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The Effect upon Channel Capacity in Wireless
Communications of Perfect and Imperfect
Knowledge of the Channel

Muriel Médard Member, IEEE

_ Abstract—\We present a model for time-varying communication  instance, [29], [38], [64], and [66]). Treatment of many informa-
single-access and multiple-access channels without feedback. Wejon-theoretic issues relating to mobile communications can be
consider the difference between mutual information when the found in [62], [47], and [27]. Three main issues which arise from

receiver knows the channel perfectly and mutual information the ch terizati fth bile ch | int bol i
when the receiver only has an estimate of the channel. We relate € Characterization of the mobiie channeils are Intersymbol in-

the variance of the channel measurement error at the receiver to terference (ISl), tim(‘?‘ Var_iatiof\ of _Channe|3, ar_1d multiple ac-
upper and lower bounds for this difference in mutual information.  cess. The effect of time-invariant intersymbol interference on

We illustrate the use of our bounds on a channel modeled by capacity for a single-user ([24], [70], [28]) and multiple-user
a Gauss-Markov process, measured by a pilot tone. We relate gystamg ([7], [74], [75]) has been well studied. The time vari-
the rate of time variation of the channel to the loss in mutual ti f the ch | h difficult t del and
information due to imperfect knowledge of the measured channel. a. lon o .e channeis proves much more di !cu 0 mq elan
_ _ circumscribe. A commonly taken approach is to consider that
'”delx. ?rmeCha.“”e' ””C.e”a';]‘ty' mlump!e'f‘ccess channels, yna || is constant and known for certain durations and thus
mutual information, time-varying channels, wireless communica- . .
tions. .decompose.the channel into tlme b]ocks [43], [13], [35]. The
issue on which we concentrate in this paper is the effect of the
lack of knowledge of the channel on the achievable mutual in-
. INTRODUCTION formation in systems with time-varying channels. Of particular

HE increasing applications of wireless communicatiorigterestis the issue of the effect of imperfect knowledge on mul-
T have spawned much research and debate about the HB&-User communications. The capacity of time-varying chan-
manner to utilize the available spectrum, and have prompt@@'s has been often studied in the context of Markov channels.
more spectrum to be opened to commercial uses. The Studp@?erent cases have been considered, among them: the state of
the intrinsic limitations of wireless communications is very imthe channel is known at the sender and receiver, or the receiver
portant because most of the factors are outside the engineefiRy ([78], [15], [21]), or only knowledge of the statistics of
domain: the power used by mobile users is limited by safelf)e State transition probabilities exists ([22], [46]), or solely the
regulations, the carrier frequency and the bandwidth are dete®! of possible states is known ([12]). For non-Markov channels
mined by commercial availability under regulatory constraintd)at decorrelate in time, a strong coding theorem [44] and weak
and the nature of the channels is governed by weather, car traffieding theorems, which use information stability results [S0],
physical obstacles, etc. Itis therefore necessary to take such d§8l: have been established [31], [49]. The last issue we have
straints into account in determining the capacity of these chdheéntioned, the multiple-access problem, has been well studied
nels. The goal of this paper is to determine how the time vaffl the memoryless case. The capacity region in the memoryless
ations cause uncertainty about the channel at the receiver, §48€ Was established with synchronicity ([41], [1]) and asyn-
how this uncertainty affects capacity. We first consider the cabronicity ([9], [51]). Overviews of the multiple-access problem
pacity of a known time-varying channel and second we uset€ given in [16], [20], [71], and [45].
perturbation approach on a perfectly known channel case to achn this paper, we consider the issues of IS, time-variation,
count for the channel estimation error. We consider one or s@nd multiple access in the context of an error about the channel
eral senders and a single receiver. measurement available at the receiver. The time variation of the
The issues of propagation in mobile channels have been gkannel and the error on the estimate of the channel are tightly
tensively studied and can be found in many textbooks (see, fimked. The time variation entails that the channel will always re-
main unknown to some extent. Indeed, a time-invariant channel

, , , __could be measured arbitrarily well by using a sounding probe
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channel knowledge on mutual information in the multipl x[n] S(t-0)
access case? » Modulator

« For a specific channel fading model, how does the chanr
variation affect the mutual information?

Channel v(t)
g(t, 1) —

"Receiver [-—

The question concerning the effect of imperfect chann%‘ 1
knowledge on mutual information in the multiple-access case is
particularly relevant, because the corners of the Cover—-Wyner
region for the multiple-access capacity region in memoryled§e impulse response of the multipath channel seen at#ime
channels can be attained using interference cancellation. Otff§ran input att’ — ¢ is
points along the Cover—Wyner region can be obtained using
rate splitting and interference cancellation ([58], [59], [23], g(t',t) = Z gt t) Q)

[57], [56]). The error on the channel of a user will affect the all pathsm

mutual information of another user if interference cancellation

is used. Itis notimmediately clear whether, when the channel&ereg™ (¢, ¢) is the response of theth path at time’ for an

not perfectly known, it is preferable to consider each user to B@Ut att’ — t. Thusg™(¥',¢) = a™(t")6(r™(¢') — t), where

interference to all other users rather than attempt multiple-uger (') is the complex multiplicative factor associated with the

interference cancellation. This issue is the subject of deb&téh path (accounting for fading and phase shift). The Doppler

([73], [17], [77], [18]). shift associated with pathe is B™ and the time-varying delay
associated with path is 7 (¢) = 7™ 4 (B™/ fo)t. The spread
among these shifts in frequency is the Doppler spread, denoted
by Bp. The difference between the smallest and the largest

[I. CHANNEL MODEL AND MUTUAL INFORMATION WITH 7™ is called the time spread, denoted By. Since|a™(#')|

PERFECTKNOWLEDGE OF THECHANNEL AT THE RECEIVER changes slowly with the delay, we may use the common assump-

tion ([53, p. 705]) that the amplitude™(¢')| changes much
A. Channel Model more slowly than the phase. In terms of the Bello functions for

the description of time-varying channelgit’, ¢) is the input

Mobile communication channels are subject to many chan ) ; ; )
which cannot be controlled or predicted. Obstacles appear%? gy-spread function [4], 25, p. 128]. Fig. 1 shows our con

: : S . ) [?1 ous-time model.
disappear as the mobile moves in its environment, leading to,

) : . : In order to derive a discrete-time model for the system, we
partial blocking (shadowing) and to echoes (multipath). Wr%ust determine how to sample the channel output. In general
present a channel model based on a general multipath situat '

W tablish valent i d di toti d & know that the bandwidth of the output of a linear time-
€ establish equivalent continuous and discrete-ime Moagig. i, fijter will be band-limited to the sum of the input band-
for this general multipath situation. In Section II, we presenlt_@

Continuous-time multipath system.

