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Guaranteeing the BER in Transparent Optical
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Abstract—A network consisting of transparent optical nodes lightpath c1
(TONs) can provide high speed end-to-end communication paths
with very low bit-error rates (BERs). However, owing to compo- TON 1
nent crosstalk and other degradations at TONs, the BER of a par-
ticular communication path traversing several TONs can be de- Sd N S 2 W
graded by a few orders of magnitude even in the absence of com- | Tx B e Rx
ponent failure. Monitoring the quality-of-service (QoS) of a com- lightpath TON 2
munication path has typically relied on sporadic BER testing and of interest
operation monitoring by the nodes using probe signals. Intermit- )
tent BER testing cannot provide continuous monitoring of the net- lightpath ¢2
work QoS. On the other hand, the use of probe signals is not sensi-
tive enough to detect the BER degradation. This work investigates rig 1. Degradation of data signals due to coherent crosstalk.
a novel approach of monitoring service degradation at individual
nodes using a wrap-around device which taps and compares signals

from the input and the output at each TON along the lightpath. We I. INTRODUCTION
propose a modification using hard limiters at TON inputs and de- o )
rive the BER value that this modified method can guarantee in the ONSIDER A communication path traversing several net-

presence of signal degradation due to coherent crosstalk at TONSs. work nodes. In an electronic network, each intermediate

Index Terms—Alarm systems, bit-error rate, crosstalk, digital node (between transmitting and receiving nodes) generally de-
communications, network monitoring, transparent optical net- tects and regenerates (retransmits) traversing data signals. In an

works. optical network, a high optical link bandwidth allows a trans-
mission rate so high that electronic processing of data units (e.g.,

NOMENCLATURE Internet protocol (IP) packets, ATM cells) cannot be done in

SNR SNR of the lightpath. real time. For example, an ATM cell of 53 bytes must be pro-
02 Variance Ofthe reai and imaginary parts OfAWG[\pessed under 42.4 ns if an Optical link transmits at 10 Gb/s.
at any TON at any bit time. Consequently, it is desirable to have certain intermediate nodes

M Number of TONs in the lightpath. be transparent optical nodes (TONs). A TON is a node which

T Number of bits transmitted in an observation pedoes not perform optical-to-electronic or electronic-to-optical
* riod. _ conversion. Thus, signals traversing TONs remain in the op-

J; Coherent crosstalk signal (real part) at néder  tical domain. An end-to-end communication path through sev-

theth bit transmission period. eral TONs is referred to as a lightpath. A communication service

C;‘ Pﬁresﬂoig va:ue ior a (éeEvii?celalarm. through a lightpath can be made transparent to the formats (pro-
/3 reshold value for a alarm. tocols) of transmitted data. However, since TONs do not detect

Average BER in an observation period below d te data sianals. there i detecti d
which a BER alarm is not generated with ver)fan regenerate data signals, there is no error detection and cor-

high probability (see als® andF Pggx). rection at intermediate nodes. Instead, data signals experience
B Average BER in an observation period abov€umulative degradation at TONs along the lightpath.

which a BER alarm is generated with very high Common TONs consist of wavelength selective switches

probability (see als& N ggr). (WSSs), optical amplifiers, optical multiplexers, and demul-
FPggr  Upper limit on FP, the probability of concludingtiplexers. Certain switching TONs exhibit crosstalk effects

thatBER > B when in factBER < B. [3]-[6], namely a light signal designated (switched) to one
FNggr Upper limit on FN, the probability of concluding output fiber leaks onto another output fiber. Optical amplifiers

thatBER < B when in factBER > B. are used to compensate for power loss within the network. The
A() Probability function of a device-alarm generatiormost common amplifiers are e4rbium doped fiber amplifiers

at a TON. (EDFASs), which are also broadband noise sources in the com-
B(.) End-to-end BER function of a transmitted bit. ~ munication path. In addition, EDFAs exhibit gain competition,

namely signals on different wavelengths must compete for

limited power resources. An unusually high-powered signal on
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s(t) observed | 8'(t — Tp) +n(t) lower rate than data signals [13], [14]. Therefore, a small
TON > percentage of data bits can be degraded without appreciable
degradation of SCM signals.

Consider the second supervisory mechanism based on ob-
serving statistical parameters. A power detector may be used to
detect BER degradation if crosstalk signals change the average
power of data signals. If a crosstalk signal at a TON is present
only 1% of the time, the BER may deteriorate by several orders
of magnitude (up to 10%) while the average received signal
power does not change significantly. By the same arguments,
an optical spectrum analyzer (OSA) cannot detect BER degra-
dation due to a sporadic crosstalk signal which is present only
at a small percentage of time.

The use of a BER tester (BERT) is a standard procedure to de-
tect BER degradation. However, BER testing is only performed
sporadically on test patterns. Moreover, the use of a BERT re-
Fig. 2. A wrapping service monitoring device at a TON. quires a long detection time. For example, a BERT takes sev-

eral hundreds of seconds to distinguish between a BER less
n 101° and a BER greater than 19 for a transmission rate
Gbl/s.
hort detection time is desirable in several aspects. Since op-
al transmission rates are extremely high, a large amount of
data can be affected before any action takes place. If retrans-

igm 21 ggl:gﬂfg&l &?e dciﬁéngrt:tlg sll?rnaar%;l;nstirsoggiii::e rWission is to be performed after the detection of excessive BER,
: ng detection time implies the use of a large amount of buffer

> . "
crosstalk since noncoherent crosstalk due to gain competition .
. . o . i 9 P storage. As we shall see, our proposed method of detecting BER
is device specific and is outside the scope of this work.

Section Il describes existing supervisory methods th gradation is based on the detection of signal degradation at
may be used to monitor the quality-of-service (QoS) of Ns rather than the detection of error bits themselves. As a

communication path. We argue that these methods are r%%ult, our method can operate at roughly 6 orders of magnitude

sufficient to detect small bit-error rate (BER) degradation?c,]"’.lster than a BERT.

Section Il describes a novel BER monitoring system proposed
in [1] and [2], and provides the setup for the analysis that lll. SETUP FOR THEANALYSIS
follows. Section IV contains the analysis leading to the BER Novel Method for Detecting BER Degradation

guarantees provided by the system discussed in Section lll. To_ | , , .
improve the sensitivity of the system, we propose in Section y This section describes the method for detecting BER degra-

a modification using hard limiters at TON inputs. Section Vfiation along a lightpath as proposed in [1] and [2]. The de-
provides a summary and future directions. tection system is constructed by installing, at each TON along

a lightpath, a service monitoring device which wraps around
its TON as shown in Fig. 2. This wavelength-selective device
compares the signals from input and output taps on a particular
This section briefly discusses existing supervisory methoW¢DM channel. The relation between these two signals yields a
that may be used to detect BER degradation. References diggnostic of TON operation. Our analysis will concentrate on
and [8] provide detailed discussion on this topic. Two main ap-single wavelength dovosopm multiplexing (WDM) lightpath
proaches exist for monitoring the lightpath QoS. The first reliassing on-off keying (OOK) signaling with coherent detection.
on the use of pilot signals, which are known signals inserted toThe overhead associated with this novel method includes
travel along the same paths as data signals but are distinguisionitoring devices at all TONs along the lightpath, additional
able from data signals. As an alternative, we can use an opticahtrol information about operational status of each TON, and
time domain reflectrometer (OTDR) to detect the echo of pilatdditional transmit power to overcome tap losses. Although
signals at the transmitter [9]. The second approach is basedwm concentrate on using a monitoring device for a single
observing the statistical parameters such as optical signal WbM channel, when there are lightpaths (on the same fiber)
erage power, optical signal frequency spectrum, and the BERgafing through the same TON input—output pair, it is possible
a lightpath [10]-[12]. to modify the device using optical demultiplexers so that the
Coherent crosstalk can degrade the BER without causidgvice can simultaneously observe signals on several lightpaths
degradation to pilot signals. Pilot signal with frequencies closaken from the same taps.
to those of data signals are referred to as subcarrier multiplexed.ightpaths which do not have the same TON input—output
(SCM) signals. In some cases, SCM signals are recovergalr require different monitoring devices at the TON. If only a
by detecting them from the superposition with data signalsaction of lightpaths require service monitoring at any time, we
However, SCM signals are generally modulated at a muchn time-share the devices through the use of optical switches.

