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About Chapter 29

The last couple of chapters have assumed that a Gaussian approximation to
the probability distribution we are interested in is adequate. What if it is not?
We have already seen an example – clustering – where the likelihood function
is multimodal, and has nasty unboundedly-high spikes in certain locations in
the parameter space; so maximizing the posterior probability and fitting a
Gaussian is not always going to work. This difficulty with Laplace’s method is
one motivation for being interested in Monte Carlo methods. In fact, Monte
Carlo methods provide a general-purpose set of tools with applications in
Bayesian data modelling and many other fields.

This chapter describes a sequence of methods: importance sampling, re-

jection sampling, the Metropolis method, Gibbs sampling and slice sampling.
For each method, we discuss whether the method is expected to be useful for
high-dimensional problems such as arise in inference with graphical models.
[A graphical model is a probabilistic model in which dependencies and inde-
pendencies of variables are represented by edges in a graph whose nodes are
the variables.] Along the way, the terminology of Markov chain Monte Carlo
methods is presented. The subsequent chapter discusses advanced methods
for reducing random walk behaviour.

For details of Monte Carlo methods, theorems and proofs and a full list
of references, the reader is directed to Neal (1993b), Gilks et al. (1996), and
Tanner (1996).

In this chapter I will use the word ‘sample’ in the following sense: a sample
from a distribution P (x) is a single realization x whose probability distribution
is P (x). This contrasts with the alternative usage in statistics, where ‘sample’
refers to a collection of realizations {x}.

When we discuss transition probability matrices, I will use a right-multipli-
cation convention: I like my matrices to act to the right, preferring

u = Mv (29.1)

to
uT = vTMT. (29.2)

A transition probability matrix Tij or Ti|j specifies the probability, given the
current state is j, of making the transition from j to i. The columns of T are
probability vectors. If we write down a transition probability density, we use
the same convention for the order of its arguments: T (x′;x) is a transition
probability density from x to x′. This unfortunately means that you have
to get used to reading from right to left – the sequence xyz has probability
T (z; y)T (y;x)π(x).
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29

Monte Carlo Methods

�
29.1 The problems to be solved

Monte Carlo methods are computational techniques that make use of random
numbers. The aims of Monte Carlo methods are to solve one or both of the
following problems.

Problem 1: to generate samples {x(r)}R
r=1 from a given probability distribu-

tion P (x).

Problem 2: to estimate expectations of functions under this distribution, for
example

Φ = 〈φ(x)〉 ≡
∫

dNx P (x)φ(x). (29.3)

The probability distribution P (x), which we call the target density, might
be a distribution from statistical physics or a conditional distribution arising
in data modelling – for example, the posterior probability of a model’s pa-
rameters given some observed data. We will generally assume that x is an
N -dimensional vector with real components xn, but we will sometimes con-
sider discrete spaces also.

Simple examples of functions φ(x) whose expectations we might be inter-
ested in include the first and second moments of quantities that we wish to
predict, from which we can compute means and variances; for example if some
quantity t depends on x, we can find the mean and variance of t under P (x)
by finding the expectations of the functions φ1(x) = t(x) and φ2(x) = (t(x))2,

Φ1 ≡ E [φ1(x)] and Φ2 ≡ E [φ2(x)], (29.4)

then using
t̄ = Φ1 and var(t) = Φ2 − Φ2

1. (29.5)

It is assumed that P (x) is sufficiently complex that we cannot evaluate these
expectations by exact methods; so we are interested in Monte Carlo methods.

We will concentrate on the first problem (sampling), because if we have
solved it, then we can solve the second problem by using the random samples
{x(r)}R

r=1 to give the estimator

Φ̂ ≡ 1

R

∑

r

φ(x(r)). (29.6)

If the vectors {x(r)}R
r=1 are generated from P (x) then the expectation of Φ̂ is

Φ. Also, as the number of samples R increases, the variance of Φ̂ will decrease
as σ2/R, where σ2 is the variance of φ,

σ2 =

∫

dNx P (x)(φ(x) − Φ)2. (29.7)
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Figure 29.1. (a) The function
P ∗(x) =
exp
[

0.4(x − 0.4)2 − 0.08x4
]

. How
to draw samples from this
density? (b) The function P ∗(x)
evaluated at a discrete set of
uniformly spaced points {xi}.
How to draw samples from this
discrete distribution?

This is one of the important properties of Monte Carlo methods.

The accuracy of the Monte Carlo estimate (29.6) depends only on
the variance of φ, not on the dimensionality of the space sampled.
To be precise, the variance of Φ̂ goes as σ2/R. So regardless of the
dimensionality of x, it may be that as few as a dozen independent
samples {x(r)} suffice to estimate Φ satisfactorily.

We will find later, however, that high dimensionality can cause other diffi-
culties for Monte Carlo methods. Obtaining independent samples from a given
distribution P (x) is often not easy.

Why is sampling from P (x) hard?

We will assume that the density from which we wish to draw samples, P (x),
can be evaluated, at least to within a multiplicative constant; that is, we can
evaluate a function P ∗(x) such that

P (x) = P ∗(x)/Z. (29.8)

If we can evaluate P ∗(x), why can we not easily solve problem 1? Why is it in
general difficult to obtain samples from P (x)? There are two difficulties. The
first is that we typically do not know the normalizing constant

Z =

∫

dNx P ∗(x). (29.9)

The second is that, even if we did know Z, the problem of drawing samples
from P (x) is still a challenging one, especially in high-dimensional spaces,
because there is no obvious way to sample from P without enumerating most
or all of the possible states. Correct samples from P will by definition tend
to come from places in x-space where P (x) is big; how can we identify those
places where P (x) is big, without evaluating P (x) everywhere? There are only
a few high-dimensional densities from which it is easy to draw samples, for
example the Gaussian distribution.

Let us start with a simple one-dimensional example. Imagine that we wish
to draw samples from the density P (x) = P ∗(x)/Z where

P ∗(x) = exp
[

0.4(x − 0.4)2 − 0.08x4
]

, x ∈ (−∞,∞). (29.10)

We can plot this function (figure 29.1a). But that does not mean we can draw
samples from it. To start with, we don’t know the normalizing constant Z.
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To give ourselves a simpler problem, we could discretize the variable x and
ask for samples from the discrete probability distribution over a finite set of
uniformly spaced points {xi} (figure 29.1b). How could we solve this problem?
If we evaluate p∗i = P ∗(xi) at each point xi, we can compute

Z =
∑

i

p∗i (29.11)

and
pi = p∗i /Z (29.12)

and we can then sample from the probability distribution {pi} using various
methods based on a source of random bits (see section 6.3). But what is the
cost of this procedure, and how does it scale with the dimensionality of the
space, N? Let us concentrate on the initial cost of evaluating Z (29.11). To
compute Z we have to visit every point in the space. In figure 29.1b there are
50 uniformly spaced points in one dimension. If our system had N dimensions,
N = 1000 say, then the corresponding number of points would be 501000, an
unimaginable number of evaluations of P ∗. Even if each component xn took
only two discrete values, the number of evaluations of P ∗ would be 21000, a
number that is still horribly huge. If every electron in the universe (there are
about 2266 of them) were a 1000 gigahertz computer that could evaluate P ∗

for a trillion (240) states every second, and if we ran those 2266 computers for
a time equal to the age of the universe (258 seconds), they would still only
visit 2364 states. We’d have to wait for more than 2636 ' 10190 universe ages
to elapse before all 21000 states had been visited.

