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Bandwidth Scaling for Fading Multipath Channels

Muriel Médard Member, IEEEand Robert G. Gallagetife Fellow, IEEE

Abstract—We show that very large bandwidths on fading mul- nonfading WGN channel of the same average received power.
tipath channels cannot be effectively utilized by spread-spectrum This result differs from the nonfading result in two important
systems that (in a particular sense) spread the available power uni- ways. First, in the fading case, the infinite bandwidth result is
formly over both time and frequency. The approach is to express - . T
the input process as an expansion in an orthonormal set of func- approacheq Impractlcally_slowly with increasirg Second, Efll'
tions each localized in time and frequency. The fourth moment of though the infinite bandwidth result can be approached with or-
each coefficient in this expansion is then uniformly constrained. We thogonal codewords for the fading case, the results appear to
show that such a constraint forces the mutual information to0 in-  depend critically on the particular choice of orthogonal set. For
versely with increasing bandwidth. Simply constraining the second example, orthogonal sinusoids of increasingly high power and

moment of these coefficients does not achieve this effect. The results1 dut | ¢ in inside th
suggest strongly that conventional direct-sequence code-division ow duty cycle (so as to remain inside the average power con-

multiple-access (CDMA) systems do not scale well to extremely Straint) work, but sinusoids with constant average power do not.
large bandwidths. To illustrate how the interplay between channel Fading multipath channels filter the input with a response that

estimation and symbol detection affects capacity, we present results yaries slowly both with time and frequency shifts of the input.
for a specific channel and CDMA signaling scheme. Because of these shifts, it is insightful to use an expansion for
the signal space in which the available bandwidth is separated
Index Terms—Broad-band communication, channel capacity, into fixed slices of bandwidth, using the sampling theorem to
code-division multiple access (CDMA), fading multipath, wireless. represent the baseband representation of each slice by an or-
thonormal expansion (with complex coefficients) of normalized
|. INTRODUCTION sinc functions. The relationship between the slices in this ex-
o ) _ pansion is explained in Section V. Representing waveforms by
T HE objective of this paper is to help understand the effegf,cpy an expansion, the channel becomes a discrete-time channel
1 of increasing the available bandwidth for channels sufyhere each discrete-time input corresponds to a given time/fre-
ject to both additive white Gaussian noise (WGN) and multyency siot. Note that using these expansions does not constrain
path fading. We describe our model for fading multipath chagye choice of signaling waveforms except for the overall band-
nels precisely later, but in essence we are considering a Classth constraint.
sical scatte_ring mod_el (i.e., a channel with no specular compo-r,o capacity of a fading WGN channel is equal to the max-
nent and with finite time and frequency coherence). We also §$5m average mutual information per unit time over the above
sume no feedback and no side information about the changglcrete-time channel, modeling the bandwidth constraint by the
state. For WGN channels without fading, it is well known thah, mper of frequency slices available. The major result of this
with a power constraint and with noise spectral densito/2,  haner is to show that if a particular type of fourth moment con-
the capacity, in natural units per second, as a function of avalkaint is placed on the input variables for this channel, then the
able bandwidthV, is)V 1+ S/(NoW)]. This increases with 1 ayimum mutual information is significantly degraded for large
W to the limit S/Ny. This infinite bandwidth capacity can beW, in fact approaching at least a3V —! asW — co. Coding
approached arbitraril)_/ closely by a_set of orthogonal equal &faorems and converses [13], [23] apply to these mutual infor-
ergy waveforms, and it makes no difference what set of orthogaions in much the same way as with more conventional chan-
onal waveforms are used. A set of orthogonal time-limited singy|s 5o, in what follows, we deal exclusively with mutual infor-
waves, a set of nonoverlapping pulses, or a set of orthogopaltions.
pseudo-noise waveforms are all equivalent in terms of proba,sp, a bandwidth\, there are/V complex input random
bility of decoding error. _ variables per second. With a power constraintthe average
For WGN fading multipath channels, there is an old, rath@g, .4 moment constraint on these input variables (which need
surprising, result due to Kennedy (see, for example, [14], [Zq;lot be uniformly applied) isS/W. The fourth moment con-
[81, [32], [1]) saying that the infinite bandwidth capacity of theyaint anove is then, for any finite constantto constrain the

channel is the same as the infinite bandwidth capacity of tﬂ?urth moment of each complex input variable to be at most

«S? /W?. With such a constraint, we show that the average mu-
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ingly nonuniform or to become increasingly “peaky” in districhannel state estimation depends only on input and output.

bution. Reference [25] analyzes a situation with a different assumption
The results here were first presented in [10]. Some relatgaout estimate and estimation error.

results for a memoryless fading model were presented in [18],

[19], using WGN signals and direct-sequence (DS) code-di-  1l. A M ODEL FORFADING MULTIPATH CHANNELS

vision multiple-access (CDMA) (DS-CDMA) signals, respec-

. . First we will look at a system in which the input is band-lim-
tively. Later related results appear in [33], [29], [30], [31]. Ir}ted to some fixed bandwidtid’’. Because of Doppler spread,

[30], the results In this paper are considered using an OUKL o4t banduwidtis” will be siightly larger than the input

fourth-order constraint and a capacity per unit cost approael 1 i T \We represent the outpdi(c) as a complex

[34]. In [31], a peak signal <_:ons§raint goingas considered. baseband process of bandwid#fy2, and using the sampling
In [33], the typ‘? of results in this paper are shown to deper@lﬁeorem, we represent it as a complex sampled time process
strongly on having no specular component in the channel mul-

tipath, and the effect of specular components is analyzed. Thé‘s‘eY_l’ Yo, Y1, ... with samples at raté¥’. In particular

results also depend critically on our assumption of finite fre- -00 sin[r W (t — i/W)]

quency coherence, which rules out flat-fading models as treated Y; = / Y(t) Wt — /W

in [16]. Finally, for a perspective and survey of known results e 7 ( ._ i/ W)

for a wide variety of models of fading channels, see [5]. Vi) = Z Y; sin[rW (¢t — fL/W)]. (1)
The main reason for interest in this result lies in its appli- i VW (t—i/W)

cation to DS-CDMA systems. The CDMA standard (1S-95) is houah the i i band-limited ller band i

one of the major systems currently deployed for commercial’€n though the inputis band-limited to a smaller band #han
wireless telephony, and CDMA is particularly attractive folVe can still represent the input by the corresponding complex
future integrated systems. CDMA is also being deployed ﬁgmple_d “”!e process.)_x_l, Xo, ‘X?’ - at rate . After
ultrawide-band systems as overlays over licensed spectrlﬁﬂalyz'ngth's system of fixed bandwidth, we then look at band-
As shown in [35], [L1], [27], [15], CDMA has many Systemwidths that are integer multiples &¥’. We will show how to
strengths for cellular systems, taking advantage of the idﬂf‘;"_ t?es:? broade; b?hd syzterr:js z_‘;:jswc(:fambmatmns made up of
periods in voice and data, and being robust to out-of-c&fjU!tiPl€ Slices each of input bandwidii™.

