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Abstract—We present a new algorithm which creates redundant destination destination
trees on arbitrary node-redundant or link-redundant networks. /o\

These trees are such that any node is connected to the common
root of the trees by at least one of the trees in case of node
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or link failure. Our scheme provides rapid preplanned recovery

of communications with great flexibility in the topology design.

Unlike previous algorithms, our algorithm can establish two
redundant trees in the case of a node failing in the network. gource
In the case of failure of a communications link, our algorithm
provides a superset of the previously known trees.
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I. INTRODUCTION .
~ — — unused links

HE STUDY of S.elf_hea.lmg .net.WorkS’ which aUtOITnatl_Fig. 1. Path and link rerouting. The failed link is shown as being interrupted.
cally restore their functionality in the event of a failure,
is prompted by the increasing reliance on high-speed com-

munications and the requirement that these communicatidnsend) rerouting, the use of centralized computation versus
be robust in the case of certain failures. A failure magistributed computation, and the use of precomputed versus
arise because a communications link is disconnected odynamically computed routes. A succint comparison of the
network node becomes incapacitated. Failures may occurdifferent options can be found in [75, pp. 291-294] and in [30].
military networks under attack [26], as well as in publi©ur algorithm considers path rerouting which is preplanned
networks where failures, albeit rare, can be extremely dignd centrally computed. Other important criteria are the logical
ruptive [61]. For high-speed networks, rapid recovery fromonnections built by our algorithm and the network topologies
failure is important, as even a short down time may entaih which our algorithm can operate.

the loss of much data. Survivability may be considered to be a

component of qu.ality of sgrvice (QoS) .[44], [47]. We pre§e_n_t R Path Rerouting

tree-based algorithm applicable to optical wavelength-division i ) ) ) )
multiplexed (WDM) systems [42], SONET, asynchronous Oyr algor.lthm implements pa_th rerouting, i.e., in case of
transfer mode (ATM), or any protocol which allows the use &t failure which leaves a no_de disconnected from the primary
tree routings and redundancy for recovery from failures, °Ute; @ backup route, which may or may not share nodes

In this section, we present an overview of the criteria f@"d links with the primary route, is used. Link rerouting
our algorithm and briefly illustrate how these criteria relatdSually refers to the replacement of a link by link(s) connecting

to ATM and SONET. The study of self-healing networks i€ two end nodes of.the failed link. Fig. 1 ;hows path gnd

often classified according to the following three criteria (e. .'Pk re.rou.tlng. The efficiency of path protephon_versug link

[8], [16]): the use of link (line) rerouting versus path (or engdrerouting in terms of the number of connections is considered
in [17], [21], [66]. An extension or our algorithm to link
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Fig. 3. An example of vertex topology where a ring-link topology is not
minimum cost.

centralized preplanned computation for setup of the primary

Fig. 2. UPSR and BLSR—thin lines show the primary paths and thick lin@nd backup connections for UPSR and BLSR.

show the backup paths. The white nodes are the failed nodes. ) )
D. Logical Tree Connections

path protection is usually performed by a unidirectional path- We create tree routings, such as would be used for multicast
switched ring (UPSR), as illustrated in Fig. 2. An UPSR hd¥ Incast applications. Multicast trees are used for ATM [64],
two live streams, which are degenerate examples of treE33): [1], [35], [78] and by tag-routing schemes, such as the

Link rerouting is performed in a SONET bidirectional lindVultiprotocol Label Switching standard [45]. Moreover, mul-
self-healing ring (BLSR) (see Fig. 2). ticast is supported by SONET and is an attractive application

in WDM networks [42], [31], [3]. Rather than use rerouting,
which is based at the source [14] or at intermediate nodes
) ) [38], we create two trees such that one is a backup to another.
Preplanned route computation is commonly termed adgction 11 discusses the applicability of different redundant

tomatic protection switching. Preplanned schemes genergllse approaches. For ATM, several preplanned tree protection
offer better recovery speeds than dynamic approaches, Wr‘é‘fﬁtegies are presented in [73].

wait until a failure occurs before seeking alternate routes for
the disrupted traffic and which generally involve softwarE&. Topological Requirements

processing [46], [65]. Note, however, that there is thus a1ne henwork topology, i.e., the physical layout of nodes and
tradeoff between spare capacity and speed of restoration [Jgys must be such that recovery is physically possible. Topo-
[12]. . o logical requirements are important because they determine
Source routing, which is used by ATM PNNI, can D hether a mechanism may be used in existing networks and
preplanned [28] or partially preplanned [44]. In SONET, bote .5 se they may impact significantly the cost of constructing
BLSR or UPSR are preplanned. SONET restoration time 8, hetworks or extensions to existing networks. The building
specified to be under 60 ms. Recovery can be achieved in t@fiSoks of SDH/SONET networks are generally self-healing
of milliseconds using optomechanical add—drop multiplexelrﬁ1gS (SHR's) and diversity protection (DP) [69], [67], [50],
[62], [55] and in a few microseconds using acousto—optic?Ag], [58]. SHR's are UPSR'’s or BLSR's, while DP refers to
switches [18], [,77]' .These speeds can be contrasted Wﬁnysical redundancy, where a spare link (node) is assigned to
the 2-s restoration time goal [76], [55], [32] commonly S€\ne o several links (nodes) [75, pp. 315-325]. Using only

for dynamic distributed restoration using digital cross-conneglp 5nd SHR's is a constraint which has cost implications
systems (DCS) for ATM or SONET/SDH [27], [79], [22], [53]. 4o, building and expanding networks [71]. Fig. 3 shows a