Systems with 21000 states are two a penny.? One example is a collection ? Translation for American
readers: ‘such systems are a dime
a dozen’; incidentally, this
equivalence (10c = 6p) shows that
the correct exchange rate between
our currencies is £1.00 = $1.67.

of 1000 spins such as a 30 × 30 fragment of an Ising model whose probability
distribution is proportional to

P ∗(x) = exp[−βE(x)] (29.13)

where xn ∈ {±1} and

E(x) = −
[

1

2

∑

m,n

Jmnxmxn +
∑

n

Hnxn

]

. (29.14)

The energy function E(x) is readily evaluated for any x. But if we wish to
evaluate this function at all states x, the computer time required would be
21000 function evaluations.

The Ising model is a simple model which has been around for a long time,
but the task of generating samples from the distribution P (x) = P ∗(x)/Z is
still an active research area; the first ‘exact’ samples from this distribution
were created in the pioneering work of Propp and Wilson (1996), as we’ll
describe in Chapter 32.

A useful analogy

�
�
�
�
�
�

P ∗(x)

Figure 29.2. A lake whose depth
at x = (x, y) is P ∗(x).

Imagine the tasks of drawing random water samples from a lake and finding
the average plankton concentration (figure 29.2). The depth of the lake at
x = (x, y) is P ∗(x), and we assert (in order to make the analogy work) that
the plankton concentration is a function of x, φ(x). The required average
concentration is an integral like (29.3), namely

Φ = 〈φ(x)〉 ≡ 1

Z

∫

dNx P ∗(x)φ(x), (29.15)
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where Z =
∫

dxdy P ∗(x) is the volume of the lake. You are provided with a
boat, a satellite navigation system, and a plumbline. Using the navigator, you
can take your boat to any desired location x on the map; using the plumbline
you can measure P ∗(x) at that point. You can also measure the plankton
concentration there.

Problem 1 is to draw 1 cm3 water samples at random from the lake, in
such a way that each sample is equally likely to come from any point within
the lake. Problem 2 is to find the average plankton concentration.

These are difficult problems to solve because at the outset we know nothing
about the depth P ∗(x). Perhaps much of the volume of the lake is contained

Figure 29.3. A slice through a lake
that includes some canyons.

in narrow, deep underwater canyons (figure 29.3), in which case, to correctly
sample from the lake and correctly estimate Φ our method must implicitly
discover the canyons and find their volume relative to the rest of the lake.
Difficult problems, yes; nevertheless, we’ll see that clever Monte Carlo methods
can solve them.

Uniform sampling

Having accepted that we cannot exhaustively visit every location x in the
state space, we might consider trying to solve the second problem (estimating
the expectation of a function φ(x)) by drawing random samples {x(r)}R

r=1

uniformly from the state space and evaluating P ∗(x) at those points. Then
we could introduce a normalizing constant ZR, defined by

ZR =
R
∑

r=1

P ∗(x(r)), (29.16)

and estimate Φ =
∫

dNx φ(x)P (x) by

Φ̂ =

R
∑

r=1

φ(x(r))
P ∗(x(r))

ZR
. (29.17)

Is anything wrong with this strategy? Well, it depends on the functions φ(x)
and P ∗(x). Let us assume that φ(x) is a benign, smoothly varying function
and concentrate on the nature of P ∗(x). As we learnt in Chapter 4, a high-
dimensional distribution is often concentrated in a small region of the state
space known as its typical set T , whose volume is given by |T | ' 2H(X), where
H(X) is the entropy of the probability distribution P (x). If almost all the
probability mass is located in the typical set and φ(x) is a benign function,
the value of Φ =

∫

dNx φ(x)P (x) will be principally determined by the values
that φ(x) takes on in the typical set. So uniform sampling will only stand
a chance of giving a good estimate of Φ if we make the number of samples
R sufficiently large that we are likely to hit the typical set at least once or
twice. So, how many samples are required? Let us take the case of the Ising
model again. (Strictly, the Ising model may not be a good example, since it
doesn’t necessarily have a typical set, as defined in Chapter 4; the definition
of a typical set was that all states had log probability close to the entropy,
which for an Ising model would mean that the energy is very close to the
mean energy; but in the vicinity of phase transitions, the variance of energy,
also known as the heat capacity, may diverge, which means that the energy
of a random state is not necessarily expected to be very close to the mean
energy.) The total size of the state space is 2N states, and the typical set has
size 2H . So each sample has a chance of 2H/2N of falling in the typical set.
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Figure 29.4. (a) Entropy of a
64-spin Ising model as a function
of temperature. (b) One state of a
1024-spin Ising model.

The number of samples required to hit the typical set once is thus of order

Rmin ' 2N−H . (29.18)

So, what is H? At high temperatures, the probability distribution of an Ising
model tends to a uniform distribution and the entropy tends to Hmax = N
bits, which means Rmin is of order 1. Under these conditions, uniform sampling
may well be a satisfactory technique for estimating Φ. But high temperatures
are not of great interest. Considerably more interesting are intermediate tem-
peratures such as the critical temperature at which the Ising model melts from
an ordered phase to a disordered phase. The critical temperature of an infinite
Ising model, at which it melts, is θc = 2.27. At this temperature the entropy
of an Ising model is roughly N/2 bits (figure 29.4). For this probability dis-
tribution the number of samples required simply to hit the typical set once is
of order

Rmin ' 2N−N/2 = 2N/2, (29.19)

which for N = 1000 is about 10150. This is roughly the square of the number
of particles in the universe. Thus uniform sampling is utterly useless for the
study of Ising models of modest size. And in most high-dimensional problems,
if the distribution P (x) is not actually uniform, uniform sampling is unlikely
to be useful.

Overview

Having established that drawing samples from a high-dimensional distribution
P (x) = P ∗(x)/Z is difficult even if P ∗(x) is easy to evaluate, we will now
study a sequence of more sophisticated Monte Carlo methods: importance

sampling, rejection sampling, the Metropolis method, Gibbs sampling, and
slice sampling.

