\

) \
<_/ lcﬁu)wg)sl" \

{0,1}n—k
[pm )=k

= P(CGung <1- ).

b) For the general fyw: We now approximate for the
general case. For that, we Wil delete all the edges whose
weight is less than a certain w,, (we can choose any w,, <
). The new hypergraph will be denote H and each previous
quam't‘ylz in the first hypergraph or graph associated will be
denof® = when we delete the edges whose weight is less than
wy,. We have, for new probability for two nodes to be linked,

= (1 - /I;U: fw(z)da:) n.

However, we still have that ﬁ%& — o3. For this approxima-
tion we have that

H H
S P o ) Lol Lhine o
since the weightt® H 48 less than w7 .
Now, it is easy to prove what we want. Indeed, ke S e

(101)

H o H
Cliong) = D Cliuyng)s (104)
u€Nyp /
G 2 G
Clvong = 2 Clupngy (105)
u€Np /
we obtain that
G

P (C{fvo.zvg) <1l- e) <P <1l-c¢|./(106)

npip

By minimizing over all N subset of N where i € N, and
j ¢ N07

FS.
P(Ff,<1-¢) 5P<M <1
npip

—e) -0 (107)

(dpl(u-u))veNS (de)UGNg (100)

A 3«57“1

A
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m

0
2) P( G =1+ é) — 0: Ietkethe cut around the source
i is a cut, we have
H H
Fijy < Cliipgiye) S 1 (108)
Hence,
P(Fi(n)>1+¢) =0.

This concludes the proof.

(109)

QT. Multicast Types in Random Hypergraph

The proofs are the same 3s in lllcast s of random
graphsginel € 0rus? Jév %\ type

1) Multicast:

Theorem 34: We denote F(}';, the maximal flow through
the network from one source node i to r sink nodes J =
{jk }k=1,..r that want all information. We have

Fif, 51 (110)

2) 2-layer Multicast:

Theorem 35: We denote F(Z I\{jy}) the max-flow achiev-
able for the multicast from the source node 7 to the » — 1 sink
nodes J\{j1} = {Jjk }x=2....r When j; just wants a fraction ¢
of the total information. We have

M P,
F,ngin =1 L

and e can take any value between 0 and 1.
3) Disjoint Multicast:
Theorem 36: We denote F, (1 7 the maximal flow that the

source node i sends informatien to

r sink nodes J = {ji}r=1.... . hat want, each, a fraction €,

of infonnation’ and a# disjoint"¥fom each other. We have
Fenb1 (112)

We cannot obtain a result for the multisource-multicast by
the same method used in the graph case since we cannot
reverse the hyperedges as we have done in the graph case.

These results show that network coding is very useful in the
random hypergraph case since, if only the capacity around the
source is known, the maximal amount of information that can
be sent through the random hypergraph for a multicast can be
determined. Furthermore, it can be determined locally wilhout
prior knowledge of the whole hypergrapt:.% /{

VI. CONCLUSION

We have shown that, for a large class of fandom graphs and
hypergraphs, the capacity of the networ/k" can be easily known
by lookmg at the cut around the soufce, a-local-procedure.

a d asures.

Nevertheless, we use simple géometryless models for ran-
dom graphs and hypergraphs. In addition, our results are
asymptotic. Therefore, our work opens up interesting questions
and areas of research. Primary amongst them is the extension
of our results to random geometric graphs. Another important
question for future work inyolves the determination of the
minimal graph size that guarantees the validity of our results.

M/I
ek /)u%

APPENDIX

Lemma 37: Let Y (n) = (Yi(n),...
of random vectors and (yi,...
such that, for all ¢,
(Yi(n) = y). Then,

,Yi(n)) be a sequence
,y1) a vector of real numbers
Yi(n) converge in probability to y;

min Y;(n) 5 miny;. (113)
1 1

Proof: We can assume that y, is the minimum of the y;.
Let € > 0. We have,

P(minYi(n) - 31> €) < P(Yi(n) — 31 > ) (114)

— 0. (115)
Therefore,
P(miinY,-( e <—e)

< zljpm )1 < —¢) (116)

i=[1
< S P(Yi(n) -y < —) (117)
1=O (118)
|
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