Dynamic centralized path restoration for SONET ([25]) may e configuration, a ring constructed on those nodes, and the
even_take mmgtes [,76]’ [9], [7]. The performance of Sever@hge-redundant topology with the minimum total link length.
algorithms is given in [11], [5]. We may see that the ring is not the least-cost edge-redundant
. ] topology, if cost is proportional to total link length.
C. Centralized Computation Even if we do not restrict ourselves to SHR’s and DP,
The scheme we present is centralized, although some pit® network must satisfy certain topological requirements. If
sibilities for distributed computation are briefly mentioned imve wish to reroute traffic after the failure of any single link,
Section 11I-C. A centralized scheme can never be less efficighe graph obtained by mapping the network nodes to vertices
than a distributed scheme in the number of connections whighd the links to edges must be at least edge redundant, i.e.,
can be restored, but a centralized scheme requires a ceritval-edge connected. If we wish to recover from an arbitrary
processor with global knowledge of the network. If a centraiode failure, then the graph must be at least vertex redundant,
ized scheme is also preplanned, then the delay associated with two-vertex connected. Our algorithm works on arbitrary
setting up backup routes does not affect the restoration timeslundant graphs.
because the delay is incurred up front at connection setup time. .
For high-speed fiber networks, connection setups are rare, andoVerview of the Paper
therefore the delay incurred at the beginning of a connection isOur algorithm constructs two trees in such a fashion that
acceptable as long as its is of the order of the delay to setting elimination of any vertex (edge) in the graph leaves each
the connection. For ATM, centralized approaches have bedgstination vertex connected to the source by at least one of
proposed using virtual [54] or actual rings [37]. SONET usdbe directed trees. This approach has been termed the multi-

B. Preplanned Route Computation
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tree approach [29]. The algorithm we present uses a different destination destination
approach from [29] and is a generalization of the one presented

in [42], [24]. We overview the issue of redundant trees in
Section Il. Section Il presents our algorithm, first for the
vertex failure case (Section llI-A), then for the edge failure
case (Section 1lI-B). Section IV compares our algorithm to

the approach of [29] and shows that our algorithm gives aource
superset of the previously available solutions and that our
algorithm yields better performance for certain criteria and
example networks. We give some conclusions and directions two link-disjoint paths from two node link-disjoint paths from
for further research in Section V. source to destination source to destination

Fig. 4. Pair of link-disjoint paths and pair of vertex-disjoint paths.
Il. REDUNDANT TREES

We may now introduce our model. Let us consider that
we have one source vertex and many destination vertices.
We model a physical network as an undirected graph where
each duplex communication link corresponds uniquely to an §
undirected edge and each network node corresponds uniquely \\ / ~ 4
to a vertex. To each undirected edgeb] we associate two &~ — — —
arcs, i.e., directed edgess, b), and (b, a). A directed route is
an ordered sequence of vertices such that two vertices which
are adjacent in the ordered sequence are endpoints on some
edge of the graph. If the ar@:, b) appears in the route, then
we say that ar¢a, b) is in the route and, by abuse of notation,
that edgda, ] is in the route. We select among the vertices of
the graph a source and a set of destinations, different from the
source. We create trees whose common root is the source and
which include the set of destinations. For a particular source
and set of destinations, we define a tree to be a set of arcs such
that there is a directed route from the root to every vertex in
the tree including only arcs in the tree and such that there are
no cycles, i.e., routes which include a vertex more than once.
By abuse of notation, we say that edge?] is in a tree when
arc (a,b) or arc(b, ) is in the tree. Also, we say that vertex source
a is in a tree when an arc witta as an endpoint is in the tree.

Finally, a directed routéa;, az, -, a,_1,a,) iS in a tree if
the set of arcq (a1, as),(as,as), -+, (an—1,a,)} is a subset
of the tree.

In this section, we present four @fferent types of app.roaChfiS. 5. Three different approaches to building redundant trees. The dashed
to tree-based preplanned protection and evaluate their perigiss show the edges, the thin arrow lines show the primary tree, and the
mance in achieving the following godb design two directed thick arrow lines show the secondary tree. In the top figure, the grey lines
trees in such a fashion that the elimination of any vertex indicate one pair of edge-disjoint paths and the full lines indicate another pair

. of edge-disjoint paths. An interrupted line corresponds to a failed edge.
(edge) in the graph (other than the source) leaves each
destination vertex connected to the source by at least one of g ,rce and multiple destinations, i.e., the union of primary

Fhe directed trees for any source, and destination vertices paths may not be a tree and the union of backup paths may also
in any vertex (edge)-redundant graph The two trees are not yield a tree. Fig. 5(a) shows a pair of vertex-disjoint paths
termed the primary and secondary trees, or Red and Blue tr§&s\veen the source and vertexand a pair of vertex-disjoint
paths between the source and vemieXhe two primary paths
together form a directed tree, but the two secondary paths do
The fact that, for any vertex (edge)-redundant graph, theigt form a directed tree. Therefore, finding pairs of vertex or
exists a pair of vertex (edge)-disjoint paths between any tW@ige-disjoint paths between the source and each destination
vertices is a consequence of Menger's theorem [57], [43Jertex will not achieve our goal. The next sections describe