�
29.2 Importance sampling

Importance sampling is not a method for generating samples from P (x) (prob-
lem 1); it is just a method for estimating the expectation of a function φ(x)
(problem 2). It can be viewed as a generalization of the uniform sampling
method.

For illustrative purposes, let us imagine that the target distribution is a
one-dimensional density P (x). Let us assume that we are able to evaluate this
density at any chosen point x, at least to within a multiplicative constant;
thus we can evaluate a function P ∗(x) such that

P (x) = P ∗(x)/Z. (29.20)
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But P (x) is too complicated a function for us to be able to sample from it
directly. We now assume that we have a simpler density Q(x) from which we
can generate samples and which we can evaluate to within a multiplicative
constant (that is, we can evaluate Q∗(x), where Q(x) = Q∗(x)/ZQ). An
example of the functions P ∗, Q∗ and φ is shown in figure 29.5. We call Q the

x

P ∗(x) Q∗(x)
φ(x)

Figure 29.5. Functions involved in
importance sampling. We wish to
estimate the expectation of φ(x)
under P (x) ∝ P ∗(x). We can
generate samples from the simpler
distribution Q(x) ∝ Q∗(x). We
can evaluate Q∗ and P ∗ at any
point.

sampler density.
In importance sampling, we generate R samples {x(r)}R

r=1 from Q(x). If
these points were samples from P (x) then we could estimate Φ by equa-
tion (29.6). But when we generate samples from Q, values of x where Q(x) is
greater than P (x) will be over-represented in this estimator, and points where
Q(x) is less than P (x) will be under-represented. To take into account the
fact that we have sampled from the wrong distribution, we introduce weights

wr ≡ P ∗(x(r))

Q∗(x(r))
(29.21)

which we use to adjust the ‘importance’ of each point in our estimator thus:

Φ̂ ≡
∑

r wrφ(x(r))
∑

r wr
. (29.22)

. Exercise 29.1.[2, p.384] Prove that, if Q(x) is non-zero for all x where P (x) is
non-zero, the estimator Φ̂ converges to Φ, the mean value of φ(x), as R
increases. What is the variance of this estimator, asymptotically? Hint:
consider the statistics of the numerator and the denominator separately.
Is the estimator Φ̂ an unbiased estimator for small R?

A practical difficulty with importance sampling is that it is hard to estimate
how reliable the estimator Φ̂ is. The variance of the estimator is unknown
beforehand, because it depends on an integral over x of a function involving
P ∗(x). And the variance of Φ̂ is hard to estimate, because the empirical
variances of the quantities wr and wrφ(x(r)) are not necessarily a good guide
to the true variances of the numerator and denominator in equation (29.22).
If the proposal density Q(x) is small in a region where |φ(x)P ∗(x)| is large
then it is quite possible, even after many points x(r) have been generated, that
none of them will have fallen in that region. In this case the estimate of Φ
would be drastically wrong, and there would be no indication in the empirical

variance that the true variance of the estimator Φ̂ is large.
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Figure 29.6. Importance sampling
in action: (a) using a Gaussian
sampler density; (b) using a
Cauchy sampler density. Vertical
axis shows the estimate Φ̂. The
horizontal line indicates the true
value of Φ. Horizontal axis shows
number of samples on a log scale.

Cautionary illustration of importance sampling

In a toy problem related to the modelling of amino acid probability distribu-
tions with a one-dimensional variable x, I evaluated a quantity of interest us-
ing importance sampling. The results using a Gaussian sampler and a Cauchy
sampler are shown in figure 29.6. The horizontal axis shows the number of
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29.2: Importance sampling 363

samples on a log scale. In the case of the Gaussian sampler, after about 500
samples had been evaluated one might be tempted to call a halt; but evidently
there are infrequent samples that make a huge contribution to Φ̂, and the value
of the estimate at 500 samples is wrong. Even after a million samples have
been taken, the estimate has still not settled down close to the true value. In
contrast, the Cauchy sampler does not suffer from glitches; it converges (on
the scale shown here) after about 5000 samples.

This example illustrates the fact that an importance sampler should have
heavy tails.

Exercise 29.2.[2, p.385] Consider the situation where P ∗(x) is multimodal, con-
sisting of several widely-separated peaks. (Probability distributions like
this arise frequently in statistical data modelling.) Discuss whether it is
a wise strategy to do importance sampling using a sampler Q(x) that
is a unimodal distribution fitted to one of these peaks. Assume that

-5 0 5 10 15

P(x)
Q(x)

phi(x)

Figure 29.7. A multimodal
distribution P ∗(x) and a unimodal
sampler Q(x).

the function φ(x) whose mean Φ is to be estimated is a smoothly vary-
ing function of x such as mx + c. Describe the typical evolution of the
estimator Φ̂ as a function of the number of samples R.

Importance sampling in many dimensions

We have already observed that care is needed in one-dimensional importance
sampling problems. Is importance sampling a useful technique in spaces of
higher dimensionality, say N = 1000?

Consider a simple case-study where the target density P (x) is a uniform
distribution inside a sphere,

P ∗(x) =

{

1 0 ≤ ρ(x) ≤ RP

0 ρ(x) > RP ,
(29.23)

where ρ(x) ≡ (
∑

i x
2
i )

1/2, and the proposal density is a Gaussian centred on
the origin,

Q(x) =
∏

i

Normal(xi; 0, σ
2). (29.24)

An importance-sampling method will be in trouble if the estimator Φ̂ is dom-
inated by a few large weights wr. What will be the typical range of values of
the weights wr? We know from our discussions of typical sequences in Part I –
see exercise 6.14 (p.124), for example – that if ρ is the distance from the origin
of a sample from Q, the quantity ρ2 has a roughly Gaussian distribution with
mean and standard deviation:

ρ2 ∼ Nσ2 ±
√

2Nσ2. (29.25)

Thus almost all samples from Q lie in a typical set with distance from the origin
very close to

√
Nσ. Let us assume that σ is chosen such that the typical set

of Q lies inside the sphere of radius RP . [If it does not, then the law of large
numbers implies that almost all the samples generated from Q will fall outside
RP and will have weight zero.] Then we know that most samples from Q will
have a value of Q that lies in the range

1

(2πσ2)N/2
exp

(

−N

2
±

√
2N

2

)

. (29.26)

Thus the weights wr = P ∗/Q will typically have values in the range

(2πσ2)N/2 exp

(

N

2
±

√
2N

2

)

. (29.27)
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(a)

x

P ∗(x)

cQ∗(x)
(b)

x

u

x

P ∗(x)

cQ∗(x) Figure 29.8. Rejection sampling.
(a) The functions involved in
rejection sampling. We desire
samples from P (x) ∝ P ∗(x). We
are able to draw samples from
Q(x) ∝ Q∗(x), and we know a
value c such that c Q∗(x) > P ∗(x)
for all x. (b) A point (x, u) is
generated at random in the lightly
shaded area under the curve
c Q∗(x). If this point also lies
below P ∗(x) then it is accepted.