-

optical processing:
(1) adjustment for difference in delay,
magnitude, phase, and polarization
(2) subtraction of signals
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electronic processing:
alarm generation

crosstalk signals have the same frequency as data signalstah]ﬁl
thus directly alter the data signal waveforms. Neglecting sign%l
attenuation and all noise sources, the receiver receives the %%
signal s, together with a crosstalk signal; introduced at

Il. EXISTING SUPERVISORY METHODS
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In addition, the monitoring device can be adjusted through igse equally likely. By expressing a complex sigaah the form
control software to handle possibly different bit rates without g, sr), we can writeS°FF as (0,0) and N as(SEN, SPN).
any change in its hardware. Let M denote the number of TONs in the lightpath. Assume
In Fig. 2, we denote the input and output signalsspy and that there is additive white Gaussian noise (AWGN) at each
s'(t — Tp), whereT, is the TON delay and’ is used instead TON with variances? for both real and imaginary parts. If
of s in consideration of the changes in magnitude (tap lossee chooseS®N to be (v/P, 0), in the absence of crosstalk,
and amplification), phase, and polarization. Denote the sumtbe end-to-end BER is equal &(v/P/2vMa2), whereQ is
signal and noise at TON output BY(t — 7») +=(¢). Inthe op- the complementary cumulative distribution function of a zero-
tical domain, the device takes two tapped signals and compemean, unit-variance Gaussian random variablés related to
sates for the difference in delay, magnitude, phase and polariagzarticular signal-to-noise ratio (SNR) by the relatiR =
tion under normal operation. It then performs signal subtracti¢n/2)(P/2M o2).
and optical-to-electronic conversion using coherent detection et ,]i(k) be the coherent crosstalk signal at nddeuring
In general, the magnitude, phase, and polarization of data digeith bit transmission in an observation period. Using the fact
nals do not vary rapidly; and we can assume, in the absencereft crosstalk effects propagate toward downstream TONSs, the
crosstalk, that the device yields an output proportional(t). end-to-end BER of théth bit (i.e., the probability of error for
For notational simplicity, we drop the time notation below.  theith bit) is
If there is a degradatios introduced at the TON, the device

M
output will be proportional ta + /. When the output exceeds @ - a®
a preset threshold, the device generates an alarm notifying BER o toend = 1 Q =1
cessive signal degradation at the TON. With such a wrapping 2 Mo?

device installed at each node along the lightpath, we consider,
in each bit transmission period, that a “device alarm” is gener-

M
ated if at least one TON in the lightpath generates an alarm. In 1 @ + > Ji(f}%
each observation period, we count the total number of device +-Q LIQ (1)
alarms. If this total is higher than a preset threshold, a “BER 2 Mo

alarm” (notifying an excessive BER) is generated.
Note that the BER we consider in this work is the proba- *) . .
bilistic BER, as opposed to the actual observed BER. The l}ggere J;,n add up constructively along the lightpath for the

of this probabilistic measure allows us to detect BER degrad?i(—)l_rsf[';%se s::e?hang. . tout at ticular TON. Wi i
tion quickly without having to observe actual bit errors. In op- eta denote the device oulput at a particuiar - ywewan

tical transmission, the BER guarantee is generally very low, e_%generate an alarm when coherent crosstalk signal is large, i.e.,
102, therefore observing actual bit errors can be slow. For ei¢k| > @ Wherea is a preset threshold. The probability of an

ample, given the transmission rate of 1 Gbps and the BER%Prm generation at nodeat thesth bit time is

10?2, we expect only one bit error in each second of observa- _ a— Ji(l;% o+ Ji(’;%
tion. P{Device alarm} = @ . —1.(2)
The performance criteria of the BER monitoring system are

the false positive probability (FP), which is the probability of | et7” denote the length of an observation period in units of bit
generating a BER alarm when the BER is below the guarantegghsmission periods, arigldenote the average BER associated
level, and the false negative probability (FN), which is the profith this observation period. Among all crosstalk scenarios with
ability of not generating a BER alarm when the BER exceeds tBR = B, the one yielding the smallest total number of device
guaranteed level. Preliminary results on the performance of tBiarms in an observation period has the smallest probability of
BER monitoring system are given in [2]. However, the resultg BER-alarm generation, and is thus the worst-case scenario
in [2] are based on direct detection of optical signals and the 3sr detection. To provide a BER guarantee ®f we need to
sumption that coherent crosstalk signals are constant throughgck that our monitoring system performs satisfactorily under
an observation period and are equal at all TONSs. In this WOftlﬁe worst-case scenario Corresponding to the BERof

we drop these assumptions, i.e., we shall consider coherent dape shall describe each scenario in terms of crosstalk signals
tection of optical signals and allow crosstalk signals to vary withy gl TONSs at all bit transmission periods, i‘éi(’k]z“ 1<k<

time and TON locations. M, 1 < 4 < T. For notational simplicity, we shall drop the

Our goal is to provide a BER guarantee for each Observﬁjbscript}% and assume thali(k) refers to the real component
tion period. In particular, leB denote the desired level of BERfq the rest of this paper.

guarantee. When the BER exced@lswe want the BER alarm oy 5 fixed B, deriving the worst-case scenario is equivalent
generated with low FN. When the BER is beldywe wantno 4 finding the crosstalk signals which are the free variables in
BER alarm with low FP. the following optimization problem

B. Notations minimize 1 x expected number of device alarms
For a complex signak, let sp and s; denote its real and r
imaginary parts. Le§°FF andS®N denote theFFandoN sig-
nals for OOK signaling. Assume that tloer and ON signals subjectto average BER Ifi bits = B. (€))

in 7" bit periods
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For future reference, leti(x) and B(x) denote the device- Assumption 1 generally holds when the SNR is sufficiently
alarm probability function and the end-to-end BER functiohigh sinceSNR = (1/2)(2n?/Mo?) and, thereforeg is small
whose expressions in (1) and (2) are presented again belowcompared ta;. Empirical data suggest that lemma 1 hold re-

gardless of Assumption 1.
1 0 < @ — a:) 1 0 < @ + a:) Given that only zero and one other positive value are solutions
2

Bla) = 2 vV Mo2 VM2 to (7), there are two forms of solutions for an extremum, namely

Ji = J», and.J; (or J,) = 0 with J, (or J;) > 0. Let.J be such
Az) =0 <a - w) I <a + w) (4) thatB(J) = BandJ* besuchthatl/2)B(0)+(1/2)B(J*) =
a a B. It follows that the extrema are/, J), (0, J*), and(J*, 0).
Given the locations of the extrema, we can investigate their
properties by evaluating the bordered Hessian determinant
|H|(s,, 5,y of the Lagrangian
This section provides mathematical analysis leading to BER

IV. ANALYSIS ON THE BER GUARANTEES

_ ! _
guarantees by the monitoring system described in Section IlI-A. 0 B'(J1) B'(J2)
All the proofs of various lemmas are given in the Appendix. |H (7, ) = | =B'(J1) L"(J1) 0 (8)
We proceed by solving problem (3), which we now express —B'(Js) 0 L'"(Js)

more specifically. Since signal degradation propagates alon
the lightpath, the end-to-end BER for tith transmitted bit is w%e;e L(‘]E ‘92’ A) E (1_(?(1;1({1) + flél(‘b)) - )‘((1/2)h
B( i”zl .]i(k)).Thus,the average BER in an observation periogcg('jl) + B(2)) — B). The fo owing femma 2556”5 that
. T M (k) . o : , J) corresponds to a local maximum, ard?®, 0) and
is(1/T) %ji=lhB( C,I:l J; I) In each bit trar:jsrpls?on penod,é J*) correspond to local minima

we consider that a device alarm is generated if at leastone T (N_ ) . :

in the lightpath generates a device alarm. The expected numberemma 2: Under Assumption 1| (;-, o) = |Hl, 7:) <0

of device alarms in an observation period is, theref@éptl and.|H|(:,7 7 >0 for B < (1/2)5(0) + (1/2).3(77 — o).
M (k) Since the constraint set defined in (6) is a contour curve
1—T[i=:(1 —A(J"))]. Thus, problem (3) becomes

of (B(J1) + B(.J2))/2 in the first quadrant on théJy, .J5)
M plane, and this curve connects the two end pofdts 0) and
minimize ~ S -1 (1 _A (,]i(’ﬁ)) (0, J,), the absence of a local minimum elsewhere guarantees
et 1 that (J*, 0) and (0, J*) are indeed global minima for the
o continuous cost function in (6). We conclude the result in
subjectto B=—_ > B <Z Jf”) (5) Theorem 1.