Fig. 4 shows edge-disjoint and vertex-disjoint paths. Sughethods which yield trees for the primary and backup paths.
approaches are presented in [59] for edge-disjoint paths and

in [56], [72] for vertex-disjoint paths, usually associated with

some sort of shortest path selection. Applications of theBe
techniques to networks are presented in [4], [51]. However,If two trees share no edges in common, then the failure
none of these schemes guarantees trees in the case of a siofgn edge cannot affect both the primary and the secondary

A. Menger’'s Theorem

Edge-Disjoint Trees
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Fig. 6. An example of a network which cannot have edge-disjoint trees.

tree. In [80], the case of two edge-disjoint spanning trees 6lg. 7. Application of our algorithm for an edge-redundant graph.
undirected graphs is considered. In this case, one spanning

tree remains unaffected even if the other tree ceasese%)ges_ We wish to show that, for any source veieg A,

be connected. F|g_. 5(b) ShOW.S t\.No edg_e-dlSjomt spannifid may create two directed trees, which we shall nashe
trees. The topological constraint in [80] is, however, four-

S and R, for Blue and Red, such that, after eliminating any
connectedness, which is greater than the edge-redundanc .
. ) . vertex other thans (in the vertex-redundant case) or any
requirement, i.e., two-connectedness. A simple example 0 . .
. . . edge (in the edge-redundant casejemains connected to all
an edge-redundant graph which does not allow edge-disjoint.. .
- o v o . vertices of A" through B and/or throughR deprived of the
spanning trees is given in Fig. 6.[H, d] is in the primary tree, = ) .
. eliminated vertex or edge, respectively. In Section IlI-A, we
thenc must be reached in the secondary tree thrdiigh, and . . .
. : describe our algorithm, for any vertex-redundant undirected
b is reached in the secondary tree throligtb]. Thus,b cannot . .
. . ._._graph. In Section IlI-B, we extend our results of Section IlI-A
be reached in the primary tree. Moreover, the edge-disjont
o . 0 edge-redundant graphs.
approach does not produce vertex-disjoint trees (for instance
trees which share only the source and the destination vertices).

Therefore, the edge-disjoint approach does not comply with Multi-Trees for Vertex-Redundant Graphs

our goal. We now restrict ourselves to vertex failures. Note that a
vertex failure entails the failure of at least two edges. We
C. Arc-Disjoint Trees start by choosing an undirected cycle containinglf this

Rather than require two trees to share no edges, one nqggle does not include all vertices in the graph, we then
require that they not traverse links in the same directioffioose an undirected path that starts on some vertex in the
i.e., to be arc-disjoint [19], [62], [52]. Fig. 5(c) shows twatycle, passes through some set of vertices not on the cycle,
arc-disjoint spanning trees and a failed edge. The failure 3id ends on another vertex on the cycle. If the cycle and
the edge indicated on the figure entails the failure of bofifith above do not include all vertices of the graph, we
arcs associated with that edge and thus veftelxecomes again construct another path, starting on some vertex already

disconnected from the source. included, passing through one or more vertices not included,
and then ending on another already included vertex. The
D. Multi-Trees algorithm continues to add new vertices in this way until all

Th " h din 129 i Vﬁrtices are included.
e multi-tree approach presented in [29] satisfies our goa By applying Menger’s theorem, we can establish that, in a

for the case (.)f edge-rgdundant graphs__ Fig. 7 ShOW_S an g&ftex-redundant graph, a cycle must exist contaigirigcan
ample of multi-trees built using our algorithm. In Section IValso be seen that, for any such cycle, a path can be added as

er dislguss this ?]pproslchgn rp]ore detail ‘anfShOW, that the EQ(BBve, and subsequent such paths can be added, in arbitrary
of multi-trees achievable Dy the approach o [29] is a prop ays, until all vertices are included. It is less simple to choose
subset of the set of multi-trees achievable by our approa¢f.,’ s and & trees. as illustrated in Fig. 5(c)

The approach in [29] is not designed to satisfy the VereX the algorithm below specifies a particular ordering on

failure case. vertices without finding what specific numerical values to
associate with the vertices (since these values are only of use
in seeing the analogy and not in establishing relative ordering
of the vertices). Based on this ordering, it incrementally builds
In the following sections, we present a new algorithm fahe trees. We start with a vertex-redundant gréph (N, €)

achieving the goal stated at the beginning of Section Il. Lahd a source vertex. The algorithm chooses a cycle, and

us consider that we have a vertex (edge)-redundant undiredteeh subsequent paths, and also orders the vertices as they
graphG(N, €), where A/ is a set of nodes andl is a set of get included in the cycle or one of the paths. We associate