So if we draw a hundred samples, what will the typical range of weights be?
We can roughly estimate the ratio of the largest weight to the median weight
by doubling the standard deviation in equation (29.27). The largest weight
and the median weight will typically be in the ratio:

wmax
r

wmed
r

= exp
(√

2N
)

. (29.28)

In N = 1000 dimensions therefore, the largest weight after one hundred sam-
ples is likely to be roughly 1019 times greater than the median weight. Thus an
importance sampling estimate for a high-dimensional problem will very likely
be utterly dominated by a few samples with huge weights.

In conclusion, importance sampling in high dimensions often suffers from
two difficulties. First, we need to obtain samples that lie in the typical set of P ,
and this may take a long time unless Q is a good approximation to P . Second,
even if we obtain samples in the typical set, the weights associated with those
samples are likely to vary by large factors, because the probabilities of points
in a typical set, although similar to each other, still differ by factors of order
exp(

√
N), so the weights will too, unless Q is a near-perfect approximation to

P .

�
29.3 Rejection sampling

We assume again a one-dimensional density P (x) = P ∗(x)/Z that is too com-
plicated a function for us to be able to sample from it directly. We assume
that we have a simpler proposal density Q(x) which we can evaluate (within a
multiplicative factor ZQ, as before), and from which we can generate samples.
We further assume that we know the value of a constant c such that

cQ∗(x) > P ∗(x), for all x. (29.29)

A schematic picture of the two functions is shown in figure 29.8a.

We generate two random numbers. The first, x, is generated from the
proposal density Q(x). We then evaluate cQ∗(x) and generate a uniformly
distributed random variable u from the interval [0, cQ∗(x)]. These two random
numbers can be viewed as selecting a point in the two-dimensional plane as
shown in figure 29.8b.

We now evaluate P ∗(x) and accept or reject the sample x by comparing the
value of u with the value of P ∗(x). If u > P ∗(x) then x is rejected; otherwise
it is accepted, which means that we add x to our set of samples {x(r)}. The
value of u is discarded.

Why does this procedure generate samples from P (x)? The proposed point
(x, u) comes with uniform probability from the lightly shaded area underneath
the curve cQ∗(x) as shown in figure 29.8b. The rejection rule rejects all the
points that lie above the curve P ∗(x). So the points (x, u) that are accepted
are uniformly distributed in the heavily shaded area under P ∗(x). This implies
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that the probability density of the x-coordinates of the accepted points must
be proportional to P ∗(x), so the samples must be independent samples from
P (x).

Rejection sampling will work best if Q is a good approximation to P . If Q
is very different from P then, for cQ to exceed P everywhere, c will necessarily
have to be large and the frequency of rejection will be large.

-4 -3 -2 -1 0 1 2 3 4

P(x)
cQ(x)

Figure 29.9. A Gaussian P (x) and
a slightly broader Gaussian Q(x)
scaled up by a factor c such that
c Q(x) ≥ P (x).

Rejection sampling in many dimensions

In a high-dimensional problem it is very likely that the requirement that cQ∗

be an upper bound for P ∗ will force c to be so huge that acceptances will be
very rare indeed. Finding such a value of c may be difficult too, since in many
problems we know neither where the modes of P ∗ are located nor how high
they are.

As a case study, consider a pair of N -dimensional Gaussian distributions
with mean zero (figure 29.9). Imagine generating samples from one with stan-
dard deviation σQ and using rejection sampling to obtain samples from the
other whose standard deviation is σP . Let us assume that these two standard
deviations are close in value – say, σQ is 1% larger than σP . [σQ must be larger
than σP because if this is not the case, there is no c such that cQ exceeds P
for all x.] So, what value of c is required if the dimensionality is N = 1000?
The density of Q(x) at the origin is 1/(2πσ2

Q)N/2, so for cQ to exceed P we
need to set

c =
(2πσ2

Q)N/2

(2πσ2
P )N/2

= exp

(

N ln
σQ

σP

)

. (29.30)

With N = 1000 and
σQ

σP
= 1.01, we find c = exp(10) ' 20,000. What will the

acceptance rate be for this value of c? The answer is immediate: since the
acceptance rate is the ratio of the volume under the curve P (x) to the volume
under cQ(x), the fact that P and Q are both normalized here implies that
the acceptance rate will be 1/c, for example, 1/20,000. In general, c grows
exponentially with the dimensionality N , so the acceptance rate is expected
to be exponentially small in N .

Rejection sampling, therefore, whilst a useful method for one-dimensional
problems, is not expected to be a practical technique for generating samples
from high-dimensional distributions P (x).

�
29.4 The Metropolis–Hastings method

Importance sampling and rejection sampling work well only if the proposal
density Q(x) is similar to P (x). In large and complex problems it is difficult
to create a single density Q(x) that has this property.

xx(1)

Q(x; x(1))

P ∗(x)

xx(2)

Q(x; x(2))

P ∗(x)

Figure 29.10. Metropolis–Hastings
method in one dimension. The
proposal distribution Q(x′; x) is
here shown as having a shape that
changes as x changes, though this
is not typical of the proposal
densities used in practice.

The Metropolis–Hastings algorithm instead makes use of a proposal den-
sity Q which depends on the current state x(t). The density Q(x′;x(t)) might
be a simple distribution such as a Gaussian centred on the current x(t). The
proposal density Q(x′;x) can be any fixed density from which we can draw
samples. In contrast to importance sampling and rejection sampling, it is not
necessary that Q(x′;x(t)) look at all similar to P (x) in order for the algorithm
to be practically useful. An example of a proposal density is shown in fig-
ure 29.10; this figure shows the density Q(x′;x(t)) for two different states x(1)

and x(2).

As before, we assume that we can evaluate P ∗(x) for any x. A tentative
new state x′ is generated from the proposal density Q(x′;x(t)). To decide
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whether to accept the new state, we compute the quantity

a =
P ∗(x′)

P ∗(x(t))

Q(x(t);x′)

Q(x′;x(t))
. (29.31)

If a ≥ 1 then the new state is accepted.
Otherwise, the new state is accepted with probability a.

If the step is accepted, we set x(t+1) = x′.

If the step is rejected, then we set x(t+1) = x(t).

Note the difference from rejection sampling: in rejection sampling, rejected
points are discarded and have no influence on the list of samples {x(r)} that
we collected. Here, a rejection causes the current state to be written again
onto the list.