h | del i ) ltinath . ¢ idth plus the filter variation bandwidth (a more general result
channel modet for a time-varying muttipath environment anfy ;- stic channels was established in [33]). Therefore, the
results for the maximum mutual information of time-varyin utput may be band-limited " = W + B, at baseband. We
channels in _the single-user and multiple-access cases w §Sume that the input and the noiseless response at baseband
the channel is perfectly known both at the sender(s) and t % band-limited td—(W/2), +(W/2)]. The response may be

receiver. In Section Ill, we establish the framework forstudyinégampled at time intervals of/I¥’, by the Nyquist sampling

the mutual information when the channel is known with SOMR corem. We define the baseband outpitt) of a multipath

error at the receiver. For both the single-user and multiple—aC Jannel with additive white Gaussian noise (AWGN) to be the
cess cases, we use this framework to establish upper and Iow&r

bounds for the | : wal inf tion due t seless baseband output with the addition of a tefm),
ounds for the oss In mutual information due 1o an error heren(¢') is a sample function of band-limited complex white
known variance for the channel at the receiver. In Section |

. . . . aussian noise of double-sided spectral dengiyt baseband
we consider explicitly the effect of time variations upon th

L — 2 2)]. i i -ti -
channel error for a Gauss—Markov model of variations. (W/2), (W/2)]. We consider the discrete-time sequences de

. ; [ = = .Th
Section V, we draw conclusions from these results and propql'g‘%e [z]a_ii;[l[fll] Wz(e]?%g]?g?ﬁékgamSl(gd/g/e)rsionem?(l;;plli?[k]z
directions for further research. ’ P -9

shows the sampled system. We have that
Let us look at the channel response at baseband for a multi-

path channel. We assume that the passband signal is contained in +o0
a bandwidthV’ centered around a carrier frequenfgy A dis- y[k] = Z Z slk—n]g™ [k, n] +nlk] 2
crete data stream from the user is passed through a modulator, all paths m n—oo

whose output is a continuous signal. We denote the channel

by a linear time-varying filter of impulse responge|n this m ml kY . n m [k

paper, unless the context indicates otherwise, lower case vaff- [k,n] = a <W) sine {”W <W -7 <W>)} -(3)

ables denote deterministic variables and upper case letters de-

note random variables. If we have reflections off objects in méVe see from (3) that there are infinitely many terg#s[k, n],

tion relative to the transmitter or receiver, the received signaidereas in the continuous case there is, for any giyert most
will experience a Doppler spread in frequency ([14], [34], [38]) singlet which yields a nonzero value fgf™(¢',t). For our
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n{k] x(n] si(9 Channel 1 *ﬁ?‘

' . g1 (t wt‘ ) .
X[n] S[k-m] Channel V[k] Y[k] . : : K‘ t') E}

v
Modulator |——mmmtg[k, m] Receiver —— ) /
\U xdnl Modulator K s Channel K

gK(t!t') K
2 v
Fig. 2. Discrete-time model. =l
purposes, we wish to establish an expression in terms of fin [:,4————
matrices in the discrete-time case. Expression (3) shows that Receiver

termsg™ [k, n] become very small with for % fixed. Therefore,
we may choose some artificial cutoff i such thatg™ [kv n] Fig. 3. Continuous time multipath system with multiple users.
is approximated to be zero beyond that point. We have used
thesinc function for our sampling reconstruction, but we coulavhere
instead use a function with significantly faster rolloff in time. i . i
A detailed treatment of the issues concerning time and band"[k,n] = a* <_> sinc {WW <_ — <_>> } .
limiting assumptions can be found in [63], [80], and [79]. Note w w w
that the spreading in both time and frequency is crucial ([32)s in the single-user case, our initial assumption Wi large
for instance, does not take this into account). enough so thag(t) may be fully recovered from[k] ensures

In what follows, a subscript after a vectow indicates that that (6 gives a complete characterization of the channel re-
we are considerinfp[1], - - v[k]]".. If we are considering a ma- sponse. As in the single-user case, we choose some arbitrary
trix, the superscript will indicate the range of thg columns in thgioff in n such thatg? [, n] is taken to be zero beyond that
same manner. We assume that] for anyn < 0is zero. Thus qint. We may then write, with the obvious extensions of nota-

y[1], - -, y[k] will depend only on inputs(1], - - -, s[k]. LELUS  tion from the single user case, that
choose some cutofh > WT,. We approximate the sampled

channel output as K
X U = D Jiysiy, ™
Y, = [ skt (4) i=1

wheref* is the complex matrix with entries B. Maximum Mutual Information in the Case of a Perfectly

Z g" 4,7 —1], for0<j—i=<A Known Channel at the Sender and the Receiver
Sl i = an patbs m ) In this section, we consider the case where both the receiver
0, otherwise. and the sender have perfect knowledge of the channel for all

(5) times. In the case of a time-varying channel, this would require

Although the vector expression is approximate, we may makgowledge of the future behavior of the channel, which is not a
this approximation arbitrarily good by the choicef reasonable assumption. The purpose of this section is simply to

For the multiple-access model, each source has its own ting&tablish how we can compute, for a particular realization of the
varying channel. Fig. 3 shows the multiple-user model. We lghannel, an upper bound on the mutual information achievable
K denote the number of users. Itis reasonable to assume thaiggr some time. Note that we establish a mutual information and
channels of the different sources are mutually independent. Tt an achievable rafeer se since we do not look at limits over
signal from each modulator passes through a different channghe. We first review the results for the single-user case and the
The input bandwidth, of sizé/’, is shared by all users. Thismultiple-user case when the users cooperate. We then present a
does not necessarily mean that all users simultaneously transseily result concerning the maximum mutual information in the
over the same portions of the spectrum. The received signatigse of independent multiple users. For complex transmission
the sum of all these modulated inputs, as received through thgjer timeZ” using an input bandwidti#’, the mutual informa-
respective filters. Let’; be the number of paths in the channefion between input and output is
seen by uset, a* be the complex multiplicative constant as-
sociated with thenth path of usei (accounting for fading and I(Y,; 5.) = h(Y,) — h(N,,) (8)
phase shift), and!” be the delay associated with theth path
of user:. Let s;(t) be the complex signal transmitted by user Wherek = [TW | andh denotes differential entropy
It is sufficient to takelV to beW’ + max;—1 ... x {B%} where
B, is the Doppler spread of thigh channel. By extending the MY)=— /py(y) ln(py (v)) dy. 9)
discussion for the single-user case, we may write that Y

