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Abstract—We present a new algorithm which creates redundant
trees on arbitrary node-redundant or link-redundant networks.
These trees are such that any node is connected to the common
root of the trees by at least one of the trees in case of node
or link failure. Our scheme provides rapid preplanned recovery
of communications with great flexibility in the topology design.
Unlike previous algorithms, our algorithm can establish two
redundant trees in the case of a node failing in the network.
In the case of failure of a communications link, our algorithm
provides a superset of the previously known trees.

Index Terms—Graph theory, multicasting, network recovery,
network robustness, routing, trees.

I. INTRODUCTION

T HE STUDY of self-healing networks, which automati-
cally restore their functionality in the event of a failure,

is prompted by the increasing reliance on high-speed com-
munications and the requirement that these communications
be robust in the case of certain failures. A failure may
arise because a communications link is disconnected or a
network node becomes incapacitated. Failures may occur in
military networks under attack [26], as well as in public
networks where failures, albeit rare, can be extremely dis-
ruptive [61]. For high-speed networks, rapid recovery from
failure is important, as even a short down time may entail
the loss of much data. Survivability may be considered to be a
component of quality of service (QoS) [44], [47]. We present a
tree-based algorithm applicable to optical wavelength-division
multiplexed (WDM) systems [42], SONET, asynchronous
transfer mode (ATM), or any protocol which allows the use of
tree routings and redundancy for recovery from failures.

In this section, we present an overview of the criteria for
our algorithm and briefly illustrate how these criteria relate
to ATM and SONET. The study of self-healing networks is
often classified according to the following three criteria (e.g.,
[8], [16]): the use of link (line) rerouting versus path (or end-
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Fig. 1. Path and link rerouting. The failed link is shown as being interrupted.

to-end) rerouting, the use of centralized computation versus
distributed computation, and the use of precomputed versus
dynamically computed routes. A succint comparison of the
different options can be found in [75, pp. 291–294] and in [30].
Our algorithm considers path rerouting which is preplanned
and centrally computed. Other important criteria are the logical
connections built by our algorithm and the network topologies
on which our algorithm can operate.

A. Path Rerouting

Our algorithm implements path rerouting, i.e., in case of
a failure which leaves a node disconnected from the primary
route, a backup route, which may or may not share nodes
and links with the primary route, is used. Link rerouting
usually refers to the replacement of a link by link(s) connecting
the two end nodes of the failed link. Fig. 1 shows path and
link rerouting. The efficiency of path protection versus link
rerouting in terms of the number of connections is considered
in [17], [21], [66]. An extension or our algorithm to link
rerouting is mentioned in Section III-C but is outside the scope
of this paper.

For ATM, path rerouting performed by the private network
node interface (PNNI) tears down virtual circuit (VC) connec-
tions after a failure, and the source node must then establish
a new end-to-end route. Backup virtual paths (VP’s) may
be predetermined [34] or selected jointly by the end nodes
[40]. Link rerouting in ATM usually involves a choice of new
routes by nodes adjacent to the failure [2], [36]. In SONET,
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Fig. 2. UPSR and BLSR—thin lines show the primary paths and thick lines
show the backup paths. The white nodes are the failed nodes.

path protection is usually performed by a unidirectional path-
switched ring (UPSR), as illustrated in Fig. 2. An UPSR has
two live streams, which are degenerate examples of trees.
Link rerouting is performed in a SONET bidirectional line
self-healing ring (BLSR) (see Fig. 2).

B. Preplanned Route Computation

Preplanned route computation is commonly termed au-
tomatic protection switching. Preplanned schemes generally
offer better recovery speeds than dynamic approaches, which
wait until a failure occurs before seeking alternate routes for
the disrupted traffic and which generally involve software
processing [46], [65]. Note, however, that there is thus a
tradeoff between spare capacity and speed of restoration [32],
[12].

Source routing, which is used by ATM PNNI, can be
preplanned [28] or partially preplanned [44]. In SONET, both
BLSR or UPSR are preplanned. SONET restoration time is
specified to be under 60 ms. Recovery can be achieved in tens
of milliseconds using optomechanical add–drop multiplexers
[62], [55] and in a few microseconds using acousto-optical
switches [18], [77]. These speeds can be contrasted with
the 2-s restoration time goal [76], [55], [32] commonly set
for dynamic distributed restoration using digital cross-connect
systems (DCS) for ATM or SONET/SDH [27], [79], [22], [53].
Dynamic centralized path restoration for SONET ([25]) may
even take minutes [76], [9], [7]. The performance of several
algorithms is given in [11], [5].

C. Centralized Computation

The scheme we present is centralized, although some pos-
sibilities for distributed computation are briefly mentioned in
Section III-C. A centralized scheme can never be less efficient
than a distributed scheme in the number of connections which
can be restored, but a centralized scheme requires a central
processor with global knowledge of the network. If a central-
ized scheme is also preplanned, then the delay associated with
setting up backup routes does not affect the restoration time
because the delay is incurred up front at connection setup time.
For high-speed fiber networks, connection setups are rare, and
therefore the delay incurred at the beginning of a connection is
acceptable as long as its is of the order of the delay to set up
the connection. For ATM, centralized approaches have been
proposed using virtual [54] or actual rings [37]. SONET uses

Fig. 3. An example of vertex topology where a ring-link topology is not
minimum cost.

centralized preplanned computation for setup of the primary
and backup connections for UPSR and BLSR.