Ill. REDUNDANT TREES FORVERTEX AND
EDGE-REDUNDANT GRAPHS
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two values withs,+® = 0 and an arbitrary valué’, so that w.l.0.g. thatv(z) > v(y). If there do not exist two such edges
vB(s) = V> 0. One way to think of this is that there is a[z,z] and[y, z], then because of node redundancy there must
battery at vertex and the ordering of the vertices correspondse at least two distinct nodes w € A\W; and two distinct
to the voltages at different vertices when there are resistorsimdesz, y € N; such thafz, 2] and[w, 3] are edges. If there
each edge. In the following algorithm,can take either value is a pathP from z to w using only vertices iZW\N;, then
vP(s) or v¥(s) for s. The set of vertices which have alreadyassuming w.l.o.g. that(z) > v(y), we can createP;,; by
been assigned a value at stagef the algorithm is denoted traversing vertices in the following ordet; z, the vertices of
by V. At each stagej of the algorithm, we keep track of path P in order,w and finallyy. If there is no such patt?,
arcs which can form one of the possible pairs of Red amden there is a patt® which has some vertex i;. Let ¢/
Blue trees.A]B is the partial construction of the Blue treepe the last vertex inP’ to be inN. If o/ # g, then let us
at stagej. AT is the partial construction of the Red tree aissume w.l.0.g. that(y/) > v(y). We can create patR;,; by

stagej. traversing vertices in the following ordey*, the vertices in”’
Algorithm 1: betweeny’ andw, w and finallyy. If 4/ = y, then by Menger's
1) Setj = 1. theorems and our assumptions there must exist another path
2) Choose any cyclgs,c;,---,c,s) in the graph with P” from z to w which has some vertex i¥; and which does
k> 2. Let NV be the set of vertice$s, c1,---,cx} and  not includey. Let 3/ be the last vertex i} in path P”. Let
order these vertices by > v(cq)> -+ >wv(c) > 0. us assume w.l.o.g. thaty”) > v(y). We may create’;; by
3) AP = {(s,e1), (c1,¢2), -+, (cho1, )} traversing vertices in the following ordeg?, the vertices in
AR = {(s,e1), (crscrr)s -+ (2, e0) P" betweeny” andw,@ and finallyy. Thus, in all cases, we
. can create a pat®; ;1 if M\N; # 0. Q.E.D.
4) If N; = N, then terminate. Let us consider two spanning tree® and R of N,
5 j=7j+1 each rooted ats, such that for anyr € N\{s}, for any
6) Choose a patlP’; = (zj0,%j1, -, @j1,),Lj 2 2, ¢ A\[s,2}, there exists a path from to y in B\{x}

in the graph such thatjo € Nj—1, z;r, € Nj-1, orin R\[s}. At least one pair of suclB and R trees exists.
With v(wj0) > v(z)r,)- If 250 = s, thenv(wjo) = V. consider the case whe = A2 and R = AZ, where j
It 2y, = s thenw(z;;,) = 0. The other vertices, ;g the j at which the algorithm terminates in Step 4. Let us
%j4,1 < §< L; are chosen outside ;. show that there is a directed routehfrom s to anyz € AV.
;g /(\)/]r.d:r/\/tjh_el %,er{t,xcjels’ . 'ihj_;i’LE);ll}i'/(x"o) > oz 1) > From our construction, it is immedi_ate that there i; a _directed
R whjere s 5 routle inB frpm sto anyx € Af, since the latter is simply
diLj=1) =~ Vmax a directed ring. If there is a directed route B from s to

Umax = max  (v(y): v(y) <v(zjo)). any vertex in/\;, then let us show that there is a directed
YEN; -1 route in B from s to anyz € N;4. If © € N}, then we are
AP =AP | U {(z)0,25,1), (25,1, 7;,2), done. Ifz € N1 \N;, thenz € P;4;. There is a directed

route in AP from s to ;41,0 using only nodes inV; and

a directed route in4?, from ;11 to z using nodes on

Pj4+1. Combining the two routes yields a route}tﬁrl from
SRRICIETEIRN) 2 s to z. Therefore, by induction, there is a directed route in

10) Go to step 4. B from s to anyx € N. In a similar way, we can prove

This particular way of ordering vertices has the conveniefftat there is a directed route iR frgm stoanyz € N.
feature that the new vertices at each new pAtare entered 'N€ only significant change is that” must be replaced by
all together into the previously ordered set. We also see oAt and thatr; o must be replaced by;1,r;.,. We can see
the dominant computational task is simply finding the cycl@y our induction argument oj that the directed route i;
and the subsequent paths. Choosing the cycle and pathd"@in s to anyz € A; consists of monotonically decreasing
different ways can yield different types of trees, depending df@lues (excluding). Similarly, the directed route if; from

T (ﬂUj,LjfmﬂUj,Ljfl)}

AJR:’AJR—I U {(@,2;5%4,,-1), (%),L,-1, 7,1, 2),

one’s requirements. s to anyx € N; consists of monotonically increasing values
Let us show that the algorithm terminates. (excludings). Since these properties hold for egglthey also
Lemma 1: The algorithm terminates if the graph is vertexpold for the final treesB and R. Therefore, there can be no