K P too We actually havek degrees of freedom since we are dealing
k] = si[k — n]g™ [k, n] + nlk 6) Wwith complex random variables. In order to simplify our manip-

ulA Z Z Z [ lotenl+nlH] - (©) ulations, we shall use the random vectsts,, Y5, , and N5,

i=1 m=ln=—oc
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whose firstk components and lagt components are, respec-array. Such a model is only reasonable if the users are colocated
tively, the real and imaginary parts of the corresponding vectasslinked to each other in some fashion. In particular, several co-
Si, Y,, andV,. We use such a notation instead of the moreperating users with several antennas may achieve arate greater
compact complex notation because, in the following sectiorthan the sum of the rates of the users. Again, we consider mu-
we restrict ourselves to real vectors, for the sake of simplicitpal information rather than capacity and the techniques we use
Thus in our paper, all operations are in the real domain and thare similar to the single-user case. Note that different types of
is no ambiguity. Let us denote lﬁ){k’] the sample attimg’ /W’ decomposition might be used ([3]). For the memoryless case,

of the continuous inpuﬂ(t). We may write without the ISI we consider here, the capacity region for mul-
tiple-access channels with arbitrarily correlated sources is given
YTi] = Z Z [i — n]g™[i,n] + N[i] (10) in[8]and the worst case capacity fosenders andreceivers is
all pathis m n= oo givenin [72]. Forissues concerning multiple-antenna systems in
where fading channels, see [67], [62], and [42]. The problem is similar

) ) ) to the one-dimensional problem, except that we now consider
§"™"[i, n] =sinc {WW/ <L () — 2) } L <L) _ that the channel has more degrees of freedom at the input than
w w w at the output. There ate/ = 2K% input degrees of freedom
(11) and2k output degrees of freedom. We have

Therefore, making assumptions of approximate simultaneoys (1] . . . y[2k]] = #/ ‘[g[ - S[MT + [N[1]--- N[2K]]
time and bandwidth limiting, if we tak&’ to be0 before sample —M 17)
1 and we choose A large enough, we may write that

koA - - where we have defined
YOI YR = £, [SOT--- ST + V] --- N FD] . . - . .
a2 (SIS =[S0 Si2K] 5010 - Sa[2K] .
- Sk[1]--- Sk[2K]]
wherek’ = |W'T|, k = |W(T + A)] and o2k ok 18
{f[i,j]=§[i,i—j], foro<i—j<A o P = i Fr - Fis |- (18)
0, otherwise A 26T 4

I f’ hasM eigenvalues, all of which are real and nonneg-
The matrle gives, in terms of a linear transformation, both’F\t'Ve and at mosels of which are nonzero. Let us assume that
the effect of sampling input and output at different rates and teere ares positive eigenvalues, which we denote, - - -, A,..
effect of the channel. Let us define the real vecigy;, con- We have decomposed our multiple-access channels iclhan-

structed from the complex vectdt,, similarly to the way we N€ls which may be interpreted as parallel independent channels.

constructeds’,, from S,. We have that The input has\/ — « additional degrees of freedom, but those
Con - degrees of freedom do not reach the output. The maximiza-
Yo =105 + Nb, (14) tion along the active: channels may now be performed using

water-filling techniques. LeT” be the duration of the transmis-

wheref’Qk, can be easily expressed using (11) and (13). sion. We choose
/ !
Let us consider thek’ by 2k’ matrix NoW\ T
52k 5,2k i =7 2% (19)

(f 2k/) f 2k/ N . . *
Let Ay.---, Aops be its eigenvalues. These eigenvalues are retgf Ai # 0, wherey satisfies
[65, p. 222] and nonnegative. Using [15, Theorem 8.4.1] and NoW
water-filling arguments similar to those of [10], we may estab- Z ) v 2, =TPW (20)
lish that maximum mutual information per second is @ such that A; 0 ’

ok andw; satisfies

—Zln <1+ Wi, )
whereuw; is given by Z ui = TPW. (21)
W Ny .
u = v— (15) We have reduced several channels, each with its own user, to a
20 . : .
single channel with a composite user. The sum of all the mutual

(using™ to denote the positive part) and informations averaged over time is upper-bounded by

2k’ NoW + .

> ui =TPW. (16) 1 I (’V % ) Ai

DR L L

i such that A; #0 2

Let us consider the multiple-access case. We place a constraint
P onthe sum of all thé( users' powers. We firstlook at the case Let us now consider that each source has an individual power
where the users may cooperate, and therefore act as an anteonatraint, that the signal of each source is independent of every
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other source, but that we still seek to maximize the sum of all ti@hoosing eacls;,,, and eac@f% to be Gaussian, we may com-
mutual informations averaged over time. Such a model is rdz@ne (28) and (29) to yield

sonable for mobile users which do not cooperate. Note that this
is different from the case considered in [35], where the chanrfgf® (‘A§2kéﬂ ) + (1 =) n(ldg +Ax)
is essentially assumed to be block-fading. We seek to maximize <In(|6A, + (1 —60)A, + Ay

). (30)

I <{Sz }A ;y%) — (Y ,) — h(N,,). (22) Therefore, the functionin (22)is convexSince the region over
T =i o o which we maximize is convex, any kind of hill-climbing tech-
Maximizing (22) is equivalent to maximizint(Y ;). For any nigue can be used _t(_) perform the maximization. In particular,
covariance matrix\,. for Y,,, the entropy is maximized by We may use water—flllmg alternately over the tW(_) users. Fo_r any
Y, Gaussian, which can be obtained by Gaussian inputs. I98¢en covariance matrix for user 1, we may optimize the distri-

us denote the autocorrelation of a mathik by A,;. Then the bution for user 2. Then, we may take that distribution for user
problem, for the two-user case, is to maximize 2 as being fixed and optimize the distribution for user 1, and so

. . on. A stationary point found by this technique is guaranteed to
max In (‘ﬂéél P A f3 Ay D (23) be a global maximum by our convexity results.

where we have omitted thi#: subscript inA .. The maximiza-
tion of (23) is subject, for = 1,2, to Ag being positive-
semidefinite and having a trace upper-bounded’®y 1.

Fortunately, the problem is convex and the region over |n Section Il, we did not establish how we would determine
which we optimize is convex. Let us first show that the rethe channel at both the receiver and the sender. In this section,
gion over which we optimize is convex and then show that thge assume that the channel is unknown at the sender and
problem is convexa. Let Z,, be the output of the multi-accesspartially unknown at the receiver. Such is the situation if,
channel before noise is added, so the covariance,pfis for instance, we are transmitting without feedback from the

ok oxT ok T receiver to the sender(s). The senders have no way of knowing
fLAS_ll_ +fLAS_2L =4z, (24) " the channel. The receiver must either estimate the channel(s)
whereAg, andAg, are a pair of covariance matrices that Satisfvom the signals sent or from some separate sounding signals. If

our conditions. Similarly, letting\s, andA, be another pair the channels are not perfectly known, it is reasonable to model
L 2 them as a known part with a probabilistic additive component.