D. Logical Tree Connections

We create tree routings, such as would be used for multicast
or incast applications. Multicast trees are used for ATM [64],
[33], [1], [35], [78] and by tag-routing schemes, such as the
Multiprotocol Label Switching standard [45]. Moreover, mul-
ticast is supported by SONET and is an attractive application
in WDM networks [42], [31], [3]. Rather than use rerouting,
which is based at the source [14] or at intermediate nodes
[38], we create two trees such that one is a backup to another.
Section II discusses the applicability of different redundant
tree approaches. For ATM, several preplanned tree protection
strategies are presented in [73].

E. Topological Requirements

The network topology, i.e., the physical layout of nodes and
links, must be such that recovery is physically possible. Topo-
logical requirements are important because they determine
whether a mechanism may be used in existing networks and
because they may impact significantly the cost of constructing
new networks or extensions to existing networks. The building
blocks of SDH/SONET networks are generally self-healing
rings (SHR’s) and diversity protection (DP) [69], [67], [50],
[49], [58]. SHR’s are UPSR’s or BLSR’s, while DP refers to
physical redundancy, where a spare link (node) is assigned to
one or several links (nodes) [75, pp. 315–325]. Using only
DP and SHR’s is a constraint which has cost implications
for building and expanding networks [71]. Fig. 3 shows a
node configuration, a ring constructed on those nodes, and the
edge-redundant topology with the minimum total link length.
We may see that the ring is not the least-cost edge-redundant
topology, if cost is proportional to total link length.

Even if we do not restrict ourselves to SHR’s and DP,
the network must satisfy certain topological requirements. If
we wish to reroute traffic after the failure of any single link,
the graph obtained by mapping the network nodes to vertices
and the links to edges must be at least edge redundant, i.e.,
two-edge connected. If we wish to recover from an arbitrary
node failure, then the graph must be at least vertex redundant,
i.e., two-vertex connected. Our algorithm works on arbitrary
redundant graphs.

F. Overview of the Paper

Our algorithm constructs two trees in such a fashion that
the elimination of any vertex (edge) in the graph leaves each
destination vertex connected to the source by at least one of
the directed trees. This approach has been termed the multi-
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tree approach [29]. The algorithm we present uses a different
approach from [29] and is a generalization of the one presented
in [42], [24]. We overview the issue of redundant trees in
Section II. Section III presents our algorithm, first for the
vertex failure case (Section III-A), then for the edge failure
case (Section III-B). Section IV compares our algorithm to
the approach of [29] and shows that our algorithm gives a
superset of the previously available solutions and that our
algorithm yields better performance for certain criteria and
example networks. We give some conclusions and directions
for further research in Section V.

II. REDUNDANT TREES

We may now introduce our model. Let us consider that
we have one source vertex and many destination vertices.
We model a physical network as an undirected graph where
each duplex communication link corresponds uniquely to an
undirected edge and each network node corresponds uniquely
to a vertex. To each undirected edge we associate two
arcs, i.e., directed edges, and A directed route is
an ordered sequence of vertices such that two vertices which
are adjacent in the ordered sequence are endpoints on some
edge of the graph. If the arc appears in the route, then
we say that arc is in the route and, by abuse of notation,
that edge is in the route. We select among the vertices of
the graph a source and a set of destinations, different from the
source. We create trees whose common root is the source and
which include the set of destinations. For a particular source
and set of destinations, we define a tree to be a set of arcs such
that there is a directed route from the root to every vertex in
the tree including only arcs in the tree and such that there are
no cycles, i.e., routes which include a vertex more than once.
By abuse of notation, we say that edge is in a tree when
arc or arc is in the tree. Also, we say that vertex

is in a tree when an arc with as an endpoint is in the tree.
Finally, a directed route is in a tree if
the set of arcs is a subset
of the tree.

In this section, we present four different types of approaches
to tree-based preplanned protection and evaluate their perfor-
mance in achieving the following goal:to design two directed
trees in such a fashion that the elimination of any vertex
(edge) in the graph (other than the source) leaves each
destination vertex connected to the source by at least one of
the directed trees for any source, and destination vertices
in any vertex (edge)-redundant graph. The two trees are
termed the primary and secondary trees, or Red and Blue trees.

A. Menger’s Theorem

The fact that, for any vertex (edge)-redundant graph, there
exists a pair of vertex (edge)-disjoint paths between any two
vertices is a consequence of Menger’s theorem [57], [43].
Fig. 4 shows edge-disjoint and vertex-disjoint paths. Such
approaches are presented in [59] for edge-disjoint paths and
in [56], [72] for vertex-disjoint paths, usually associated with
some sort of shortest path selection. Applications of these
techniques to networks are presented in [4], [51]. However,
none of these schemes guarantees trees in the case of a single

Fig. 4. Pair of link-disjoint paths and pair of vertex-disjoint paths.

