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The Effect upon Channel Capacity in Wireless
Communications of Perfect and Imperfect

Knowledge of the Channel
Muriel Médard, Member, IEEE

Abstract—We present a model for time-varying communication
single-access and multiple-access channels without feedback. We
consider the difference between mutual information when the
receiver knows the channel perfectly and mutual information
when the receiver only has an estimate of the channel. We relate
the variance of the channel measurement error at the receiver to
upper and lower bounds for this difference in mutual information.
We illustrate the use of our bounds on a channel modeled by
a Gauss–Markov process, measured by a pilot tone. We relate
the rate of time variation of the channel to the loss in mutual
information due to imperfect knowledge of the measured channel.

Index Terms—Channel uncertainty, multiple-access channels,
mutual information, time-varying channels, wireless communica-
tions.

I. INTRODUCTION

T HE increasing applications of wireless communications
have spawned much research and debate about the best

manner to utilize the available spectrum, and have prompted
more spectrum to be opened to commercial uses. The study of
the intrinsic limitations of wireless communications is very im-
portant because most of the factors are outside the engineering
domain: the power used by mobile users is limited by safety
regulations, the carrier frequency and the bandwidth are deter-
mined by commercial availability under regulatory constraints,
and the nature of the channels is governed by weather, car traffic,
physical obstacles, etc. It is therefore necessary to take such con-
straints into account in determining the capacity of these chan-
nels. The goal of this paper is to determine how the time vari-
ations cause uncertainty about the channel at the receiver, and
how this uncertainty affects capacity. We first consider the ca-
pacity of a known time-varying channel and second we use a
perturbation approach on a perfectly known channel case to ac-
count for the channel estimation error. We consider one or sev-
eral senders and a single receiver.

The issues of propagation in mobile channels have been ex-
tensively studied and can be found in many textbooks (see, for
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instance, [29], [38], [64], and [66]). Treatment of many informa-
tion-theoretic issues relating to mobile communications can be
found in [62], [47], and [27]. Three main issues which arise from
the characterization of the mobile channels are intersymbol in-
terference (ISI), time variation of channels, and multiple ac-
cess. The effect of time-invariant intersymbol interference on
capacity for a single-user ([24], [70], [28]) and multiple-user
systems ([7], [74], [75]) has been well studied. The time vari-
ation of the channels proves much more difficult to model and
circumscribe. A commonly taken approach is to consider that
the ISI is constant and known for certain durations and thus
decompose the channel into time blocks [43], [13], [35]. The
issue on which we concentrate in this paper is the effect of the
lack of knowledge of the channel on the achievable mutual in-
formation in systems with time-varying channels. Of particular
interest is the issue of the effect of imperfect knowledge on mul-
tiple-user communications. The capacity of time-varying chan-
nels has been often studied in the context of Markov channels.
Different cases have been considered, among them: the state of
the channel is known at the sender and receiver, or the receiver
only ([78], [15], [21]), or only knowledge of the statistics of
the state transition probabilities exists ([22], [46]), or solely the
set of possible states is known ([12]). For non-Markov channels
that decorrelate in time, a strong coding theorem [44] and weak
coding theorems, which use information stability results [50],
[68], have been established [31], [49]. The last issue we have
mentioned, the multiple-access problem, has been well studied
in the memoryless case. The capacity region in the memoryless
case was established with synchronicity ([41], [1]) and asyn-
chronicity ([9], [51]). Overviews of the multiple-access problem
are given in [16], [20], [71], and [45].

In this paper, we consider the issues of ISI, time-variation,
and multiple access in the context of an error about the channel
measurement available at the receiver. The time variation of the
channel and the error on the estimate of the channel are tightly
linked. The time variation entails that the channel will always re-
main unknown to some extent. Indeed, a time-invariant channel
could be measured arbitrarily well by using a sounding probe
signal. The time variation and the ISI together are responsible
for the fading seen on the channel. The questions we seek to in-
vestigate in this paper are as follows.

• For a given channel measurement error variance, what
is the effect on mutual information of not knowing the
channel? In particular, what is the effect of imperfect
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channel knowledge on mutual information in the multiple
access case?

• For a specific channel fading model, how does the channel
variation affect the mutual information?

The question concerning the effect of imperfect channel
knowledge on mutual information in the multiple-access case is
particularly relevant, because the corners of the Cover–Wyner
region for the multiple-access capacity region in memoryless
channels can be attained using interference cancellation. Other
points along the Cover–Wyner region can be obtained using
rate splitting and interference cancellation ([58], [59], [23],
[57], [56]). The error on the channel of a user will affect the
mutual information of another user if interference cancellation
is used. It is not immediately clear whether, when the channel is
not perfectly known, it is preferable to consider each user to be
interference to all other users rather than attempt multiple-user
interference cancellation. This issue is the subject of debate
([73], [17], [77], [18]).