interference and noise other than WGN. Also, as shown in [22] ,The chgnn(_al mult_|path fadmg is represented by_ a _rar_1d0m|y
[7], [28], [24], CDMA has many system strengths for militar)} e-varying Ilnegr filter whose impulse response is limited to
systems, including anti-jam and Iow-probabiIity-of-intercep_?Ome multlpath time spredlh. The effect of this fiiter on the_
capabilities. CDMA signals, however, closely resemble WGH{PUtOVer the given band can be represented as a complex, time-
over the available spectrum. Thus, for the orthonormal expa\fﬁry'ng’ tapped-delay line filter with complex taps at!ntervals
sion above, the input variables are reasonably modeled as |%1/ W.L mus.t be _at leasty’Ty because of the effective band-
Gaussian. The above results then imply that the mutual infdfT1ting of the filter impulse response, but the exact valud.of
mation per unit time approach@swith increasing bandwidth. Is noncritical in the arguments to follow. L&}, ; be the;th tap

The bandwidths of current commercial systems are sufficienggﬂ;]e flltelr ,at d;}s;:rgfce ogtpl;t ?MThhusag!? S|gr]1al, .Co”Ppt‘?d
small that the above limiting regime is not entered. The resu the multipath fading but before the addition of noise, is given

explain, however, why the bandwidth of a pure CDMA systefat time? by
cannot be expanded arbitrarily over time-varying channels. —1
This result is particularly relevant in light of some recent U, = Z X Fi .
developments in the area of ultrawide-band systems using ’
CDMA signaling, indicating that such systems should be used
only on channels which vary very slowly. We denote(F; o, Fi 1, ..., F; 1—1)T as a random vector
Some intuition about why signals resembling white noisk;. The sample value of this vector is called the channel
are not very effective at increasingly large bandwidths can btate at timei. We assume that the vector stochastic process
seen by considering a RAKE receiver for a fading channel.., F_|, Fy, Fy, ... is zero mean, stationary, and complex
The RAKE receiver both measures the channel and makgaussian. We also assume that this process is statistically
data decisions. The data decisions are made on the basisndépendent of the input process. X_1, Xy, X1, .... This
the current channel estimate, and then the current decisassumption implies that the source uses no side information
is used to update the channel estimate. As the bandwidibout the state of the channel, and thus, for example, assumes
increases, the power available in any given bandwidth slitdeat power control is not used. Power control, as used in prac-
decreases. Thus, the accuracy of the channel measuremeiice decreases the average information rate, since it increases
that bandwidth slice degrades and also the signal-to-noise raitmwver when the channel is badly faded. Even if power control
(SNR) degrades. Because of the combined effect, the mutuadre used to increase the rate (with all the attendant system
information per degree of freedom decreases inversely with theblems), it would be ineffective if the channel state could
square of the overall bandwidth. We will see in what followsot be well estimated at the receiver. We conjecture, for this
that this effect is independent of the particular receiver structurason, that CDMA, with the above fourth moment constraint,
and depends only on the fourth moment constrairdbove. still breaks down at very high bandwidths even when power
Our results depend on having no side information, so that thentrol is used.

m=0
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As a notational convenience, define E[|X:]?], although (4) implicitly implies thaE[|X;|?] < /7.
Xi= (X, Xic1, ooy Xompa)™ To understand what Theorem 1 is saying more clearly, define

. L _ RTR the Kurtosis «, of a zero-mean random variabl€ to be
Thus, the faded signal at timeis given byl/; = X F;. The o = E[|X*]/[E[ X7 If X is antipodal, the Kurtosis is

additive noise, over the bandwidili, is represented at base- . o S
b if complex Gaussian, it &5 As a more insightful example,

band by a discrete-time, zero-mean, complex Gaussian proc % . . > . .
...Z_1, Zg, Z1, .... The complex random variables; are ! ) IS Ohw,'[thh progakilllty}rh— pandl ((;r —1 W'thﬁ)mb?ﬁ'lllty
i.i.d., and are independent of the input process and multip ﬁrtgziz hase:)é“[;aalglj”‘ disltJriSt’njaticr)?wn I?r\?vevig?lst?a\i,\rq eaiLg?)f
fading process. The output, at each discrete tiniegiven b : i . .
ngp utpu ! neEgv y the inputs in (5) to have a Kurtosis of at most some arbitrary

Yi=Ui+Zi=X{F + Z. () numbera and a mean-square value at most some numper
A set of complex random vaﬁabl@l, Z3, ..., Zy, and the then~ can be expressed as>.
corresponding random vectéf® = (Zy, ..., Z,)*, is said  We now express this in more familiar SNR terms. The channel
to be circularly symmetricif, for any angle#, the variables above hag?’ complex degrees of freedom per second, and thus
7y, 192, ..., ¢I®Z, have the same joint distribution asa power constrain$y, can be met by the constraiBf|.X;|2] <
Zi, 4o, ..., Zy. A complex stochastic process (or set of comsy,- /W. Thus, taking: = Sy /W
plex stochastic processestigscularly symmetridor jointly cir-
cularly symmetrig if each finite set of complex random vari- @S2,
ables within the process (or processes) is circularly symmetric. T e (6)
Itis physically almost inevitable to assume that the noise process
e Z_y, Zo, 2y, ... is circularly symmetric and that the mul-Finally, let v, /2 be the spectral density of the noise. Tlaén=
tipath fading process.., F_1, Fo, F1, ... Is circularly sym- ;. Substituting this plus (6) in (5), we get
metric. Since these processes are independent, they are also
jointly circularly symmetric. Finally, conditional on any given 1 o o S 3
input..., X_y = z_1, Xo = 29, X; = 71, ..., we see that, gI(X ;Y )Sw- (7)
for any i, #] F; is circularly symmetric and thus; is circu- 0
larly symmetric. More generally, conditional on a given inpuf, the above argument, we have used an energy constraint on
sequence, the output procelSs } is circularly symmetric and gach degree of freedom to motivate the relation in (6) between

{Yi}, {Z:}, and{£;} are jointly circularly symmetric. andSyy . However, as stated before, the theorem is valid whether
For some large but finite sequence lengtfiet or not there is an explicit constraint on SNR.
X'=(Xo_p, ..., X)) and Y"=(Y1,...,Y,)". Suppose we view a broad-band system with power constraint