(a)

(b)

(c)

Fig. 5. Three different approaches to building redundant trees. The dashed
lines show the edges, the thin arrow lines show the primary tree, and the
thick arrow lines show the secondary tree. In the top figure, the grey lines
indicate one pair of edge-disjoint paths and the full lines indicate another pair
of edge-disjoint paths. An interrupted line corresponds to a failed edge.

source and multiple destinations, i.e., the union of primary
paths may not be a tree and the union of backup paths may also
not yield a tree. Fig. 5(a) shows a pair of vertex-disjoint paths
between the source and vertexand a pair of vertex-disjoint
paths between the source and vertexThe two primary paths
together form a directed tree, but the two secondary paths do
not form a directed tree. Therefore, finding pairs of vertex or
edge-disjoint paths between the source and each destination
vertex will not achieve our goal. The next sections describe
methods which yield trees for the primary and backup paths.

B. Edge-Disjoint Trees

If two trees share no edges in common, then the failure
of an edge cannot affect both the primary and the secondary
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Fig. 6. An example of a network which cannot have edge-disjoint trees.

tree. In [80], the case of two edge-disjoint spanning trees on
undirected graphs is considered. In this case, one spanning
tree remains unaffected even if the other tree ceases to
be connected. Fig. 5(b) shows two edge-disjoint spanning
trees. The topological constraint in [80] is, however, four-
connectedness, which is greater than the edge-redundancy
requirement, i.e., two-connectedness. A simple example of
an edge-redundant graph which does not allow edge-disjoint
spanning trees is given in Fig. 6. If is in the primary tree,
then must be reached in the secondary tree through and

is reached in the secondary tree through Thus, cannot
be reached in the primary tree. Moreover, the edge-disjoint
approach does not produce vertex-disjoint trees (for instance
trees which share only the source and the destination vertices).
Therefore, the edge-disjoint approach does not comply with
our goal.

C. Arc-Disjoint Trees

Rather than require two trees to share no edges, one may
require that they not traverse links in the same direction,
i.e., to be arc-disjoint [19], [62], [52]. Fig. 5(c) shows two
arc-disjoint spanning trees and a failed edge. The failure of
the edge indicated on the figure entails the failure of both
arcs associated with that edge and thus vertexbecomes
disconnected from the source.

D. Multi-Trees

The multi-tree approach presented in [29] satisfies our goal
for the case of edge-redundant graphs. Fig. 7 shows an ex-
ample of multi-trees built using our algorithm. In Section IV,
we discuss this approach in more detail and show that the set
of multi-trees achievable by the approach of [29] is a proper
subset of the set of multi-trees achievable by our approach.
The approach in [29] is not designed to satisfy the vertex
failure case.

III. REDUNDANT TREES FORVERTEX AND

EDGE-REDUNDANT GRAPHS

In the following sections, we present a new algorithm for
achieving the goal stated at the beginning of Section II. Let
us consider that we have a vertex (edge)-redundant undirected
graph where is a set of nodes and is a set of

Fig. 7. Application of our algorithm for an edge-redundant graph.

edges. We wish to show that, for any source vertex
we may create two directed trees, which we shall name
and for Blue and Red, such that, after eliminating any
vertex other than (in the vertex-redundant case) or any
edge (in the edge-redundant case),remains connected to all
vertices of through and/or through deprived of the
eliminated vertex or edge, respectively. In Section III-A, we
describe our algorithm, for any vertex-redundant undirected
graph. In Section III-B, we extend our results of Section III-A
to edge-redundant graphs.

A. Multi-Trees for Vertex-Redundant Graphs

We now restrict ourselves to vertex failures. Note that a
vertex failure entails the failure of at least two edges. We
start by choosing an undirected cycle containingIf this
cycle does not include all vertices in the graph, we then
choose an undirected path that starts on some vertex in the
cycle, passes through some set of vertices not on the cycle,
and ends on another vertex on the cycle. If the cycle and
path above do not include all vertices of the graph, we
again construct another path, starting on some vertex already
included, passing through one or more vertices not included,
and then ending on another already included vertex. The
algorithm continues to add new vertices in this way until all
vertices are included.

By applying Menger’s theorem, we can establish that, in a
vertex-redundant graph, a cycle must exist containingIt can
also be seen that, for any such cycle, a path can be added as
above, and subsequent such paths can be added, in arbitrary
ways, until all vertices are included. It is less simple to choose
the and trees, as illustrated in Fig. 5(c).

The algorithm below specifies a particular ordering on
vertices without finding what specific numerical values to
associate with the vertices (since these values are only of use
in seeing the analogy and not in establishing relative ordering
of the vertices). Based on this ordering, it incrementally builds
the trees. We start with a vertex-redundant graph
and a source vertex The algorithm chooses a cycle, and
then subsequent paths, and also orders the vertices as they
get included in the cycle or one of the paths. We associate
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two values with and an arbitrary value so that
One way to think of this is that there is a

battery at vertex and the ordering of the vertices corresponds
to the voltages at different vertices when there are resistors on
each edge. In the following algorithm,can take either value

or for The set of vertices which have already
been assigned a value at stageof the algorithm is denoted
by At each stage of the algorithm, we keep track of
arcs which can form one of the possible pairs of Red and
Blue trees. is the partial construction of the Blue tree
at stage is the partial construction of the Red tree at
stage

Algorithm 1:

1) Set
2) Choose any cycle in the graph with

Let be the set of vertices and
order these vertices by

3)

4) If then terminate.
5)
6) Choose a path

in the graph such that
with If then
If then The other vertices,

are chosen outside of
7)
8) Order the vertices in by

where

9)

10) Go to step 4.