II. CHANNEL MODEL AND MUTUAL INFORMATION WITH

PERFECTKNOWLEDGE OF THECHANNEL AT THE RECEIVER

A. Channel Model

Mobile communication channels are subject to many changes
which cannot be controlled or predicted. Obstacles appear and
disappear as the mobile moves in its environment, leading to
partial blocking (shadowing) and to echoes (multipath). We
present a channel model based on a general multipath situation.
We establish equivalent continuous and discrete-time models
for this general multipath situation. In Section II, we present a
channel model for a time-varying multipath environment and
results for the maximum mutual information of time-varying
channels in the single-user and multiple-access cases when
the channel is perfectly known both at the sender(s) and the
receiver. In Section III, we establish the framework for studying
the mutual information when the channel is known with some
error at the receiver. For both the single-user and multiple-ac-
cess cases, we use this framework to establish upper and lower
bounds for the loss in mutual information due to an error of
known variance for the channel at the receiver. In Section IV,
we consider explicitly the effect of time variations upon the
channel error for a Gauss–Markov model of variations. In
Section V, we draw conclusions from these results and propose
directions for further research.

Let us look at the channel response at baseband for a multi-
path channel. We assume that the passband signal is contained in
a bandwidth centered around a carrier frequency. A dis-
crete data stream from the user is passed through a modulator,
whose output is a continuous signal. We denote the channel
by a linear time-varying filter of impulse response. In this
paper, unless the context indicates otherwise, lower case vari-
ables denote deterministic variables and upper case letters de-
note random variables. If we have reflections off objects in mo-
tion relative to the transmitter or receiver, the received signals
will experience a Doppler spread in frequency ([14], [34], [38]).

Fig. 1. Continuous-time multipath system.

The impulse response of the multipath channel seen at time
for an input at is

(1)

where is the response of the th path at time for an
input at . Thus , where

is the complex multiplicative factor associated with the
th path (accounting for fading and phase shift). The Doppler

shift associated with path is and the time-varying delay
associated with path is . The spread
among these shifts in frequency is the Doppler spread, denoted
by . The difference between the smallest and the largest

is called the time spread, denoted by. Since
changes slowly with the delay, we may use the common assump-
tion ([53, p. 705]) that the amplitude changes much
more slowly than the phase. In terms of the Bello functions for
the description of time-varying channels, is the input
delay-spread function [4], [25, p. 128]. Fig. 1 shows our con-
tinuous-time model.

In order to derive a discrete-time model for the system, we
must determine how to sample the channel output. In general,
we know that the bandwidth of the output of a linear time-
varying filter will be band-limited to the sum of the input band-
width plus the filter variation bandwidth (a more general result
for stochastic channels was established in [33]). Therefore, the
output may be band-limited to at baseband. We
assume that the input and the noiseless response at baseband
are band-limited to . The response may be
sampled at time intervals of , by the Nyquist sampling
theorem. We define the baseband output of a multipath
channel with additive white Gaussian noise (AWGN) to be the
noiseless baseband output with the addition of a term ,
where is a sample function of band-limited complex white
Gaussian noise of double-sided spectral densityat baseband

. We consider the discrete-time sequences de-
fined as and . The output
is , where is the sampled version of . Fig. 2
shows the sampled system. We have that

(2)

(3)

We see from (3) that there are infinitely many terms ,
whereas in the continuous case there is, for any given, at most
a single which yields a nonzero value for . For our
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Fig. 2. Discrete-time model.

purposes, we wish to establish an expression in terms of finite
matrices in the discrete-time case. Expression (3) shows that the
terms become very small with for fixed. Therefore,
we may choose some artificial cutoff in such that
is approximated to be zero beyond that point. We have used
the function for our sampling reconstruction, but we could
instead use a function with significantly faster rolloff in time.
A detailed treatment of the issues concerning time and band-
limiting assumptions can be found in [63], [80], and [79]. Note
that the spreading in both time and frequency is crucial ([32],
for instance, does not take this into account).

In what follows, a subscript after a vector indicates that
we are considering . If we are considering a ma-
trix, the superscript will indicate the range of the columns in the
same manner. We assume that for any is zero. Thus

will depend only on inputs . Let us
choose some cutoff . We approximate the sampled
channel output as

(4)

where is the complex matrix with entries

for

otherwise.
(5)

Although the vector expression is approximate, we may make
this approximation arbitrarily good by the choice of.

