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Guaranteeing the BER in Transparent Optical
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Abstract—A network consisting of transparent optical nodes
(TONs) can provide high speed end-to-end communication paths
with very low bit-error rates (BERs). However, owing to compo-
nent crosstalk and other degradations at TONs, the BER of a par-
ticular communication path traversing several TONs can be de-
graded by a few orders of magnitude even in the absence of com-
ponent failure. Monitoring the quality-of-service (QoS) of a com-
munication path has typically relied on sporadic BER testing and
operation monitoring by the nodes using probe signals. Intermit-
tent BER testing cannot provide continuous monitoring of the net-
work QoS. On the other hand, the use of probe signals is not sensi-
tive enough to detect the BER degradation. This work investigates
a novel approach of monitoring service degradation at individual
nodes using a wrap-around device which taps and compares signals
from the input and the output at each TON along the lightpath. We
propose a modification using hard limiters at TON inputs and de-
rive the BER value that this modified method can guarantee in the
presence of signal degradation due to coherent crosstalk at TONs.

Index Terms—Alarm systems, bit-error rate, crosstalk, digital
communications, network monitoring, transparent optical net-
works.

NOMENCLATURE

SNR SNR of the lightpath.
Variance of the real and imaginary parts of AWGN
at any TON at any bit time.
Number of TONs in the lightpath.
Number of bits transmitted in an observation pe-
riod.
Coherent crosstalk signal (real part) at nodefor
the th bit transmission period.
Threshold value for a device alarm.
Threshold value for a BER alarm.
Average BER in an observation period below
which a BER alarm is not generated with very
high probability (see also and ).
Average BER in an observation period above
which a BER alarm is generated with very high
probability (see also ).
Upper limit on FP, the probability of concluding
that when in fact .
Upper limit on FN, the probability of concluding
that when in fact .
Probability function of a device-alarm generation
at a TON.
End-to-end BER function of a transmitted bit.
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Fig. 1. Degradation of data signals due to coherent crosstalk.

I. INTRODUCTION

CONSIDER A communication path traversing several net-
work nodes. In an electronic network, each intermediate

node (between transmitting and receiving nodes) generally de-
tects and regenerates (retransmits) traversing data signals. In an
optical network, a high optical link bandwidth allows a trans-
mission rate so high that electronic processing of data units (e.g.,
Internet protocol (IP) packets, ATM cells) cannot be done in
real time. For example, an ATM cell of 53 bytes must be pro-
cessed under 42.4 ns if an optical link transmits at 10 Gb/s.
Consequently, it is desirable to have certain intermediate nodes
be transparent optical nodes (TONs). A TON is a node which
does not perform optical-to-electronic or electronic-to-optical
conversion. Thus, signals traversing TONs remain in the op-
tical domain. An end-to-end communication path through sev-
eral TONs is referred to as a lightpath. A communication service
through a lightpath can be made transparent to the formats (pro-
tocols) of transmitted data. However, since TONs do not detect
and regenerate data signals, there is no error detection and cor-
rection at intermediate nodes. Instead, data signals experience
cumulative degradation at TONs along the lightpath.

Common TONs consist of wavelength selective switches
(WSSs), optical amplifiers, optical multiplexers, and demul-
tiplexers. Certain switching TONs exhibit crosstalk effects
[3]–[6], namely a light signal designated (switched) to one
output fiber leaks onto another output fiber. Optical amplifiers
are used to compensate for power loss within the network. The
most common amplifiers are e4rbium doped fiber amplifiers
(EDFAs), which are also broadband noise sources in the com-
munication path. In addition, EDFAs exhibit gain competition,
namely signals on different wavelengths must compete for
limited power resources. An unusually high-powered signal on
one wavelength can result in lower amplifier gains for all other
wavelengths sharing the same EDFA.

A data signal traversing TONs can be degraded as a result of
crosstalk and gain competition at TONs. Fig. 1 illustrates co-
herent crosstalk in a lightpath. Coherent crosstalk occurs when
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Fig. 2. A wrapping service monitoring device at a TON.

crosstalk signals have the same frequency as data signals and
thus directly alter the data signal waveforms. Neglecting signal
attenuation and all noise sources, the receiver receives the data
signal together with a crosstalk signal introduced at
TON 1 by lightpath and a crosstalk signal introduced at
TON 2 by lightpath . We concentrate our analysis on coherent
crosstalk since noncoherent crosstalk due to gain competition
is device specific and is outside the scope of this work.

Section II describes existing supervisory methods that
may be used to monitor the quality-of-service (QoS) of a
communication path. We argue that these methods are not
sufficient to detect small bit-error rate (BER) degradations.
Section III describes a novel BER monitoring system proposed
in [1] and [2], and provides the setup for the analysis that
follows. Section IV contains the analysis leading to the BER
guarantees provided by the system discussed in Section III. To
improve the sensitivity of the system, we propose in Section V
a modification using hard limiters at TON inputs. Section VI
provides a summary and future directions.

II. EXISTING SUPERVISORYMETHODS

This section briefly discusses existing supervisory methods
that may be used to detect BER degradation. References [7]
and [8] provide detailed discussion on this topic. Two main ap-
proaches exist for monitoring the lightpath QoS. The first relies
on the use of pilot signals, which are known signals inserted to
travel along the same paths as data signals but are distinguish-
able from data signals. As an alternative, we can use an optical
time domain reflectrometer (OTDR) to detect the echo of pilot
signals at the transmitter [9]. The second approach is based on
observing the statistical parameters such as optical signal av-
erage power, optical signal frequency spectrum, and the BER of
a lightpath [10]–[12].