As before, the input at each time is a random variafle:|
whose joint distribution can be chosen subject to a power

. T . i i
ikAﬂ 12k +fL2kA§'2ik :Aﬁ' (25) constraint.

Ill. THE EFFECT OF ACHANNEL ERROR OFKNOWN VARIANCE

of covariance matrices that satisfy our conditionsZgt be the
corresponding output before noise so that

Let us consider an AWGN channel with noi8g,,. For anyé,
0 <6 <1, and for each, letS;’ be arandom variable whose
probability density function (pdf) is the sum 6ftimes the pdf ~ We look at a fixed constraint length, or equivalentlyx’.
of 5;,, andl — 6 times the pdf ong{Qk_ Then, since thé;s are Whether or not a coding theorem applies depends on how the
independent — channel varies asymptotically. See [76] for a general single-user
coding theorem and [26] for a general coding theorem for the
multiple-access case. In the following, replacing sample values
Agr = 0A5, + (1- 9)A5; . (26)  with random variables and using our real notation for complex
— o - vectors, we have
Note thatS}’  satisfies the trace and positive semidefiniteve-
ness constraints. Thus the region over which we maximize is Y=FS+N (31)
convex.
Let Z3,, be the corresponding output before noise. Then where we omit thek and2k’ for ease of notation. The mutual
Ay = 60A, +(1—6)A,. @7) information between input and output is, by definition

Then, from [15, Theorem 4.4.2], we know that IY;5) = ME) = MS]Y). (32)

Oh(Zay, + Noy) + (1 — O)h(Zoy, + Noy.) < h(Zoy, + Noy)-
(28)

A. Single-User Case

Similarly, the mutual information given perfect knowledge of
the channel is

. o IS5 F) =h(S|E) - MS|Y,E). (33)
The variance o5, + N, is given byfA , +(1—60)A, + Ay - Ny
Since entropy is maximized by a Gaussian distribution for afyote that our model assumes that the conditional probability of

given covariance matrix Y given S is known. In Section IV, we show an example of a
. . channel model where this is indeed the case. If this conditional
M Zoy + Nop.) < In((2me)™|0A, + (1 = 0)A, + Ax[)-  probability is not known, we would need to contend with issues

(29) of channel mismatch ([6]).
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SinceS and F' are independent, we may writdS | F') = N

h(S). Therefore,
Y58 | F) — (Y91 = (5 £1Y). (34) S - 3 »ﬁB—l—’é_»Y

Although the above expression is simple, computing it in any
particular case may be difficult. However, we can make somi
general statements abal®"; S | F') — I(Y; S). We have the
intuition that the difference in how well we can use the channe F
between the known and unknown channel cases depends on h
well we can measure the channel. In other words, we suspe
that/(Y; S| F)—I1(Y; S) will depend on how well the channel _ _
can be measured at the output solely frémIndeed, in the 794 Systemmodel for channel known with error.

limit where the channel can be measured perfectly, the differ-
encel(Y; S| F) — I(Y;5) is0, from (34). methods that we use to find the capacity of an additive Gaussian

Expression (34) has a further interpretation. We might, ff0iSe channel may be applied here. Sitice- SF+SF+N,
general, question whether it matters that we do not know tffy & given value of5 we may write that
channel, for we may perform equalization. Equalization uses MY |S =s) = h(sF + N) (36)
the symbols already decoded to help decode the next symbols.
However, equalization usually supposes that the past input &ce entropy is invariant under translation. Therefore,
be perfectly detected from the output [55]. Such a supposition 19 +o0
Y|S /

-l

is generally thought to be reasonable, because if we did not de- ps(s)h(sF" + N) ds. (37)
code the data properly anyway, we have a failure in the system.
If the input is perfectly determined from the output, then th&he above expression cannot be calculated if we do not have a
right-hand side (RHS) of (34) is nil. Hence, if we claim thaglistribution for F'. Even if we do know the distribution faF’,
we may perform equalization perfectly, we are in essence #lhether (37) can be easily calculated depends on the form of the
ready claiming that we do not suffer, in terms of mutual infordistribution of F'. If the distribution is not known, then mismatch
mation, from not knowing the channel. Therefore, in order tgsues [6] must be considered. We now find a lower bound and
perform equalization, we may be sending at a lower rate thah upper bound to the maximum achievable mutual information
the maximum achievable rate. Note that our results differ frotY’; S) for the model given in Fig. 4.
[40], which uses Jensen’s inequality in the wrong direction. ~ Tofind alower bound on the maximum achievabl&’; S) =

Let us consider the case where the channel is known at the#6S) —2(5 | Y'), we may choos# to be Gaussian, even though
ceiver within some mean-square error. We may thus consider the Gaussian distribution may not be the one that maximizes
fundamental detrimental effect of a measurement error withgtititual information for the specific measurement noise distri-
restricting ourselves to a specific measuring scheme. We céwition. Thus we fix the value of(.S). We next find an upper
sider, for simplicity, that the measurement has some known erfstund oni(S [Y'), which holds for all possible distributions
power. We first look at the single real sample case to be ati@s S. The difference betweein(.S) and the bound oh(S|Y")
to view with ease the effect of the measurement error withoiltmediately yields a lower bound aitY’; S).

— o0

having to contend with matrices. By definition
We first consider the single-symbol case. The channel model
is depicted in Fig. 4. This channel model is characterized by the hS|Y) = /h(S 1Y = y)py (v) dy. (38)

following random variables: ) . . )
Since adding a constant does not change differential entropy

S the channel input, constrained B[ S?] < o%;

N AWGN with variances?,; WMSTY =y) =h(S —ay|Y =y) (39)
Y the output of the channel, thus

F the channel strength, so tht= SI" + N.

We assume tha$, N, and F' are statistically independent. W(S[Y) = h(§ — oY |Y) (40)

We breakF” into F' and F', where E[F] = F andE[F] = 0. for any reak:. Since conditioning always decreases entropy, we
Intuitively, we view F” as the measurement of the channel anghye that
F as the zero-mean measurement error of the channel at the

receiver, with variance%. MS—aY |Y) < Rh(S—aY). (41)
The mutual information between the outpgatand the input
Sis A P Using the fact that the entropy of a random variable with given
variance is upper-bounded by the entropy of a Gaussian random
I(Y;8) = h(Y) — h(Y'| S) (35) variable with the same variance

AMS|Y) < h(S—aY)
where the entropies are differential entropies. Let us examine 1
how we may maximize (35). Let us first consider whether the < 5 In(2me Var (5 - oY) (42)
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for any «. Therefore, (42) also holds when we minimize the We may make three remarks from (46) and (49). The first is
RHS overx. Hence, we picky so thatY is the linear minimum that we can upper-bound the loss in mutual information due to
mean-square error (LMMSE) estimate $fin terms ofY [2, not knowing the channel as

p. 93] . 22

I(S;Y|F)—I(S;Y)§§1n<1+ ;“25). (50)