Our first objective is to find a useful upper bound to the averageas some numbérof frequency slices, each with power con-
mutual information/ (X”; Y™) over the given band. The reasorstraintSy, = S/b. If we assume for the moment that each fre-

for including X>_z, ..., Xo will become apparent later, butquency slice is independent and satisfies (7), then the average
has little effect for |argel_ Define the numbes by mutual information per unit time per slice goes dOWI’Il¢52,
5 and the aggregate mutual information over the entire band then
(a9} L—-1 L—-1
ElF . _3 3 approache$ as1/b.
Z kzo ZO IEEo, x5 ]l ¢ = 5. ®) As will be explained in Section V, the slicing interpretation
J=—00 =0 m=

above is oversimplified, and we must take into account both the
The term inside the braces is a form of correlation between timgppler shift and the correlation in fading between different
0 and timey, and thus3, suitably normalized, is proportional tofrequency slices. The problem caused by the Doppler shift is
the time coherence. We assuphis finite, as a precise characterthat adjacent frequency slices at the input give rise to over-
ization of our assumption of finite time coherence. Also assunmgping slices at the output. The problem with correlated fre-

a finite fourth moment constraint such that quency slices is that the aggregate of average mutual informa-
E[|Xi|4] <, 9_L<i<n. 4) tion over seve_ral sllces_ might be gre_ate_r ?han th(_a sum of the av-

erage mutual informations over the individual slices. However,

We then develop the following upper bound BpX™; Y™). after being careful about these issues, we shall still find that the

verage mutual information rate goes to zero with increasing

Theorem 1:Let a discrete-time multipath fading ChanneEandwidthW — bW’ if the fourth moments are bounded as
have outputy; = XTF; + Z; for the input procesqX;}, above

fading process #3}, and noise procesZ;} defined above. The problems caused by statistical dependence between the

Then, for any positive integer such that (4) is satisfied fading on different frequency slices are quite tricky and depend

1 (%7 v7) < B critically on the model of multipath fading. The model we have

Sr(Rmyn) < 5) . | | .

n 207 adopted here is a classical scattering model, corresponding to a
continuum of infinitesimal paths. A different model, using a fi-
nite numbern of time-varying paths, has been investigated by

This theorem will be proven in the next section. It is validelatar and Tse [33]. When they assume that the delay of each
for all distributions on the input, subject to the constraintgath is known (but the amplitude and phase is not), then the
above. Note that the theorem contains no explicit constraint orutual information does not approaghvith increasing/V, but

wherec? = E[|Z;]?].
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rather is inversely proportional to the number of resolvable patfise conditional fluctuationf” = F—F, given? = 4, is

(which are upper-bounded bhy). They also consider the casezero-mean, Gaussian, and circularly symmetric. Its covariance

in which path delay is unknown. Here they show that the mdunction, E[F’ F*T|y] is not a function of/ and is given by

tual information approachésas1/W but the bound becomes s N . -

meaningful only at extremely large/. Neither classical scat- E[FF*T yﬂ = E[FF*T} - E[FY*T} K2 E[YF*T}

tering models nor finite path models are completely satisfac- . PR N2

tory for modeling reflecting surfaces and other such physical = E[FF*T} - EHF(Y) I (Y)} } - (10)

multipath mechanisms. All of these models, however, are close

enough to physical wireless media to provide some guidance Bris the minimum mean square error (MMSE) estimate’of

wide-band future systems. givenY = 7, and F is the negative of the estimation error;
The analysis in the present paper relies heavily on the p&) and (10) are well-known formulas of elementary estimation

ticular way the input is scaled with increasing. This type of theory.

scaling does not apply to frequency hopping, since, as the seFor the application here, we uge for £ andYi~! for Y,

of available frequencies for hopping increases, the fraction wfth additional conditioning on the inpuﬂf" = ™. With this

time that a frequency is used decreases. Consequently, as ircthveditioning,F; andY *~* are zero-mean, jointly Gaussian, and

example above, the Kurtosis increaseg A¢/. It also does not cwcularly symmetrlc so the condmonal mean and covariance of

apply to the increasingly “peaky” type of distribution used td, given bothX” = " andY*~! = 7'~ are

achieve capacity on fading channels with no bandwidth con-

straint. This scaling does apply to CDMA-type systems, arld (% ( Uk l) = E[F ye-o-r

*"} KoL g™ (11)

helps explain why very broad-band systems tend to use a com- any e[ B 2T (= 1)#T -1
bination of frequency hopping and CDMA rather than CDMA Bi(¥") = E[EFi } B E[FY } Kflf
alone. .E [?i—lﬁ:T fn:| (12)
Ill. M UTUAL INFORMATION FOR AFIXED FREQUENCYBAND;  Where
PROOF OFTHEOREM 1 . -
. . Bi(z") = B[R Fi[E", ]
We begin the proof of Theorem 1 with some standard rela-
tions between expected mutual information and differential ef; = = F — [, and K Fiotjgn is abbreviated .. The first
tropy. We will then establish a couple of lemmas, and finallgerm on the right-hand side of (12) is not cond|t|oneda‘fih
complete the proof of the theorem. First, note that sinceF; and X are independent. In what follows, we cal)
and B;(£™) theidealizedestimate and error covariance, since
I (Xn Yn) Z™ is unknown at the receiver and thiiscan not be measured
there.
=7 (57"; X") =M1 (Y;; X ?i—l) Lemma 1: Let F(&", 1) and B;(Z") be the idealized
i=1 estimate and covariance 6f as given in (11), (12). Then
. on |vi—1 .
1(vis X |71 n(vilen, T) = I [re (o3 + 278 21 )] (13)
:h(y; Yifl)—h(y;‘ﬁfl,)?") 8 g2
®) E[ TEE (£ 9 }
. . oIy < ;

wherel denotes expected mutual information ddenotes dif- oy

5 N 512
XF E[FFT} X

variables and vectors are, by definition, the information and en-
tropy for the joint real and imaginary parts of those complex
variables and vectors.

First look at the differential conditional entropy Proof: LetY; = E[vijz", 7'~ 1)] andY; = Y; —Y;. Since
h(Y;|Yi=t X") for given sample valued’*~! = §*~! Y, = 2TF,+Z;, wehavel; = a:TF andthug; = 2T F;+ Z;.
and X" = z", i.e., we look ath(Y;|7"~!,Z™). Conditional We can then calculate the cond|t|0nal varlancé/,o«ﬂlrectly in
on Z", the random vector&’™, I, F5, ..., F, are jointly terms of the idealized conditional covariance mafsixz") of
Gaussian, and, as explained earlier, jointly circularly syn#;. In particular
metric. The covariance matrix of a zero-mean complex random .
vector F is defined to bek z = E[FF*T]. A useful property E[Y;Y’;
of arbitrary zero-mean Jomtly Gaussian, circularly symmetric

=n
random vectors, §ay’ and F, is that, conditional on some gonsu(jjef; the d|f|ferent|al conditional entr0|h3|(Y|y h7 g )- |
given valuey for Y, the conditional distribution fof" has a '?LC; L7er1en£|3 entror[]:)y s |nvar|ahnt to trar:js at|0r|1 t |sr|ls_equa
mean valud" given by to h(Y;|y"~', £™). We have seen thaf, conditional onX

#m andY~! = 7~ is Gaussian and circularly symmetric.
. oot o Because of the circular symmetry, the real and imaginary parts
F(y) = E[FY } K=y (9)  of Y; are independent, Gaussian, and equally distributed. Thus,

ferential entropy. Information and entropy for complex random E[

} . (19

1
207

g @] = B @ E 4 e} (15)
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the combined entropy in natural units (taking account of re8ubstituting this into (21), we get

and imaginary parts) is
) |yl
:i,»n7 z7271:|:| . (16) h(Y; Y ) Sln {W6E|:

N _ o 2
h(¥]E", §0) = [reE[ViV} KEg (8,7 1)‘
+ XTB; (X’n) Xry 0%} } . (29

Substituting (15) into (16), and recognizing (from the right-hand
side of (15) and (12)) that the covariance in (15) does not depend
ony*~1, we have (13), proving the first part of the lemma. Not
that this conditional entropy is expressed directly in terms of t
idealized error covariance matri®; (™).