Coherent crosstalk can degrade the BER without causing
degradation to pilot signals. Pilot signal with frequencies close
to those of data signals are referred to as subcarrier multiplexed
(SCM) signals. In some cases, SCM signals are recovered
by detecting them from the superposition with data signals.
However, SCM signals are generally modulated at a much

lower rate than data signals [13], [14]. Therefore, a small
percentage of data bits can be degraded without appreciable
degradation of SCM signals.

Consider the second supervisory mechanism based on ob-
serving statistical parameters. A power detector may be used to
detect BER degradation if crosstalk signals change the average
power of data signals. If a crosstalk signal at a TON is present
only 1% of the time, the BER may deteriorate by several orders
of magnitude (up to 10 ) while the average received signal
power does not change significantly. By the same arguments,
an optical spectrum analyzer (OSA) cannot detect BER degra-
dation due to a sporadic crosstalk signal which is present only
at a small percentage of time.

The use of a BER tester (BERT) is a standard procedure to de-
tect BER degradation. However, BER testing is only performed
sporadically on test patterns. Moreover, the use of a BERT re-
quires a long detection time. For example, a BERT takes sev-
eral hundreds of seconds to distinguish between a BER less
than 10 and a BER greater than 10 for a transmission rate
of 1 Gb/s.

Short detection time is desirable in several aspects. Since op-
tical transmission rates are extremely high, a large amount of
data can be affected before any action takes place. If retrans-
mission is to be performed after the detection of excessive BER,
long detection time implies the use of a large amount of buffer
storage. As we shall see, our proposed method of detecting BER
degradation is based on the detection of signal degradation at
TONs rather than the detection of error bits themselves. As a
result, our method can operate at roughly 6 orders of magnitude
faster than a BERT.

III. SETUP FOR THEANALYSIS

A. Novel Method for Detecting BER Degradation

This section describes the method for detecting BER degra-
dation along a lightpath as proposed in [1] and [2]. The de-
tection system is constructed by installing, at each TON along
a lightpath, a service monitoring device which wraps around
its TON as shown in Fig. 2. This wavelength-selective device
compares the signals from input and output taps on a particular
WDM channel. The relation between these two signals yields a
diagnostic of TON operation. Our analysis will concentrate on
a single wavelength dovosopm multiplexing (WDM) lightpath
using on-off keying (OOK) signaling with coherent detection.

The overhead associated with this novel method includes
monitoring devices at all TONs along the lightpath, additional
control information about operational status of each TON, and
additional transmit power to overcome tap losses. Although
we concentrate on using a monitoring device for a single
WDM channel, when there are lightpaths (on the same fiber)
going through the same TON input–output pair, it is possible
to modify the device using optical demultiplexers so that the
device can simultaneously observe signals on several lightpaths
taken from the same taps.

Lightpaths which do not have the same TON input–output
pair require different monitoring devices at the TON. If only a
fraction of lightpaths require service monitoring at any time, we
can time-share the devices through the use of optical switches.



788 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 4, MAY 2002

In addition, the monitoring device can be adjusted through its
control software to handle possibly different bit rates without
any change in its hardware.

In Fig. 2, we denote the input and output signals by and
, where is the TON delay and is used instead

of in consideration of the changes in magnitude (tap losses
and amplification), phase, and polarization. Denote the sum of
signal and noise at TON output by . In the op-
tical domain, the device takes two tapped signals and compen-
sates for the difference in delay, magnitude, phase and polariza-
tion under normal operation. It then performs signal subtraction
and optical-to-electronic conversion using coherent detection.
In general, the magnitude, phase, and polarization of data sig-
nals do not vary rapidly; and we can assume, in the absence of
crosstalk, that the device yields an output proportional to.
For notational simplicity, we drop the time notation below.

If there is a degradation introduced at the TON, the device
output will be proportional to . When the output exceeds
a preset threshold, the device generates an alarm notifying ex-
cessive signal degradation at the TON. With such a wrapping
device installed at each node along the lightpath, we consider,
in each bit transmission period, that a “device alarm” is gener-
ated if at least one TON in the lightpath generates an alarm. In
each observation period, we count the total number of device
alarms. If this total is higher than a preset threshold, a “BER
alarm” (notifying an excessive BER) is generated.

Note that the BER we consider in this work is the proba-
bilistic BER, as opposed to the actual observed BER. The use
of this probabilistic measure allows us to detect BER degrada-
tion quickly without having to observe actual bit errors. In op-
tical transmission, the BER guarantee is generally very low, e.g.,
10 , therefore observing actual bit errors can be slow. For ex-
ample, given the transmission rate of 1 Gbps and the BER of
10 , we expect only one bit error in each second of observa-
tion.

The performance criteria of the BER monitoring system are
the false positive probability (FP), which is the probability of
generating a BER alarm when the BER is below the guaranteed
level, and the false negative probability (FN), which is the prob-
ability of not generating a BER alarm when the BER exceeds the
guaranteed level. Preliminary results on the performance of this
BER monitoring system are given in [2]. However, the results
in [2] are based on direct detection of optical signals and the as-
sumption that coherent crosstalk signals are constant throughout
an observation period and are equal at all TONs. In this work,
we drop these assumptions, i.e., we shall consider coherent de-
tection of optical signals and allow crosstalk signals to vary with
time and TON locations.

Our goal is to provide a BER guarantee for each observa-
tion period. In particular, let denote the desired level of BER
guarantee. When the BER exceeds, we want the BER alarm
generated with low FN. When the BER is below, we want no
BER alarm with low FP.

B. Notations

For a complex signal , let and denote its real and
imaginary parts. Let and denote theOFFandON sig-
nals for OOK signaling. Assume that theOFF and ON signals

are equally likely. By expressing a complex signalin the form
, we can write as (0,0) and as .