Theorem 1: Under Assumption 1, given a single TORY/(=
whose feasible solutions do not form a convex set. Therefo[lgénat\?:rgggtgzt% Te(f/b;)%\éztfr;)o 12(?725)(;'(%;3;:32:;30
common techniques based on convex optimization do not aPRY which only 1 out of 2 bits is affected by coherent crosstalk
A. Worst-Case Scenario fd = 1 andT > 1 has the smallest expected t_otal number of device alarms and is

_ _ _ _ thus the worst-case scenario.
Assume a single TON in the lightpath. W'Eh only one TON, e can extend the result from theorem 1 to the case with
we can drop the superscript and defifie= Ji( ), 1<i<T. T > 2 problem (5) becomes
We start with a simple case wifli = 2. Problem (5) becomes

T
L 1
minimize 1 (A(Jy) + A(J2)) minimize - > A(J;)
~ =1
subjectto B = 3 (B(J1) + B(J2)). (6) |z
o _ _ subjectto B == > B(J). 9)
The Lagrange multiplier method gives us the following con- T P

straints for an extremum: . ) »
The Lagrange multiplier method gives the same condition as

A'(J;) = AB'(J;), i=1, 2, eqno(7) in (7), namely A’(.J;) = AB'(J;), i = 1,..., T. We have
from Lemma 1 that under Assumption 1 there exists at most
where A’'(J;) is a derivative of functiomd(J;) with respect to one positive solution tot'(J;) = AB/(J;) in [0, 7 — o). We
J;. shall assume that < (1/7)B(n — o) + (T — 1)/T)B(0) to
Becaused’(J;) andB’(J;) are even, we shall consider onlyguarantee thaf; € [0,  — o) for all 7 in all scenarios.
nonnegative values of;. SinceA’(0) = B’(0) = 0, zeroisa  Out of scenarios with the average BER define a scenario
solution to (7). Lemma 1 states that, under Assumption 1, therewhich ¢ out of 7" bits are affected by crosstalk signals of

is at most one positive solution to (7). constant magnitudé; as scenario. All possible scenarios are
Assumption 1:Letn = v/P/2. Assume that < o < n— 1,2, ..., T.Lemma 1 tells us that an extremum corresponds to
V3o, one of thel’ scenarios just described. L&t denote the expected

Lemma 1: Given X > 0 and that Assumption 1 holds, theretotal number of device alarms in an observation period corre-
is at most one positive solution to the equatitif/) = AB’(J) sponding to scenario. Lemma 3 states thatr > Ar_; >
in (0, n — o). .-+ > Ay, yielding Theorem 2.
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_Lemma 3: Under assumption 1, givel/ = 1,7 > 1, and has the smallest expected total number of device alarms and is
B < (1/T)B(n—0)+ ((T —1)/T)B(0), we have thatd > thus the worst-case scenario.
Ap_1 > --- > Aj.
Theorem 2:Under Assumption 1, givedd = 1, T > 1, C. Worst Case Scenario fae > 1 and7 > 1
aanB < (1/T)B( - .a) + ((T" = 1)/T)5(0), a scenario in As in the last section, defin@(.J) = 1 — A(.J). Problem (5)
which only 1 out of7 bits is affected by coherent crosstalk ha
. .~ Becomes
the smallest expected total number of device alarms and is thus
the worst-case scenario.

o L LM w“
minimize — S Ic¢ (Ji )

B. Worst Case Scenario fad > 1and7 =1 i=1 k=1 u
With T = 1, we can drop the subscript and defifé) = subjectto B = 1 Z B Z g (11)
J® 1< k< M.Also, defineC(.J) = 1 — A(J). Considering T\
only nonnegative values of*) for the extrema, we defing >
0 to be such thaB(J) = B. Note that/ is unique since3(.) ~ In any optimal solution, we must have, for eachthe
is strictly increasing if0, oc). Problem (5) becomes minimum value of— Hfil C(Ji(k)) subject to the value of
M J®. Otherwise, we can obtain the better solution by

reassigning the values d‘;(k) such that their sum remains the
same but- [r~, c(J®y is strictly smaller.
M Let .J; denoteZM:1 .]ifk). Let Cys(.J;) denote the maximal
subjectto J =3 J®, (10) value of Ty, O(J;k)) for theith bit interval subject to the con-
J=1 straint ony 2" ™. (In Section IV-B, empirical data suggest
o _ _ thatCys(J;) = (C(J;/M))M, i.e., in the worst case scenario,
The Lagrange multiplier method yields the constraint for 8bherent crosstalk signalsiat TONs are equal. Theorem 3 ver-

M
minimize — ] c(J®)
k=1

extremum ifies the relationship given the constraifit < M«.) In terms
of Cy(.J), problem (11) becomes
“A=C (JN [ (@)= (s2) ] ¢ (V¥
(") = () [T () "
_ e g (k) minimize —— Crn(J;)
== (V) I e (). >
kZM T
subjectto B = 1 > B(J) (12)
Multiplying through by[[ 2L, C(J®)] -1, we have T &
c(JW) o (J®) C' (JM) Comparing (12) with (9), we can consider problem (12) as
C (,](1)) - (,](2)) - T (J(M)) : if we were to find the worst case scenario fof = 1 and

T > 1, but with the function—Cy,(J) instead ofA(J) as in

Lemma 4 states tha€’(.J)/C(J) is a strictly decreasing S€ction IV-A. _ _ _
one-to-one function if0, ). Using the approach in Section IV-A, the Lagrange multi-

Lemma 4: The functionC’(.J)/C(.J) strictly decreases in Plier method yields the constraint for an extremaify (/;) =
[0, ). AB'(J;),i=1, ..., T. Empirical data suggests the similar re-
It follows that for any value of/f < Ma, an extremum sult as in Section IV-A, namely the curveC’,(J) intersects

must have equal components, namelyM, ..., J/M), and B(J) at zero and one other positive value[ ~o), and the
is thus unique. To show thatf/M J/M) is indeed the €Xtrema correspond to scenarios in which some bits are not de-

global minimum, it is sufficient to show that the cost function s@raded while the others are degraded equally (denoted as sce-

another pointin the constraint set is larger than at the extremdtRrios 1 tal’ in Section IV-A). However, we have no theoretical

Consider the point(3j/M —j/M j/M j/M) we Proof of this claim. The difficulty lies in the complexity of an
have that ’ ’ Y expression fo,(.J). Numerical verification in several cases

leads us to the following conjecturgivend > 1, T > 1, the

_O(3j/M)O(_j/M)O(j/M)J\472 worst-case scenario is the one in which only 1 outdbits is
. - VN - A affected by coherent crosstalk, and the crosstalk signalel at
=-C(3J/M)C(J/M) > —(C(J/M)) TONs are equal
where the equality follows from the fact th@t./) is symmetric,
and the inequality from the fact théX(3.J/2) < C(J/2) since
C(.J) is strictly decreasing if0, co). We have thus established For a low BER guarantee, under the worst-case scenario

Theorem 3. R found in Section 1V, a single severely degraded bit would only
Theorem 3:GivenM > 1,7 = 1, andB < B(M«), a generate a single extra device alarm (compared to the case with
scenario in which the crosstalk signals/t TONs are equal no degradation at all) which leads to high values for FP and FN.

V. BER MONITORING SYSTEM WITH HARD LIMITERS
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Fig. 3. FP and FN as functions gffor different values ofv (M = 1). Fig. 4. FP and FN as functions gffor different values ofy (M = 2).

Therefore, we propose the use of hard limiters at TON inpL 0

to improve the performance of the BER monitoring system. ,."' ‘\ ,,’

A hard limiter is a device that limits the power of signals \‘f
passing through it. For crosstalk signals to degrade few bits s FAS
nificantly, the instantaneous crosstalk signal power in those PN
periods must be very high. But very high instantaneous crosst £ | / Y
signal power results from very high instantaneous input pown§ Yoo \
which are prevented by hard limiters. Moreover, when the hag Y \
limit is sufficiently higher than the ON level signal power of ‘s i/ Y
OOK, the use of hard limiters does not interfere with norm:®, [ Rt '
operation. by o

In the presence of hard limiters, multiple bits must_be de¢ 3o} ?fﬁng,iilwd dB
graded for the BER to exceed the guaranteed level. Given tl hard limit 6.0P,
at leastt (t > 1) bits must be degraded, it follows that the | ﬂ:h:?;"g) 2’;;“ :g“-
worst-case scenario is the one in whiahut of 7" bits are equally e
affected and crosstalk signals/gt TONs are equal. When the ' ’ : ; .