Next, we find a lower bound tb(Y;|#™, Y™~1) that can be

eubstituting this and (19) into (8), we get

N - . 2
XzT-Fz (Xn’ Yz—l)‘ :|

i
?iil) <Iln |1+

. = 1Y xn = S —
easily averziged ovexX™. From (13) ( o2 + E[X?Bi (XN) Xﬂ
h (Y zn, Yz—l)
2
TR, (™) 7* VTR [ ¥n) ¥+
= 111[7(60%] +1n [1 + M} n E[(XZ B (X )XZ) } (25)
g .
- z o 5 20%
iR (Em) 2 [BFBi (M) &)
2 In|meoy s AL . e first term on the right-hand side o can be interprete
>1 7]+ = (2)1 1% 2(4)] (17)  The fi he right-hand side of (24 be i d
9z 9z as the mutual information of a WGN channel for which 1) the

We used the inequalityn(1 4 ) > u — u212 for w > 0 above.

channel strength is the idealized estimate of the channel, and for
We can now take the expected value o¥&t

which 2) the noise is the original additive noise plus the ideal-

o E[X?Bi (Xn) Xﬂ ized covariance. This interpretation helps to support our intu-
h (Y; X Y”_l) >1In [weaé] + 5 ition that the mutual information is intimately tied to channel
7z ) measurement (even though the idealized estimate cannot be de-
E[(XTBi (X’n) X*) } termined by the receiver).
_ ' ' (18) To complete the proof of the lemma, use the upper bound
205 In(1 + v) < win the first term of (24) and drop the extra term
> In [m (a% + E[X?Bi (X;n) X:«D} in the denominator
R N
N N L N\2 T n 1—1
[ (%)) ey < LT Y]
_ 2% (19) " = o2
5 o N
where we used the inequality> In(1 + «) on the middle term E [(X?Bi (X")X;f) }
of (18). (26)
Next, we need to upper-bouridY;|Y*~1) in (8). Breaking 20y
Y, into its real and imaginary parts, we have To upper-bound the numerator of the final term in (25), note,
h (Y71 ?i—l) < h(Y;) < RR(Y;) + h(S(¥;)).  (20) from (12), thatE[F; F;"] — B;(&™) is nonnegative definite for

N S o eachz™. Thus,
We have seen that;, conditional onX; = &;, is circularly

symmetric, and itis then not hard to see thigtunconditionally, B (2™ 7 <Z'E [Eﬁjﬂ zr

is also circularly symmetric (although typically not Gaussian). . LN La2 . L. .
It follows that A(R(Y;)) and A(S3(Y;)) are equal, and each is E[(X?Bi (X") X;“‘) } < EUX;F E[FiF;“‘T} X7
upper-bounded by the Gaussian entropy of the same variance-

Thus, Note thatE[F} FT] is a (nonrandom) matrix here, and the outer

2
} . (@7

|srie1 2 expectation in (26) is thus ove¥;. Substituting (26) into (25)
h (Y’ Y ) Sl {m E[Y;| ]} ’ (21) gives us (14), completing the proof of the lemma.
We finally bound E[|Y;|?]. Conditional onX” = #" and The following lemma is of interest in its own right, since (29)

Yi~1 = 71 we have seen that; is Gaussian with mean bounds the mutual information in terms of the fourth moment
ZTFy(z7, 7~') and with variance given by (15). It follows of the pre-noise output; = X;'F;. Equation (28) is slightly

that stronger, and is needed to complete the proof of Theorem 1.
E[V;Y;*|z", 7] Lemma 2: Given the conditions of theorem 1,
R 2
= |7 E @ 7| 3B G F oG (22) E[ FTE[RFT] £ 1
no>n B
H o i—1 cn. uUn
Taking the expected value ovar™ andY I (X Y ) < Z Z 205 (28)

e 2:1 jzl E[|U<U*|2]
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Proof: First, we upper-bound the numerator of th&€ombining (37) with (30), and substituting this plus (27) into
first term on the right-hand side of (14). We first look a{26)

a fixed sample valueX™ = Z" for the input, and bound
[|a—j>TF(—>n Yi=1)[2], where the expectation is over the i1 E[‘XTE[EﬁfT} b 2}
outputY*~*, conditional onz ™. For thisz", abbreviatey’:~1 I(Y- n Yvi—l) < ’ S
byY, andF,(*", Yi=1) by £;. Thus, we Want to upper-bound” \""’ it oy
L2 .. S .
E[ ZTE } —z7 E[EF;T} 7. (30) E[ XF E[FiF*T} X }
204 (38)
A
From (11),F; is given byE[F’ Y*T|5:’"]K Y whereY is an
Summing over, we get
abbreviation fo¥’i~1. We then have
o o oo o 2]
T *T *
b T — [ yeT] 20 1 T L L EUXi E[FiFj :|XJ
cih ] =€l b GLETE] (7)< S
oo st | o
:E[ YT 7 }KﬂEE[YF*T} (31) =1 | =1 d
oA N oo . N o127 Y
FTE[RF 7 =T E[AY T KELE[TFT 5 (32) EU XTE[RFT] X }
+ 571 . (39)
Recall thaty; = U; + Z; whereU; = #TF%. ThusKy , = d

Kg + 021, 1, wherel;_, is the(i — 1)- d|menS|onaI identity
matrix. It follows thatl;—o71; 1 is nonnegative definite for Finally, denoteE[| X T E[F, F5T]1X*|?] by ¢(i, j) and note that
each inputd™. From this, we see that each agenvalué(@flm g(%, 7) = ¢(4, ). Thus, we have
must be greater than or equald4d, and, thus, each eigenvalue -
of KZ' must be less than or equaldg?. This in turn means °L A o
7is 10 S e n=3 Y o)

thato—g?Ii 1 — Ka must be nonnegative definite. It follows

Y|z =1 j=1 =1 i=j+1
that for any complex vectaf n n
=> > 99 (40)
FTKZLo" < 0|72 (33) i=1 jeit1

Yig'& o=
The first two expressions are equal since both sum paead;
Takingz™ asz T E[F;Y*T|#"], (33) is bounded by such that < j. The final two are equal by interchanginand
jandusingy(i, j) = g(4, ¢). By replacing the first sum in (39)
} 2 with half that sum, plus half the sum over j, we get (28). To
:L,n

E[FTF*T } B <oy ‘ ‘ . (34) establish (29), note that for each sample value of the input