Notation. I have used the superscript r = 1, . . . , R to label points that
are independent samples from a distribution, and the superscript t = 1, . . . , T
to label the sequence of states in a Markov chain. It is important to note that
a Metropolis–Hastings simulation of T iterations does not produce T indepen-

dent samples from the target distribution P . The samples are dependent.
To compute the acceptance probability (29.31) we need to be able to com-

pute the probability ratios P (x′)/P (x(t)) and Q(x(t);x′)/Q(x′;x(t)). If the
proposal density is a simple symmetrical density such as a Gaussian centred on
the current point, then the latter factor is unity, and the Metropolis–Hastings
method simply involves comparing the value of the target density at the two
points. This special case is sometimes called the Metropolis method. How-
ever, with apologies to Hastings, I will call the general Metropolis–Hastings
algorithm for asymmetric Q ‘the Metropolis method’ since I believe important
ideas deserve short names.

Convergence of the Metropolis method to the target density

It can be shown that for any positive Q (that is, any Q such that Q(x′;x) > 0
for all x, x′), as t → ∞, the probability distribution of x(t) tends to P (x) =
P ∗(x)/Z. [This statement should not be seen as implying that Q has to assign
positive probability to every point x′ – we will discuss examples later where
Q(x′;x) = 0 for some x, x′; notice also that we have said nothing about how
rapidly the convergence to P (x) takes place.]

The Metropolis method is an example of a Markov chain Monte Carlo

method (abbreviated MCMC). In contrast to rejection sampling, where the
accepted points {x(r)} are independent samples from the desired distribution,
Markov chain Monte Carlo methods involve a Markov process in which a se-
quence of states {x(t)} is generated, each sample x(t) having a probability
distribution that depends on the previous value, x(t−1). Since successive sam-
ples are dependent, the Markov chain may have to be run for a considerable
time in order to generate samples that are effectively independent samples
from P .

Just as it was difficult to estimate the variance of an importance sampling
estimator, so it is difficult to assess whether a Markov chain Monte Carlo
method has ‘converged’, and to quantify how long one has to wait to obtain
samples that are effectively independent samples from P .

Demonstration of the Metropolis method

The Metropolis method is widely used for high-dimensional problems. Many
implementations of the Metropolis method employ a proposal distribution
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x(1)
Q(x;x(1))

P ∗(x)

L

ε

Figure 29.11. Metropolis method
in two dimensions, showing a
traditional proposal density that
has a sufficiently small step size ε
that the acceptance frequency will
be about 0.5.

with a length scale ε that is short relative to the longest length scale L of the
probable region (figure 29.11). A reason for choosing a small length scale is
that for most high-dimensional problems, a large random step from a typical
point (that is, a sample from P (x)) is very likely to end in a state that has
very low probability; such steps are unlikely to be accepted. If ε is large,
movement around the state space will only occur when such a transition to a
low-probability state is actually accepted, or when a large random step chances
to land in another probable state. So the rate of progress will be slow if large
steps are used.

The disadvantage of small steps, on the other hand, is that the Metropolis
method will explore the probability distribution by a random walk, and a
random walk takes a long time to get anywhere, especially if the walk is made
of small steps.

Exercise 29.3.[1 ] Consider a one-dimensional random walk, on each step of
which the state moves randomly to the left or to the right with equal
probability. Show that after T steps of size ε, the state is likely to have
moved only a distance about

√
Tε. (Compute the root mean square

distance travelled.)

Recall that the first aim of Monte Carlo sampling is to generate a number of
independent samples from the given distribution (a dozen, say). If the largest
length scale of the state space is L, then we have to simulate a random-walk
Metropolis method for a time T ' (L/ε)2 before we can expect to get a sample
that is roughly independent of the initial condition – and that’s assuming that
every step is accepted: if only a fraction f of the steps are accepted on average,
then this time is increased by a factor 1/f .

Rule of thumb: lower bound on number of iterations of a

Metropolis method. If the largest length scale of the space of
probable states is L, a Metropolis method whose proposal distribu-
tion generates a random walk with step size ε must be run for at
least

T ' (L/ε)2 (29.32)

iterations to obtain an independent sample.

This rule of thumb gives only a lower bound; the situation may be much
worse, if, for example, the probability distribution consists of several islands
of high probability separated by regions of low probability.



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

368 29 — Monte Carlo Methods
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(c) Independent sampling
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Figure 29.12. Metropolis method
for a toy problem. (a) The state
sequence for t = 1, . . . , 600.
Horizontal direction = states from
0 to 20; vertical direction = time
from 1 to 600; the cross bars mark
time intervals of duration 50. (b)
Histogram of occupancy of the
states after 100, 400, and 1200
iterations. (c) For comparison,
histograms resulting when
successive points are drawn
independently from the target
distribution.
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To illustrate how slowly a random walk explores a state space, figure 29.12
shows a simulation of a Metropolis algorithm for generating samples from the
distribution:

P (x) =

{

1/21 x ∈ {0, 1, 2, . . . , 20}
0 otherwise.

(29.33)

The proposal distribution is

Q(x′;x) =

{

1/2 x′ = x ± 1
0 otherwise.

(29.34)

Because the target distribution P (x) is uniform, rejections occur only when
the proposal takes the state to x′ = −1 or x′ = 21.

The simulation was started in the state x0 = 10 and its evolution is shown
in figure 29.12a. How long does it take to reach one of the end states x = 0
and x = 20? Since the distance is 10 steps, the rule of thumb (29.32) predicts
that it will typically take a time T ' 100 iterations to reach an end state. This
is confirmed in the present example: the first step into an end state occurs on
the 178th iteration. How long does it take to visit both end states? The rule
of thumb predicts about 400 iterations are required to traverse the whole state
space; and indeed the first encounter with the other end state takes place on
the 540th iteration. Thus effectively-independent samples are generated only
by simulating for about four hundred iterations per independent sample.

This simple example shows that it is important to try to abolish random
walk behaviour in Monte Carlo methods. A systematic exploration of the toy
state space {0, 1, 2, . . . , 20} could get around it, using the same step sizes, in
about twenty steps instead of four hundred. Methods for reducing random
walk behaviour are discussed in the next chapter.

Metropolis method in high dimensions

The rule of thumb (29.32), which gives a lower bound on the number of itera-
tions of a random walk Metropolis method, also applies to higher-dimensional
problems. Consider the simple case of a target distribution that is an N -
dimensional Gaussian, and a proposal distribution that is a spherical Gaussian
of standard deviation ε in each direction. Without loss of generality, we can
assume that the target distribution is a separable distribution aligned with the
axes {xn}, and that it has standard deviation σn in direction n. Let σmax and
σmin be the largest and smallest of these standard deviations. Let us assume
that ε is adjusted such that the acceptance frequency is close to 1. Under this
assumption, each variable xn evolves independently of all the others, executing
a random walk with step size about ε. The time taken to generate effectively
independent samples from the target distribution will be controlled by the
largest lengthscale σmax. Just as in the previous section, where we needed at
least T ' (L/ε)2 iterations to obtain an independent sample, here we need
T ' (σmax/ε)2.