N

2
o= B[5Y] S Fos (43) The second remark is that

EY?]  F?0%+o0}oi+0% . F2,2

. . _ Jg
sinceS andY are zero mean. Therefore, the varianc8 efaY’, 01%130 IY;5) = 2 In <1 + 0—12\, ) (51)

minimized overy, is _ _ _ _
4 2 5 o i.e., the mutual information converges to the case where there is
050, +0N0O5

Var (S — aY) = — . 44) nhomeasurementerror. Such behavior was to be expected and the
( ) 202 2 2 2 (44) ) S
05 topostoy bounds (46) and (49) simply offer an indication as to how that
Therefore, we have that convergence occurs. Finally, we may address how our bound is
1 452 L g2 o2 related to other bounds concerning mutual information. For in-
h(S|Y) < =ln [ 2re=287F TONOS ) 45) stance, the mutual information between two possibly correlated
-2 F2 2 2 2 2 ( ) . A . . k
05t opostoy random variables is considered in [61]. The result in [61] con-
The mutual information betweenS and Y may be sidersthe minimization of(®;U), where® = U + W 4 N for
lower-bounded by N zero-mean Gaussian addthe jamming signal, which may
. s depend onV andl. The result obtained in [61] is that
1 1 .
I(S;YV)>=In (27rca§) —=In <27re _20§0F —2012\ s 5 )
2 7222 Flog+opos +oy pun =1/1— pgu-
1 F
=14 55—y Zs 2 |- (46)  Our bound concentrates on the effect of the multiplicative part
2 0pos + oy p p

of the channel, but is related to the modek= U + ¥ 4+ N if
Expression (46) may be interpreted as saying that the wowat consider thatr = (F — 1)U.

effect that the measurement noise can have is to behave afhe extension of the previous results to the multiple-symbol
AWGN. We see that the above bound is equal to the capacityazfse is fairly straightforward. Such an extension is useful to an-
the channel that would result from sending a Gaussian sigm@ze our model as given in matrix form. Indeed, unless we
with varianceF2o% in an AWGN channel with noise varianceconsider several time intervals, we cannot hope to capture the
o%0% + 0% Related issues to this one are addressed in [36]memory inherent in multipath systems. Let us assume that we

We obtain an upper bound f§Y"; $) by using the following know the covariance matrix of the inpétand that the covari-

simple consequence of (34): ance matrix is not singular. We have, as in Section I, that the
dimension of the input vector 5’ and the dimension of the
I(S;Y) < I(S;Y | F). (47) output vector ist if we use complex notation. If we consider

complex random variables expressed as real vectors, the dimen-

For F' known to be f, the maximum mutual information sions are, respectivel§k’ and2k. We omit these subscripts for
I(Y;S|F = f), over all possible choices fd, is given by ease of exposition.
(1/2)In(1 + (f20%/0%)). Hence Let us first determine a lower bound to the achievable max-

- R imum mutual information. Assume we have a Gaussian input
I <F2a§ + F?0% + a%)] (48) with mutually independent Gaussian components. Such a dis-

o3 ' tribution will yield a lower bound on the maximum achievable
mutual information between input and outputSlf;, is 2&'-di-

Therefore, using the convexity of theln function, we may mensional Gaussian, then ([10, p. 234])
write that

1
I(S;Y | F) = 5 Er

h(S) = %1n((27re)2k,|A§|) (52)

(49)

2, 2 2 2 2
I(8;Y) gln% <F "S*"F"S*"N).

2
oN where|| denotes the absolute value of the determinant of a ma-
The above bound is equal to the capacity of the channel tiigx and, as in the previous sectiofig is the covariance matrix
would result from sending a Gaussian signal with varianed S. We denote the cross-covariance matri¥aindR, say, by
F?52% 4+ 020% in an AWGN channel with noise varianed,. A(s,r)- We take the covariance matrix 6fto be given. We have
We may interpret (49) as an upper bound given by the caat F is a2k x 2k’ known matrix.F is a zero-mean random
where the effect of the measurement error is only that of extreatrix representing the measurement noise on each component
transmission power. Intuitively, we may see the upper bouwd £ which is not set t@ by our approximation of simultaneous
as the case where the measurement noise is altogether ugehé and frequency limitation. To find a lower bound on the
and the lower bound as the case where the measurement emakimum achievablé(Y'; S), we proceed as in the single-use
is wholly detrimental. case with some modifications. We shall consiglerand 2%’ to
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be constant in the derivation of our lower bound. Therefore, we N
shall omit2k and2%’ as subscripts and superscripts in order to n
simplify the notation. We still have that, as in (42)

<>

[m
[ie-1]

WS|Y) = h(S - aY |Y)
< & n((2r0) |As ar ) (53)

, . . . .Fig. 5. Channel with mutual information between input and output equal to
for a any real2k’ x 2k matrix. Using the same reasoning as ifhe RHs of (64).

the one-dimensional case, we wish to find thdbr which oY
is the LMMSE estimate af in terms ofY’. We shall derive the N o
information form of the LMMSE error because it provides inl€t us callY’ the output from that channel, shown in Fig. 5. Note
sight into the meaning of our bounds. Expression (43) becomtlgélt we may also write the mutual information betweeand

Y as

[2, p. 93]
I(S;Y)=h(Y)-h(Y |S)

In(|[FAsF" +Aps+Ay

—~

a= A §7X)Ail. (54)

1
)= 5 W(lAps+Ay

)
Using the fact that the signal, the noise in the estimate of the
channel, and the additive Gaussian noise are all mutually inde- == 1n(|(AFS+A£)—1EA§ET+1|). (60)
pendent and have zero mean 2 T

Hl\.’)lr—\

= Therefore, from our interpretation of (59) as a mutual informa-
a= Mg ps)(Aps +Aps +Ax) (55) tion, we may rewrite the RHS as

The matrixA g + Az + Ay must be invertible, becaugé is
white. -

The estimation error of the input from the output is given by o . )
E = §—aY. Thusin (53), we can replacg— oY inthe RHS ~ Obtaining an upper bound #¢.5; Y') is a straightforward ex-

by E. The covariance matrix o is given by [2, p. 83] tension of the single sample case. Expression (47) holds with
the appropriate modifications to take into account that we are in

Ap=As — A ps)(AﬁS +Ajpg+ AE)*lA(ﬁS s)- (56) the multidimensional case. The expression analogous to (49) is

I(S;Y) 2 5 In(|(Aps + An) "' FASE +1)).  (61)

The above matrixA g cannot be singular, again becauseis 1 |A@+E)§ + Ay
. £ - I(S;Y)< S| —==2——
white. We may also write that 2 |A N
_ _ =T 15 1 _
AR = A+ F (Apg +An) U (57) =3l (A3 A prins +11)