Let denote the number of TONs in the lightpath. Assume
that there is additive white Gaussian noise (AWGN) at each
TON with variance for both real and imaginary parts. If
we choose to be , in the absence of crosstalk,
the end-to-end BER is equal to , where is
the complementary cumulative distribution function of a zero-
mean, unit-variance Gaussian random variable.is related to
a particular signal-to-noise ratio (SNR) by the relation

.
Let be the coherent crosstalk signal at nodeduring

the th bit transmission in an observation period. Using the fact
that crosstalk effects propagate toward downstream TONs, the
end-to-end BER of theth bit (i.e., the probability of error for
the th bit) is

(1)

where add up constructively along the lightpath for the
worst-case scenario.

Let denote the device output at a particular TON. We want
to generate an alarm when coherent crosstalk signal is large, i.e.,

, where is a preset threshold. The probability of an
alarm generation at nodeat the th bit time is

Device alarm (2)

Let denote the length of an observation period in units of bit
transmission periods, anddenote the average BER associated
with this observation period. Among all crosstalk scenarios with

, the one yielding the smallest total number of device
alarms in an observation period has the smallest probability of
a BER-alarm generation, and is thus the worst-case scenario
for detection. To provide a BER guarantee of, we need to
check that our monitoring system performs satisfactorily under
the worst-case scenario corresponding to the BER of.

We shall describe each scenario in terms of crosstalk signals
at all TONs at all bit transmission periods, i.e.,

. For notational simplicity, we shall drop the
subscript and assume that refers to the real component
for the rest of this paper.

For a fixed , deriving the worst-case scenario is equivalent
to finding the crosstalk signals which are the free variables in
the following optimization problem

minimize expected number of device alarms

in bit periods

subject to average BER in bits (3)
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For future reference, let and denote the device-
alarm probability function and the end-to-end BER function
whose expressions in (1) and (2) are presented again below

(4)

IV. A NALYSIS ON THE BER GUARANTEES

This section provides mathematical analysis leading to BER
guarantees by the monitoring system described in Section III-A.
All the proofs of various lemmas are given in the Appendix.

We proceed by solving problem (3), which we now express
more specifically. Since signal degradation propagates along
the lightpath, the end-to-end BER for theth transmitted bit is

. Thus, the average BER in an observation period
is . In each bit transmission period,
we consider that a device alarm is generated if at least one TON
in the lightpath generates a device alarm. The expected number
of device alarms in an observation period is, therefore,

. Thus, problem (3) becomes

minimize

subject to (5)

whose feasible solutions do not form a convex set. Therefore,
common techniques based on convex optimization do not apply.

A. Worst-Case Scenario for and

Assume a single TON in the lightpath. With only one TON,
we can drop the superscript and define , .
We start with a simple case with . Problem (5) becomes

minimize

subject to (6)

The Lagrange multiplier method gives us the following con-
straints for an extremum:

(7)

where is a derivative of function with respect to
.
Because and are even, we shall consider only

nonnegative values of . Since , zero is a
solution to (7). Lemma 1 states that, under Assumption 1, there
is at most one positive solution to (7).

Assumption 1:Let . Assume that
.

Lemma 1: Given and that Assumption 1 holds, there
is at most one positive solution to the equation
in .

Assumption 1 generally holds when the SNR is sufficiently
high since and, therefore, is small
compared to . Empirical data suggest that lemma 1 hold re-
gardless of Assumption 1.

Given that only zero and one other positive value are solutions
to (7), there are two forms of solutions for an extremum, namely

, and (or ) with (or ) . Let be such
that and be such that

. It follows that the extrema are , , and .
Given the locations of the extrema, we can investigate their

properties by evaluating the bordered Hessian determinant
of the Lagrangian

(8)

where
. The following lemma asserts that

corresponds to a local maximum, and and
correspond to local minima.

Lemma 2: Under Assumption 1,
and , for .

Since the constraint set defined in (6) is a contour curve
of in the first quadrant on the
plane, and this curve connects the two end points and

, the absence of a local minimum elsewhere guarantees
that and are indeed global minima for the
continuous cost function in (6). We conclude the result in
Theorem 1.

Theorem 1: Under Assumption 1, given a single TON (
) in the lightpath, the observation of 2 bit periods ( ), and

the average BER , a scenario
in which only 1 out of 2 bits is affected by coherent crosstalk
has the smallest expected total number of device alarms and is
thus the worst-case scenario.

We can extend the result from theorem 1 to the case with
, problem (5) becomes

minimize

subject to (9)

The Lagrange multiplier method gives the same condition as
in (7), namely , . We have
from Lemma 1 that under Assumption 1 there exists at most
one positive solution to in . We
shall assume that to
guarantee that for all in all scenarios.

Out of scenarios with the average BER, define a scenario
in which out of bits are affected by crosstalk signals of
constant magnitude as scenario. All possible scenarios are

. Lemma 1 tells us that an extremum corresponds to
one of the scenarios just described. Let denote the expected
total number of device alarms in an observation period corre-
sponding to scenario. Lemma 3 states that

, yielding Theorem 2.
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Lemma 3: Under assumption 1, given , , and
, we have that

.
Theorem 2: Under Assumption 1, given , ,

and , a scenario in
which only 1 out of bits is affected by coherent crosstalk has
the smallest expected total number of device alarms and is thus
the worst-case scenario.

B. Worst Case Scenario for and

With , we can drop the subscript and define
, . Also, define . Considering

only nonnegative values of for the extrema, we define
to be such that . Note that is unique since

is strictly increasing in . Problem (5) becomes

minimize

subject to (10)

The Lagrange multiplier method yields the constraint for an
extremum

Multiplying through by , we have

Lemma 4 states that is a strictly decreasing
one-to-one function in .