1(;0 I 460
hard limit is sufficiently low (the value ofis sufficiently high), BER alarm threshold (Bet

our BER monitoring system will be able to detect the worst—ca,s_% 5. FP and FN as functions Gffor different values ofy (M = 4)
scenario for some BER guarantee.
We conclude with some numerical examples. Assign the fol- . .
X ] . Our examples also show that there is a desirable range for
lowing parameters: transmission ratel Gbps, SNR= 23 dB, .
A 12 5 8 5 — _g the values ofx. When« is set too small, even under normal
B =10 , B =10"°, I'Ppgr = I'Nggr = 10~°, and . . .
. operation, we expect a large number of device alarms in each
a TON crosstalk level of-30 dB. Figs. 3-5 show some FP : : .
. . observation period, and therefore need to/$efuite large to
and FN curves as functions gffor different values oty when .
: o . _keep FP small. Consequently, such a latgéelds too large FN
7= 1000 andM =1, 2 and 4 respectively. Due to difficulty in , L ; : ;
. ) . ce FNisincreasing with). On the other hand, whenis set
exact numerical computation, we approximate the values of .
. . too large, even ifi can be set small to keep FP small, we expect
and FN by their upper bounds using Chernoff bound approxI- . ; )
. I only few device alarms in the presence of BER degradation.
mation, which is reasonably accurate for small values of FP a| s
EN onsequently, FN is still too large.
- . . . . . In general, the required hard limit decreasedamcreases,
FP is decreasing while FN is increasing withFor a partic- . : )
. . - i . _since for the same BER degradation, the amount of signal degra-
ular pair of FP and FN, if their intersection (denoted by a circle_ . L
. . 8 5 —— ation at individual nodes can be smaller for a lar@er Our
infigures) lies below 10° (¥ Pggr andF Npgg), then the cor- . . .
. xamples suggest that there is a limit on the number of TONs in
responding values af and3 can be used to construct a BER™" . . o
o o a lightpath above which the hard limit gets too close to the ON
monitoring system. More specifically, whed = 2, we can ower level under normal oberation
choose from Fig. 4 the values = 0.17v/ P and3 = 155, or P P '
the valuesy = 0.16+/ P and$ = 85. Both corresponding BER VI C F D
monitoring systems are able to detect a BER above®i0 1 - CONCLUSION AND FUTURE DIRECTIONS

#S (I = 1000 at 1 Gbps), which is approximately 6 orders of We derived guaranteed BERs provided by the novel BER
magnitudes faster than a BERT described in Section II. monitoring system in [1] and [2]. In doing so, we found that the
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worst-case coherent crosstalk scenario for the BER monitorir f(x)
system to detect is the one in which only 1 oufiobits in the xol
observation period is affected by coherent crosstalk signals —

the same magnitude at d@f TONSs in the lightpath. Based on gmez

this result, we suggested the use of hard limiters at TON inpu

to improve the system performance.

The BER monitoring system considered in this work offers f(z)
several advantages. The system can detect BER degradat
much faster than a BERT (6 orders of magnitude faster in ot ~7
examples). The monitoring devices can be installed at existir FmaT
TONSs so no modification of existing infrastructure is required
Although our analysis is based on OOK signaling, the sam
method can be applied to other transmission schemes as wt
Finally, since the system does not differentiate between tr f(z)
sources of signal degradation, it can be used to detect malicio /
users who intentionally cause service disruption.

Several related issues require further consideration. First, max
similar kind of analysis to this work can be done on BER degra
dation due to crosstalk effects as well as gain competition :
EDFAs. Another issue has to do with actual implementatiol.
of the BER monitoring system. While the installation of ser- _
vice monitoring devices at TONs to monitor different WDM 19 & Three different cases $l) for the proof of Lemma 1.
lightpaths seems straightforward in a WDM network with static
wavelength routing, the implementation becomes more complex Proof: Fig. 6 shows some example curvesfok:).

if we allow dynamic wavelength routing. Finally, there are also i) Itis straightforward to solvef () = 0 to obtain a unique
issues regarding how to provide appropriate responses aﬁerggﬁjtionxo — (7% — a? — 2021l \)/2(n — a)

detection of BER degradation. i), iii) Consider the first derivative off (x)

case 1) .

case it) T

o

x case 11%) .

APPENDIX
PROOFS OFVARIOUS LEMMAS Fla)=— 372— 043 e~ (@=a)*/20%) | | 372— 773 o—((@=m)*/20%)
Lemma Al: Given that\ > 0, 7 > «, consider the function V.arag Vare (14)
f(z) of the form Forz € [a, 7], f'(z) < 0 and thusf(z) strictly decreases

in [, n]. Asz — —oo, the first term dominates and we have
e~ ((=a)?/20%) _ o e~ (@E=m?*/2¢%)  lim,_,_., f'(x) > 0. Asz — oo, the second term dominates
V2ro2 V2ro? (13) and we havéim,_... f/'(z) > 0.
, o The fact thatim,—,_, f(z) =0 andlim,_, ., f'(z) >0
f(«) has the following characteristics: . . :
_ ) _ i tell us thatf(«) increases from 0 asincreases from-co. Since
i) There is a unique solution tf(x) = 0. _ f(x) is continuous and has a zero crossing (solutiony af ()
ii) f(x) has a unique local maximum and a unique locghyst have at least one local maximum. Siff¢e) strictly de-

minimum. creases in the rande, 7], there exists a local maximum*®*

iii) Let 2™ andz™" denote the locations of the maximumgpq . max <, Similar arguments show that there exist a local
and the minimum respectively. We hav&** < o < minimumz™i® andz™in > n.

oo < et o Consider the expression ¢f(x) in (14). Denote the term
iv) As zincreases from-oco to 2™, f(z) strictly increases

from the limit value of zero tgf (™) and has a single E=0 _((ema)/20%)

saddle point wher¢(x) changes from convexity) to Vono ¢

concavity (~).
v) As z increases fromz™** to z™®, f(z) strictly de-

fz) = —

by fi(«) and the term

creases.

vi) As z increases fromx™® to oo, f(x) strictly increases _
from f(z™") to the limit value of zero and has a single A==~ (e=m)?/20%)
saddle point at whiclf(z) changes from convexity to V2ro®

concavity. ) ) ]
vil) f(x) has three saddle points {a-cc, o). In addition PY f2(z). Consider their ratio
to the two saddle points in iv) and vi), there is the third
saddle point in(z™a, ™) at which f(x) changes filz)  (w—a) e (@=a)?/20%)
from concavity to convexity. f2(x) - Az —n) % c—((=m)?/202)" T F -
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We can think off,(z)/f2(z) as the product of two quantities d <e—((l‘—a)2/202)>

whose derivatives are given by dz \ o= (@=—n)2/252)
— — N _(optpg—a)t+aZ—n?)/202
d [ -« ___n-« <0, s, =" e~ (2z(n—a) n°)/207) . (16)
dz \ A(z —n) Az —n)?
4 { o) /20) 0—a Theterm2(n—a)/A[(w—n)?—0?]?in (16) is strictly positive
T\ —emre | T 2 sincel > 0 andzn > «. Consider the following equation which
T \° 7 comes from the remaining factor in (16):

2 2 2

. 6_((2“3(77_0‘)'1’0‘ -n")/20%) < 0. _ [(.’L’ _ 77)(1, _ CY) + 0_2] =0. (17)

Since f1(x)/ f2(x) is a product of two strictly decreasing Equation (17) has either zero or two real solutions. If there
functions, it is strictly decreasing if+oo, ) and in(»n, co) were no real solution to (17), the left-hand side of (17) is al-
where it is well defined. ways negative. Consequently,(z)/g=(x) will be a product of

Sincefi(z)/ f2(x) strictly decreases if-oco, 1), ™** isthe two strictly decreasing functions, and is thus strictly decreasing
only value ofz in (—co, 1) such thatfi(z)/f(x) = 1, i.e., andequalto 1 (i.e.f”(x) = 0) at most once. Since we have
f'(x) = 0. Sincef(x) strictly decreases ifw, 7], there cannot argued above that there must be an odd number of saddle points
be an extremum of (x) in [«, n]. Thereforez™* is the only in (—oo, o0), it follows that there is a single saddle pointin this
extremum (which happens to be a local maximun{H-mno, «). case. If there are two real solutions to (17) denoted:pwnd

By the same argumentg™* is the only value of in (n, o) 2, the ratiog; (x)/g2(z) is decreasing if—oo, x, ), increasing
such thatf’(x) = 0. Thusz™i® is the only extremum (which in (x;, x2), and decreasing if2, o). Thus there can be either
happens to be a local minimum) (R, ). one saddle point or three saddle points in this case.