For a given covariance matrix, entropy is maximized for a rewriting A(E+E)§

Gaussian distribution. Therefore, from (53) _ %ln (|AXrIEA§ET n A;}AE +ll) . (62)
MS|Y)<ME) 1 We see that the above bound is equal to the capacity of the
< kln(27r6)+§ In(|Ag|) using (57) channel that would result from sending a Gaussian signal with
1 . - covariance matrixiA Fti)s in an AWGN channel with noise
Skln(27re)—§ In (‘A;Jrﬁ (AFS+AK)_1E‘) . varianceAy. Thereéore, as in the single-dimensional case, we
(58) may interpret the upper bound (62) as the case where the only
effect of the measurement error is that of extra transmission
The mutual information betweefi andY may therefore be POWer.
lower-bounded by the following vector analog to (46). We ma- In the limitasA ;4 — 0, from (61) and (62), we have that
nipulate our expression so as to obtain a form which will easily

be comparable to the upper bound I(S;Y) — % ln (‘A;}EASET + 1‘) . (63)
1 _ _
I(8;Y) > 3 In (|A§| ‘Ag +ET(AE +Aﬁ)_1ED Note that the condition\;; — 0 may seem to be a fairly
using the equalityAB| = |A||B| strong condmon._ Howevgr, an _Qquwalept c;o_ndnmn is that
1 s : tr (AE) — 0. SmceAE is positive-semidefinite, requiring
= §1n(|l+E (Aps +An) T EAg)). (59) thattr(Azg) — 0 is equivalent to requiring that each in-

dividual term in the diagonal oA ;.o go to 0. Indeed, if the
The interpretation of the above bound is as in the single-sampliagonal terms of\;. are0 then, sinceA;.. is a covariance
case. The RHS of (59) is the mutual information between theatrix, the offdiagonal terms must goaalso. In the following
input and the output of a known channlwith independent section, we shall use these results for channels with a measure-
additive Gaussian nois® of correlationA ¢ + Ay. Indeed, ment error to determine some general properties regarding the
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loss of mutual information from not knowing the channel aA similar inequality holds forI(Y’;Ss|S1). A bound for

the receiver. I(Y; (51, 52)) may be obtained by considering the sum of the
signals of the two users as being a single signal. Thus we obtain
B. Multiple-Access Case the following upper bounds on the region of feasible mutual

In this section, we seek to extend the results concerni'nrgormaltlons for the smgl_e symbol case W'_th real inputs and
: , real channels (the subscripts denote users):
channel measurement uncertainty to the multiple-user case

—2
and consider the effect of spreading when we have several ) 1 Fi o + 0% o3,
users. The use of broadband signals under multipath channel I(Y; 81 ]5) < 2 In <1 + 2 (65)

ON

conditions is often advocated because of the possibility of 1 Fl02 4 o2 o2
resolving the multiple paths at the receiver and then combining  7(¥; S, |S;) < Z1ln <1 + 2 9s, 2 75, "F2> (66)
them in some approximately optimal way ([39]), such as by 2 N

a rake receiver ([52]). When we deal with multiple-accesq(y; (51,52))

situations, such as the situation of mobile communications, <
1+

where the users share bandwidth under some spread-spectrum < 1111
protocol, the issue of spreading is further complicated by 2
multiple-user interference. The most commonly proposed (67)
approach ([54]) is to decode each user as if all other users wete 1, hound of (65)—(67) may be interpreted as in the single-user
noise. The advantage of spreading under these conditiong.iSa \we have that

to reduce the power spectral density of the users, when the )

users are all under a maximum power constraint, so that the 1Y 51]52) = h(S1]52) = h(51Y, 52)

—2 —2

2 2 2 2 2 2

Fy 05, +05,0F, + I 05, +05,0%,

5 .
%

system becomes limited by the additive Gaussian noise in sinceS; andS; are independent
the channel rather than being interference-limited. Such an =h(S1) — h(S.]Y,S)
approach is, from an information-theoretic point of view, quite = h(S1) — h(S1 | (Y — F555), S2)

suboptimal (unless we use FDMA [48]) when we can measure
the channels for the various users ([60]). We, therefore, wish to -
show that interference cancellation is still possible when we do > h(S1) = M S [ (Y — F252)). (68)
not know the channel as long as we may measure the chaniel may use the LMMSE estimate 6f from Y — IS, to
for each user. We know that under certain ergodic conditiorghtain
if decoding a user is possible, then canceling the interference ﬁlQOJ

<1 + 5 ) (69)

since conditioning reduces entropy

from that user is possible with a small added error due to thd (Y; 51| S2) > %ln T S
channel uncertainty. However, we consider explicitly the loss N TSR TS
in mutual information without any assumption about decodirf§em (68). We may obtain in a similar manner the following
individual users. Our model is somewhat different from that iiwer bounds to the region of achievable rates:

[19] in that we divide the channdT into a known component 1 nggz
F and a fluctuation?” without considering the relation between I(Y; 82| S1) > gin {1+ 2 502 02 192 o2 (70)
I and the sample observation. We bound the effect of channel NTS TR TS TR
estimation error upon interference cancellation. 1 E%é +F120§1
The inequalities we have found for the single-user case hold (Y; (51, 92)) > S In | 1+ ———2 57—~ (71)
2 oNt05 0% +0% 0n
Sa 2 St 1

for every inequality which defines that feasible rate region. We _ S :
shall show the effect of knowing the channels of the users wift@in, the bounds in (69)—(71) bear a similar interpretation
a certain error of given variance. We shall give our exampl&3 the one we gave for the single-user case. The effect of the

for two users, since we may give a graphical interpretation ghannel uncertainty can be no worse than to contribute to the

our bounds. The signals of the users and of the channels AYGN. Each user must contend not only with the uncertainty

assumed to be mutually independent. To obtain upper bounﬁ%,its own channel but also with the uncertainty of the other

we consider that all received signal components other than #R€"S" channels. In particular, when we consider the mutual

AWGN are part of the input signal. Thus we may write that information between user 1 and the output conditioned on user

[(Y551|85) < (Y81 | S0, FL, ) 2, we must take into account the fact that there is a residual
R R02) S 301 [ D2, L1, L2

effect upon user 1 of the uncertainty on the channel of user 2.
=h(Y [ 52, I, F) = W(Y | 51, 52, 11, 1) Indeed, when we perform interference cancellation, the fact
=h(Y'|S2, F1, Fy) — h(N) that we are not able to cancel a user exactly because of error
in its channel measurement means that there is extra noise
beyond the AWGN. Expressions (70) and (71) may be obtained
1 1 similarly.
< ZEf, [In(o} + 0% F7)] — =In(o}) Using the lower bounds of (69)—(71), we may obtain a lower
2 2 bound to the feasible rate region. The effect of the channel error
72 0 5 o may be bounded as the effect of extra AWGN on the channel.
< %ln <1 41 o5, + 051‘7F1> ) (64) Note that the corners of the feasible rate regions correspond to

since a Gaussian distribution maximizes
entropy for a given variance

since theln function is convex)

o the rates that are achievable when the users transmit white sig-
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Fig. 6. Lower bound to the feasible rate region for channels known with a given error variance.