ZT E[F;?*T

T 242 < =T 73 +T—>+
Observe thatzT E[F;Y*T|#"] is ani — 1-dimensional row 7" B FT)E | < BT BT ),

vector whosejth component is given by Thus

—

2 N - -
} < EUXTFiF’fTX’f

2
z J J

*TE[ iy

] =5 el (77 ) c[lerefiie
E Y2

:EUU;PU’; } .
Proof of Theorem 1:To complete the proof of Theorem 1,

we expand each of the fourth moment terms in (28) as follows:

Thus, it follows that

Combining (34) and (36) and taking the expected value aAver

(36)

srefirn]|f =5

J=1

ST - T | =
I E[AF] E

N RN L o12
EUX?E[EF;T} X }
i—n E[F R B ] X5
<ZZZZEmewnm

[|XZ—kX;— Xl K’ j rn’|] (41)

E[X’;f E[F?F*T} X’*}

<ot S| Rre[n] 5

J=1

} . (37)

ml |
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The expected values here can now be upper-bounded by As-j increasesR (0, j/W) decreases because of the randomly

peated applications of the Cauchy inequality changing phases and delays on the multiple paths contributing
E[| XX | X X ] to each of the channel taps. Tttlgannel coherence tintgis the
o s 12 time until this correlation becomes small, i.e., the valug/6¥
< {E[1Xin X P E[1 X X500 %] } at whichR(0, /W) gets small relative t& (0, 0). This corre-

< LENX_ i E[1X 4] ENXs— e [4] E[1X | 174 lation usually drops off gradually with increasirigand thug.,
—{ “ ’“” “ / |] “ b |] “ 5=l ]} is simply a single number characterization of the extent of the

=7 (42) correlation function. For our purposes here, it is convenient to
where we used (4) for the final bound on the expected valuedéfine this numbéras
the fourth power of each input variable. Substituting (42) into j'ooo |R(0, t)|? dt
(41) = TR0 0) *7)

EUX’;r E[ﬁz _’;T:| ff; 1 Assuming that.. is much larger tha /W, the integral in (47)

can be approximated by a sum, and comparing (46) with (47),
<Y DTS T IEEL R ES W EE w F ) we have
k m kK om/

2 B = 2Wt.R*0, 0). (48)

(43) This equation is based on the assumption &b, . I ;] is

real. However, ifiV is chosen so thatt/W is greater than the
multipath spread (assuming the typical case in which the multi-
path spread is much less tha), then the only significant term
. [ZZ |E[£5, & L7 ] in the inner sum of (44) is that fot = 0. Thus, moving the

7 (Xn; ?N) <~ Z Z k_m . ) absolute value sign in (44) outside of the inner sum is a good

im1 =1 20y approximation in this case, thus justifying (46) and (48). Sub-

This can be further upper-bounded by summirfgom —oc to  Stituting (48) into (5)
+oo. Because of the stationarity @&f, each term in the sum 1 (30 <
overi is then the same, and equaldoas given in (3). Thus, n ( ’ ) =
I(X™; Y™) < nyB/(20%), completing the proof.

= 5 [Z > [E[F; wF} |
k m

Substituting this into (28)

2

YWt.R%(0, 0)
o3 '

Let v satisfy (6) andb% = Ny. Substituting this into (49), the
mutual information per unit time (rather than per sample) be-

(49)

IV. INTERPRETATION OFTHEOREM 1

comes

To get the simplest interpretation of our result, assume that 5 o
for eachj, E[Fy, »F},,] = 0 for k # m. This is reasonable W (X’n; ?n) < M (50)
since I ;. is the response at timgto the set of paths whose n No

delay is approximately:/W. We expect these path responsegpe termR (0, 0) above is simply the power gain (or attenu-
to be uncorrelated with those paths at some other delaly”.  ation) from transmitter to receiver. One usually normalizes the
With this assumptiony in (3) simplifies to input and output levels to make this term equal tbut we leave
oo [L-1 it in here to avoid confusion. In the section to follow, we look
8= Z [Z |E[Fo, 7 &]l| - (44) atabroad bandwidth as a collection of many smaller bandwidth
j=—oco Lk=0 slices of fixed size. The input variables are then constrained (ap-

One of the standard ways [3] of representing fading multipatiioximately) both to a fixed bandwidily” and timel/W . With
channels is by thewo-frequency correlation functioR(f, ¢), the constraint (4), we will then see that the mutual information
defined as the correlation between the response attima si- per unit time decreases with increasing overall bandwidth.
nusoid of unit power at the carrier frequencgnd the response
at timet to a sinusoid of unit power at+ f. This correlation V. MUTUAL INFORMATION OVER MULTIPLE
function atf = 0 is simply the correlation function of the re- FREQUENCY SLICES
sponse to a unit sinusoid at the carrier frequency. In our base-C
band representation, this unit sinusoid is simgly = 1/v/W
for all 4. Thus,

2

onsider an arbitrary numbeéiof frequency slices. The con-
tinuous time input{ X'(¢t); —oco < t < oo}, at passband, is
then constrained to a bandwidtht”’. Let X*(¢) be the con-

L—-1 . . . . .
) N . tinuous time passband input in tlsth of the b slices. Thus,
R(0, j/W) = WE[UoUf] = E kzo Fo 1 F7y 49 x(p) = S0 _, x°(t). Aside from the constraints, which we dis-

) . 1 cuss later, viewing the input asslices, each of bandwidtt”’,
If we assume for the moment either tHa¥o, .7 ] is real for 5 gimply an analytical tool and has nothing to do with the actual
a"é] korthatL = 1, then we can substitute (45) into (44) chgice of the input within the overall bandwidth constraiit’.
getting

1t is also often defined as the tinreat which| R (0, 7)|? drops to some fixed
. 2 fraction x of R|(0, 7)|?. The fractionx is assigned various values between
/3 = Z |R(0, J/W)| . (46) 0.37 and0.9 [4], [6], [12]. This does not suffice here since we need a measure

j=—00 involving how|R(0, 7)|* goes to zero withr.