This particular way of ordering vertices has the convenient
feature that the new vertices at each new pathare entered
all together into the previously ordered set. We also see that
the dominant computational task is simply finding the cycle
and the subsequent paths. Choosing the cycle and paths in
different ways can yield different types of trees, depending on
one’s requirements.

Let us show that the algorithm terminates.
Lemma 1: The algorithm terminates if the graph is vertex

redundant.
Proof: Since additional vertices are added to each

time step 7 is executed, the algorithm will terminate unless
some nodes have not been assigned a value and step 6 is
unable to find a new path Suppose that there is a vertex
which has not been assigned a value. Equivalently, we suppose
that is not empty. Because of node-redundancy, there
must be at least two edges from to If there exist two
distinct edges and sharing an endpoint
while then where we assume

w.l.o.g. that If there do not exist two such edges
and then because of node redundancy there must

be at least two distinct nodes and two distinct
nodes such that and are edges. If there
is a path from to using only vertices in then
assuming w.l.o.g. that we can create by
traversing vertices in the following order: the vertices of
path in order, and finally If there is no such path
then there is a path which has some vertex in Let
be the last vertex in to be in If then let us
assume w.l.o.g. that We can create path by
traversing vertices in the following order: the vertices in
between and and finally If then by Menger’s
theorems and our assumptions there must exist another path

from to which has some vertex in and which does
not include Let be the last vertex in in path Let
us assume w.l.o.g. that We may create by
traversing vertices in the following order: the vertices in

between and and finally Thus, in all cases, we
can create a path if Q.E.D.

Let us consider two spanning trees, and of
each rooted at such that for any for any

there exists a path from to in
or in At least one pair of such and trees exists.
Consider the case where and where
is the at which the algorithm terminates in step 4. Let us
show that there is a directed route infrom to any
From our construction, it is immediate that there is a directed
route in from to any since the latter is simply
a directed ring. If there is a directed route in from to
any vertex in then let us show that there is a directed
route in from to any If then we are
done. If then There is a directed
route in from to using only nodes in and
a directed route in from to using nodes on

Combining the two routes yields a route in from
to Therefore, by induction, there is a directed route in
from to any In a similar way, we can prove

that there is a directed route in from to any
The only significant change is that must be replaced by

and that must be replaced by We can see
by our induction argument on that the directed route in
from to any consists of monotonically decreasing
values (excluding Similarly, the directed route in from

to any consists of monotonically increasing values
(excluding Since these properties hold for eachthey also
hold for the final trees and Therefore, there can be no
cycles in for a cycle would imply that the values of the
vertices traversed would decrease and then increase. Similarly,
there are no cycles in The fact that and have no cycles
and that there is a directed route fromto any vertex in
for each tree implies that and are trees rooted at

It now remains for us to show that eliminating a vertex in
leaves each remaining vertex connected tothrough and/or

Let be an arbitrary vertex that is removed from the
graph, and let be some other vertex. We wish to show
that can still be reached from in either the tree or the
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tree. Since the vertices are ordered, we either have
or For the first case, can still be reached from
on since the path from to is monotonically decreasing in
vertex values, and thus cannot contain vertexIn the second
case, can be reached fromon because of the monotonic
increasing property there. Our discussion leads to stating the
following proposition.

Proposition 1: There exist at least one tree and one
tree such that and are spanning trees rooted atand such
that for any for any there exists
a path from to in or in

B. Multi-Trees for Edge-Redundant Graphs

The above algorithm for vertex failure protection does not
work in this case, because it is not always possible at a stage

to find paths as above. In particular, it is sometimes
necessary to find a cycle that leaves the set of vertices
on one vertex and returns to the same vertex, i.e., with

This can be handled by letting each vertex
have two “voltages,” and associated with it. We
arbitrarily select and The ordering in
step 2 of the algorithm is then replaced with

The ordering in step 8 of the algorithm is replaced in a
similar way. The complete algorithm is then Algorithm 2, as
follows.

Algorithm 2:

1) Set
2) Choose any cycle in the graph with

Let be the set of vertices
and order these vertices by

3)

4) If then terminate.
5)
6) Choose a path or cycle in

the graph. For a path, with
and For a cycle,

with The other vertices,
are chosen outside of

7)
8) Order the new vertices by

where

9)

10) If then terminate.
11) Go to step 4.

We first show that the algorithm terminates.
Lemma 2: The algorithm for the edge-redundant case ter-

minates.
Proof: We shall proceed by contradiction. The algorithm

would fail to terminate correctly iff, at step 6, no new path or
cycle could be found but a vertex in was never included in

We therefore assume that such a vertex exists. Because
of the connectedness of our graph, there is an edge,from

to which connects somein to some
vertex in Because of the edge-redundancy of our
graph, there exists a path betweenand which does not
traverse Let be the last edge from which this path exits

exits at vertex Note that and may be the
same. Then, there exists a path fromto or to passing
through which would be selected at step 6 in the algorithm.
Therefore, we have a contradiction. Q.E.D.