iv), vi), vii) Since there is no extremum ift-co, z™*), Notice thatf” (z™3*) < 0 and f”(z™®) > 0 since a twice
lim,—,_o f'(x) > 0, and f(z) is differentiable in differentiable function mustbe concave at alocal maximum and
(—o0, x™2*), f(x) strictly increases if—co, z™*). Similarly, convex ata local minimum. Sin¢en,.—._.. f”(z) > 0, thereis
since there is no extremum {B™", o), lim, .. f(z) > 0, atleast one saddle point whefér) changes from convexity to
and f(x) is differentiable in(z™*, oc), f(z) strictly increases concavity in(—oo, ™), Similarly, sincelim, ..., f/(z) <

in (z™® 0o). 0, there is at least one saddle point whé(e) changes from
Consider the second derivative ffx) convexity to concavity if(z™", o).
Therefore, the case of one saddle point is impossible. There
fw) = = _ (& — a)? — 0?] = (@m2)/27) must be three saddle points. One ig o, 2™). Another is
V2rod in (™™ c0). It follows that the third saddle point can only be

1 2 21 —((z—n)? /207 in (z™ax zmin) or elsef(x) would be convex at™> if there
- V2ra® (&=~ e e as) We(re two sadgle points iéw—)m, z™#*) and vice versa.
V) Since there are a unique local maximum, a unique local
Sincelim, .o f’(z) > 0 andlim; .o f’(z) < 0; minimum, and no other extreme point, it follows that the con-
therefore, there must be an odd number of saddle points [Withyous functionf(z) is strictly decreasing ifz™®, z™in). ]
J"(x) = 0]in (o0, o0). Letg; (x) andg,(z) denote the first | emma A2: Under Assumption 1f(z) as defined in (13)

and the second terms in (15) has a strictly decreasing second derivativéify o], wherez®
1 o denotes the unique saddle pointinco, ™).
91(z) = ——— [(& — @)? — 0?] e~ ==V /27, Proof: Consider the third derivative of(x)
V2mo®
1 2 2 1 2 2
= _ 2 2] —((z—m)* /20 ) " - - _ _ 2 3 2 —((z—a)?/207)
92(37) \/%05 [(37 77) g ] € f (37) \/%0_7 (Oé 37) [(37 Oé) o ] €

1 —((2—m)2 /202
Similar to the proof of i) and ii). Consider the ratio —* oz (=) [(x —n)* = 30%] e =727 (18)
. wo
g1(x)/g2(x) as the product of two quantities
Under Assumption 1, it is straightforward to show from (18)
gz) 1 (z—a)?—02 e (@=a?%/20% thatf”'(x) < 0in (a—+/30, ). If ° > a—+/30, we are done.
g2(@) A (@ —n)Z— a2 X /2oy #1+Vo.  Otherwise, it remains to show that’ (z) < 0in (z*, a—+/30].
Let h1(z) and ha(z) denote the first and the second terms
Before proceeding further, note that it is straightforward tof f”/(z) on the right-hand side of (18), i.ef}’(z) = hi(x) —
show f”/(n + /) # 0, i.e.,n + /o is not a saddle point. The h2(z). We can express, (x) /hs(z) as the product of two quan-

derivatives of the two factors above are tities
d (1 (z—a)?-0° hi(z) 1 (z—a)[(@—a)’ - 307] y e~ ((z=a)’/20%)
dz <X (@ —m)? - 02> hao(z) ~ X @—n)[@—n? =307 ~ e=(@mn/2?)
_ —2(n—«) [(a: -z —a)+ 02] v £ n+F whose derivatives are shown in (19) at the bottom of the next
Mz —n)?2 — o2 ’ " page.



794 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 4, MAY 2002

We now show that the right-hand side of (19) is negative i < 2™2*, we have from Lemma Al part iv) that(=*) > 0.
(z*, o — /30]. Definehs(x) as follows: It follows from the above expression thit' («®) < 0. O
Lemma 1: Given A > 0, and that Assumption 1 holds, there
_ _ _ 2 2 _ 2 2 ’ ’
ha(z) = (@ =) [(@ —n) 302] [3(372 @) 302] ,.  isatmostone positive solution to the equatitiis) = AB'(J)
~(z—a) [(z— a)? —30%] 3z —0)? ~30%] . in(0, 1y o).

Note thaths(z) has the same sign as the right-hand side of Proof: In what follows, we user in place of./ as a
(19) since the denominator is always positive. Ea (z°,  — function argument. Using(«) defined in (13), we can express

V30), itis easy to verify that all the quantities in square bracke’é/(x) — AB'(x) as
are positive. US|.ng the fact that— n < = — «, we can bound A(z) = \B'(2)
hs(z) as follows: 1
— —((w—a)?/20%) _ y ,~((z—n)?/207)
hs(z) <(z — a) [(z — n)* — 307] [3(z — @) — 307] NG [6 Ac }
— (2 - ) [(z — @)* = 307] [3(z — n)* - 307] 1 [6—<<w+a>2/202> _ )\6—((1‘+77)2/202)}
=(z—a)x 60 [(z—n)?*—(z—a)’] <0, V2ro?
z € (2%, oz—\/ga), = f(z) — f(—2).
where the last inequality follows from the fact that< = < Based on the results of lemma A1, let, z™** and ™
a < nin(z®, o —/30). Atz = o — v/30, using the fact that denote the solution (zero crossing), the local maximum and the
a <1, local minimum of f(z), respectively.
Letz* denote the smallest positive intersectiory¢f™*) and
hs (O‘ B \/30) = (O‘ ~ V30 - 77) —f(=z*), i.e., f(z*) — f(—z*) = 0. Note thatz* may or

2 2 may not exist. For convenience, I¢t (x) denotef(—xz). We
2 2
| [(a ~ V3o - 77) — 30 } [3 (\/50> — 30 } < 0. shall show that there is at most one intersectiory @f) and

_ . f-(z)in (0, n — o) in three separate cases which cover all the
Thus, hg(x) < 01In (x , 0 — \/30’] It follows that possibilities, as shown in Fig. 6.

hi(x)/ha(x), being a product of two strictly decreasing ) ;o < o: We shall show that no intersection fz) and
functions, is strictly decreasing iw”, a —_\/30—]. Conse- F(2) exis?sin(o, 2™in) . Sincer™® > 5 [Lemma Al partiii)],
quently, there can be at most one point(ir’, & — v30]  ihe result wil imply that there is no intersection(i, 1 — o).

such thatf’”(a:) =0 (hl(.’L')/hQ(.’L’) = 1) We now show Consider two separate cases:® > ™ gnd—1° < pmin
that f/(z®) < 0 (hy(x°)/he(2®) < 1), which implies that \yhep _zo > pmin e havef(O)_ = f.(0) and f(z) is
f"(w) < 0 (ha(@)/ha(x) < 1)in (&", & — V30] since  gecreasing whilgf_(x) is increasing in(0, ). Therefore,

hi(x)/ha(x) is decreasing. . there is no intersection if0, ™). When —z° < z™®,
To show thatf”(z*) < 0, we rewrite and bound (18) as\ye have thatf(0) = f_(0) and f(x) is decreasing while
follows f—(z) is increasing in0, —z°). Therefore, there cannot be an
fogy = O [(w —a)? — 02} —(@=a)? /20%) intersection in(0, —z°). In[—z°, ™M), f_(x) is nonnegative
o? 27w o® while f(z) is strictly negative. Therefore, there cannot be
s an intersection in[—z°, ™). In conclusion, there is no
22 _277 {(x i) i } e~ ((2=n)*/25%) intersection in(0, ™).
a V2rod i) ¢ > 0, 2™ < 0: First note that there is no intersec-
N 2 T (rma)?20%) tion of f(z) and f_(z) in (0, —z™**] sincef(0) = f_(0) > 0
0? \ro3 ¢ and f(x) remains belowf(0) [f(x) decreases from a positive

value f(0) to a negative valug (z™*) and remains negative as

2 22N ~()/20”) x — oo] while f_(z) is increasing if0, —x™>*].

)
0% /2wo3 Consider three separate intervals: «|, («, a+a], and(ce+
x—n 2 o, n — o). We shall show that there is no intersection in any of
<= - 5 1w 1) Y
o o them.
where we have used (14) and (15), and the factthat > x—n » Consider the interval0, a. If —z™** > «, we are
to construct the inequality. By definitiorf,” (z*) = 0. Since done since there is no intersection(in —z™**]. When

—((w—a)? /202
N et W L GENCH O FS D N
dz \ o (@—m?/20%) o2 ’

(19)

df1 (z — a)[(z—a)?—307] (z—n) [(x—n)?=302] [3(z—a)? = 30%] — (z—a) [(x— a)? = 30?] [3(z—n)? — 30?]
de \ A (z—n)[(z—n)*>—307] Mz—n)2[(z—n)? — 302
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max
—x

< «, the intersection, if exists, must lie in
(_xmax7 OC].