oo



MEDARD AND GALLAGER: BANDWIDTH SCALING FOR FADING MULTIPATH CHANNELS 847

Let F(¢, 7) be the impulse response of the fading channel &t * = (Y7, ..., Y™)T. We want to find an upper bound on
timet to an input attime — ~. Then the response of the channeI(X’"ib; 17"7"), which, as we have seen, is an upper bound on
to the input sliceY® (t) is [ X*(t—7)F(t, 7)dr. If the overall the mutual information betweeti(t) and)(t) over an interval
Doppler spread ig\ B, then this response is band-limited to af durationn/W. As before, we can expand this mutual infor-

bandwidth = W’ 4+ AB. Let mation as

()= [0t - nF e+ 20 (X prt) = 1 (T )
where {Z*(¢)} is a stationary real Gaussian noise process b o bl S el
whose spectral density is flat over the bandwidthof interest - Z Z I (Yi:a? AT ‘Ya , ¥ ) :
and is zero elsewhere. The baseband versio'®ft) and a=l =1

ye(¢), sampled at ratd¥, corresponds to the model of the

previous section. For thé passband systems just definedyy s point, we have reduced the continuous-time channel to a
consider the somewhat artificial systeyit) = >~ _, V(¢),

vector discrete-time channel. We have been somewhat cavalier
where about truncating ideal band-limited processes, but this is a fa-
Ye(t) = /X“ (t — 7)F(t, 7)dr + Z°(¢) miliar problem in capacity arguments, and the fading multipath
T does not change that problem in any critical way.
and where the noise procesdes®(t)}, even though overlap- To complete the model, lef; . ,, be the mth tap of
ping in frequency, are independent between different valué ath baseband equivalent channel filter at time let
of a. The frequency bands occupied by adjacent outputs, shya = (£i,a,0, -+, I%,a,z-1)", @nd, as before, lek; ,
Ye(t) and Y*t1(¢) overlap by the Doppler spreatiB, and denote(X; 4, ..., Xi_r41,.)". LetU; , = X{ F; , be the
therefore the procesg)(t)} does not necessarily specify thefaded signal at time for frequency slices. Then
individual processe$)*(¢)}. Because of the data processing S
theorem, the average mutual information per unit time be- Yia=UiatZia=X; Fi ot Zia (52)
tween{/‘_\’(t)} an_d ()} is _Ies_s than or equal to the averag@s pefore, we impose the constraint
mutual information per unit time between the set of inputs
{XL(0), X2(2), ..., X)) and{VH(0), VA(2), ..., V(). E[1X, o] <~
SinceX'(t) = .U _, A“(t), we can represent(t) by 7 i

. . for all ¢, a for some fixedy. We also assume (sincg”(¢) has

Y(t) = / Xt —7)F(@, 7)dr + 2() spectral densityV, /4) that

where Z(t) = 0 _ Z(t). We assume tha’’ > AB, so E|Zi. o?] = 0% = No/2,  forall4, a.
that only adjacent bands overlap. This entails no essential loss ) _ _
of generality, sincd¥’ was arbitrary up until this point. This Leémma 1 generalizes with no change, except for the addi-

X . . . it i n, a—1 P R
means that the spectral density#ft) is twice as large in the tional conditioning ony’ - The following lemma gives
overlap regions as in the nonoverlap regions of the band. TiéS generalization; the proof is omitted since it is the same as
actual received waveforgi(t), on the other hand, is given by Lemma 1.

B Lemma 3: Let F; (™", #i~!, 7™ 1) be the conditional
V) = /T At = T)F(E, Ty dr + 2(0) mean ofF; ,, conditional ort’ [~ = i1, Y™ e-l = gn.a-l
whereZ(¢) has spectral densit/, /2 over the received band. andX™" = 7™, Let
Now suppose we define the spectral density of each noise Foom By — B @™t it gmet)
processZ® (t) above to beéVy /4. In that caseZ(t) has spectral ha=dhe™ M 1Yo 2 Y
densityNo/2 in the overlap regions amdlp /4 in the nonoverlap e the corresponding fluctuation. Lét; ,(Z™?) be the co-

regions. We can get the true outpditt) from the artificial \5riance matrix of this conditional fluctuation and abbreviate
output Y(¢) by adding stationary Gaussian noise of spectra{?i—1 fn,a—l) by Y. Then

density No/4 in each of the nonoverlap regions. By the data
processing theorem, again, the mutual information per unit tin‘ie(Yi, @
between{X(¢)} and {)(¢)} is then upper-bounded by that

FU V) = fre (0} +7F,Bia (770) 71,)]

2

between{ ()} and{)(t)}, and that is further upper-bounded E[ XF o (X’":b, 57)‘ }
by that between I (1/7;7,,,; X"?b‘?) < p
(A1), A2, ..., X)) and (Y1), V2(1), ..., Y (t)}. 7 )

Nextwe re s pae), o EUXL E[F o 58] ¥ }

present each of thgairs’*(¢), V*(¢) above by

a discrete-time baseband channel. Ket,, Y; ., andZ; , be 2042 - (53)
the ¢th t[me samplg in the coryplex baseband representation of
xe(t), Y*(t), and2(t). Let X7 = (X140, ..., Xn,o)" @and  The following lemma s a slightly less straightforward general-
Y? = (Yi,a, ..., Yn,q)" be the vector input and output overization of Lemma 2, and we give a proof for those details that

theath frequency band. Also, €™« = (X7, ..., X™)Tand are different.
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Lemma 4: n a1 EUX’;PQE[EaﬁjTa,} X’;ya, 2}
() e Rp z
b b n on EUX E|F} 7%, | X* } ‘ T Lo FE | X, }
DIDIPIPY 207 +E FoElP P X . (60)

2042
(54) Summing this ovef and using the trick in (40)
I (Ya; Xn, b ‘Y_:n, a—1 )

b b
DIDIPI I (55) EUX;{QE[E,aﬁﬁ} P

Proof: Consider the numerator of the first term i=1 j=1
in (53) for a fixed input X"b = Z%' Abbreviate ‘ﬂT [f T } -
Fy (@m0 Yi-l Yme 1y py Fj,. Thus, we want to no ool BHXGG B\ F I | X o 61
upper-bound +Z Z Z ot - (61)

E[lZ" 5 o] = 25, E[F} o P72, Finally, summing over and applying the trick in (40) ta

where the expectation is ov&tfor fixed ™ ¢. Using the same bbb 2

argument as in (34) 1 (me% ?n’b) < Z Z Z Z

2
=T A‘ -2 —*T T —»n b N . . 2
[ e R El e[| 2, E[A. A5 o]
- - . . (62
The vectorY here has — 1+ n(a— 1) components, consisting 20% (62)

both of the firsti — 1 received variables in frequency bamglus  This is (54), proving the first part of Lemma 4. The second part
aII n received variables in each of the barid® o — 1. Thus, fgji0ws as in Lemma 2 completing the proof.