As in the previous section, we seek to find two spanning
trees, and each rooted at such that for any
for any there exists a path fromto in
or in At least one pair of such and trees exists.
Let and If we replace by the
same arguments as for Algorithm 1 show that there exists a
directed route in from to any Similarly, if we
replace by the arguments given for Algorithm 1
may be used to show that there exists a directed route in
from to any Moreover, there can be no cycles in

for a cycle would imply that the “voltages,” of the
vertices traversed would decrease and then increase. Similarly,
there are no cycles in Therefore, as for the vertex-redundant
case, we may show that and are spanning trees of
rooted at

It now remains for us to show that eliminating an edgein
leaves each remaining vertex connected tothrough or
If the edge is on neither or only one of the trees, then the

result is trivial. Hence, the interesting case occurs whenis
in both trees. Suppose some edge is in both
trees, for some and some Note that cannot
have as an endpoint the first or last node ofIf is removed,
and if is on the directed route in from to some
then we must have We also have

so This, however,
means that cannot be on the directed route fromto in

Thus, the modified algorithm works for the edge-redundant
case and we have proved the proposition below.

Proposition 2: There exist two spanning trees, and
rooted at such that, for any for any

there exists a path from to in or
in

Note that whenever we select a cycle in step 6, we create
a situation in which a vertex failure at the vertex starting that
cycle will cause a failure in both trees.

Fig. 7 shows an example of the application of our algo-
rithm. Although the and trees share edges, we see that
eliminating any edge does not disconnect any vertex from the
source. We may compare this situation with that in Fig. 5(c).
Figs. 8 and 9 show two different examples ofand trees
which can be built from the same numbering on the vertices
of a graph.
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Fig. 8. One example ofB andR trees.

Note that the running time of our algorithm is where
is the number of vertices.
We may briefly comment on the possibilities of using our

algorithm in a distributed manner, although our algorithm has
been described in a manner which makes it centralized and
preplanned. Since the union of two trees in which the root of
one of the trees is part of the other tree is a tree, we can apply
our algorithm independently to two networks which share a
single vertex (a situation akin to single-homing rings). The
union of the two Blue trees is a valid Blue tree and the union
of the Red trees is a valid Red tree for edge redundancy if
we take the single shared vertex to be the root of one of the
Blue and Red tree pairs.

IV. COMPARISON OF OUR SCHEME WITH THE

PREVIOUS MULTI-TREE APPROACH

In this section, we show that our algorithm for the vertex-
redundant case (Algorithm 1) is more general than the multi-
tree approach presented in [29]. In Section IV-A, we first
give an overview of the algorithm presented in [29]. Next,
in Section IV-B, we show that there are multi-trees which
can be built by our scheme but which cannot be built by the
previous approach. The examples we present are motivated by
different performance metrics. We show that our algorithms
offer better performance, for our examples and those metrics,
than [29]. Finally, in Section IV-C, we show that any multi-
trees generated by the scheme in [29] can be generated by
our algorithm. Note that we consider our algorithm for vertex-
redundant graphs, even though [29] considers edge failures.
There are two reasons why we may consider Algorithm 1
rather than Algorithm 2. First, the algorithm in [29] applies to
vertex-redundant sub-networks only. Second, since eliminating
a node entails the elimination of at least two edges, showing
that Algorithm 1 is more general than the algorithm in [29]
entails that our solutions to edge failure are a superset than
those offered by [29].

A. Overview of the Previous Algorithm

In order to compare our scheme to the one presented in
[29], it is necessary to reiterate most of the algorithm in [29].
The scheme in [29] determines an numbering ([20], [39])

Fig. 9. Another example ofB andR trees using the same node numbering.

denoted by Let us select two nodes,and in such that
and are end points of some edge in An numbering

on the graph is defined to be such that
and every vertex has two adjacent vertices,
and which satisfy Note that an
numbering is akin to our value assignment.

The scheme in [29] divides an edge-redundant network into
several vertex-redundant blocks. The algorithm then works on
each of those blocks. Let us consider an example of one such
block. The algorithm creates an numbering and then
builds trees which traverse the numbering in increasing or
decreasing order (except for two special vertices,and
The scheme of [29] first selects the first edge which will
be used by the primary tree. The root is denoted byand

is the edge chosen as the first edge of the primary
tree.

In order to construct an numbering, the scheme in [29]
first constructs a depth-first-search (DFS) numbering and its
associated tree [13] rooted atand such that and

where is the numbering given by the DFS
to vertex Note that the DFS numbering is used solely as
a tool to construct the numbering and is not the
numbering itself.

Let us first establish some definitions. Lowpoint paths are
defined in the following manner: is the
lowpoint path from if is a directed tree route
in the DFS tree, is a graph arc which is not in the
DFS tree (such an arc is called a frond) and is the
smallest number for which there exists such a path from
The algorithm to build numberings given in [29] is given
below. The algorithm operates on a stack which initially holds
only and with on top. Note that vertices are “new” if
they have not yet been placed on the stack.

Algorithm 3:
Set
while the stack is not empty do begin

1) Remove the top vertex from the stack
2)
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3) For all tree arcs to a new vertex let
be the lowpoint path from push

onto the stack first)
4) For all paths from some old vertex

to such that are new,
is a tree edge and is a frond, push
onto the stack first)

end.
At this point, we may make a remark about step 4 which

will be useful in Section IV-C. We know that must still be
on the stack, otherwise would have been popped already.
For the sake of contradiction, let us suppose thatwas
popped before When was popped, was new or old. If

was new when was popped, then there existed some path
from some old to such

that were new. Thus,
could not be new when was popped. If was old when

was popped, then the path is from an
old vertex to with only new vertices in between. Thus,

must still be on the stack when is popped. Therefore,

B. Comparison of Tree-Building Schemes

In this section, we present examples of networks for which,
under certain criteria, the algorithm we present yields better
outcomes than Algorithm 3.