Now, how big can ε be? The bigger it is, the smaller this number T be-
comes, but if ε is too big – bigger than σmin – then the acceptance rate will
fall sharply. It seems plausible that the optimal ε must be similar to σmin.
Strictly, this may not be true; in special cases where the second smallest σn

is significantly greater than σmin, the optimal ε may be closer to that second
smallest σn. But our rough conclusion is this: where simple spherical pro-
posal distributions are used, we will need at least T ' (σmax/σmin)2 iterations
to obtain an independent sample, where σmax and σmin are the longest and
shortest lengthscales of the target distribution.
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(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2 )

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional

density P (x1 |x(t)
2 ). (c) A sample

is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

�
29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j 6=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m

is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x

in figure 29.13. On each iteration, we start from the current state x(t), and

x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x
(t)
2 .

A sample x2 is then made from the conditional density P (x2 |x1), using the
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new value of x1. This brings us to the new state x(t+1), and completes the
iteration.

In the general case of a system with K variables, a single iteration involves
sampling one parameter at a time:

x
(t+1)
1 ∼ P (x1 |x(t)

2 , x
(t)
3 , . . . , x

(t)
K ) (29.35)

x
(t+1)
2 ∼ P (x2 |x(t+1)

1 , x
(t)
3 , . . . , x

(t)
K ) (29.36)

x
(t+1)
3 ∼ P (x3 |x(t+1)

1 , x
(t+1)
2 , . . . , x

(t)
K ), etc. (29.37)

Convergence of Gibbs sampling to the target density

. Exercise 29.4.[2 ] Show that a single variable-update of Gibbs sampling can
be viewed as a Metropolis method with target density P (x), and that
this Metropolis method has the property that every proposal is always
accepted.

Because Gibbs sampling is a Metropolis method, the probability distribution
of x(t) tends to P (x) as t → ∞, as long as P (x) does not have pathological
properties.

. Exercise 29.5.[2, p.385] Discuss whether the syndrome decoding problem for a
(7, 4) Hamming code can be solved using Gibbs sampling. The syndrome
decoding problem, if we are to solve it with a Monte Carlo approach,
is to draw samples from the posterior distribution of the noise vector
n = (n1, . . . , nn, . . . , nN ),

P (n | f , z) =
1

Z

N
∏

n=1

fnn
n (1 − fn)(1−nn) � [Hn=z], (29.38)

where fn is the normalized likelihood for the nth transmitted bit and z

is the observed syndrome. The factor � [Hn=z] is 1 if n has the correct
syndrome z and 0 otherwise.

What about the syndrome decoding problem for any linear error-correcting
code?

Gibbs sampling in high dimensions

Gibbs sampling suffers from the same defect as simple Metropolis algorithms
– the state space is explored by a slow random walk, unless a fortuitous pa-
rameterization has been chosen that makes the probability distribution P (x)
separable. If, say, two variables x1 and x2 are strongly correlated, having
marginal densities of width L and conditional densities of width ε, then it will
take at least about (L/ε)2 iterations to generate an independent sample from
the target density. Figure 30.3, p.390, illustrates the slow progress made by
Gibbs sampling when L � ε.

However Gibbs sampling involves no adjustable parameters, so it is an at-
tractive strategy when one wants to get a model running quickly. An excellent
software package, BUGS, makes it easy to set up almost arbitrary probabilistic
models and simulate them by Gibbs sampling (Thomas et al., 1992).1

1http://www.mrc-bsu.cam.ac.uk/bugs/
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�
29.6 Terminology for Markov chain Monte Carlo methods

We now spend a few moments sketching the theory on which the Metropolis
method and Gibbs sampling are based. We denote by p(t)(x) the probabil-
ity distribution of the state of a Markov chain simulator. (To visualize this
distribution, imagine running an infinite collection of identical simulators in
parallel.) Our aim is to find a Markov chain such that as t → ∞, p(t)(x) tends
to the desired distribution P (x).

A Markov chain can be specified by an initial probability distribution
p(0)(x) and a transition probability T (x′;x).

The probability distribution of the state at the (t+1)th iteration of the
Markov chain, p(t+1)(x), is given by

p(t+1)(x′) =

∫

dNx T (x′;x)p(t)(x). (29.39)

Example 29.6. An example of a Markov chain is given by the Metropolis
demonstration of section 29.4 (figure 29.12), for which the transition proba-
bility is

T =

�������������������������������
�

1/2 1/2 · · · · · · · · · · · · · · · · · · ·

1/2 ·
1/2 · · · · · · · · · · · · · · · · · ·

·
1/2 ·

1/2 · · · · · · · · · · · · · · · · ·

· ·
1/2 ·

1/2 · · · · · · · · · · · · · · · ·

· · ·
1/2 ·
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and the initial distribution was

p(0)(x) =
[

· · · · · · · · · · 1 · · · · · · · · · ·
]

. (29.40)

The probability distribution p(t)(x) of the state at the tth iteration is shown
for t = 0, 1, 2, 3, 5, 10, 100, 200, 400 in figure 29.14; an equivalent sequence of
distributions is shown in figure 29.15 for the chain that begins in initial state
x0 = 17. Both chains converge to the target density, the uniform density, as
t → ∞.
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p(100)(x)
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p(200)(x)
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p(400)(x)

0 5 10 15 20

Figure 29.14. The probability
distribution of the state of the
Markov chain of example 29.6.

Required properties

When designing a Markov chain Monte Carlo method, we construct a chain
with the following properties:

1. The desired distribution P (x) is an invariant distribution of the chain.

A distribution π(x) is an invariant distribution of the transition proba-
bility T (x′;x) if

π(x′) =

∫

dNx T (x′;x)π(x). (29.41)

An invariant distribution is an eigenvector of the transition probability
matrix that has eigenvalue 1.



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

29.6: Terminology for Markov chain Monte Carlo methods 373

2. The chain must also be ergodic, that is,

p(t)(x) → π(x) as t → ∞, for any p(0)(x). (29.42)

A couple of reasons why a chain might not be ergodic are:

(a) Its matrix might be reducible, which means that the state space
contains two or more subsets of states that can never be reached
from each other. Such a chain has many invariant distributions;
which one p(t)(x) would tend to as t → ∞ would depend on the
initial condition p(0)(x).

p(0)(x)

0 5 10 15 20

p(1)(x)

0 5 10 15 20

p(2)(x)

0 5 10 15 20

p(3)(x)

0 5 10 15 20

p(10)(x)

0 5 10 15 20

p(100)(x)

0 5 10 15 20

p(200)(x)

0 5 10 15 20

p(400)(x)

0 5 10 15 20

Figure 29.15. The probability
distribution of the state of the
Markov chain for initial condition
x0 = 17 (example 29.6 (p.372)).