For the multiple-access model, each source has its own time-
varying channel. Fig. 3 shows the multiple-user model. We let

denote the number of users. It is reasonable to assume that the
channels of the different sources are mutually independent. The
signal from each modulator passes through a different channel.
The input bandwidth, of size , is shared by all users. This
does not necessarily mean that all users simultaneously transmit
over the same portions of the spectrum. The received signal is
the sum of all these modulated inputs, as received through their
respective filters. Let be the number of paths in the channel
seen by user, be the complex multiplicative constant as-
sociated with the th path of user (accounting for fading and
phase shift), and be the delay associated with theth path
of user . Let be the complex signal transmitted by user.
It is sufficient to take to be where

is the Doppler spread of theth channel. By extending the
discussion for the single-user case, we may write that

(6)

Fig. 3. Continuous time multipath system with multiple users.

where

As in the single-user case, our initial assumption thatis large
enough so that may be fully recovered from ensures
that (6) gives a complete characterization of the channel re-
sponse. As in the single-user case, we choose some arbitrary
cutoff in such that is taken to be zero beyond that
point. We may then write, with the obvious extensions of nota-
tion from the single user case, that

(7)

B. Maximum Mutual Information in the Case of a Perfectly
Known Channel at the Sender and the Receiver

In this section, we consider the case where both the receiver
and the sender have perfect knowledge of the channel for all
times. In the case of a time-varying channel, this would require
knowledge of the future behavior of the channel, which is not a
reasonable assumption. The purpose of this section is simply to
establish how we can compute, for a particular realization of the
channel, an upper bound on the mutual information achievable
over some time. Note that we establish a mutual information and
not an achievable rateper se, since we do not look at limits over
time. We first review the results for the single-user case and the
multiple-user case when the users cooperate. We then present a
new result concerning the maximum mutual information in the
case of independent multiple users. For complex transmission
over time using an input bandwidth , the mutual informa-
tion between input and output is

(8)

where and denotes differential entropy

(9)

We actually have degrees of freedom since we are dealing
with complex random variables. In order to simplify our manip-
ulations, we shall use the random vectors , , and ,
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whose first components and last components are, respec-
tively, the real and imaginary parts of the corresponding vectors

, , and . We use such a notation instead of the more
compact complex notation because, in the following sections,
we restrict ourselves to real vectors, for the sake of simplicity.
Thus in our paper, all operations are in the real domain and there
is no ambiguity. Let us denote by the sample at time
of the continuous input . We may write

(10)

where

(11)

Therefore, making assumptions of approximate simultaneous
time and bandwidth limiting, if we take to be before sample

and we choose a large enough, we may write that

(12)

where and

for
otherwise

(13)

The matrix gives, in terms of a linear transformation, both
the effect of sampling input and output at different rates and the
effect of the channel. Let us define the real vector con-
structed from the complex vector similarly to the way we
constructed from . We have that

(14)

where can be easily expressed using (11) and (13).
Let us consider the by matrix

Let be its eigenvalues. These eigenvalues are real
[65, p. 222] and nonnegative. Using [15, Theorem 8.4.1] and
water-filling arguments similar to those of [10], we may estab-
lish that maximum mutual information per second is

where is given by

(15)

(using to denote the positive part) and

(16)

Let us consider the multiple-access case. We place a constraint
on the sum of all the users' powers. We first look at the case

where the users may cooperate, and therefore act as an antenna

array. Such a model is only reasonable if the users are colocated
or linked to each other in some fashion. In particular, several co-
operating users with several antennas may achieve a rate greater
than the sum of the rates of the users. Again, we consider mu-
tual information rather than capacity and the techniques we use
are similar to the single-user case. Note that different types of
decomposition might be used ([3]). For the memoryless case,
without the ISI we consider here, the capacity region for mul-
tiple-access channels with arbitrarily correlated sources is given
in [8] and the worst case capacity forsenders andreceivers is
given in [72]. For issues concerning multiple-antenna systems in
fading channels, see [67], [62], and [42]. The problem is similar
to the one-dimensional problem, except that we now consider
that the channel has more degrees of freedom at the input than
at the output. There are input degrees of freedom
and output degrees of freedom. We have

(17)

where we have defined

(18)

has eigenvalues, all of which are real and nonneg-
ative and at most of which are nonzero. Let us assume that
there are positive eigenvalues, which we denote .
We have decomposed our multiple-access channels intochan-
nels which may be interpreted as parallel independent channels.
The input has additional degrees of freedom, but those
degrees of freedom do not reach the output. The maximiza-
tion along the active channels may now be performed using
water-filling techniques. Let be the duration of the transmis-
sion. We choose

(19)

for , where satisfies

(20)

and satisfies

(21)

We have reduced several channels, each with its own user, to a
single channel with a composite user. The sum of all the mutual
informations averaged over time is upper-bounded by

Let us now consider that each source has an individual power
constraint, that the signal of each source is independent of every
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other source, but that we still seek to maximize the sum of all the
mutual informations averaged over time. Such a model is rea-
sonable for mobile users which do not cooperate. Note that this
is different from the case considered in [35], where the channel
is essentially assumed to be block-fading. We seek to maximize

(22)

Maximizing (22) is equivalent to maximizing . For any
covariance matrix for , the entropy is maximized by

Gaussian, which can be obtained by Gaussian inputs. Let
us denote the autocorrelation of a matrix by . Then the
problem, for the two-user case, is to maximize

(23)

where we have omitted the subscript in . The maximiza-
tion of (23) is subject, for to being positive-
semidefinite and having a trace upper-bounded by .