Lemma 4: The function strictly decreases in
.

It follows that for any value of , an extremum
must have equal components, namely , and
is thus unique. To show that is indeed the
global minimum, it is sufficient to show that the cost function at
another point in the constraint set is larger than at the extremum.
Consider the point , we
have that

where the equality follows from the fact that is symmetric,
and the inequality from the fact that since

is strictly decreasing in . We have thus established
Theorem 3.

Theorem 3: Given , , and , a
scenario in which the crosstalk signals at TONs are equal

has the smallest expected total number of device alarms and is
thus the worst-case scenario.

C. Worst Case Scenario for and

As in the last section, define . Problem (5)
becomes

minimize

subject to (11)

In any optimal solution, we must have, for each, the
minimum value of subject to the value of

. Otherwise, we can obtain the better solution by
reassigning the values of such that their sum remains the
same but is strictly smaller.

Let denote . Let denote the maximal
value of for the th bit interval subject to the con-
straint on . (In Section IV-B, empirical data suggest
that , i.e., in the worst case scenario,
coherent crosstalk signals at TONs are equal. Theorem 3 ver-
ifies the relationship given the constraint .) In terms
of , problem (11) becomes

minimize

subject to (12)

Comparing (12) with (9), we can consider problem (12) as
if we were to find the worst case scenario for and

, but with the function instead of as in
Section IV-A.

Using the approach in Section IV-A, the Lagrange multi-
plier method yields the constraint for an extremum

, . Empirical data suggests the similar re-
sult as in Section IV-A, namely the curve intersects

at zero and one other positive value in , and the
extrema correspond to scenarios in which some bits are not de-
graded while the others are degraded equally (denoted as sce-
narios 1 to in Section IV-A). However, we have no theoretical
proof of this claim. The difficulty lies in the complexity of an
expression for . Numerical verification in several cases
leads us to the following conjecture:given , the
worst-case scenario is the one in which only 1 out ofbits is
affected by coherent crosstalk, and the crosstalk signals at
TONs are equal.

V. BER MONITORING SYSTEM WITH HARD LIMITERS

For a low BER guarantee, under the worst-case scenario
found in Section IV, a single severely degraded bit would only
generate a single extra device alarm (compared to the case with
no degradation at all) which leads to high values for FP and FN.



SAENGUDOMLERT AND MÉDARD: GUARANTEEING THE BER IN TRANSPARENT OPTICAL NETWORKS 791

Fig. 3. FP and FN as functions of� for different values of� (M = 1).

Therefore, we propose the use of hard limiters at TON inputs
to improve the performance of the BER monitoring system.

A hard limiter is a device that limits the power of signals
passing through it. For crosstalk signals to degrade few bits sig-
nificantly, the instantaneous crosstalk signal power in those bit
periods must be very high. But very high instantaneous crosstalk
signal power results from very high instantaneous input power,
which are prevented by hard limiters. Moreover, when the hard
limit is sufficiently higher than the ON level signal power of
OOK, the use of hard limiters does not interfere with normal
operation.

In the presence of hard limiters, multiple bits must be de-
graded for the BER to exceed the guaranteed level. Given that
at least bits must be degraded, it follows that the
worst-case scenario is the one in whichout of bits are equally
affected and crosstalk signals at TONs are equal. When the
hard limit is sufficiently low (the value of is sufficiently high),
our BER monitoring system will be able to detect the worst-case
scenario for some BER guarantee.

We conclude with some numerical examples. Assign the fol-
lowing parameters: transmission rate1 Gbps, SNR 23 dB,

, , , and
a TON crosstalk level of 30 dB. Figs. 3–5 show some FP
and FN curves as functions offor different values of when

and 1, 2 and 4 respectively. Due to difficulty in
exact numerical computation, we approximate the values of FP
and FN by their upper bounds using Chernoff bound approxi-
mation, which is reasonably accurate for small values of FP and
FN.

FP is decreasing while FN is increasing with. For a partic-
ular pair of FP and FN, if their intersection (denoted by a circle
in figures) lies below 10 ( and ), then the cor-
responding values of and can be used to construct a BER
monitoring system. More specifically, when , we can
choose from Fig. 4 the values and , or
the values and . Both corresponding BER
monitoring systems are able to detect a BER above 10in 1

s ( at 1 Gbps), which is approximately 6 orders of
magnitudes faster than a BERT described in Section II.

Fig. 4. FP and FN as functions of� for different values of� (M = 2).

Fig. 5. FP and FN as functions of� for different values of� (M = 4).

Our examples also show that there is a desirable range for
the values of . When is set too small, even under normal
operation, we expect a large number of device alarms in each
observation period, and therefore need to setquite large to
keep FP small. Consequently, such a largeyields too large FN
(since FN is increasing with). On the other hand, whenis set
too large, even if can be set small to keep FP small, we expect
only few device alarms in the presence of BER degradation.
Consequently, FN is still too large.

In general, the required hard limit decreases asincreases,
since for the same BER degradation, the amount of signal degra-
dation at individual nodes can be smaller for a larger. Our
examples suggest that there is a limit on the number of TONs in
a lightpath above which the hard limit gets too close to the ON
power level under normal operation.

VI. CONCLUSION AND FUTURE DIRECTIONS

We derived guaranteed BERs provided by the novel BER
monitoring system in [1] and [2]. In doing so, we found that the
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worst-case coherent crosstalk scenario for the BER monitoring
system to detect is the one in which only 1 out ofbits in the
observation period is affected by coherent crosstalk signals of
the same magnitude at all TONs in the lightpath. Based on
this result, we suggested the use of hard limiters at TON inputs
to improve the system performance.