E[E JY*T|E™ s ani — 1 + n(a — 1)-dimensional row

vector whosegjith component] < j < i — 1, is given by Using the Cauchy inequality in the same way as (41)—(43)
” —*n b T = T * T T ok 2
B2, E[R, | ] =2 E[E, o (E2F +z,,,,,) [ AR B
=iLE[F, aF*T} (57) ?
ZZ|E 70kF*a rn]| . (63)
The other components are indexed byl < j < n) andd/, k
(@' < a) Substituting this into (62)
=T o * —n,b * b b n n
iaE‘FiaY'a’ ? EF a/F a/+Z a’ — —
x: |: ’ I z :| |: ( J Js Js ) :| I(Xn,b7yn,b)S,yZ Z
E[E 5T, } Ef o (58) a=l ar=1 i=1 j=1
Substituting (58) and (57) into (56) [E 2 NEE o 1 ET o m]q
k m
.2 64
E|: fiTaE:a :| 20Z ( )
i This upper bound on mutual information makes no assumptions
< o2 Z 2T E[F F*T:| 2 about the stationarity of the fading process. We now assume that
-2z ot “a “e ia the fading process is wide-sense stationary, both in time and
I in frequency. This is a reasonable assumption for overall band-
—2 widths less than 10% or so of the carrier frequency. In particular,
M Z Z E[Fz aF } Tl (59) we assume that A e
j=1 a’'=1
The expected value of this, ovéf; ,, is the numerator of the E[anFfTa} = E[Fo oF%E, _a} (65)
first term of (53). Thus, substituting this expectation into (53}0r alli. i a o
we have 1 Jr & @
Iy, . @nb|pi-1 pra-t Theorem 2: Assume that the fading process is wide-sense
( i e ‘ a 7 ) stationary, in time and frequency, and that the input variables
- 2 satisfyE[| X; .|%] < +. Then
i1 EUXT E|:-Fz,aF>;7Ta:| X;,a :| fy [| 5 | ] e
< nbf

I (X’mb; ?nw) (66)

1
Oz

j=1 20y



MEDARD AND GALLAGER: BANDWIDTH SCALING FOR FADING MULTIPATH CHANNELS 849

where Recall that the spectral density for the noise process in each slice
oo oo 2 was chosen to &, /4 so thatr%, = N, /2. Substituting this and
f= 3 X | X EEosE | o (DO —
a’'=—o00 j=—o0 k m l I (Xn’b; Yn’b) S 8’}/ tcf/‘c 2 (0, 0)
Proof: We upper-bound (64) by extending the sum over n W'Ng
a’ and; from —oo to 4-cc. Then, using (65), the sum for each Let S be an overall power constraint on the input, andigt =
and eachu is the same, completing the proof. S/b be the power constraint in each slice. Then, from (6), we
havey = .52 /(bW )?. Substituting this into (72), and recalling
Shatw = bW is the overall input bandwidth
W et an) _ 8at.f.S?R?(0, 0)
s _ S, U n, <
E[Fj,O,kFO,a’,rn] =0 n I(A ’ Y ) - bW/Ng
_ 8at.f.5*R*(0, 0)
, B WNZ
- = i This shows that the upper bound is decreasing inversely with
p= Y 3 [2 [E[Fo, 0,1 a,,kn] . (67 PP J Y

(72)

In order to interpret what this result means, akin to the int
pretation in Section IV, we assume again that

wheneverk # m. This simplifies to (73)

W. The question we now have to answer is whether this upper
bound is meaningful in any region of interest. In the broad-band
Recall that the two-frequency correlation functi8fyf, t) isthe region, the capacity of a WGN channel without fading jsVy,
correlation between the response at tiorte a sinusoid of unit and the bound in (73) becomes equal to the WGN capacity when
power at the carrier frequeneyand the response at tiniéo a W = 8at.. f.S/Ny, For conventional cellular mobile communi-
sinusoid of unit power at + f. Then cation and personal communication services (P¢3),ranges
from about50 to 10* and thus the bound is only meaningful
Z F, o,ijk o whenW > 107. What this means is that these channels haye

. Y so many degrees of freedom, in time and frequency, over which

i the channel remains relatively constant, that the channel can in

As before, we assume either that these terms are real ditthal

. - i brinciple be measured adequately.
is small enough that the tapped delay line representing the muIThe bandwidth at which this bound becomes significant de-

tipath has only one significant tap. Then (67) simplifies furth%reases with decreasing f., andS/No. t. is inversely propor-

to tional to Doppler shift, which is proportional both to carrier fre-
. o0 o0 quency and velocity of transmitters, receivers, and reflecfors.
B= > > IR@W, j/W)*. (68) isinversely proportional to time spread, which increases as mul-
a’=—00 j=—00 tiple paths are spread over larger distances. Thus, the bound be-

a’'=—o0 j=—oc k

R(aW', j/W) =E

comes more significantin the regime of high carrier frequencies,

As one f'”".’" §|mpl|fy|ng assumption, assume that j[he correlatu?gpid velocities, scattering over widely dispersed paths, and low
over time is independent of that over frequency, i.e., that SNR

P _R@@'W’, 0)R(0, j/W)]|
|R(a'W’, j/W)| = R(0,0) . VI. SPREADING USING CDMA

One can easily find situations in which this is not a good as- In this section, we consider the special case of DS-CDMA.

sumption, but it makes sense as an average over which wirelé4ng with the importance of this special case, we can acquire
systems must operate. Using the definition (47) of coherengdditional insight into the general bounds of Theorems 1 and

time, (68) becomes 2 for this simple case. Instead of creating another upper bound
- on mutual information, we assume a simplified channel model
3 =owt Z IR(a'W', 0)2. (69) and develop a crude approximation to the mutual information,

assuming i.i.d. antipodal inputs.

We still consider the model of Section V where the available
The frequency correlatiok(f, 0) gets small asf becomes input bandwidth/ is separated intbslices, each of input band-
large because of the random strength and phase of differ@idth 7. We chooséV’, which is otherwise arbitrary, to be the
paths. Thdrequency coherenct. is the frequency at which  channel coherence bandwidfh With this choice, it is reason-
R(f, 0) becomes small, and we define it, somewhat arbitrariple to approximate the fading to be flat over each slice, i.e., to
as assume that the number of time-varying filter tdpsequired to

oo 2 model a slice is given by, = 1.
fe= M. (70) Denote the single filter tap (i.e., the channel strength) in slice
R?(0, 0) a attimei by I; ,. Assume that the time sequentg,, —oo <
He< oc in each slice: is statistically independent and identically
distributed with that of all other slices. The assumptions of flat
, fading within each frequency slice and independence between
8= 4W/Wht.f.R*(0, 0). (71) slices is the frequency analog of block fading in time (see [17],

a’=—o0

fe is proportional to the reciprocal of the time spread on t
channel. Substituting (70) into (69), we get
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[16]), where the channel is assumed constant within each tirs in (10),03(@) andﬁ’i(a‘:’", it) are related by
block and independent between time blocks.