Fortunately, the problem is convex and the region over
which we optimize is convex. Let us first show that the re-
gion over which we optimize is convex and then show that the
problem is convex . Let be the output of the multi-access
channel before noise is added, so the covariance ofis

(24)

where and are a pair of covariance matrices that satisfy
our conditions. Similarly, letting and be another pair

of covariance matrices that satisfy our conditions, let be the
corresponding output before noise so that

(25)

Let us consider an AWGN channel with noise . For any
, and for each, let be a random variable whose

probability density function (pdf) is the sum oftimes the pdf
of and times the pdf of . Then, since the s are
independent

(26)

Note that satisfies the trace and positive semidefiniteve-
ness constraints. Thus the region over which we maximize is
convex.

Let be the corresponding output before noise. Then

(27)

Then, from [15, Theorem 4.4.2], we know that

(28)

The variance of is given by .
Since entropy is maximized by a Gaussian distribution for any
given covariance matrix

(29)

Choosing each and each to be Gaussian, we may com-
bine (28) and (29) to yield

(30)

Therefore, the function in (22) is convex. Since the region over
which we maximize is convex, any kind of hill-climbing tech-
nique can be used to perform the maximization. In particular,
we may use water-filling alternately over the two users. For any
given covariance matrix for user 1, we may optimize the distri-
bution for user 2. Then, we may take that distribution for user
2 as being fixed and optimize the distribution for user 1, and so
on. A stationary point found by this technique is guaranteed to
be a global maximum by our convexity results.

III. T HE EFFECT OF ACHANNEL ERROR OFKNOWN VARIANCE

In Section II, we did not establish how we would determine
the channel at both the receiver and the sender. In this section,
we assume that the channel is unknown at the sender and
partially unknown at the receiver. Such is the situation if,
for instance, we are transmitting without feedback from the
receiver to the sender(s). The senders have no way of knowing
the channel. The receiver must either estimate the channel(s)
from the signals sent or from some separate sounding signals. If
the channels are not perfectly known, it is reasonable to model
them as a known part with a probabilistic additive component.
As before, the input at each time is a random variable
whose joint distribution can be chosen subject to a power
constraint.

A. Single-User Case

We look at a fixed constraint length, or equivalently .
Whether or not a coding theorem applies depends on how the
channel varies asymptotically. See [76] for a general single-user
coding theorem and [26] for a general coding theorem for the
multiple-access case. In the following, replacing sample values
with random variables and using our real notation for complex
vectors, we have

(31)

where we omit the and for ease of notation. The mutual
information between input and output is, by definition

(32)

Similarly, the mutual information given perfect knowledge of
the channel is

(33)

Note that our model assumes that the conditional probability of
given is known. In Section IV, we show an example of a

channel model where this is indeed the case. If this conditional
probability is not known, we would need to contend with issues
of channel mismatch ([6]).
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Since and are independent, we may write
. Therefore,

(34)

Although the above expression is simple, computing it in any
particular case may be difficult. However, we can make some
general statements about . We have the
intuition that the difference in how well we can use the channel
between the known and unknown channel cases depends on how
well we can measure the channel. In other words, we suspect
that will depend on how well the channel
can be measured at the output solely from. Indeed, in the
limit where the channel can be measured perfectly, the differ-
ence is , from (34).

Expression (34) has a further interpretation. We might, in
general, question whether it matters that we do not know the
channel, for we may perform equalization. Equalization uses
the symbols already decoded to help decode the next symbols.
However, equalization usually supposes that the past input can
be perfectly detected from the output [55]. Such a supposition
is generally thought to be reasonable, because if we did not de-
code the data properly anyway, we have a failure in the system.
If the input is perfectly determined from the output, then the
right-hand side (RHS) of (34) is nil. Hence, if we claim that
we may perform equalization perfectly, we are in essence al-
ready claiming that we do not suffer, in terms of mutual infor-
mation, from not knowing the channel. Therefore, in order to
perform equalization, we may be sending at a lower rate than
the maximum achievable rate. Note that our results differ from
[40], which uses Jensen’s inequality in the wrong direction.

Let us consider the case where the channel is known at the re-
ceiver within some mean-square error. We may thus consider the
fundamental detrimental effect of a measurement error without
restricting ourselves to a specific measuring scheme. We con-
sider, for simplicity, that the measurement has some known error
power. We first look at the single real sample case to be able
to view with ease the effect of the measurement error without
having to contend with matrices.