The BER monitoring system considered in this work offers
several advantages. The system can detect BER degradation
much faster than a BERT (6 orders of magnitude faster in our
examples). The monitoring devices can be installed at existing
TONs so no modification of existing infrastructure is required.
Although our analysis is based on OOK signaling, the same
method can be applied to other transmission schemes as well.
Finally, since the system does not differentiate between the
sources of signal degradation, it can be used to detect malicious
users who intentionally cause service disruption.

Several related issues require further consideration. First, a
similar kind of analysis to this work can be done on BER degra-
dation due to crosstalk effects as well as gain competition at
EDFAs. Another issue has to do with actual implementation
of the BER monitoring system. While the installation of ser-
vice monitoring devices at TONs to monitor different WDM
lightpaths seems straightforward in a WDM network with static
wavelength routing, the implementation becomes more complex
if we allow dynamic wavelength routing. Finally, there are also
issues regarding how to provide appropriate responses after the
detection of BER degradation.

APPENDIX

PROOFS OFVARIOUS LEMMAS

Lemma A1: Given that , , consider the function
of the form

(13)
has the following characteristics:

i) There is a unique solution to .
ii) has a unique local maximum and a unique local

minimum.
iii) Let and denote the locations of the maximum

and the minimum respectively. We have
.

iv) As increases from to , strictly increases
from the limit value of zero to and has a single
saddle point where changes from convexity ( ) to
concavity ( ).

v) As increases from to , strictly de-
creases.

vi) As increases from to , strictly increases
from to the limit value of zero and has a single
saddle point at which changes from convexity to
concavity.

vii) has three saddle points in . In addition
to the two saddle points in iv) and vi), there is the third
saddle point in at which changes
from concavity to convexity.

Fig. 6. Three different cases off(x) for the proof of Lemma 1.

Proof: Fig. 6 shows some example curves of .

i) It is straightforward to solve to obtain a unique
solution .

ii), iii) Consider the first derivative of

(14)
For , and thus strictly decreases
in . As , the first term dominates and we have

. As , the second term dominates
and we have .

The fact that and
tell us that increases from 0 asincreases from . Since

is continuous and has a zero crossing (solution) at,
must have at least one local maximum. Since strictly de-
creases in the range , there exists a local maximum
and . Similar arguments show that there exist a local
minimum and .

Consider the expression of in (14). Denote the term

by and the term

by . Consider their ratio
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We can think of as the product of two quantities
whose derivatives are given by

Since is a product of two strictly decreasing
functions, it is strictly decreasing in and in
where it is well defined.

Since strictly decreases in , is the
only value of in such that , i.e.,

. Since strictly decreases in , there cannot
be an extremum of in . Therefore, is the only
extremum (which happens to be a local maximum) in .

By the same arguments, is the only value of in
such that . Thus is the only extremum (which
happens to be a local minimum) in .

iv), vi), vii) Since there is no extremum in ,
, and is differentiable in

, strictly increases in . Similarly,
since there is no extremum in , ,
and is differentiable in , strictly increases
in .

Consider the second derivative of

(15)

Since and ;
therefore, there must be an odd number of saddle points [with

] in . Let and denote the first
and the second terms in (15)

Similar to the proof of ii) and iii). Consider the ratio
as the product of two quantities

Before proceeding further, note that it is straightforward to
show , i.e., is not a saddle point. The
derivatives of the two factors above are

(16)

The term in (16) is strictly positive
since and . Consider the following equation which
comes from the remaining factor in (16):

(17)

Equation (17) has either zero or two real solutions. If there
were no real solution to (17), the left-hand side of (17) is al-
ways negative. Consequently, will be a product of
two strictly decreasing functions, and is thus strictly decreasing
and equal to 1 (i.e., ) at most once. Since we have
argued above that there must be an odd number of saddle points
in , it follows that there is a single saddle point in this
case. If there are two real solutions to (17) denoted byand

, the ratio is decreasing in , increasing
in , and decreasing in . Thus there can be either
one saddle point or three saddle points in this case.

Notice that and since a twice
differentiable function must be concave at a local maximum and
convex at a local minimum. Since , there is
at least one saddle point where changes from convexity to
concavity in . Similarly, since ,
, there is at least one saddle point where changes from

convexity to concavity in .
Therefore, the case of one saddle point is impossible. There

must be three saddle points. One is in . Another is
in . It follows that the third saddle point can only be
in , or else would be convex at if there
were two saddle points in and vice versa.

v) Since there are a unique local maximum, a unique local
minimum, and no other extreme point, it follows that the con-
tinuous function is strictly decreasing in .

Lemma A2: Under Assumption 1, as defined in (13)
has a strictly decreasing second derivative in , where
denotes the unique saddle point in .

Proof: Consider the third derivative of

(18)

Under Assumption 1, it is straightforward to show from (18)
that in . If , we are done.
Otherwise, it remains to show that in .

Let and denote the first and the second terms
of on the right-hand side of (18), i.e.,

. We can express as the product of two quan-
tities

whose derivatives are shown in (19) at the bottom of the next
page.
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We now show that the right-hand side of (19) is negative in
. Define as follows:

Note that has the same sign as the right-hand side of
(19) since the denominator is always positive. For

, it is easy to verify that all the quantities in square brackets
are positive. Using the fact that , we can bound

as follows:

where the last inequality follows from the fact that
in . At , using the fact that
,

Thus, in . It follows that
, being a product of two strictly decreasing

functions, is strictly decreasing in . Conse-
quently, there can be at most one point in
such that ( ). We now show
that ( ), which implies that

( ) in since
is decreasing.