1) Propagation delays:1 Consider a network with a root
node (which sources the two trees) and sets of three
vertices:

.

.

.

For each the vertices

form a cycle. We will call these cycles “petals.” The node
is referred as the “tip” of the petal.

The tips of the petals are connected to form a cycle

We will call this cycle the “rim.” Algorithm 3 will first
designate a node as Without loss of generality we can
assume petal has and node Note that the
numbering will have and All other
nodes have numbers between and Now note that
one of the trees, say is formed by having each node find a
parent that has a larger number. In other words,is actually
a tree rooted at which is connected to by the edge
This tree T does not have any branches toexcept through

This means that there is a path along the tree that goes
at least halfway around the rim. Thus, the maximum distance
from the root to any node along the tree is at least

On the other hand, Algorithm 1 can find trees that have
maximum number of hops from the root at most two (e.g.,

1This example is due to one of the anonymous reviewers, whose contribu-
tion the authors gratefully acknowledge.

Fig. 10. An example of trees which can be built with Algorithm 1 but not
Algorithm 3.

each petal forms a cycle in the algorithm). Fig. 10 illustrates
a network with four petals and the two trees constructed by
Algorithm 1. Thus, for this example, Algorithm 1 can insure
a short propagation delay.

2) Channel availability in WDM networks:In this exam-
ple, we consider an example of a network where two redundant
trees cannot be found by Algorithm 3 because of lack of
availability of certain channels. Such channels might be, for
instance, wavelengths in a WDM system. The network for
our discussion is illustrated in Fig. 11. The primary tree is
to be carried by wavelength while the secondary is to be
carried by wavelength Let us suppose that, owing to the
presence of other traffic in the network, is unavailable on

and is unavailable on Note that, because there
are three edges incident on we cannot split to form two
distinct vertex-redundant blocks. Note that Algorithm 3 will
not be able to operate on the network of Fig. 11 given our
constraints. Indeed, we see that the primary broadcast tree on

must have included in it, becausecannot be reached
in any other way by Moreover, cannot access any node
other than using Therefore, any broadcast tree using
must have two arcs emanating fromand such a tree cannot
be constructed by Algorithm 3.

3) Replication at Nodes:For our final example, we con-
sider a constraint on the replication or splitting that can occur
at a node. We place a constraint, per tree, that each node can
replicate incoming signals at most twice for its output. For
instance, a WDM system may carry each tree on a separate
wavelength and may have at most a two-way splitter per
wavelength. Fig. 12 illustrates the network we consider for our
example and the application of Algorithm 1 to the example
network. Using Algorithm 3, a three-way split would have
to occur at Indeed, access to the vertices on the three
“petals” emanating from can only be achieved through
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Fig. 11. A second example of trees which can be built with Algorithm 1
but not Algorithm 3.

Fig. 12. A third example of trees which can be built with Algorithm 1 but
not Algorithm 3.

or through directly. If we have a constraint that a vertex
can have a maximum of two outgoing arcs per tree, then that
constraint cannot be met using Algorithm 3 but can be met
by Algorithm 1.

C. Construction of Previously Known Multi-Trees
with Our Scheme

Let us now show that every multi-tree pair constructed by
the scheme in [29] can be built by our scheme. In order to
show this, it is sufficient to show that any ordering achieved
by the scheme in [29] can be achieved by our scheme. Let us
consider a block. Each block is vertex redundant, although we
are interested in edge failures. There exist a vertexother than

which is adjacent to because we have vertex redundancy.
Moreover, is reachable from by the DFS tree. Consider
the cycle constructed by adding and to the edges
on the path from to in the DFS tree. The first time that
step is run, 1 is the lowpoint of s. The first run of
step corresponds to picking a cycle, albeit a cycle
constrained by the DFS structure. Every subsequent execution
of or corresponds to the selection of
set of vertices as in step and the ordering of the
vertices as done in step as explained below.

• Execution of : the end-point of the
lowpoint path must not have been popped off the stack
yet, for otherwise the tree arc would have
been considered in an earlier execution of
Hence, The new vertices are pushed
onto the stack. These vertices can be chosen by step

The placing of vertices on the stack satisfies
proper ordering achieved by step

• Execution of : one end-point was just
popped off the stack and the other is still on the
stack, as explained in our remark in Section IV-A. The
vertices and are already ordered relatively to each
other, with The vertices which are pushed
onto the stack form a path. The order in which they are
pushed ensures that the numbers, or voltages, are in
the proper order along the new path. The order in which
the vertices are pushed onto the stack is equivalent to the
order established by step

Note that the algorithm selects paths rather than cycles
(except for the choice of and which corresponds to
the choice of our first cycle), whereas our algorithm may
select cycles at step Such paths always exist for
Algorithm 3 because the blocks are vertex redundant.

V. CONCLUSION

We have established an algorithm which, on any vertex
(edge)-redundant network, can build two directed multi-trees
which together make connections immune to failure of a
single vertex (edge). Our algorithm expands the set of known
solutions and, for certain criteria and example networks, yield
better performance than the previously known method. Our
algorithm can be modified to take into account cost functions
and it can be implemented in a distributed fashion for edge
redundancy under certain conditions. Any cost function can be
applied to select our cycles and paths. Thus, the cost functions,
such as delay minimization, which are often associated with
Steiner trees for multicasting, can be taken into account when
we select our cycles and paths.