redundant. cycles in B, for a cycle would imply that the values of the

Proof: Since additional vertices are added A4y each Vertices traversed would decrease and then increase. Similarly,
time step 7 is executed, the algorithm will terminate unledgere are no cycles iR. The fact thatB and R have no cycles
some nodes have not been assigned a value and step enig that there is a directed route fronto any vertex in\V
unable to find a new patk; 1. Suppose that there is a vertexXor each tree implies thaB and R are trees rooted at
which has not been assigned a value. Equivalently, we suppos# now remains for us to show that eliminating a vertex\in
that A\, is not empty. Because of node-redundancy, thel@éaves each remaining vertex connected tbrough B and/or
must be at least two edges fromto A\ ;. If there existtwo R. Let x # s be an arbitrary vertex that is removed from the
distinct edgegz, 2] and [y, z] sharing an endpoint € A\, graph, and leyy # s be some other vertex. We wish to show
while z,y € N, then P; = (z,z,y), where we assume thaty can still be reached fromin either theB tree or theR
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tree. Since the vertices are ordered, we either kéyg> v(z) We first show that the algorithm terminates.
or v(y) < wv(z). For the first casey can still be reached from Lemma 2: The algorithm for the edge-redundant case ter-
on B, since the path from to y is monotonically decreasing in minates.
vertex values, and thus cannot contain vertein the second Proof: We shall proceed by contradiction. The algorithm
casey can be reached fromon R because of the monotonicwould fail to terminate correctly iff, at step 6, no new path or
increasing property there. Our discussion leads to stating thele could be found but a vertex ik was never included in
following proposition. N;. We therefore assume that such a vertex exists. Because
Proposition 1: There exist at least on8 tree and one’? of the connectedness of our graph, there is an edgiEpm
tree such thaB and R are spanning trees rootedsaénd such A;_; to A\N;_; which connects somein A\N;_; to some
that for anyz € AM\{s}, for anyy € N'\{s,z}, there exists vertexy in N;_,. Because of the edge-redundancy of our
a path froms to y in B\{z} or in R\{z}. graph, there exists a path betweerand = which does not
traversee. Let f be the last edge from which this path exits
N;. f exits N; at vertexz. Note thatz and y may be the
The above algorithm for vertex failure protection does natame. Then, there exists a path frgno z, or = to y, passing
work in this case, because it is not always possible at a stageoughz, which would be selected at step 6 in the algorithm.
4 > 2 to find paths as above. In particular, it is sometimeBherefore, we have a contradiction. Q.E.D.
necessary to find a cycle that leaves the set of veriiées As in the previous section, we seek to find two spanning
on one vertex and returns to the same vertex, i.e., witfees,B andR, each rooted a#, such that for any € N\ {s},
xj0 = xjr,. This can be handled by letting each vertex foranyy € MV'\{s,z}, there exists a path fromto y in B\{z}
have two “voltages,»?(z) andv®(x) associated with it. We or in R\{z}. At least one pair of sucl? and R trees exists.
arbitrarily selectv®(s) = V andv%(s) = 0. The ordering in Let B = A? andR = AZ. If we replacev(z) by vZ(z), the
step 2 of the algorithm is then replaced with same argdments as for Algorithm 1 show that there exists a
directed route inB from s to anyx € A. Similarly, if we
replacev(z) by v®(z), the arguments given for Algorithm 1
> >0 (a) >0 () > 0. may be used to show that there exists a directed rout in

The ordering in step 8 of the algorithm is replaced in gom s to anyz € A. Moreover, there can be no cycles in

: « »B
similar way. The complete algorithm is then Algorithm 2, a&’> for @ cycle would imply that the “voltagesy™(x), of the
vertices traversed would decrease and then increase. Similarly,

B. Multi-Trees for Edge-Redundant Graphs

V> P (er) >0 (er) >0 (e2) > v (ea)

follows. .
Algorithm 2: there are no cycles iR. Therefore, as for the vertex-redundant
1) Set; _'1 case, we may show tha® and R are spanning trees of/
) Setj = 1. rooted ats.

2) Choose any cyclés,c,---,cg,s) in the graph with

. It now remains for us to show that eliminating an edge
k > 2. Let N; be the set of verticegs,cy,- -, 9 dg

. £ leaves each remaining vertex connected tihrough B or
c%} and Orger these Ve”'f;es y> %B(cl) >OUR(61) ”  R.Ifthe edgee is on neither or only one of the trees, then the

. v (02)B>U (c2) >+ > v (e)>v%(er) > 0. result is trivial. Hence, the interesting case occurs whés

) Ar ={(s,c1), (c1,¢2), -+ (er—r, an) } in both trees. Suppose some edge [z,.;,z;:+1] iS in both
AR ={(s,e), (crycn1), -, (c2,e1)}- trees, for somg and someé) <4 < L; — 1. Note thate cannot

4) If N; = N, then terminate. have as an endpoint the first or last nodé¥flf ¢ is removed,

5) j ::Jj n 1.’ and if ¢ is on theBdlrected ro%te iB f;om s to somey,

6) Choose a path or cycl®, = (xj .21+, z;z,) i tf}sn we mu]sat have (.Tj7i+1%>r[} () >RU (). We also have
the graph. For a patt; > 2, withz; 0 € Nj_1,2;7, € (i) > v2(2ji41), SO v7(xj;)> v (y). This, however,
Nj_1, andvB(z;0) > v (x;.1.). For a cycle,L; > 3, means that cann_qt be on _the directed route frosmo ¥ in
wijth Cio = T L-7€ Ny, The other verticesy, ;.1 < R. Thus, the modified algorithm works _fgr the edge-redundant
i< L. Jére crljésjen odtside Ny, JT = case and.\./ve have proved_ the proposition below.