To show that , we rewrite and bound (18) as
follows

where we have used (14) and (15), and the fact that
to construct the inequality. By definition, . Since

, we have from Lemma A1 part iv) that .
It follows from the above expression that 0.

Lemma 1: Given , and that Assumption 1 holds, there
is at most one positive solution to the equation
in .

Proof: In what follows, we use in place of as a
function argument. Using defined in (13), we can express

as

Based on the results of lemma A1, let, and
denote the solution (zero crossing), the local maximum and the
local minimum of , respectively.

Let denote the smallest positive intersection of and
, i.e., . Note that may or

may not exist. For convenience, let denote . We
shall show that there is at most one intersection of and

in in three separate cases which cover all the
possibilities, as shown in Fig. 6.

i) : We shall show that no intersection of and
exists in . Since [Lemma A1 part iii)],

the result will imply that there is no intersection in .
Consider two separate cases: and .

When , we have and is
decreasing while is increasing in . Therefore,
there is no intersection in . When ,
we have that and is decreasing while

is increasing in . Therefore, there cannot be an
intersection in . In , is nonnegative
while is strictly negative. Therefore, there cannot be
an intersection in . In conclusion, there is no
intersection in .

ii) : First note that there is no intersec-
tion of and in since
and remains below [ decreases from a positive
value to a negative value and remains negative as

] while is increasing in .
Consider three separate intervals: , , and

. We shall show that there is no intersection in any of
them.

• Consider the interval . If , we are
done since there is no intersection in . When

(19)
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, the intersection, if exists, must lie in
.

Let denote the unique saddle point in .
Since [Lemma A1 part iii)], there exists a point

with such that . We have
that

(20)

where the inequality holds in the case
since is negative and is decreasing (Lemma A2) in

; and in the case since is non-
negative in and is negative and decreasing
in .

Let and . We have that

(21)

where the first inequality is a consequence of (20), and the
second inequality follows from Lemma A1 parts iii) and
v) that in . Equation (21) shows there
is no intersection in . In conclusion, there is
no intersection in .

For later arguments, we now show that if ,
then and .

Given , (21) tells us that .
Let be such that , then (20) tells us
that . Since
is strictly decreasing in [Lemma A1 parts iii)
and v)], we have . Finally, since

is strictly concave in (Lemma A2) and
, we have .

For convenience, we define , where

(22)

Fig. 7. f (x) andf (x) as defined in (22).

Fig. 7 shows example curves of and together with
their derivatives.

• Consider the interval . If ,
there is no intersection in since there is no
intersection in . So we consider the case when

.
Under Assumption 1, is strictly decreasing and

strictly concave [ and ] in
since and both have negative first and second
derivatives (see Fig. 7). On the other hand, the contribution
of to is decreasing but convex, while the con-
tribution of is increasing. An additional condition
that will lead to the conclusion that
is decreasing faster than at every point in .

For , we have shown that
and . For , we have

, and . In both cases,
we have and decreases faster than

at every point in . Therefore, there is no
intersection in .

Consequently, given that , we have
and .

• Consider the interval . If ,
there is no intersection in since there is no
intersection in . So we consider the case when

.
In , the contributions of to

and are both decreasing and convex (see Fig. 7).
However, at any particular point ,
the contribution of to decreases faster than its
contribution to . On the other hand, the contribu-
tion of to is decreasing and concave, while its
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contribution to is increasing. An additional condi-
tion that will lead to the conclusion
that is decreasing faster than at every point in

.
For , we have shown that

and . For
, we have and

. In both cases, we have that
and decreases faster than at every

point in . Therefore, there cannot be an
intersection in .

iii) : First note that there is no intersection
of and in since and
is increasing while is decreasing in . Consider
two separate intervals: and .

iii) : First note that there is no in-
tersection of and in since

and is increasing while is decreasing in
. Consider two separate intervals: and
.

• We now show that there can be at most one intersection
in . Suppose there is an intersection denoted by

. We now argue that . The intersection
must occur in since and

in . In , both and are
decreasing. Since , for and

to intersect, has to decrease faster than
at .

Consider a point and let . We
want to show as follows:

(23)

(24)

Equation (23) follows from . It remains
to prove (24).

Let denote the unique saddle point in
[Lemma A1 part iv)]. If , then (24) holds as
a consequence of Lemma A2. If ,
we have that

where the first inequality holds since is convex in
. The second inequality holds as a consequence

of Lemma A2. The last inequality holds since is con-
cave in . Combining the above in-
equalities, (24) holds.

If , we have that

where the first inequality holds since is convex in
[Lemma A1 part iv)]. The second in-

equality holds since and thus
is concave in (Lemma A2). Combining the
above inequalities, (24) holds.

Therefore, after the intersection point , de-
creases faster than at all points in . It
follows that there can be at most one intersection point
in . In addition, if an intersection exists in

, then and .
• Consider the interval . We shall show that, given

an intersection of and in , there can be
no additional intersection in . In addition, given
no intersection in , there is at most one intersection
in .

We first show that , i.e., is convex in
. Since is the only saddle point in

where changes from convexity to concavity [Lemma
A1 part iv)], it is sufficient to show that .
From (15),

(25)
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The first inequality holds since , and
thus [Lemma A1 part iv)], from
which the expression for in (14) yields

. The second inequality
results from the fact that all quantities in square brackets
of (25) are positive and by assumption 1. Since

, the quantities in the first and the third square
brackets are positive. The quantity in the second square
bracket is positive since is decreasing in

.
Lemma A1 parts iii) and vii) tell us that

, and there is a single
saddle point in . Thus, in , there
is at most one saddle point, which we denote bywhen
exists. If exists, we consider two separate intervals

and . Otherwise, we consider the
interval . We show that in each interval, the
following two properties hold.