We first consider the single-symbol case. The channel model
is depicted in Fig. 4. This channel model is characterized by the
following random variables:

the channel input, constrained by ;
AWGN with variance ;
the output of the channel;
the channel strength, so that .

We assume that and are statistically independent.
We break into and , where and .
Intuitively, we view as the measurement of the channel and

as the zero-mean measurement error of the channel at the
receiver, with variance .

The mutual information between the outputand the input
is

(35)

where the entropies are differential entropies. Let us examine
how we may maximize (35). Let us first consider whether the

Fig. 4. System model for channel known with error.

methods that we use to find the capacity of an additive Gaussian
noise channel may be applied here. Since ,
for a given value of we may write that

(36)

since entropy is invariant under translation. Therefore,

(37)

The above expression cannot be calculated if we do not have a
distribution for . Even if we do know the distribution for ,
whether (37) can be easily calculated depends on the form of the
distribution of . If the distribution is not known, then mismatch
issues [6] must be considered. We now find a lower bound and
an upper bound to the maximum achievable mutual information

for the model given in Fig. 4.
To find a lower bound on the maximum achievable

, we may choose to be Gaussian, even though
the Gaussian distribution may not be the one that maximizes
mutual information for the specific measurement noise distri-
bution. Thus we fix the value of . We next find an upper
bound on , which holds for all possible distributions
for . The difference between and the bound on
immediately yields a lower bound on .

By definition

(38)

Since adding a constant does not change differential entropy

(39)

thus

(40)

for any real . Since conditioning always decreases entropy, we
have that

(41)

Using the fact that the entropy of a random variable with given
variance is upper-bounded by the entropy of a Gaussian random
variable with the same variance

(42)
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for any . Therefore, (42) also holds when we minimize the
RHS over . Hence, we pick so that is the linear minimum
mean-square error (LMMSE) estimate ofin terms of [2,
p. 93]

(43)

since and are zero mean. Therefore, the variance of ,
minimized over , is

(44)

Therefore, we have that

(45)

The mutual information between and may be
lower-bounded by

(46)

Expression (46) may be interpreted as saying that the worst
effect that the measurement noise can have is to behave as
AWGN. We see that the above bound is equal to the capacity of
the channel that would result from sending a Gaussian signal
with variance in an AWGN channel with noise variance

. Related issues to this one are addressed in [36].

We obtain an upper bound to by using the following
simple consequence of (34):

(47)

For known to be , the maximum mutual information
, over all possible choices for, is given by

. Hence

(48)

Therefore, using the convexity of the function, we may
write that

(49)

The above bound is equal to the capacity of the channel that
would result from sending a Gaussian signal with variance

in an AWGN channel with noise variance .
We may interpret (49) as an upper bound given by the case
where the effect of the measurement error is only that of extra
transmission power. Intuitively, we may see the upper bound
as the case where the measurement noise is altogether useful
and the lower bound as the case where the measurement error
is wholly detrimental.

We may make three remarks from (46) and (49). The first is
that we can upper-bound the loss in mutual information due to
not knowing the channel as

(50)

The second remark is that

(51)

i.e., the mutual information converges to the case where there is
no measurement error. Such behavior was to be expected and the
bounds (46) and (49) simply offer an indication as to how that
convergence occurs. Finally, we may address how our bound is
related to other bounds concerning mutual information. For in-
stance, the mutual information between two possibly correlated
random variables is considered in [61]. The result in [61] con-
siders the minimization of , where for

zero-mean Gaussian andthe jamming signal, which may
depend on and . The result obtained in [61] is that

Our bound concentrates on the effect of the multiplicative part
of the channel, but is related to the model if
we consider that .

The extension of the previous results to the multiple-symbol
case is fairly straightforward. Such an extension is useful to an-
alyze our model as given in matrix form. Indeed, unless we
consider several time intervals, we cannot hope to capture the
memory inherent in multipath systems. Let us assume that we
know the covariance matrix of the inputand that the covari-
ance matrix is not singular. We have, as in Section II, that the
dimension of the input vector is and the dimension of the
output vector is if we use complex notation. If we consider
complex random variables expressed as real vectors, the dimen-
sions are, respectively, and . We omit these subscripts for
ease of exposition.

Let us first determine a lower bound to the achievable max-
imum mutual information. Assume we have a Gaussian input
with mutually independent Gaussian components. Such a dis-
tribution will yield a lower bound on the maximum achievable
mutual information between input and output. If is -di-
mensional Gaussian, then ([10, p. 234])

(52)

where denotes the absolute value of the determinant of a ma-
trix and, as in the previous section, is the covariance matrix
of . We denote the cross-covariance matrix ofand , say, by

. We take the covariance matrix ofto be given. We have
that is a known matrix. is a zero-mean random
matrix representing the measurement noise on each component
of which is not set to by our approximation of simultaneous
time and frequency limitation. To find a lower bound on the
maximum achievable , we proceed as in the single-use
case with some modifications. We shall considerand to
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be constant in the derivation of our lower bound. Therefore, we
shall omit and as subscripts and superscripts in order to
simplify the notation. We still have that, as in (42)

(53)

for any real matrix. Using the same reasoning as in
the one-dimensional case, we wish to find thatfor which
is the LMMSE estimate of in terms of . We shall derive the
information form of the LMMSE error because it provides in-
sight into the meaning of our bounds. Expression (43) becomes
[2, p. 93]

(54)

Using the fact that the signal, the noise in the estimate of the
channel, and the additive Gaussian noise are all mutually inde-
pendent and have zero mean

(55)

The matrix must be invertible, because is
white.