Let z° denote the unique saddle point(iroo, z™*).
Sincez™** < « [Lemma Al part iii)], there exists a point
z™M@* + § with § > 0 such thatz™* + § < o. We have

that

L pMAX g s

f(z)dz

| plax

Z

> —

() dz

pmax _§&

|f/($1na.x _

6)] (20)
where the inequality holds in the cag&** — § > «*
sincef”(x) is negative and is decreasing (Lemma A2) ir
(z®, «]; andin the case™®* —§ < z° sincef”(x) is non-
negative in(z™»* — §, z°] and is negative and decreasing
in (z°, a.

Leté € (—a™™*, o] andé’ = z™** + £. We have that

&) — - (©)
- [ plydet / f(x) de
xnlax _5
mnlax mnlax_i_é/
_ Fe)de + F(e) di
mnlax _6/ mnlax
3
+ / f(z)dz
:L,rnax +6/
mnlax .’L’n]ax+(5,
- / @l / ()] de

f(x)dx

9
+ /
wnlax +6/

9
< 0+/ fl(x)dx <0 (21)
zMmax 45/

where the firstinequality is a consequence of (20), and the
second inequality follows from Lemma A1l parts iii) and
v) thatf/(z) < 0in (™, «]. Equation (21) shows there

is no intersection i—xz™**, «]. In conclusion, there is
no intersection in0, «].

For later arguments, we now show thatif™** < «,
then f(a) < f_(a) andf'(o) < f/ ().

Given —z™™ < «, (21) tells us thatf (o) < f_(w).
Leté > 0 be such that™>* — § = —q, then (20) tells us
that | fZ ()| = |f/(=a)| < |f/(&™* 4 6)]. Sincef(z)
is strictly decreasing ifiz™**, «) [Lemma Al parts iii)
and v)], we havef’' (™ + §) < f’(«). Finally, since
f(z) is strictly concave inz™**, «) (Lemma A2) and
M 4§ < «, we havef’(a) < /(™ 4 6) < f. ().

For convenience, we definéz) = f,(z) + f,(x), where

1 2 2
- —((w—a)?/20%)
alx) = ¢
fa() G
1 2 2
folz) ==X e~ (@=m7/207) (22)

V2ro?

795

a—-+3a
a=c i i

& i
a+ o

vio
a+V3o n+ V3o

Fig. 7. f.(x) andf,(z) as defined in (22).

Fig. 7 shows example curves §if(x) and f, () together with
their derivatives.

» Consider the intervalc, o« + o]. If —2™** > o + o,

there is no intersection if0, o + o] since there is no
intersection in0, —z™**]. So we consider the case when
" < a+to.

Under Assumption 1f(z) is strictly decreasing and
strictly concave f'(z) < 0 andf”(z) < 0]in (e, oo+ o]
sincef,(z) andf, (=) both have negative first and second
derivatives (see Fig. 7). On the other hand, the contribution
of f.(z)to f_(x) is decreasing but convex, while the con-
tribution of f,(x) is increasing. An additional condition
that f/(«) < f7 (o) will lead to the conclusion thaf(x)
is decreasing faster thghn (x) atevery pointir{c, a+o].

For —x™** < «, we have shown thaf(a) < f_(a)
and f'(a) < f'(«). For —z™> > «, we havef(«o) <
0 < fo(a),andf'(a) < 0 < f' (). In both cases,
we havef(«) < f_(«) and f(x) decreases faster than
f—(z) at every pointin«, « + o]. Therefore, there is no
intersection incx, « + o].

Consequently, given thatz™>* < « + o, we have
flato) <f(ato)andf(a+o) < [ (a+o).
Consider the intervale + o, n — o). If —2™** > 5 — o,
there is no intersection if0, » — &) since there is no
intersection in0, —z™*]. So we consider the case when
_xmax < /’7 — .

In (@ + o, n — o), the contributions off,(x) to f(z)
and f_(z) are both decreasing and convex (see Fig. 7).
However, at any particular point € (« + o, 1 — o),
the contribution off,.(z) to f(x) decreases faster than its
contribution to f_(z). On the other hand, the contribu-
tion of f,, () to f(z) is decreasing and concave, while its
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contribution tof_(x) is increasing. An additional condi-
tionthatf’(a+c) < f_(a+o) willlead to the conclusion
that f (x) is decreasing faster thah (z) at every pointin
(Oé + g, n— 0]'

For —z™® < o + o, we have shown thaf(a + o) <
f-(a+o)andf(a+0) < fL{a+ o). FOr —zm** >
ato,wehavef(a+o) < 0 < f_(at+o)andf’'(a+o) <
0 < f"(a+ o). In both cases, we have thifa + o) <
f-(a+ o) and f(x) decreases faster thgn(z) at every
point in (o + o, n — o). Therefore, there cannot be an
intersection ila + o, n — o).

i) z° > 0, ™ > 0: First note that there is no intersection
of f(z) andf_(z) in (0, z™**] since f(0) = f_(0) and f(z)
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/x x F(2)de > L ) de

z" +e
/ ' (x)dz < 0

— s

where the first inequality holds sincgx) is convex in
(—o0, 2%). The second inequality holds as a consequence
of Lemma A2. The last inequality holds sin¢ér) is con-
cave in(z®, ) D (—=°, «). Combining the above in-
equalities, (24) holds.

If —z* < 2°, we have that

¥ te

is increasing whilef_(x) is decreasing iff0, =™*]. Consider
two separate interval§z™**, «) and[«, 7 — o).

' (z)dr <0

/:_ F(z)dz > 0 /x

i) «° > 0, 2™** > 0: First note that there is no in-
tersection off(x) and f_(x) in (0, z™**] since f(0) =
f-(0)andf(x) is increasing whilef_ (z) is decreasing in
(0, z™>*]. Consider two separate interva(s:***, «) and
[ov, 1 — 0).

* We now show that there can be at most one intersection
in (x™** ). Suppose there is an intersection denoted by
x*. We now argue thaf’(z*) < f’ («*). The intersection
must occur in(z™**, z7) sincef(z) < 0 andf_(z) >
0 in [z°, 00). In (™™ z°), both f(z) and f_(z) are
decreasing. Sincg(z™*) > f_(z™>), for f(x) and
f—(z) to intersectf(z) has to decrease faster thAn(x)
atz*.

Consider a point € (z*, ) and lete = x — z*. We
want to showf’(x) < f’ (z) as follows:

)~ ()
z4€
= )+ / () de — 1 (z")

= / o () de

¥ 4e
— )+ / (@) de — [ (")

- [ : F(z) de

(23)
<0. (24)

Equation (23) follows fromy’(«*) < f” («*). It remains
to prove (24).

Let z° denote the unique saddle point(iroo, ™)
[Lemma Al part iv)]. Ifz° < —z* — ¢, then (24) holds as
a consequence of Lemma A2. Hz* — ¢ < 2° < —z*,
we have that

where the first inequality holds sinc& ) is convex in
(—z* — ¢, —z*) [Lemma A1l part iv)]. The second in-
equality holds sincer > z* > #™®* > z° and thusf(x)
is concave in(z*, z* + ¢) (Lemma A2). Combining the
above inequalities, (24) holds.

Therefore, after the intersection point, f(x) de-
creases faster thafi_(x) at all points in (z*, «). It
follows that there can be at most one intersection point
in (z™**, «). In addition, if an intersection exists in
(™, a), thenf(a) < f_(a) and f'(a) < fL ().

 Consider the intervadly, n— o). We shall show that, given

an intersection of () and f_(z) in (0, «), there can be
no additional intersection ify, 7 — o). In addition, given
no intersection if0, «), there is at most one intersection
in [e, n — o).

We first show that-z° < «, i.e., f_(x) is convex in
[cv, 00). Sincex? is the only saddle point ifoo, 2™2*)
wheref(z) changes from convexity to concavity [Lemma
Al part iv)], it is sufficient to show thaf”’(—«) > 0.
From (15),

f(=a)

1
- V2r00
— Ma? + 7 +2an — o?)

a? + 1% + 2am
-exp T

[(4042 _ 02)67(4&/202)

1 2 2 67
> 4062 _ 2 e—(4a /20’ ) =
V2rob [( ) n

a2 772
P (‘ﬁ * y)

6—(2a2/20'2)
NG

+ |:a26—(2a2/202) _ 04776_(2‘”7/2”2)} F(a? —o?)

[C—(mz/%z) _ %C—(Q‘WI/Q’TZ):|> > 0.

<2a2 [e—<2a2/%2> _ @—(QM/?UZ)}

(25)
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The first inequality holds sinces™* > 0, and
thus f/(0) > 0 [Lemma Al part iv)], from
which the expression forf/(0) in (14) yields

A < (afn)e @ /20%)+0°/20%)  The second inequality
results from the fact that all quantities in square brackets
of (25) are positive ande > o by assumption 1. Since

a < n, the quantities in the first and the third square
brackets are positive. The quantity in the second square
bracket is positive sincere=(*/*) is decreasing in
(02, 00).