1) If an intersection occurs before the interval, there is
no additional intersection in the interval.

2) If no intersection occurs before the interval, there is
at most one intersection in the interval.

We prove the two properties below. Keep in mind that
and are decreasing in .
— Consider the first interval: (or if

does not exist). We now show that, given an inter-
section before , there is no additional intersection in

.
Let and . We show

below

The first inequality holds since we have shown that if
an intersection exists and , then

and . The second inequality
holds since [ and Lemma
A2] and thus is concave in , while
is convex in . Since and
decreases faster than at every point in ,
there is no additional intersection in . In addi-
tion, since and , we
have that and .

If there is no saddle point in , the facts that
and is concave while is

convex imply that decreases faster than at
every point in , and no additional intersection
is possible in .

Given that there is no intersection such that
, we now show there is at most one inter-

section in . As a reminder, we have in this

case that since ,
, and no intersection has occurred

before .
Let denote the smallest point of intersection, if

exists, in . Since and both
and are decreasing, for and to inter-
sect, we must have .

We argue that decreases faster than at
every point in since and

is concave while is convex. Therefore,
there can be no additional intersection in .
Moreover, given that exists in , we have that

and .
If there is no saddle point in , we can let

denote the smallest intersection point in . The
facts that and is concave while

is convex imply that decreases faster than
at every point in and no additional

intersection is possible in .
— Consider the interval (this case does not

exist if does not exist). We now show that, given an
intersection , there is no additional intersection
in .

In , is decreasing and convex (by
the definition of ). Similarly, is decreasing
and convex. However, in , the contribution
of to is decreasing faster than its con-
tribution to (see Fig. 7). On the other hand,
the contribution of to is decreasing while
its contribution to is increasing. Therefore,

decreases faster than at every point in
. Since we have shown that

when there is an intersection such that ,
it follows that there is no additional intersection in

.
Given that there is no intersection such that
, we now show that there is at most one intersection

in . As a reminder, we have in this case that
since ,

, and no intersection has occurred before.
Let denote the smallest point of intersection, if

exists, in . Since and both
and are decreasing, for and to

intersect, we must have .
We argue that decreases faster than at

every point in since and
we have argued that the overall contribution of
and to is decreasing faster than the overall
contribution of and to in

. Therefore, there can be no additional
intersection in .

We conclude that, given an intersection before, there
is no additional intersection in . On the other
hand, given no intersection before, there is at most one
intersection in .

Combining the results for the intervals , ,
and , we conclude that there is at most one intersection
in .
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Lemma 2: Under Assumption 1,
and , for all .

Proof: We first show that for
all . From (8)

It suffices to show that for all
as follows:

where the inequality follows from the facts that , and
is increasing in for all

. It is straightforward to verify the last equality from (4).
We now show that , for all . From (8)

(26)

Define . It suffices
to show that in . Given an intersection
between the curves and at ,
we have . We can therefore think of

as the slope of the curve and
as the slope of the curve at .

We have shown that ,
or equivalently . Since ,
the condition yields ,
where represents . The facts that is the
only intersection of and in (Lemma 1)
and imply that at the slope of
[equal to ] is larger than the slope of

[equal to ] since intersects from
below. Equivalently, for all .

The condition ensures that
and . Thus, given the condition, it follows

that and .

Lemma A3: Let , and
. Under Assumption 1, in the modified optimization

problem with a and given below

minimize

subject to

there are extrema of the forms and , where
and . corresponds

to the global maximum, while corresponds to a local
minimum and yields a lower cost than .

Proof: Similar to the work in Section IV-A, we only con-
sider nonnegative values of and . The condition

ensures that both and are in
. By differentiating the Lagrangian with respect to,

we have the same conditions for an extremum as in problem (6),
namely , . Lemma 1 tells us that an
extremum is one of the following: , and ,
where and are defined above and

. It remains to investigate the bordered Hessian determinant
.

For the extremum , is exactly the same as
(26) and is thus positive for all . Thus, is a
local maximum. For the extremum

For the extremum

In either case, we have as shown in the proof of
Lemma 2. Thus and corresponds to local min-
imima.

Similarly to the arguments used to construct theorem 1, since
the constraint set is a contour curve of
in the first quadrant of plane and connects the two end
points and , the absence of an extremum else-
where together with the continuity of cost function imply that

is a global maximum and thus has a higher cost than
.

Lemma 3: Let be the coherent crosstalk signal associ-
ated with scenario in which out of bits are equally af-
fected and BER is equal to . Let be the expected total
number of device alarms in an observation period corresponding
to scenario . Under Assumption 1, given , ,
and , we have that

.
Proof: The condition guarantees that

for all . We shall prove the lemma
by induction. First, compare the scenariosand yielding
the expected total number of device alarms and re-
spectively. Notice that comparing these two scenarios is equiva-
lent to comparing the two extrema in the modified optimization
problem of lemma A3 with . The two extrema
are for scenario and for scenario .
Lemma A3 tells us .

Now compare scenarios and , .
Consider the problem of minimizing the expected total number
of device alarms over the bits that are degraded in scenario

. Note that the expected number of device alarms for the
remaining bits is the same in both scenarios, namely .
Comparing these two scenarios in the problem is equivalent to
comparing the two extrema in Lemma A3 with

and the BER constraint set to . The
extrema of interest are and . Lemma
A3 tells us that , completing the induction.

Lemma A4: For the function defined in (4): i) There is
a unique positive solution such that , ii) ,
iii) in .