The estimation error of the input from the output is given by
. Thus in (53), we can replace in the RHS

by . The covariance matrix of is given by [2, p. 83]

(56)

The above matrix cannot be singular, again becauseis
white. We may also write that

(57)

For a given covariance matrix, entropy is maximized for a
Gaussian distribution. Therefore, from (53)

using (57)

(58)

The mutual information between and may therefore be
lower-bounded by the following vector analog to (46). We ma-
nipulate our expression so as to obtain a form which will easily
be comparable to the upper bound

using the equality

(59)

The interpretation of the above bound is as in the single-sample
case. The RHS of (59) is the mutual information between the
input and the output of a known channelwith independent
additive Gaussian noise of correlation . Indeed,

Fig. 5. Channel with mutual information between input and output equal to
the RHS of (64).

let us call the output from that channel, shown in Fig. 5. Note
that we may also write the mutual information betweenand

as

(60)

Therefore, from our interpretation of (59) as a mutual informa-
tion, we may rewrite the RHS as

(61)

Obtaining an upper bound to is a straightforward ex-
tension of the single sample case. Expression (47) holds with
the appropriate modifications to take into account that we are in
the multidimensional case. The expression analogous to (49) is

rewriting

(62)

We see that the above bound is equal to the capacity of the
channel that would result from sending a Gaussian signal with
covariance matrix in an AWGN channel with noise
variance . Therefore, as in the single-dimensional case, we
may interpret the upper bound (62) as the case where the only
effect of the measurement error is that of extra transmission
power.

In the limit as , from (61) and (62), we have that

(63)

Note that the condition may seem to be a fairly
strong condition. However, an equivalent condition is that

. Since is positive-semidefinite, requiring
that is equivalent to requiring that each in-
dividual term in the diagonal of go to . Indeed, if the
diagonal terms of are then, since is a covariance
matrix, the offdiagonal terms must go toalso. In the following
section, we shall use these results for channels with a measure-
ment error to determine some general properties regarding the
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loss of mutual information from not knowing the channel at
the receiver.

B. Multiple-Access Case

In this section, we seek to extend the results concerning
channel measurement uncertainty to the multiple-user case
and consider the effect of spreading when we have several
users. The use of broadband signals under multipath channel
conditions is often advocated because of the possibility of
resolving the multiple paths at the receiver and then combining
them in some approximately optimal way ([39]), such as by
a rake receiver ([52]). When we deal with multiple-access
situations, such as the situation of mobile communications,
where the users share bandwidth under some spread-spectrum
protocol, the issue of spreading is further complicated by
multiple-user interference. The most commonly proposed
approach ([54]) is to decode each user as if all other users were
noise. The advantage of spreading under these conditions is
to reduce the power spectral density of the users, when the
users are all under a maximum power constraint, so that the
system becomes limited by the additive Gaussian noise in
the channel rather than being interference-limited. Such an
approach is, from an information-theoretic point of view, quite
suboptimal (unless we use FDMA [48]) when we can measure
the channels for the various users ([60]). We, therefore, wish to
show that interference cancellation is still possible when we do
not know the channel as long as we may measure the channel
for each user. We know that under certain ergodic conditions,
if decoding a user is possible, then canceling the interference
from that user is possible with a small added error due to the
channel uncertainty. However, we consider explicitly the loss
in mutual information without any assumption about decoding
individual users. Our model is somewhat different from that in
[19] in that we divide the channel into a known component

and a fluctuation without considering the relation between
and the sample observation. We bound the effect of channel

estimation error upon interference cancellation.
The inequalities we have found for the single-user case hold

for every inequality which defines that feasible rate region. We
shall show the effect of knowing the channels of the users with
a certain error of given variance. We shall give our examples
for two users, since we may give a graphical interpretation of
our bounds. The signals of the users and of the channels are
assumed to be mutually independent. To obtain upper bounds,
we consider that all received signal components other than the
AWGN are part of the input signal. Thus we may write that

since a Gaussian distribution maximizes

entropy for a given variance

since the function is convex

(64)

A similar inequality holds for . A bound for
may be obtained by considering the sum of the

signals of the two users as being a single signal. Thus we obtain
the following upper bounds on the region of feasible mutual
informations for the single symbol case with real inputs and
real channels (the subscripts denote users):