7N :JN» U {21,005 / ] Proposition 2: There exist two spanning tree® and R,

J i1 Ny N rooted ats such that, for anylzy,z2] € &, for any z €

: B/, B/,
8 Order the new vertices by(z;o)>v™(zj1)> N\{s}, there exists a path frons to = in B\{[z1,z]} or

(1) > 0P ()2) > 0B (2j0) > - > 0P (250,00) >

vB(zj 1) >v wherev = in R\{[z1, za]}. _
SR e e () () Note that whenever we select a cycle in step 6, we create
max v vy} . L . . )
NG 1o B () <vB (25,0), 0 (y) <vB (25,00} Yl a situation in which a vertex failure at the vertex starting that

B B cycle will cause a failure in both trees.
9) A =AU {(@g0,251), (2,1, 252), Fig. 7 shows an example of the application of our algo-
(@ n—2, 5 0,-1) ) rithm. Although theB and R trees share edges, we see that
AR = AR U {(jn, w0, 1), (0,1, 0.1, —2), eliminating any edge does not disconnect any vertex from the
! ! T Y Y source. We may compare this situation with that in Fig. 5(c).
o (@2, 85,0)} Figs. 8 and 9 show two different examples Bfand R trees
10) If N; = N, then terminate. which can be built from the same numbering on the vertices
11) Go to step 4. of a graph.
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Fig. 8. One example oB and R trees.

Note that the running time of our algorithmd&(n?), where Fig. 9. Another example oB and R trees using the same node numbering.
n is the number of vertices.
We may briefly comment on the possibilities of using our

algorithm in a distributed manner, although our algorithm h%%e

been described in a manner which makes it centralized ananted byy. Let u_s select two nodes,andt in G, such t_hat
s.andt are end points of some edgedn An s — ¢ numbering

preplanned. Since the union of two trees in which the root gfp the graph is defined to be such thdt) = 1, g(¢¥) = n

one of the trees is part of the other tree is a tree, we can applyy every vertexs € A\{s,#} has two adjacent vertices
our algorithm independently to two networks which share a ’ '

single vertex (a situation akin to single-homing rings). Thand y, which satisfyg(z) <g(z) <g(y). Note that ans —¢
union of the two Blue trees is a valid Blue tree and the unioq}umbenng IS al_<|n o OL_Jr_vaIue assignment. .
of the Red trees is a valid Red tree for edge redundancy ifThe scheme in [29] divides an edge—redu_ndant network into
we take the single shared vertex to be the root of one of tﬁgveral vertex-redundant blocks. T_he algorithm then works on
Blue and Red tree pairs. each of those blqcks. Let us consider an example of one such
block. The algorithm creates an— ¢t numbering and then
builds trees which traverse the numbering in increasing or
decreasing order (except for two special verticesand ¢).
The scheme of [29] first selects the first edge which will
In this section, we show that our algorithm for the verteXse used by the primary tree. The root is denotedsbgnd
redundant case (Algorithm 1) is more general than the muIE};, t] is the edge chosen as the first edge of the primary
tree approach presented in [29]. In Section IV-A, we firgtee.
give an overview of the algorithm presented in [29]. Next, In order to construct an—¢ numbering, the scheme in [29]
in Section IV-B, we show that there are multi-trees whichrst constructs a depth-first-search (DFS) numbering and its
can be built by our scheme but which cannot be built by thessociated tree [13] rooted atand such thatV(¢) = 1 and
previous approach. The examples we present are motivatedj\bys) = 2, where N(v) is the numbering given by the DFS
different performance metrics. We show that our algorithmg vertexv. Note that the DFS numbering is used solely as
offer better performance, for our examples and those metrigstool to construct the — ¢ numbering and is not the — ¢
than [29]. Finally, in Section IV-C, we show that any multinumbering itself.
trees generated by the scheme in [29] can be generated byet us first establish some definitions. Lowpoint paths are
our algorithm. Note that we consider our algorithm for vertexgefined in the following mannertv, - - -, U, Umy1) is the
redundant graphs, even though [29] considers edge failurRgvpoint path fromu; if (v1,---,v,) is a directed tree route
There are two reasons why we may consider Algorithm i} the DFS tree(v,,,, vm41) is a graph arc which is not in the
rather than Algorithm 2. First, the algorithm in [29] applies t@FS tree (such an arc is called a frond) aN@v,,11) is the
vertex-redundant sub-networks only. Second, since eliminatiggallest number for which there exists such a path figm
a node entails the elimination of at least two edges, showinge algorithm to builds — ¢ numberings given in [29] is given
that Algorithm 1 is more general than the algorithm in [29elow. The algorithm operates on a stack which initially holds
entails that our solutions to edge failure are a superset thgily s and ¢, with s on top. Note that vertices are “new” if

IV. COMPARISON OF OUR SCHEME WITH THE
PrREVIOUS MULTI-TREE APPROACH

those offered by [29]. they have not yet been placed on the stack.
Algorithm 3:
A. Overview of the Previous Algorithm Seti := 1