The transition probability matrix of such a chain has more than
one eigenvalue equal to 1.

(b) The chain might have a periodic set, which means that, for some
initial conditions, p(t)(x) doesn’t tend to an invariant distribution,
but instead tends to a periodic limit-cycle.

A simple Markov chain with this property is the random walk on the
N -dimensional hypercube. The chain T takes the state from one
corner to a randomly chosen adjacent corner. The unique invariant
distribution of this chain is the uniform distribution over all 2N

states, but the chain is not ergodic; it is periodic with period two:
if we divide the states into states with odd parity and states with
even parity, we notice that every odd state is surrounded by even
states and vice versa. So if the initial condition at time t = 0 is a
state with even parity, then at time t = 1 – and at all odd times
– the state must have odd parity, and at all even times, the state
will be of even parity.

The transition probability matrix of such a chain has more than
one eigenvalue with magnitude equal to 1. The random walk on
the hypercube, for example, has eigenvalues equal to +1 and −1.

Methods of construction of Markov chains

It is often convenient to construct T by mixing or concatenating simple base

transitions B all of which satisfy

P (x′) =

∫

dNx B(x′;x)P (x), (29.43)

for the desired density P (x), i.e., they all have the desired density as an
invariant distribution. These base transitions need not individually be ergodic.

T is a mixture of several base transitions Bb(x
′,x) if we make the transition

by picking one of the base transitions at random, and allowing it to determine
the transition, i.e.,

T (x′,x) =
∑

b

pbBb(x
′,x), (29.44)

where {pb} is a probability distribution over the base transitions.

T is a concatenation of two base transitions B1(x
′,x) and B2(x

′,x) if we
first make a transition to an intermediate state x′′ using B1, and then make a
transition from state x′′ to x′ using B2.

T (x′,x) =

∫

dNx′′ B2(x
′,x′′)B1(x

′′,x). (29.45)
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Detailed balance

Many useful transition probabilities satisfy the detailed balance property:

T (xa;xb)P (xb) = T (xb;xa)P (xa), for all xb and xa. (29.46)

This equation says that if we pick (by magic) a state from the target density
P and make a transition under T to another state, it is just as likely that we
will pick xb and go from xb to xa as it is that we will pick xa and go from xa

to xb. Markov chains that satisfy detailed balance are also called reversible

Markov chains. The reason why the detailed-balance property is of interest
is that detailed balance implies invariance of the distribution P (x) under the
Markov chain T , which is a necessary condition for the key property that we
want from our MCMC simulation – that the probability distribution of the
chain should converge to P (x).

. Exercise 29.7.[2 ] Prove that detailed balance implies invariance of the distri-
bution P (x) under the Markov chain T .

Proving that detailed balance holds is often a key step when proving that a
Markov chain Monte Carlo simulation will converge to the desired distribu-
tion. The Metropolis method satisfies detailed balance, for example. Detailed
balance is not an essential condition, however, and we will see later that ir-
reversible Markov chains can be useful in practice, because they may have
different random walk properties.

. Exercise 29.8.[2 ] Show that, if we concatenate two base transitions B1 and B2

that satisfy detailed balance, it is not necessarily the case that the T
thus defined (29.45) satisfies detailed balance.

Exercise 29.9.[2 ] Does Gibbs sampling, with several variables all updated in a
deterministic sequence, satisfy detailed balance?

�
29.7 Slice sampling

Slice sampling (Neal, 1997a; Neal, 2003) is a Markov chain Monte Carlo
method that has similarities to rejection sampling, Gibbs sampling and the
Metropolis method. It can be applied wherever the Metropolis method can
be applied, that is, to any system for which the target density P ∗(x) can be
evaluated at any point x; it has the advantage over simple Metropolis methods
that it is more robust to the choice of parameters like step sizes. The sim-
plest version of slice sampling is similar to Gibbs sampling in that it consists of
one-dimensional transitions in the state space; however there is no requirement
that the one-dimensional conditional distributions be easy to sample from, nor
that they have any convexity properties such as are required for adaptive re-
jection sampling. And slice sampling is similar to rejection sampling in that
it is a method that asymptotically draws samples from the volume under the
curve described by P ∗(x); but there is no requirement for an upper-bounding
function.

I will describe slice sampling by giving a sketch of a one-dimensional sam-
pling algorithm, then giving a pictorial description that includes the details
that make the method valid.
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The skeleton of slice sampling

Let us assume that we want to draw samples from P (x) ∝ P ∗(x) where x
is a real number. A one-dimensional slice sampling algorithm is a method
for making transitions from a two-dimensional point (x, u) lying under the
curve P ∗(x) to another point (x′, u′) lying under the same curve, such that
the probability distribution of (x, u) tends to a uniform distribution over the
area under the curve P ∗(x), whatever initial point we start from – like the
uniform distribution under the curve P ∗(x) produced by rejection sampling
(section 29.3).

A single transition (x, u) → (x′, u′) of a one-dimensional slice sampling
algorithm has the following steps, of which steps 3 and 8 will require further
elaboration.

1: evaluate P ∗(x)
2: draw a vertical coordinate u′ ∼ Uniform(0, P ∗(x))
3: create a horizontal interval (xl, xr) enclosing x
4: loop {
5: draw x′ ∼ Uniform(xl, xr)
6: evaluate P ∗(x′)
7: if P ∗(x′) > u′ break out of loop 4-9
8: else modify the interval (xl, xr)
9: }

There are several methods for creating the interval (xl, xr) in step 3, and
several methods for modifying it at step 8. The important point is that the
overall method must satisfy detailed balance, so that the uniform distribution
for (x, u) under the curve P ∗(x) is invariant.

The ‘stepping out’ method for step 3

In the ‘stepping out’ method for creating an interval (xl, xr) enclosing x, we
step out in steps of length w until we find endpoints xl and xr at which P ∗ is
smaller than u. The algorithm is shown in figure 29.16.

3a: draw r ∼ Uniform(0, 1)
3b: xl := x − rw
3c: xr := x + (1 − r)w
3d: while (P ∗(xl) > u′) { xl := xl − w }
3e: while (P ∗(xr) > u′) { xr := xr + w }

The ‘shrinking’ method for step 8

Whenever a point x′ is drawn such that (x′, u′) lies above the curve P ∗(x),
we shrink the interval so that one of the end points is x′, and such that the
original point x is still enclosed in the interval.