(65)

(66)

(67)

Each bound of (65)–(67) may be interpreted as in the single-user
case. We have that

since and are independent

since conditioning reduces entropy

(68)

We may use the LMMSE estimate of from to
obtain

(69)

from (68). We may obtain in a similar manner the following
lower bounds to the region of achievable rates:

(70)

(71)

Again, the bounds in (69)–(71) bear a similar interpretation
to the one we gave for the single-user case. The effect of the
channel uncertainty can be no worse than to contribute to the
AWGN. Each user must contend not only with the uncertainty
of its own channel but also with the uncertainty of the other
users' channels. In particular, when we consider the mutual
information between user 1 and the output conditioned on user
2, we must take into account the fact that there is a residual
effect upon user 1 of the uncertainty on the channel of user 2.
Indeed, when we perform interference cancellation, the fact
that we are not able to cancel a user exactly because of error
in its channel measurement means that there is extra noise
beyond the AWGN. Expressions (70) and (71) may be obtained
similarly.

Using the lower bounds of (69)–(71), we may obtain a lower
bound to the feasible rate region. The effect of the channel error
may be bounded as the effect of extra AWGN on the channel.
Note that the corners of the feasible rate regions correspond to
the rates that are achievable when the users transmit white sig-
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Fig. 6. Lower bound to the feasible rate region for channels known with a given error variance.

nals over the same bandwidth at the same time and the receiver
performs interference cancellation. Fig. 6 shows our upper and
lower bounds for and , the feasible rates for users 1 and 2,
respectively. The gray square represents the mutual information
region when we consider each user as noise to the other user, i.e.,
where we have an interference channel, for the channel model
corresponding to the upper bound. For our example, we see that
it is preferable to perform interference cancellation rather than
to treat each user as noise to the other user.

For the multiple-symbol case, the bounds extend in the same
way as for the single-symbol case. Let us simply write the lower
bounds

(72)

(73)

(74)

Similarly, we may give the following upper bounds for the mul-
tiple-symbol case:

(75)

(76)

(77)

We do not give a graphical representation of the multiple symbol
case, since such an extension would be difficult and would not
improve our intuition.

IV. BOUNDS APPLIED TORECURSIVEESTIMATION

In the previous section, we have considered that we know the
variance of the error on the channel estimate, but have not dis-
cussed how we determine such an estimate. The estimate of
the channel will depend on the type of channel we consider
and how it is measured. In this section, we illustrate the use
of the bounds found in the previous section for the case of a
single-user AWGN channel with a single tap which evolves in
a Gauss–Markov fashion. The model for our channel is

(78)

where the ’s are zero-mean mutually independent Gaussian
random variables which are independent of the noise. The
random variable is commonly known as the innovation term.
We can relate the form of (78) to the physical characteristics
of a wireless channel. In particular, the constantis related to
the coherence time of the channel. determines how fast
the channel decorrelates, with

We selecta priori the level of decorrelation, which we deem
sufficient to indicate that the channel has decorrelated intime
samples, i.e.,

Thus . From (78), we may write

(79)

There are many ways to select. In general, depending on how
we define the coherence time, we haveroughly inversely pro-
portional to , with a proportionality constant which depends
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on the level of decorrelation we deem necessary in our definition
of coherence time. In the literature, the correlation coefficient is
taken to vary from ([11]) to ([5]) for a time separation
of .

We sound the channel using a probe signal. The probe signal
occupies it own band, the probe band, and does not overlap in
frequency with the payload signal. The probe signal char-
acterizes the single tap, as long as the probe signal is in the
same coherence bandwidth as the payload. Note that a single tap
model is well-suited to the case of a large coherence bandwidth,
which corresponds to a small time spread, hence to the case
of unresolved paths whose aggregate effect is represented by
a single tap. If we had more resolved paths, then we would have
ISI and the multiple-symbol case would be applicable. Note that
our model does have memory, since there is memory in the tap.
The probe signal is and the received version of the probe signal
is . So as not to devote too large a bandwidth to the probe
signal, the probe signal may be sent over a narrow probe band
and at a lower rate than. Therefore, the sampling of the probe
signal will be at a lower rate than the sampling rate for
the transmission payload. Let us consider that the sampling
of the probe signal is times slower than the sampling of,
i.e., . For simplicity, we take to be an integer. In
the sampling, we have

(80)

where . Moreover, . We estimate the
channel sampled at rate by the sample .

Until we state otherwise, let us consider sampling at rate
in the probe band. Since we have a Gauss–Markov channel

model, the maximum-likelihood (ML) estimate of the channel
from and is obtained by using a Kalman filter [2].