In order to compare our scheme to the one presented invhile the stack is not empty do begin
[29], it is necessary to reiterate most of the algorithm in [29]. 1) Remove the top vertex from the stack
The scheme in [29] determines ar ¢ numbering ([20], [39]) 2) g(v) = 4;¢ =i+ 1
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3) For all tree arcgv,w) to a new vertexw, let (w =

wy, -+, W, Wmt1) be the lowpoint path fromw; push

W, -+, w1 ONto the stackw,, first) 7/ N\
4) For all paths(ug, 1, - -, um,,v) from some old vertex /7 N

ug to v such thatw,---,u,, are new, (u;,u;+1), /7 N\

m >t > 0, is a tree edge anfl,,,,v) is a frond, push /7 N

U1, -, Uy ONtO the stackwu; first) 7 N\
end. 4 N

At this point, we may make a remark about step 4 which /

/7
\
will be useful in Section IV-C. We know that, must still be O _,__-iou
on the stack, otherwise, would have been popped alread — S
0 popp V= C‘> ——
N
AN

For the sake of contradiction, let us suppose thgtwas \ —;
popped before.. Whenwug was poppedy was new or old. If l /

v was new wheniy was popped, then there existed some path , ‘ /

(W, V1, U,y Uy U, - -+, U1, o) from some oldw to ug such N Q /

that vi, -, Um, U, Um, - -, w1 Were new. Thusu,,, - -,u; N 7/

could not be new whemn was popped. Ifv was old when N | , /

up was popped, then the path, w,,, - - -, u1,uo) is from an AN \ Ve

old vertex tougy with only new vertices in between. Thus, ’

ug must still be on the stack when is popped. Therefore,

g(v) < g(u1) < g(uQ) <o s g(um) < g(uo). Fig. 10. An example of trees which can be built with Algorithm 1 but not
Algorithm 3.

B. Comparison of Tree-Building Schemes

In this section, we present examples of networks for whicBach petal forms a cycle in the algorithm). Fig. 10 illustrates
under certain criteria, the algorithm we present yields bettgrnetwork with four petals and the two trees constructed by
outcomes than Algorithm 3. Algorithm 1. Thus, for this example, Algorithm 1 can insure

1) Propagation delays: Consider a network with a root 3 ghort propagation delay.
node s (which sources the two trees) ard sets of three  2) Channel availability in WDM networksin this exam-
vertices: ple, we consider an example of a network where two redundant

u(0, 1), u(0,2), (0,3 trees cannot be found by Algorithm 3 because of lack of

u(0, 1), u(0,2), (0,3 availability of certain channels. Such channels might be, for

. instance, wavelengths in a WDM system. The network for
our discussion is illustrated in Fig. 11. The primary tree is
to be carried by wavelength;, while the secondary is to be

NN

w(l" = 1,1),u(F = 1,2), u(F = 1,3). carried by wavelength\,. Let us suppose that, owing to the

For eachi = 0,---, F' — 1, the vertices presence of other traffic in the network; is unavailable on

(5, (i, 1), u(z, 2), u(i3), 5) [s,#] and \; is unavailable orjt, v;]. Note that, because there

form.a cycle. We will caI_I these cycles “petals.” The nodg e three edges incident anwe cannot splits to form two
u(i, 2) is referred as the “tip” of the petal. distinct vertex-redundant blocks. Note that Algorithm 3 will

The tips of the petals are connected to form a cycle ot pe able to operate on the network of Fig. 11 given our

(u(0,2),u(1,2),u(2,2),-- -, u(F - 1,2),u(0,2)). constraints. Indeed, we see that the primary broadcast tree on

We will call this cycle the “rim.” Algorithm 3 will first y st have(s, ¢) included in it, becausecannot be reached
designate a node as Without loss of generality we cani, any other way by);. Moreover,¢ cannot access any node
assume petal has¢, and nodet = w(i,1). Note that the other thans using A\;. Therefore, any broadcast tree usikg

numbering will haveg(s) = 1 andg(t) = 31" + 1. All other it have two arcs emanating fromand such a tree cannot
nodes have numbers betwegfs) and g(t). Now note that |, onstructed by Algorithm 3

one of the trees, say, is formed by having each_ node find a 3) Replication at NodesFor our final example, we con-
parent that has a Iargerl nhumber. In other woflss actually sider a constraint on the replication or splitting that can occur
a tree rooted at, which is connected te by the edgd(s, ?). at a node. We place a constraint, per tree, that each node can
This treg T does not have any branchess f@xcept through replicate incoming signals at most twice for its output. For
(s,t). This means that there is a path along the tree that 99§
at least halfway around the rim. Thus, the maximum distan

from the roots to any node along the tree is at leds2. wavelength. Fig. 12 illustrates the network we consider for our

On the other hand, Algorithm 1 can find trees that h"’Wé?XampIe and the application of Algorithm 1 to the example

maximum number of hops from the root at most two (e'grfetwork. Using Algorithm 3, a three-way split would have
1This example is due to one of the anonymous reviewers, whose contrilSQ— occur att. Indeed, access to the vertices on the three

tion the authors gratefully acknowledge. “petals” emanating from¥ can only be achieved through
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» Execution of 31e0ricum 3: the end-pointw,, 4, of the
\ lowpoint path must not have been popped off the stack
- Gunnnn— yet, for otherwise the tree ar@u,, 1, w,,) would have

——
——
T —— »

—_———= —_——_——— been considered in an earlier execution3Qfigorichm 3-
-— .
AN Hence, g(v) < g(wn+1). The new vertices are pushed