There are several possibilities for further investigation. Four
such areas of interesting future work are the areas of multiple
failures, spare capacity planning, cost minimization, and link
rerouting. One approach to several failures is to constuct two
trees, if possible, to guard against one failure, then construct
two more trees on the network remaining after a failure.
If failures are sufficiently rare, where no two failures are
expected to occur simultaneously, then such an approach may
be acceptable, although it may require rerouting traffic after
a failure from the first secondary-tree built to the second
primary-tree built. If failures occur not because of benign
conditions, such as hardware-component fatigue, but, e.g.,
because of incorrect messages which may disrupt several
vertices, then the approach of having only of two multi-trees
at any time may not be sufficient. The issue of three-trees for
edge failure in a three-connected network has been addressed
in [81]. The issue of whether a similar extension may be
achieved using our algorithms is of interest.
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The issues of spare capacity planning and cost minimization
are related, since they concern the application of our algorithm
in a fashion which is cost effective. The fact that we provide
more solutions than the previously known multi-tree algorithm
for edge failures entails that there are certain networks and
associated cost metrics for which our algorithm performs
better, as illustrated in Section IV-B. Spare capacity is an
important issue because having two live streams or having
capacity reserved for recovery may be costly. Moreover,
under certain conditions, there may not be enough capacity
to accommodate certain multi-trees. Therefore, the link-by-
link capacity, which we have not explicitly considered here,
may need to be incorporated in the criteria for tree selections.
Note that the problem of finding minimum cost trees for a
certain source and a set of destinations is the Steiner tree
problem, which is NP-hard. Good surveys of the problem and
heuristics can be found in [63], [70], [68], [74] and applications
to networks can be found in [6], [48], [10]. Because the Steiner
tree problem is NP-hard, the issue of cost minimization and
capacity utilization may be difficult.

Finally, we may comment on extending our algorithm to
loopback so as to achieve link or node rerouting rather than
path rerouting. The placing of traffic onto the backup path
in BLSR is called loopback, because in a ring, the traffic
backhauls through the vertices it already traversed. The multi-
tree approach we have presented is mostly a path rerouting
approach. A drawback to path rerouting is that it requires each
path to have a dedicated backup path. The maximum spare
capacity may be of the order of the sum of the capacities of
all the routes in the network. Link rerouting does not reroute
paths but rather the traffic carried by a certain link or vertex.
The spare capacity need never be greater than the maximum
capacity of any link or vertex. Since link (or vertex) rerouting
is not based on routes, the tree-based approach we have given
is not appropriate. We have extended our approach to allow
for link rerouting for vertex (edge) failures in arbitrary vertex
(edge)-redundant networks ([23]).

REFERENCES

[1] M. H. Ammar, S. Y. Cheung, and C. M. Scoglio, “Routing multi-
point connections using virtual paths in an ATM network,” inProc.
INFOCOM’93, pp. 1c.4.1–8.

[2] M. Azuma, Y. Fujii, Y. Sato, T. Chujo, and K. Murakami, “Network
restoration algorithm for multimedia communication services and its
performance characteristics,”IEICE Trans. Commun., vol. E78-B, no.
7, pp. 987–994, July 1995.

[3] G. B. Brewster and M. S. Borella, “Multicast routing algorithms for the
WDM shufflenet local optical network,” inProc. ICC ’97, vol. 1, pp.
111–115.

[4] R. Bhandari, “Optimal diverse routing in telecommunication fiber net-
works,” in Proc. INFOCOM’94, vol. 3, pp. 11c.3.1–11.c.3.11.

[5] J. Bicknell, C. E. Chow, and S. Syed, “Performance analysis of fast
distributed network restoration algorithms,” inProc. GLOBECOM ’93,
vol. 3, pp. 1596–1600.

[6] K. Bharath-Kumar and J. M. Jaffe, “Routing to multiple destinations in
computer networks,”IEEE Trans. Commun., vol. COM-31, pp. 343–351,
Mar. 1983.

[7] A. Bellary and K. Mizushima, “Intelligent transport network survivabil-
ity: Study of distributed and centralized control techniques using DCS
and ADM’s,” in Proc. GLOBECOM’90, pp. 1264–1268.

[8] A. Banerjea, C. J. Parris, and D. Ferrari, “Recovering guaranteed
performance service connections from single and multiple faults,” in
Proc. GLOBECOM’94, vol. 1, pp. 162–166.

[9] M. Barezzani, E. Pedrinelli, and M. Gerla, “Protection planning
in transmission networks,” inProc. SUPERCOMM/ICC’92, pp.
316.4.1–316.4.5.

[10] F. Bauer and A. Varma, “ARIES: A rearrangeable edge-based on-
line Steiner algorithm,”IEEE J. Select. Areas Commun., vol. 15, pp.
382–397, Apr. 1997.

[11] C. E. Chow, J. Bicknell, S. McCaughey, and S. Syed, “A fast dis-
tributed network restoration algorithm,” inProc. 12th Int. Phoenix Conf.
Computers and Communcations, Mar. 1993, pp. 261–267.