nals over the same bandwidth at the same time and the recelWerdo not give a graphical representation of the multiple symbol
performs interference cancellation. Fig. 6 shows our upper acakse, since such an extension would be difficult and would not
lower bounds fo?; andR,, the feasible rates for users 1 and 2improve our intuition.

respectively. The gray square represents the mutual information

region when we consider each user as noise to the other user, i.e., |V BounDsAPPLIED TORECURSIVE ESTIMATION

where we have an interference channel, for the channel model _ ) _
corresponding to the upper bound. For our example, we see thal the previous section, we have considered that we know the

it is preferable to perform interference cancellation rather thyA"iance of the error on the channel estimate, but have not dis-
to treat each user as noise to the other user. cussed how we determine such an estimate. The estimate of
For the multiple-symbol case, the bounds extend in the safi§ channel will depend on the type of channel we consider

way as for the single-symbol case. Let us simply write the low8f'd how it is measured. In this section, we illustrate the use
of the bounds found in the previous section for the case of a

bounds single-user AWGN channel with a single tap which evolves in
1(S;:Y [ 52) a Gauss—Markov fashion. The model for our channel is
> %m (‘(A& +A5s +An) " FiAs FrT +1D (72) Fliji]=aFli—1,i—1]+Sli—-1,i—1  (78)
where the=’s are zero-mean mutually independent Gaussian
1(52;Y | S1) random variables which are independent of the noise. The
Ty, . random variableZ is commonly known as the innovation term.
z5 In ‘(Aﬁsl +Az, + An)T FaAs, Fy —i—lD (73) We can relate the form of (78) to the physical characteristics

of a wireless channel. In particular, the constars related to
the coherence tim&, of the channel« determines how fast
the channel decorrelates, with
« (BasT +FasTT") 1)) 09 e

We select priori the level of decorrelatiog, which we deem
Similarly, we may give the following upper bounds for the mulsfficient to indicate that the channel has decorrelated fime

1 —
1(81,5:0:Y) 2 31 ([(A g5 + Mg +A0) ™

tiple-symbol case: samples, i.e.,
I(85;Y | 8y)< % I ([A5 (A5 +EAs B2 )+1[) (75) o= EIE —g[;[f ?ﬁ]’ Fli,]].
Loy 1,7
1 B — T ThusT,. = m/W. From (78), we may write
1557180 < I (|7 (Mg +EALEY ) +1)) (76) / oW = g (79)
I((51,8:2):Y)< -In (‘A&l (Aﬁsl + Afzsz There are many ways to selettin general, depending on how

.  _r — 7 we define the coherence time, we hdyaoughly inversely pro-
FoAs, By + FiAs Py ) + lD - (77)  portional toB,, with a proportionality constant which depends
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onthe level of decorrelation we deem necessary in our definitidime term)\’ . ; is the variance of the estimate when each probe

of coherence time. In the literature, the correlation coefficientsgnalu[¢] is equal tas;. Let us suppose that we have some ar-

taken to vary from0.9 ([11]) to 0.37 ([5]) for a time separation bitrary ergodic distribution, so that the probe signal is a random

of T... variablel/ whose expected value satisfies the energy constraint.
We sound the channel using a probe Signa|_ The probe S|g% shall use the foIIOWing result, whose proof is relegated tothe

occupies it own band, the probe band, and does not overlagipPendix. For anyy > 0

frequency with the payload sign&l. The probe signal char- In(1 +yA}) < Ey [In(1 + ;)] (83)

acterizes the single tap_, as long as the probe signal is in th?e limit asi — oo of X, is \’

same coherence bandwidth as the payload. Note that a single tap 292,222

model is well-suited to the case of a large coherence bandwidth)’ = Inf Ué\" Ty

which corresponds to a small time spread, hence to the case 204,/

of unresolved paths whose aggregate effect is represented by \/( 02,32 — o2, — 0%70%)2 + 4ot ot 02, 32

a single tap. If we had more resolved paths, then we would have  + 53 =

IS1 and the multiple-symbol case would be applicable. Note that 2o/ )

our model does have memory, since there is memory in the thjpte that\” — 0 .as3 — 1 or, equivalently, agx — 1. Thus

The probe signal is and the received version of the probe signal 90€s tc) as the channel becomes time-invariant, because we

is V. So as not to devote too large a bandwidth to the pro@n then measure the channel arbitrarily well. Also— 0 as

signal, the probe signal may be sent over a narrow probe bahd — ©¢- We may interpret this limit as the fact that, if our

and at a lower rate thasi. Therefore, the sampling of the probeor_Obe signal is sufficiently strong, we can measure the channel

signal will be at a lower raté¥,, than the sampling raté” for ~With almost no error. _ o _

the transmission payload. Let us consider that the sampling Let us consider that the transmitted sigAas stationary and

of the probe signal is times slower than the sampling &t ergodic, with variance per symbol. The mutual information
i.e., W,v = W. For simplicity, we take- to be an integer. In W& consider is between the vector of samples, sampled at rate

the sampling, we have VI; Si ?nd the pkai(zk,lzuk/y”). Let us consider the mutual
Flii] = BFli—1,i— 1]+ Z[i— 1i— 1] (80) information overk samples

(84)

where = . MoreovergZ, = (1 — 3%)o%. We estimate the I (ﬁlﬁ (Xk’KL%J)) = ;I (S[i]; (Xk’KL%J) ﬁi—l) (85)
channelF[i, ] sampled at rat&” by the sample’[|i/v]]. =t .