Under the assumption that the frequency coherence is much EUF; (X’n7 Yi)
larger than the Doppler shifts, we also assume that the Doppler
spreading between frequency slices is negligible, so the outpinally, we see from (74) that
bandwidthi¥ for a frequency slice is taken to B& = W' = VN 2 . o L. 2
f.. This avoids the need to use the artificial noise procgss) E{ E; (Xna Yz_l)‘ } =[n|? E|:‘F/i—1 (X", Yz_l)‘ }

(79)

defined in Section V. Thus, in this section, the noise variance 22 9
will be taken to besZ = N, rather thanV /2. =lnllor = ok i-nl

In CDMA, the channel input, after coding and spreading, Bhe variances7 ;) in (78) approaches the following steady-
typically antipodal. We take some slight liberty with these anstate valuer?. asi increases:
tipodal inputs here by assuming that the baseband inputs on each 1 1 2
frequency slice are antipodal. This means that the magnitude — =5 s+ = (80)
squared of the inpuk; , in each timei and slicea is simply a ok Pox+ L=y - oy
constant, sayX? for each slice. We assume that the inputs ateet A = a} — 0%. This is the steady-state value of
independent over time and slice, and &%, each with proba- E[|£”_, (X", Yi~1)|?]. Substituting this into (80) yields
bility 1/2. The frequency slices can now be analyzed indepen- o

. . . 1 1 X
dently, so we drop the subscripand analyze an arbitrary single = + .
. 0t —A ok —|n2A o2

frequency slice. F F z

For each such slice, we adopt a Gauss—Markov channel mobliltiplying both sides, first by the denominator of the left-hand
[20]. Here each time sample evolves as side and, second, by the denominator of the first term on the

right-hand side, and simplifyin
Fy=nF,_1+5=; (74) g 2 plifying
where Z; is a random variable representing the innovations A= — s (0F — Ao} — [n[P4). (82
A 'e TEph o (1= nl*)e

process. The random variablgs are i.i.d. Gaussian with zero ’
mean and varianceZ. From (74), we see that

2
_ 2 2
} =9F T 9K ()

(81)

Each of the final terms in (82) are positive, and thus can be
upper-bounded by, leading to

Ué = (1 - |77|2) U%- (75) X2rf%
Si AL —r s (83)
ince (1= nP)ez
5 E[Fiq; FY] It can be seen by comparing (82) and (83) that (83) becomes a
E[|£;]7] good approximation tet for X2 small, i.e., for a large number
_ _ of slices. Thus, using (79)
the constant; represents how fast the given canonic channel ) 2 2,4
decorrelates, and in particular E [ £ (X’@ 3771—1)‘ } ~ L;FQ (84)
- (1= nP)o%
= Z M. for X2 small. The varianceés; of the fluctuation ofF; around
1—[nl* = E[FPP is ideali i -
i=0 this idealized estimate is then
Using the definition ot in (47) and approximating the above 5 |2 X320k
b it | Bimop— v (85)
sum by an integra (1= 1Inl)oz
PR 1 (76) Note that this (and in fact the exact valueyf) is not a function
A=W of the particular input or output. If we now look at Lemma 1
The outputY; from a given frequency slice is again, we recall from (13) that
Yi = X;Fs + 7. 77) h(vi|E", Vi) = Infrelod + X2B1]}.
The idealized estimation af; from (74) and (77) can now be Since this does not dependn ", we have
represented by the single-dimensional Kalman filtering equa- nvigr vi-1) =1 2 y2p 86
tions. In particular, let”’.(z", ¢*) = E[F;|#", #°]. Note that ( B ) = In{refoz + il (86)

this estimate is based on the current output as well as previgtg entropy(Y;|Y# 1) can be upper-bounded by (23) as
outputs and differs from the idealized estima}ef (11), which . )
Y~

does not depend on the current output. The estimate depeh{l&’;
also on the inputs’*; the future inputs are irrelevant to the
< 111{7rc [XQ E[

estimate. Lebi,(i) be the conditional variance df; around

Fi(z™, %). This variance is independentgfand ™ and sat-
L of : : 2There is a familiar subtlety here: this is a conditional entropy, conditional
isfies the well-known Kalman recursion equation . . . S OBy, LI

on the input, but itvalue does not depend on the particular input. Similarly,

1 1 X2 the entropy of output conditional on input for an ordinary Gaussian channel is

5 = >3 5 + —- (78) simply the noise entropy. ltgaluedoes not depend on the particular input, but
TK @) ] TK(i—1) + (1 —1n] )UF Oy the conditional entropy is certainly different from the unconditional entropy.

2 (X’n?ifl) ﬂ 4 X?B; + ag} } . @87
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Combining (86) and (87) VII. CONCLUSION

Our results point to the fact that uniform signaling over time
and frequency (as formalized by a fourth moment constraint)
for time-varying channels over very broad bands does not
achieve good channel utilization. These results indicate that
ultrawide-band systems using such signaling over gigahertzs
of bandwidth should only be used to operate over quasi-static

el (w79

X2B; + 0’%

I (Y xn

?i_l) <In<1+

"= o 2

e ()|
< o2 channels.

) z ~ Several questions spring from this result, the most natural

We next shgvy that this upper bound is also a good approxinising what is a practical and efficient way of transmitting over
tion whenX= is small. Note that very wide spectra. The channel model here almost certainly
R(Y;| X", YY) = (Y| X7, YT breaks down for the bandwidths required to approach capacity

for the impulsive signaling schemes of [14] and [32]. While the

(88)

and - i 1o infinite bandwidth capacity for an additive WGN channel is ap-
AYY") = R(Yi| XY 7). proached reasonably rapidly as bandwidth increases, the results
Thus, in[32], using [9] indicate that the infinite bandwidth capacity for

fading channels is approached impractically slowly. Thus, there
is alarge operating regime where the constrained fourth moment
. 21 o1 el —iet signals of this paper are not desirable but the very broad-band

\Iji(;:/vat%lzer:jsj riaqlpilr?fg?rlnuiio ri_Y be ’}i/_lﬁ;l as7 t\;]Vee ?ri? results of [14] and [32] are not applicable. Moreover, the ex-
(Vs X" g) Lremely impulsive signals required to operate in the regimes

I(y;; xn

?i—l) > (Y Xi|Xi_1?i_1) . (89)

tjlg(l ]g“fi’:"_“lat"iﬂlbzt‘r’]f;]lt:et anttg?szln']ngﬂ?aragdoﬁcxe};'?ﬁe%nsidered by [32] have great practical drawbacks.

sum cflgjtha{ z t)and a GausF;l'Jan randon\: ;r'ablvt\el cl)f :I;\r'a A practical scheme may consist of combining traditional
u 5 - Inpul uss| varl vanantpma with frequency hopping, spreading using CDMA to

B; 4 o3, Itis well known that one can approach capacity on

: . : s . moderate extent and then hopping across the spectrum.
Gaussian noise channel, in the limit of large bandwidth (Sm"f‘rl order to evaluate the effectiverr:gssgof this techniqﬁe one
X?), by using antipodal signals. Thus, for smAT¥ ’

must first determine the range of bandwidths for which the
X2 ‘Fz (fngi—l)r type of signaling addressed in this paper is advantageous.
I (Yi; Xi|a7i—1gi—1) ~ . (90) While [21] begins to address this issue for channels which are
X?B; + 03 block-fading in time and frequency, finding tight bounds for

Averaging overX’~! and¥’~!, and then combining with (88) advantageous spreading regimes for more general channels is
and (89), we see that an open problem.

o o 2

h ]

The model here assumes no feedback, and it would be inter-
esting to see how feedback changes the picture. We conjecture

x7E|

I(y: X7|vVi1) ~ g1) that the results would be basically the same, since the fourth
i 5 (91) . : C
9z moment constraint prevents the receiver from estimating the
Combining this with (84) channel, feedback or not.
L. 234 4
I (Y Xn Yz—l) N X0k (92)
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