[12] R. S. K. Chng, C. P. Botham, D. Johnson, G. N. Brown, M. C. Sinclair,
M. J. O’Mahony, and I. Hawker, “A multi-layer restoration strategy
for reconfigurable networks,” inProc. GLOBECOM ’94, vol. 3, pp.
1872–1878.

[13] T. H. Corman, C. E. Leiserson, and R. L. Rivest,Introduction to
Algorithms. Cambridge, MA: MIT Press; New York: McGraw-Hill,
1990.

[14] J.-M. Chang and N. F. Maxemchuk, “Reliable broadcast protocols,”
ACM Trans. Comput. Syst., vol. 2, no. 3, pp. 251–273, Aug. 1984.

[15] M. Doar and I. Leslie, “How bad is naı̈ve multicast routing?,” inProc.
INFOCOM’93, pp. 1c.2.1–1c.2.8.

[16] R. Doverspike, “A multi-layered model for survivability in intra-LATA
transport networks,” inProc. GLOBECOM’91, pp. 2025–2031.

[17] R. Doverspike and B. Wilson, “Comparison of capacity efficiency of
DCS network restoration routing techniques,”J. Network Syst. Manage.,
vol. 2, 1994.

[18] D. Edinger, P. Duthie, and G. R. Prabhakara, “A new answer to fiber
protection,” Telephony, Apr. 9, 1990, pp. 53–55.

[19] J. Edmonds, “Edge-disjoint branchings,” inCombinatorial Algorithms,
Courant Institute Computer Science Symposium 9. New York: Algo-
rithmics Press, Jan. 24–25, 1972.

[20] S. Even and R. E. Tarjan, “Computing anst-numbering,”Theoretical
Comput. Sci., vol. 2, pp. 339–344, 1976.

[21] T. Frisanco, “Optimal spare capacity design for various protection
switching methods in ATM networks,” inProc. ICC 97, vol. 1, pp.
293–298.

[22] H. Fujii and N. Yoshikai, “Double search self-healing algorithm and its
characteristics,”Electron. Commun. Jpn., pt. 1, vol. 77, no. 3, 1994.

[23] M. Médard, S. G. Finn, and R. A. Barry, “WDM loop-back recovery in
mesh networks” inProc. OFC’98,pp. 298–299.

[24] , “A novel approach to automatic protection switching using
trees,” in Proc. ICC’97, pp. 272–276.

[25] A. Gersht, S. Kheradpir, and A. Shulman, “Dynamic bandwidth-
allocation and path-restoration in SONET self-healing networks,”IEEE
Trans. Rel., vol. 45, pp. 321–331, June 1996.

[26] C. J. Green, “Protocols for a self-healing network,” inProc. 1995
Military Communications (MILCOM), pt. 1, pp. 252–256.

[27] W. D. Grover, “The SelfHealingTM Network,” Proc. GLOBECOM ’87,
vol 2, pp. 1090–1095.

[28] D. K. Hsing, B.-C. Cheng, G. Goncu, and L. Kant, “A restoration
methodology based on pre-planned source routing in ATM networks,”
Proc. ICC ’97, vol. 1, pp. 277–182.

[29] A. Itai and M. Rodeh, “The multi-tree approach to reliability in
distributed networks,”Inform. Computation, vol. 79, pp. 43–59, 1988.

[30] D. Johnson, G. N. Johnson, S. L. Beggs, C. Botahm, I. Hawker, R. S.
K. Chng, M. C. Sinclair, and M. J. O’Mahony, “Distributed restoration
strategies in telecommunications networks,” inProc. IEEE ICC, 1994,
vol. 1, pp. 483–488.

[31] J. P. Jue and B. Mukherjee, “The advantages of partitioning multicast
transmissions in a single-hop optical WDM network,” inProc. ICC ’97,
vol. 1, pp. 427–143.

[32] H. Kobrinski and M. Azuma, “Distributed control algorithms for dy-
namic restoration in DCS mesh networks: Performance evaluation,” in
Proc. GLOBECOM’93, vol. 3, pp. 1584–1588.

[33] S.-B. Kim, “An optimal VP-based multicast routing in ATM networks,”
in Proc. INFOCOM’96, vol. 2, pp. 10c.4.1–10c.4.8.

[34] R. Kawamura, H. Hadama, and I. Tokizawa, “Implementation of self-
healing function in ATM networks,”J. Network Syst. Manage., vol. 3,
no. 3, pp. 243–264, 1995.

[35] J. Kadiririe and G. Knight, “Comparison of dynamic multicast routing
algorithms for wide-area packet-switched (asynchronous transfer mode)
networks,” in Proc. INFOCOM’95, pp. 2c.1.–8.

[36] R. Kawamura, K. Sato, and I. Tokizawa, “High-speed self-healing
techniqies utilizing virtual paths,” presented at the 5th Int. Network
Planning Symp., Kobe, Japan, May 1992.

[37] Y. Kajiyama, N. Tokura, and K. Kikuchi, “ATM self-healing ring,” in
Proc. GLOBECOM 92, pp. 639–643.

[38] M. T. Lucas, B. J. Dempsey, and A. C. Weaver, “MESH: Distributed
error recovery for multimedia streams in wide-area multicast networks,”
in Proc. ICC ’97, vol. 2, pp. 1127–1131.
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