Lemma Al parts iii) and vii) tell us that
[, — o) C (2™ z™m) and there is a single
saddle point in(z™®, z™i®) Thus, in[e, n — o), there
is at most one saddle point, which we denoterbyvhen
exists. If z* exists, we consider two separate intervals
[, %) and [z*, n — o). Otherwise, we consider the
interval [«,  — o). We show that in each interval, the
following two properties hold.

1) If an intersection occurs before the interval, there is
no additional intersection in the interval.
2) If no intersection occurs before the interval, there is
at most one intersection in the interval.
We prove the two properties below. Keep in mind tf@t)
and f_(x) are decreasing ifte, n — o).
— Consider the first intervalfa, ) (or [a, n — o) if
z' does not exist). We now show that, given an inter-
section beforey, there is no additional intersection in
[o, xt).
Letx € [a, 2') ande = = — . We showf’(z) <
/L (z) below

(@) — f()
ate
—'(a) + / f(x) da

) - / ey
ate e
< /(y (z)dx — /(y /" (z)dz < 0.

The first inequality holds since we have shown that if
an intersection:* exists ands* < «, then f(o) <
f—(a) and f'(«r) < f’”(«). The second inequality
holds sincef”(a) < 0 [f”(z™*) < 0 and Lemma
A2] and thusf(z) is concave if, «t), while f_(x)

is convex in[a, o). Sincef(a) < f_(«) and f(z)
decreases faster thgh (x) at every point inc, z"),
there is no additional intersection jr, z*). In addi-
tion, sincef(a) < f_(«) and f'(a) < f_(«), we
have thatf(z') < f_(z') and f/(z*) < f_(z*).

If there is no saddle point i, n— ), the facts that
f(e) < f“(a) and f(x) is concave whilef_(x) is
convex imply thatf(z) decreases faster thgn () at
every pointinc, n—o), and no additional intersection
is possible inc, n — o).

Given that there is no intersectior such that
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case thatf(«) > f_(c) since f(0) = f_(0),
f/(0) > 0 > f’(0), and no intersection has occurred
beforea.

Let T denote the smallest point of intersection, if
exists, in[a, x*). Sincef(a) > f_(«) and bothf(z)
andf_(z) are decreasing, fof(x) andf_(z) to inter-
sect, we must havg (z1) < f/ (z).

We argue thatf(x) decreases faster thgh (x) at
every point in(z*, z*) sincef/'(z+) < f' (z*) and
f(z) is concave whilef_(x) is convex. Therefore,
there can be no additional intersection (int, =*).
Moreover, given that™ exists in[«, x*), we have that
fat) < f-(z") and f'(at) < fL(a").

If there is no saddle point ifar, n—o ), we can let:™
denote the smallestintersection poinfin n—o). The
factsthatf’(z*) < f’ (x*) andf(z) is concave while
f—(z) is convex imply thatf (=) decreases faster than
J/_(x) atevery pointinz™*, » — &) and no additional
intersection is possible itw™, n — o).

— Consider the intervals’, n — o) (this case does not
exist if * does not exist). We now show that, given an
intersectionr* < !, there is no additional intersection
in [z, n — o).

In [z*, n — &), f(x) is decreasing and convex (by
the definition ofz"). Similarly, f_(z) is decreasing
and convex. However, ifx?, n — o), the contribution
of f.(z) to f(zx) is decreasing faster than its con-
tribution to f_(z) (see Fig. 7). On the other hand,
the contribution off,,(x) to f(z) is decreasing while
its contribution to f_(x) is increasing. Therefore,
f(z) decreases faster thafi(x) at every point in
[x!, n— o). Since we have shown thatz?) < f_(x!)
when there is an intersectiarf such thatr* < 2?,
it follows that there is no additional intersection in
[z*, n = o).

Given that there is no intersectiofi such that:™ <
x', we now show that there is at most one intersection
in [z, n — o). As areminder, we have in this case that
fat) > f_(a*) sincef(0) = [-(0), /'(0) > 0 >
J-(0), and no intersection has occurred befote

Let xT denote the smallest point of intersection,
exists, in[z*, n — o). Sincef(z') > f_(z') and both
f(z) andf_(z) are decreasing, fof(x) andf_(z) to
intersect, we must havg (z*) < f («).

We argue thatf(x) decreases faster thgh (x) at
every pointinz™, n—o) sincef’(z) < f' (z*) and
we have argued that the overall contributionfgf )
andf,(x) to f(x) is decreasing faster than the overall
contribution off.(z) andf, (z) to f_(z)in [z*, n—0)

D (zt, n — o). Therefore, there can be no additional
intersection in(z*, n — o).

We conclude that, given an intersection befarethere

is no additional intersection ifw, 7 — o). On the other

hand, given no intersection befasg there is at most one

intersection in«, n — o).

if

Combining the results for the intervglg, +™2*], (z™**, «),

x* < «, Wwe now show there is at most one interand«, n—o), we conclude that there is at most one intersection
section in[a, z'). As a reminder, we have in thisin (0, n — o). O
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Lemma 2: Under Assumption 1.H s+ oy = [H|(0,ss) <0 we have the same conditions for an extremum as in problem (6),
and[H|; 7 > 0, forall B < (1/2)B(0) + (1/2)B(n — o). namelyA’(J;) = AB'(J;), ¢ = 1, 2. Lemma 1 tells us that an
Proof: We first show thatH |(s: o) = [H|,s+) < 0for ~extremum is one of the followind./, J), (J*, 0) and(0, J3),

all J* > 0. From (8) whereJ and.J® are defined above and3(0)+(1—~)B(J3) =
1 A(J?) B. It remains to investigate the bordered Hessian determinant
Hlnw = =5 |4/0) - G B'O)| B0 Hl,

. For the extremund./, .J), |H|(s,,7,) is exactly the same as
It suffices to show thatl'(z)/B'(x) < A”(0)/B"(0) forall (26) and is thus positive for all <  — o. Thus,(.J, .J) is a

z > 0 as follows: local maximum. For the extremu@’®, 0)
A(z) e (@=0)/20%) _ o—(@+a)*/20%) A(J9)
Blz) e (@n2/20%) — (@0 /20) 1 Hl(gy,0) = =7 [A”@) ;100 B”<0>} (B'(J%))2.
ae (o7 /20%) [%2 cralo’ _ & c*“’“/"z)} For the extremun(o, .J3)
Ce—(2/202) [ 22 ganfo? _ 2 o—(en/o?) A'(J3) s
e (/200 [ ex1/e” - 2 amten/e?)] |H (0 = —(1=7) [A"<0> -~ Fas) B0 BUD®
ae—(a®/20%) A//( ) 2
ne—P72 — B0 In either case, we hajé#l|(,, s,y < 0 as shown in the proof of

Lemma 2. Thug.J?, 0) and(0, J3) corresponds to local min-
where the inequality follows from the facts that < %, and jmima.
9(y) = (1/y)e*? — (1/y)e™*¥ is increasing in(0, oo) for all ~ similarly to the arguments used to construct theorem 1, since
x> 0. Itis straightforward to verify the last equality from (4). the constraint set is a contour curveydB(.J; ) + (1 — ) B(J2)
We now show thatH | 5 3, > 0, forall ./ < n—o. From (8) in the first quadrant of.J,, .J) plane and connects the two end
) points (J#, 0) and (0, J3), the absence of an extremum else-
(B/(j)) . (26) Where together with the continuity of cost function imply that
(J, J) is a global maximum and thus has a higher cost than
/ / 1" AN : (JS, 0). O
oo ) e o i Lo :Le 1 bo th cohrent ostasnal st
between the curveﬂ’(x) and AB'(z) atz* € (0,7 — o), ated with scenari@ in which ¢ out of I° bits are equally af-
we haveA = A'(z*)/B'(z*). We can therefore think of fected and BER is equal t&. Let A, be the expected total
) number of device alarms in an observation period corresponding

(A (z*)/B'(z ))B”( *) as the slope of thaB’(x) curve and
A"(*) as the slope of thel’(x) curve atz*. to scenariot. Under Assumption 1, givedd = 1,7 > 1,

We haVe Shown thaX — Al(.’L'*)/B/(.’L'*) < A//(O)/B//(O) andB < (1/T)B(7’] — O') + ((T — 1)/T)B(O), we haVe that
. . ' > Ar_1 > - > Ap.

or equivalentlyB”(0) < A”(0). SinceAB’(0) = A’(0) =0, 7T S
the condition)\B”((g))< A”gog yields )\B/((O)Jr) < (A2(0+), Proof: The cond!t|onB < (1/T7)B(n—o) guarantees that
whereh(0T) representim,_,o+ h(x). The facts that* is the Ji € [0, = 7) for allé, 1 <4 < T.We shall prove th? Iemma
only intersection oAB’ () andA’(x) in (0, n — o) (Lemma 1) by induction. First, compare the sgenaﬂbandT— 1 yielding
and \B'(0t) < A’(0%) imply that atz* the slope of\B'(x) the expected total number of device alarss and Ar_; re-
[equal to(A’(z*)/B'(x*))B"(«*)] is larger than the slope of spectively. Notice that comparing these two scenarios is equiva-
A'(z) [equal to A”(z*)] since \B'(z) intersectsd’(z) from lent to comparing the two extrema in the modified optimization
below. EquivalentlyG(z*) < 0 for all z* € (0, n — o). problem of lemma A3 Wlthy = (T —-1)/T.The two extrema

The conditionNB < (1/2)B(0)+(1/2)B(n— o) ensures that are(Js., J3) for scenaridl’ and(J3._,, 0) for scenaridl’ — 1.