The Kalman filter estimate in this case is also the MMSE and
the LMMSE estimate. We denote the variance of the error of the
estimate of by . The recursive expression for is

(81)

Note that, although (81) does not depend on the values, it
does depend on the values. Let us suppose that we have an av-
erage energy constraint on, so that the sample average value of

over all samples must be no greater than. Therefore, the
probe need not be constant. For instance, the probe may be sent
at regular intervals, or may be transmitted at random times; for
instance, alongside some training sequences for synchroniza-
tion. If the probe is a pilot tone, then it will be constant. We do
not address here the manner in which to allocate resources to
the probe ([30]). It is useful for us to determine in what way
our probing should be performed so as to satisfy our constraint
while reducing the variance of the error as much as possible. To
this end, let us define by the recursive expression

(82)

The term is the variance of the estimate when each probe
signal is equal to . Let us suppose that we have some ar-
bitrary ergodic distribution, so that the probe signal is a random
variable whose expected value satisfies the energy constraint.
We shall use the following result, whose proof is relegated to the
Appendix. For any

(83)

The limit as of is

(84)

Note that as or, equivalently, as . Thus
goes to as the channel becomes time-invariant, because we

can then measure the channel arbitrarily well. Also, as
. We may interpret this limit as the fact that, if our

probe signal is sufficiently strong, we can measure the channel
with almost no error.

Let us consider that the transmitted signalis stationary and
ergodic, with variance per symbol. The mutual information
we consider is between the vector of samples, sampled at rate

, , and the pair . Let us consider the mutual
information over samples

(85)

(86)

(87)

(88)

where (85) and (87) follow from the chain rule for mutual infor-
mation. We obtain (86) by using the fact that

We are interested in upper-bounding the loss in average max-
imum mutual information due to estimating the channel via our
out-of-band probe rather than knowing the channela priori.
Note first that

since is superfluous when the channel is known. Thus
we seek to upper bound

(89)

Let us consider the first term of the RHS of (89)

(90)
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where (90) is derived from the chain rule for entropies and the
fact that conditioning reduces entropy.

From (88) and (90), we have

(91)

We consider for the second term in the sum of the RHS of (91)
that we estimate the channel through only and that we
do not use in our estimation of the channel. This
assumption gives an upper bound on the variance of the channel
estimate at sample. Since up to time samples at rate can
elapse between the time we obtain and the occurrence
of , we can upper-bound the variance of the estimate of
from by the variance of the estimate of the channel
from plus . Let us denote by the estimate of

obtained from . Let us denote by the error on
the estimate . This error has variance
From (81), we know that depends only on . Hence,
from (50)

(92)

(93)

where (93) follows from (83). Thus the limit of the average
loss in terms of maximum mutual information per symbol due
dealing with an estimate of the channel rather than knowing the
channel perfectly may be upper-bounded as

(94)

by using (84). Using our remarks following (84), we know that
as or as .

V. CONCLUSIONS ANDDIRECTIONS FORFURTHERRESEARCH

We have investigated the effect of uncertainty in the knowl-
edge of the channel at the receiver for a single-user time-varying
channel. We have established that, in the case where the channel
is known at the sender and the receiver, the mutual informa-
tion can be found for a channel which induces spreading in
both time and frequency. Therefore, the real difficulty in estab-
lishing capacity results stems from our imperfect knowledge of
the channel rather than its time-varying nature, although it is
the time variations that render estimation difficult. In the case
where we know the covariance of the measurement noise, we
have established upper and lower bounds which are independent
of the channel and measurement distribution. These bounds are
tight as the measurement error vanishes. For the multiple-access
case, we have shown that, even in the presence of channel un-
certainty, it may be advantageous to perform multiple-user inter-
ference cancellation rather than to consider all users to be noise

to all other users. We have applied our results to obtain explicit
bounds to the loss of mutual information due to not knowing the
channel when the taps may be described by a Gauss–Markov
process.

An interesting question is whether incoherent interference
cancellation is advantageous. Indeed, many spread-spectrum
systems currently have an incoherent rake receiver for each user
and detect all users separately. Since interference cancellation
is computationally fairly simple (its time complexity is linear
in the number of users), it might be of practical interest to
establish when, if ever, the uncertainty in the channel due to
not knowing the phase component is such that interference
cancellation is still better than considering the multiple-access
channel to be an interference channel.

APPENDIX

A. Proof of (83)

Let . Define

for

(95)

For is . We define to be

The function is monotonically increasing and its second
derivative is negative. Thus is convex . We have that

(96)

Define

for

(97)

For is . Let us proceed by induction. We may
verify that

Let us now assume that

Then, using the fact that is convex , we have

(98)

(99)

where (99) follows from our induction assumption and the
fact that is monotonically increasing. Hence, for all

. Thus it follows that
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Let us consider the functiondefined by .
For , we have that

and

Thus is increasing and convex for our region of interest.
Hence

(100)

Note that

and

Thus (100) implies that

Hence, .
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