Noed N | onto the stack. These vertices can be chosen by step
o biae \\ 6 Algorithm 1- The plaqing of vertices on the stack satisfies
B N | proper ordering achieved by st@@isarithm 1-
+ Execution of 4140rithm 3 ONE P; end-point(v) was just
@— ————————— > popped off the stack and the othéi,) is still on the

stack, as explained in our remark in Section IV-A. The
verticesug andv are already ordered relatively to each
other, with g(ug) > g(v). The vertices which are pushed
onto the stack form a path. The order in which they are
pushed ensures that the- £ numbers, or voltages, are in
Fig. 11. A sgcond example of trees which can be built with Algorithm 1 the proper order a|ong the new path The order in which
but not Algorithm 3. the vertices are pushed onto the stack is equivalent to the
order established by Stéfnigorithm 1-

Note that the algorithm selects paths rather than cycles
(except for the choice of and ¢, which corresponds to
the choice of our first cycle), whereas our algorithm may
select cycles at stefigorithm 1. SUch paths always exist for
Algorithm 3 because the blocks are vertex redundant.

V. CONCLUSION

We have established an algorithm which, on any vertex
(edge)-redundant network, can build two directed multi-trees
which together make connections immune to failure of a
single vertex (edge). Our algorithm expands the set of known
Fig. 12. A third example of trees which can be built with Algorithm 1 butSOIl‘ltions and, for certain criteria and example networks, yield
not Algorithm 3. better performance than the previously known method. Our

algorithm can be modified to take into account cost functions
) ) and it can be implemented in a distributed fashion for edge
or throughss directly. If we have a constraint that a verteXteqndancy under certain conditions. Any cost function can be
can have a maximum of two outgoing arcs per tree, then thafyjieqd to select our cycles and paths. Thus, the cost functions,
constraint cannot be met using Algorithm 3 but can be Mgl,chy a5 delay minimization, which are often associated with
by Algorithm 1. Steiner trees for multicasting, can be taken into account when
we select our cycles and paths.

There are several possibilities for further investigation. Four
such areas of interesting future work are the areas of multiple

Let us now show that every multi-tree pair constructed Hgilures, spare capacity planning, cost minimization, and link
the scheme in [29] can be built by our scheme. In order terouting. One approach to several failures is to constuct two
show this, it is sufficient to show that any ordering achievetees, if possible, to guard against one failure, then construct
by the scheme in [29] can be achieved by our scheme. Lettu® more trees on the network remaining after a failure.
consider a block. Each block is vertex redundant, although Wefailures are sufficiently rare, where no two failures are
are interested in edge failures. There exist a vertether than expected to occur simultaneously, then such an approach may
s which is adjacent t@, because we have vertex redundancye acceptable, although it may require rerouting traffic after
Moreover, z is reachable frons by the DFS tree. Considera failure from the first secondary-tree built to the second
the cycle constructed by addirg,¢] and [¢t, s] to the edges primary-tree built. If failures occur not because of benign
on the path froms to » in the DFS tree. The first time thatconditions, such as hardware-component fatigue, but, e.g.,
Step3 Algorithm 3 1S run, 1 is the lowpoint of s. The first run ofbecause of incorrect messages which may disrupt several
step3aigorithm 3 COrresponds to picking a cycle, albeit a cycleertices, then the approach of having only of two multi-trees
constrained by the DFS structure. Every subsequent executatrany time may not be sufficient. The issue of three-trees for
Of 3algoritm 3 OF 4Algorichm 3 COrresponds to the selection ofedge failure in a three-connected network has been addressed
set of vertices as in StePaigoritnm 1 and the ordering of the in [81]. The issue of whether a similar extension may be
vertices as done in stefigorithm 1, &S €Xplained below. achieved using our algorithms is of interest.

C. Construction of Previously Known Multi-Trees
with Our Scheme
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The issues of spare capacity planning and cost minimizatiope]
are related, since they concern the application of our algorithm
in a fashion which is cost effective. The fact that we providgg,
more solutions than the previously known multi-tree algorithm
for edge failures entails that there are certain networks aﬂq]
associated cost metrics for which our algorithm performs
better, as illustrated in Section IV-B. Spare capacity is an
important issue because having two live streams or haviH&
capacity reserved for recovery may be costly. Moreover,
under certain conditions, there may not be enough capacitg
to accommodate certain multi-trees. Therefore, the Iink-by-]
link capacity, which we have not explicitly considered here,
may need to be incorporated in the criteria for tree selection?
Note that the problem of finding minimum cost trees for gg;
certain source and a set of destinations is the Steiner tree
problem, which is NP-hard. Good surveys of the problem artf!
heuristics can be found in [63], [70], [68], [74] and applicationg 7]
to networks can be found in [6], [48], [10]. Because the Steiner
tree problem is NP-hard, the issue of cost minimization aqgg]
capacity utilization may be difficult.

Finally, we may comment on extending our algorithm tét]
loopback so as to achieve link or node rerouting rather than
path rerouting. The placing of traffic onto the backup pati0]
in BLSR is called loopback, because in a ring, the traffi 1
backhauls through the vertices it already traversed. The multi-
tree approach we have presented is mostly a path reroutin%
approach. A drawback to path rerouting is that it requires ealds
path to have a dedicated backup path. The maximum sparg
capacity may be of the order of the sum of the capacities of
all the routes in the network. Link rerouting does not rerou
paths but rather the traffic carried by a certain link or vertes]
The spare capacity need never be greater than the maximum
capacity of any link or vertex. Since link (or vertex) reroutingyg
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