J* < n—oandJ < n—o.Thus, given the condition, it follows Le’ilnma A3 tells usdy >_£T—}' AT i1 1<i<T—2
that|H|(Js 0) = |H|(0 76y < 0and|H|(3 5 > 0 n ow compare scenarids—jand?7 —;j—1,1 <5 < 7T -2,

Consider the problem of minimizing the expected total number

|55 == |A"(J) = — = B"(J)

Lemma A3:Let 1/2 < V< 1,_andB < _’V_B(n " 0.) T ofdevice alarms over tHE— 7 bits that are degraded in scenario
(1_7)3(0).' Under Assumption 1, n the modified optimization;, _ J. Note that the expected number of device alarms for the
problem with}/ = 1 a andl” = 2 given below remaining bits is the same in both scenarios, namjetyo).

minimize yA(J1)+ (1 —v)A(J2) Comparing these two scenarios in the problem is equivalent to
) . comparing the two extrema in Lemma A3 with= (7" — j —
subjectto B =yB(/1) + (1 -7)B(J)2) 1)/(T — j) and the BER constraint set & — (j/7") B(0). The

there are extrema of the forngd, .J) and(.J*, 0)a >, where €xtremaofinterestai/;_;, Jz_;)and(Jz_;_,, 0). Lemma
B(J) = BandyB(J*)+(1—v)B(0) = B.(J, J) corresponds A3 tells us thatdr_; > AT —j—1, completing the inductiori.]
to the global maximum, whil.J*, 0) corresponds to a local ~Lemma A4: For the functiond(./) definedin (4): i) There is

minimum and yields a lower cost thad, ). a unique positive solutiof* such thatd”(.J*) = 0,ii) J* > «,
Proof: Similar to the work in Section IV-A, we only con- iii) A’(J) > 01in [0, oc).

sider nonnegative values of and.J,. The conditionB < Proof: The function

~vB(n — o) + (1 — v)B(0) ensures that botl; andJ; are in 1

: AV JOL —A(z) = [C—<<m+a>2/202> _ C—((m—a>2/202>}
[0, n — o). By differentiating the Lagrangian with respectig N
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has the same form a&x) defined in (13) in Lemma 3A. In  [4] C.S. Liand F. Tong, “Crosstalk and interference penalty in all-optical

particular, here-« takes the place of in (13), while « takes networks using static wavelength router$, Lightwave Technglvol.
’ ’ 14, June 1996.

the place of;in (13). Therefore, various properties from Lemma [5] C.Saxtoftand P. Chidgey, “Error rate degradation due to switch crosstalk

3A hold for the function—A’(x). From Lemma 3A, we know in large modular switched optical network$ZEE Photonics Technol.
that —A’(x) has only one local maximum located beforer Lett, vol. 5, no. 7, July 1993. .

d | | mini ft We al K [6] C.X. Yu, W. K. Wang, and S. D. Brorson, “System degradation due to
(<—o) an one local minimum anes (>a) € also know coherent crosstalk in WDM network nodes, Rnoc. OFC’98 WM 30,
that—A’(z) strictly increases (from the limit value of 0) in the pp. 212-213.

interval from —oo to the local maximum, strictly decreases in [7] M- Méedard, D. Marquis, and S. R. Chinn, “Attack detection methods
. . L for all-optical networks,” inProc. Internet Society’s Symp. Network and
the interval from the local maximum to the local minimum, and Distributed System Security (NDSSlar. 1998, session 3, paper 1.
strictly increases (to the limit value of 0) in the interval from the [8] P. Saengudomlert, “Analysis and detection of jamming attacks in an all-
local minimum tooc. optical network,” MIT Master thesis, Dept. Electrical Engineering and
- . . Computer Science, MIT, Cambridge, MA, 1998.
i), ii) It follows that in the interval from zero to the local  [g) \m.sumida, “OTDR performance enhancement using a quaternary FSK
minimum,— A’(z) strictly decreases and, therefored” (z) < modulated probe and coherent detectidBEE Photon. Technol. Left.

0. At the local minimum, we have A”(x) = 0. In the interval vol. 7, pp. 336-338, Mar. 1995.

f the | | mini ¢ A trictly i d [10] I. Katzela, G. Ellinas, and T. E. Stern, “Fault diagnosis in the linear light-
rom the focal mnimum taxo, — (37) strictly Increases and, wave network,” inProc. LEOS Summer Topical Meetingsug. 7-11,

thus,—A”(x) > 0. Therefore, we have-A”(z) = 0 only at 1995, pp. 41-42.

the local minimum/J* of —A’(a:). In addition, the location of [11] N. Schroff and M. Schwartz,'“Faul'tdetection/identification in the linear
lightwave network,” Columbia Univ., CU/CTR/TR 243-91-24, 1991.

this |9_C8.| r_ninimu_m is in the positive direction of (> ). [12] A. V. Yakovlev, “An optical-fiber system for transmitting confidential
iii) It is straightforward to show from (4) thatd/(0) = information,” Telecommun. Radio Engrol. 10, 1995.
0. —A’(a:) decreases and is thus negative{()n J*)_ In addi- [13] G. R. Hill et al, “A transport network layer based on optical network

ti A . tonicallv to the limit val £0i elements,’J. Lightwave Technglvol. 11, May/June 1993.
on, — (37) Increases monotonically to the limit value or U in [14] A.Kloch, B. Mikkelsen, and K. E. Stubkjaer, “Pilot tones in WDM net-

(J*, o). Therefore—A’(x) < 0 or equivalently4’(x) > 0in works with wavelength converters,” Proc. OFC'97, paper TuES6, pp.
[0, o). O 24-25.

Lemma 4: The functionC’(J)/C(J) strictly decreases in
[0, ).

Proof: Let J* be the unique positive solution #"(z) =
0 as described in lemma A4. SincE > «, it suffices t0 Poompat Saengudomlert(S'94) is a Ph.D. candidate at the Laboratory for
show thatC’(.])/C(.]) strictly decreases i{'(), ,]*)_ Consider !nformation and Decision Systems in the Electrical Engineering and Computer

A ’ Science (EECS) Department, Massachusetts Institute of Technology (MIT),
the derivative o (‘])/O(J) Cambridge, MA. He received the B.S.E. degree in electrical engineering from
1 " _ 1 2 Princeton University, Princeton, NJ, in 1996, and the M.S. degree in EECS
A (¢ _C)He") - (C'()) from MIT, in 1998.
dJ \ C(J) (C(JI))? His research interests lie in communication networks. Since 1998, he has been

5 conducting researches on the design of high-speed optical networks under the
(1= AI)A"(T) = (A'(J])) 27) MIT Lincoln Laboratory’s Next Generation Internet project.
- (C(J))?

which is continuous since it is the derivative of a continuous
functionC’(J)/C(J). Note thatl — A(J) > 0 for all J since
from (4) A(J) < 1forallfinite J. In addition, lemma A4 tells us Muriel Médard (S'91-M'95-SM'02) she received the B.S. degree in EECS

" ; * innand in mathematics, in 1989, the B.S. degree in humanities, in 1990, the M.S.
thatA (J) > 0 I.n [0’ J, ) It fOllOWS from the a}bove *eXpreSSIOndegree in EE, in 1991, and the Sc.D. degree in EE, in 1995, from the Massachu-
that the derivative of’(./)/C(.J) is negative ino, .J*). U setts Institute of Technology (MIT), Cambridge, MA.
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