Until we state otherwise, let us consider sampling at rate =z ZI (S[’]? (Xk’ZL%J) |§i71) (86)
W, in the probe band. Since we have a Gauss—Markov channel ik .
model, the maximum-likelihood (ML) estimate of the channel = ZI (S[Z]%ZL;_'J |§i—1) + Z Z
L[¢] from V, andw, is obtained by using a Kalman filter [2]. i<k i<k j<k
The Kalman filter estimate in this case is also the MMSE and T (S[i];Y[j] S Y, Vs )
the LMMSE estimate. We denote the variance of the error of the v

estimate off'[{] by A;. The recursive expression far is (87)

1 1 u[1]? R
R > S I (SEYHES, 1Y 1Y
AL U%—i-ag o3 g ( ' ' L”J)
1 1 wlf +1]2 (81 (88)
N+ a?)Aj+oF o% where (85) and (87) follow from the chain rule for mutual infor-
Note that, although (81) does not depend on the valagst mation. We obtain (86) by using the fact that
does depend on the valugs Let us suppose that we have an av- I(X;(Y,2) > I(X;Y).

erage energy constraint anso that the sample average value of
u[¢]* over all samples must be no greater thgn Therefore, the
probe nee_d not be constant. For Instance, the probe may b? ut-of-band probe rather than knowing the chareedriori.

at regular intervals, or may be transmitted at random times; Qbte first that

instance, alongside some training sequences for synchroniza-

tion. If the probe is a pilot tone, then it will be constant. We do I(Sy; (Vg Vi gy DIER) = (84 Yy | Ey)

not address here the manner in which to allocate resourcesiteceV | ;. /. is superfluous when the channel is known. Thus
the probe ([30]). It is useful for us to determine in what wawe seek to upper bound

our probing should be performed so as to satisfy our constrailxk — max[[(S,; Y | )] — max [I (S . (Y Vi ))}
while reducing the variance of the error as much as possible. To A S, SR =12 )]

We are interested in upper-bounding the loss in average max-
irgH{n mutual information due to estimating the channel via our

this end, let us defineg by the recursive expression (89)
1 1 of Let us consider the first term of the RHS of (89)
P A 1(8:Y 0 | ) = h(Y3 | By) - h(Xy | e S3)
1 1,9 (82) <> (Y| FRE) - (NED)  (90)

= 2 2 -
)\Z»_H [32)\9 + oz, Tn i<k
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where (90) is derived from the chain rule for entropies and the all other users. We have applied our results to obtain explicit

fact that conditioning reduces entropy. bounds to the loss of mutual information due to not knowing the

From (88) and (90), we have channel when the taps may be described by a Gauss—Markov
process.

Ay < max ZI(Y[i]?S[i] | F[d]) An interesting question is whether incoherent interference
S i<k cancellation is advantageous. Indeed, many spread-spectrum
systems currently have an incoherent rake receiver for each user
— max ZI (S[i];Y[j] ‘ﬁi_hzi_hzm) ) gnd detect gll users ;eparately. Sinqe interferenc_e gan_cellation

S v is computationally fairly simple (its time complexity is linear

ko li<k
B in the number of users), it might be of practical interest to

) . (1) establish when, if ever, the uncertainty in the channel due to
We consider for the second term in the sum of the RHS of (94t knowing the phase component is such that interference

that we estimate the channel througly; )| only and that we cancellation is still better than considering the multiple-access
do not useS; .Y, ; in our estimation of the channel. ThiSchannel to be an interference channel.

assumption gives an upper bound on the variance of the channel
estimate at sample Since up tar time samples at ratd” can
elapse between the time we obtai,; ,,,; and the occurrence
of F[i], we can upper-bound the variance of the estimat&' of o, proof of (83)
from V,;,,,; by the variance of the estimate of the channel
from ZL(i_/V)J plusvo. Let us denote by%[i]}he estimate of . ) i — 1] uli]? .
F[i] obtained fromV/, (; .- Let us denote by'[¢] the error on  2[i] =+~ < TF oL = 1] + 3 ) , fori>1
the estimaté"[s]. This error has varianagg; <oX = +voZ. 32'7 B N
From (81), we know thad,(;/,); depends only oﬁ_fi. Hence, :[0] = 7—1/_2,
from (50) °F . _
Z . o2 ()‘LiJ n W%) Fori > 1, z[i] is -5;. We deflnef1 to be
A < —FEy [In| 1+ z (92) N =
= 2= 012\7 f"/(7) 7_1/32 +U%/Z
N +1/02) The function f is monotonically increasing and its second
il T E

2

g

< Z %ln 1+ s ( L X (93) derivative is negative. Thugis convexn. We have that
O’N

APPENDIX

Let~ > 0. Define

(95)

uf

4 2
i =t <f(2[i —)+ %) . (99)

i<k

where (93) follows from (83). Thus the limit of the averag ofine
2

loss in terms of maximum mutual information per symbol du
dealing with an estimate of the channel rather than knowing the ~ »/[¢] = ~~* <f(z[i -1+ 05’) , fori > 1
channel perfectly may be upper-bounded as ) N

I}

2 )\/ L % ’ _ 1
lim lAk _ %ln <1 + OS(—;HUH)> (94) Z'[0] =~ <a%> . (97)
g

k—oo k .
. . N Fori > 1, Z[i] is
by using (84). Using our remarks following (84), we know that _ .
; 9 verify that
X — 0asa — 1orasop, — oo.

WIA;- Let us proceed by induction. We may

Byl = #11].

\AA__et us now assume that

V. CONCLUSIONS ANDDIRECTIONS FORFURTHER RESEARCH
We have investigated the effect of uncertainty in the kno

edge of the channel at the receiver for a single-user time-varying Ey [2i=1]] < 2[i—-1].
channel. We have established that, in the case where the chamh@in, using the fact that is convexn, we have
is known at the sender and the receiver, the mutual informa- 2
) o - . ~1 : -19
tion can be found for a channel which induces spreading in By [2[i] = By, [y " f(z[i = 1]+ g
both time and frequency. Therefore, the real difficulty in estab- ]2\’
lishing capacity results stems from our imperfect knowledge of < Wilf(EQ;q [2[i — 1]]) + ,yflg_g (98)
the channel rather than its time-varying nature, although it is , IN
the time variations that render estimation difficult. In the case _ . Oi;
. . <Ay SEE -1+ 5 (99)
where we know the covariance of the measurement noise, we T

have established upper and lower bounds which are independent ) . .

of the channel and measurement distribution. These bounds 4f¢re (99) follows from our induction assumption and the
tight as the measurement error vanishes. For the multiple-acc@Ss thatf is monotonl(':ally increasing. Hence, for all> 1,
case, we have shown that, even in the presence of channel {iti- [2[i]] < #'[d]. Thus it follows that

certainty, it may be advantageous to perform multiple-user inter- B ) {L}

ference cancellation rather than to consider all users to be noise 2.V Y YA ]
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Let us consider the functiandefined byg(x) = 1/1+(1/x).

(12]

For z > 0, we have that

/ 1 [13]
(@)= 15 >0
w2 (14 3)? [14]
and
§'(5) = <0 [15]
z3(1+ i)?’ '
Thus g is increasing and convex for our region of interest. [16]
Hence [17]
9(Z'li)) = g(Eu [2[il]) = Eu, [9(=[D]- (100) 18
Note that [19]
1
i) = ——
9 = 13 0
and
w1 [21]
g(=[d]) = m

Thus (100) implies that

Hencen(1 ++\}) < Ey [In(1 + )]

(22]

1 1
— V> Ey — . [23]
n <1+7A;> = Ey, [hl <1 +fy>\7;>}

(24]
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