Proof: The function
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has the same form as defined in (13) in Lemma 3A. In
particular, here takes the place of in (13), while takes
the place of in (13). Therefore, various properties from Lemma
3A hold for the function . From Lemma 3A, we know
that has only one local maximum located before
( ) and one local minimum after ( ). We also know
that strictly increases (from the limit value of 0) in the
interval from to the local maximum, strictly decreases in
the interval from the local maximum to the local minimum, and
strictly increases (to the limit value of 0) in the interval from the
local minimum to .

i), ii) It follows that in the interval from zero to the local
minimum, strictly decreases and, therefore,
. At the local minimum, we have . In the interval

from the local minimum to , strictly increases and,
thus, . Therefore, we have only at
the local minimum of . In addition, the location of
this local minimum is in the positive direction of( ).

iii) It is straightforward to show from (4) that
. decreases and is thus negative in . In addi-

tion, increases monotonically to the limit value of 0 in
. Therefore, or equivalently in

.
Lemma 4: The function strictly decreases in

.
Proof: Let be the unique positive solution to

as described in lemma A4. Since , it suffices to
show that strictly decreases in . Consider
the derivative of

(27)

which is continuous since it is the derivative of a continuous
function . Note that for all since
from (4) for all finite . In addition, lemma A4 tells us
that in . It follows from the above expression
that the derivative of is negative in .

REFERENCES

[1] M. Médard, S. R. Chinn, and P. Saengudomlert, “Attack detection in
all-optical networks,” inProc. OFC’98, ThD4, pp. 272–273.

[2] , “Attack and failure detection in transparent optical nodes,” Lin-
coln Laboratory–Internal Rep., Lexington, MA, 1998.

[3] L. A. Buckman, L. P. Chen, and K. Y. Lau, “Crosstalk penalty in all-
optical distributed switching networks,”IEEE Photonics Technol.Lett.,
vol. 9, Feb. 1997.

[4] C. S. Li and F. Tong, “Crosstalk and interference penalty in all-optical
networks using static wavelength routers,”J. Lightwave Technol., vol.
14, June 1996.

[5] C. Saxtoft and P. Chidgey, “Error rate degradation due to switch crosstalk
in large modular switched optical networks,”IEEE Photonics Technol.
Lett., vol. 5, no. 7, July 1993.

[6] C. X. Yu, W. K. Wang, and S. D. Brorson, “System degradation due to
coherent crosstalk in WDM network nodes,” inProc. OFC’98, WM 30,
pp. 212–213.

[7] M. Médard, D. Marquis, and S. R. Chinn, “Attack detection methods
for all-optical networks,” inProc. Internet Society’s Symp. Network and
Distributed System Security (NDSS), Mar. 1998, session 3, paper 1.

[8] P. Saengudomlert, “Analysis and detection of jamming attacks in an all-
optical network,” MIT Master thesis, Dept. Electrical Engineering and
Computer Science, MIT, Cambridge, MA, 1998.

[9] M. Sumida, “OTDR performance enhancement using a quaternary FSK
modulated probe and coherent detection,”IEEE Photon. Technol. Lett.,
vol. 7, pp. 336–338, Mar. 1995.

[10] I. Katzela, G. Ellinas, and T. E. Stern, “Fault diagnosis in the linear light-
wave network,” inProc. LEOS Summer Topical Meetings, Aug. 7–11,
1995, pp. 41–42.

[11] N. Schroff and M. Schwartz, “Fault detection/identification in the linear
lightwave network,” Columbia Univ., CU/CTR/TR 243-91-24, 1991.

[12] A. V. Yakovlev, “An optical-fiber system for transmitting confidential
information,”Telecommun. Radio Eng., vol. 10, 1995.

[13] G. R. Hill et al., “A transport network layer based on optical network
elements,”J. Lightwave Technol., vol. 11, May/June 1993.

[14] A. Kloch, B. Mikkelsen, and K. E. Stubkjaer, “Pilot tones in WDM net-
works with wavelength converters,” inProc. OFC’97, paper TuE6, pp.
24–25.

Poompat Saengudomlert(S’94) is a Ph.D. candidate at the Laboratory for
Information and Decision Systems in the Electrical Engineering and Computer
Science (EECS) Department, Massachusetts Institute of Technology (MIT),
Cambridge, MA. He received the B.S.E. degree in electrical engineering from
Princeton University, Princeton, NJ, in 1996, and the M.S. degree in EECS
from MIT, in 1998.

His research interests lie in communication networks. Since 1998, he has been
conducting researches on the design of high-speed optical networks under the
MIT Lincoln Laboratory’s Next Generation Internet project.

Muriel Médard (S’91–M’95–SM’02) she received the B.S. degree in EECS
and in mathematics, in 1989, the B.S. degree in humanities, in 1990, the M.S.
degree in EE, in 1991, and the Sc.D. degree in EE, in 1995, from the Massachu-
setts Institute of Technology (MIT), Cambridge, MA.

She is an Assistant Professor in the Electrical Engineering and Computer Sci-
ence Department and a member of the Laboratory for Information and Decision
Systems, MIT. She was previously an Assistant Professor in the Electrical and
Computer Engineering Department and a member of the Coordinated Science
Laboratory at the University of Illinois, Urbana-Champaign. From 1995 to 1998,
she was a Staff Member at MIT Lincoln Laboratory in the Optical Communi-
cations and the Advanced Networking Groups. Her research interests are in the
areas of reliable communications, particularly for optical and wireless networks.

She was the winner of the 2002 IEEE Leon Kirchmayor Best Paper Award
and received a NSF Career Award, in 2000.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