8a: if (x′ > x) { xr := x′ }
8b: else { xl := x′ }

Properties of slice sampling

Like a standard Metropolis method, slice sampling gets around by a random
walk, but whereas in the Metropolis method, the choice of the step size is
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1 2

3a,3b,3c 3d,3e

5,6 8

5,6,7

Figure 29.16. Slice sampling. Each
panel is labelled by the steps of
the algorithm that are executed in
it. At step 1, P ∗(x) is evaluated
at the current point x. At step 2,
a vertical coordinate is selected
giving the point (x, u′) shown by
the box; At steps 3a-c, an
interval of size w containing
(x, u′) is created at random. At
step 3d, P ∗ is evaluated at the left
end of the interval and is found to
be larger than u′, so a step to the
left of size w is made. At step 3e,
P ∗ is evaluated at the right end of
the interval and is found to be
smaller than u′, so no stepping
out to the right is needed. When
step 3d is repeated, P ∗ is found to
be smaller than u′, so the
stepping out halts. At step 5 a
point is drawn from the interval,
shown by a ◦. Step 6 establishes
that this point is above P ∗ and
step 8 shrinks the interval to the
rejected point in such a way that
the original point x is still in the
interval. When step 5 is repeated,
the new coordinate x′ (which is to
the right-hand side of the
interval) gives a value of P ∗

greater than u′, so this point x′ is
the outcome at step 7.
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critical to the rate of progress, in slice sampling the step size is self-tuning. If
the initial interval size w is too small by a factor f compared with the width of
the probable region then the stepping-out procedure expands the interval size.
The cost of this stepping-out is only linear in f , whereas in the Metropolis
method the computer-time scales as the square of f if the step size is too
small.

If the chosen value of w is too large by a factor F then the algorithm
spends a time proportional to the logarithm of F shrinking the interval down
to the right size, since the interval typically shrinks by a factor in the ballpark
of 0.6 each time a point is rejected. In contrast, the Metropolis algorithm
responds to a too-large step size by rejecting almost all proposals, so the rate
of progress is exponentially bad in F . There are no rejections in slice sampling.
The probability of staying in exactly the same place is very small.

1 2 3 4 5 6 7 8 9 10 110

1

10

Figure 29.17. P ∗(x).

. Exercise 29.10.[2 ] Investigate the properties of slice sampling applied to the
density shown in figure 29.17. x is a real variable between 0.0 and 11.0.
How long does it take typically for slice sampling to get from an x in
the peak region x ∈ (0, 1) to an x in the tail region x ∈ (1, 11), and vice

versa? Confirm that the probabilities of these transitions do yield an
asymptotic probability density that is correct.

How slice sampling is used in real problems

An N -dimensional density P (x) ∝ P ∗(x) may be sampled with the help of the
one-dimensional slice sampling method presented above by picking a sequence
of directions y(1),y(2), . . . and defining x = x(t) + xy(t). The function P ∗(x)
above is replaced by P ∗(x) = P ∗(x(t) + xy(t)). The directions may be chosen
in various ways; for example, as in Gibbs sampling, the directions could be the
coordinate axes; alternatively, the directions y(t) may be selected at random
in any manner such that the overall procedure satisfies detailed balance.

Computer-friendly slice sampling

The real variables of a probabilistic model will always be represented in a
computer using a finite number of bits. In the following implementation of
slice sampling due to Skilling, the stepping-out, randomization, and shrinking
operations, described above in terms of floating-point operations, are replaced
by binary and integer operations.

We assume that the variable x that is being slice-sampled is represented by
a b-bit integer X taking on one of B = 2b values, 0, 1, 2, . . . , B−1, many or all
of which correspond to valid values of x. Using an integer grid eliminates any
errors in detailed balance that might ensue from variable-precision rounding of
floating-point numbers. The mapping from X to x need not be linear; if it is
nonlinear, we assume that the function P ∗(x) is replaced by an appropriately
transformed function – for example, P ∗∗(X) ∝ P ∗(x)|dx/dX|.

We assume the following operators on b-bit integers are available:

X + N arithmetic sum, modulo B, of X and N .
X − N difference, modulo B, of X and N .
X ⊕ N bitwise exclusive-or of X and N .

N := randbits(l) sets N to a random l-bit integer.

A slice-sampling procedure for integers is then as follows:
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Given: a current point X and a height Y = P ∗(X) × Uniform(0, 1) ≤ P ∗(X)

1: U := randbits(b) Define a random translation U of the binary coor-
dinate system.

2: set l to a value l ≤ b Set initial l-bit sampling range.
3: do {
4: N := randbits(l) Define a random move within the current interval of

width 2l.
5: X ′ := ((X − U) ⊕ N) + U Randomize the lowest l bits of X (in the translated

coordinate system).
6: l := l − 1 If X ′ is not acceptable, decrease l and try again
7: } until (X ′ = X) or (P ∗(X ′) ≥ Y ) with a smaller perturbation of X; termination at or

before l = 0 is assured.

The translation U is introduced to avoid permanent sharp edges, where
for example the adjacent binary integers 0111111111 and 1000000000 would
otherwise be permanently in different sectors, making it difficult for X to move
from one to the other.

0 B−1X

Figure 29.18. The sequence of
intervals from which the new
candidate points are drawn.

The sequence of intervals from which the new candidate points are drawn
is illustrated in figure 29.18. First, a point is drawn from the entire interval,
shown by the top horizontal line. At each subsequent draw, the interval is
halved in such a way as to contain the previous point X.

If preliminary stepping-out from the initial range is required, step 2 above
can be replaced by the following similar procedure:

2a: set l to a value l < b l sets the initial width
2b: do {
2c: N := randbits(l)
2d: X ′ := ((X − U) ⊕ N) + U
2e: l := l + 1
2f: } until (l = b) or (P ∗(X ′) < Y )

These shrinking and stepping out methods shrink and expand by a factor
of two per evaluation. A variant is to shrink or expand by more than one bit
each time, setting l := l ± ∆l with ∆l > 1. Taking ∆l at each step from any
pre-assigned distribution (which may include ∆l = 0) allows extra flexibility.

Exercise 29.11.[4 ] In the shrinking phase, after an unacceptable X ′ has been
produced, the choice of ∆l is allowed to depend on the difference between
the slice’s height Y and the value of P ∗(X ′), without spoiling the algo-
rithm’s validity. (Prove this.) It might be a good idea to choose a larger
value of ∆l when Y −P ∗(X ′) is large. Investigate this idea theoretically
or empirically.

A feature of using the integer representation is that, with a suitably ex-
tended number of bits, the single integer X can represent two or more real
parameters – for example, by mapping X to (x1, x2, x3) through a space-filling
curve such as a Peano curve. Thus multi-dimensional slice sampling can be
performed using the same software as for one dimension.
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�
29.8 Practicalities

Can we predict how long a Markov chain Monte Carlo simulation

will take to equilibrate? By considering the random walks involved in a
Markov chain Monte Carlo simulation we can obtain simple lower bounds on
the time required for convergence. But predicting this time more precisely is a
difficult problem, and most of the theoretical results giving upper bounds on
the convergence time are of little practical use. The exact sampling methods
of Chapter 32 offer a solution to this problem for certain Markov chains.

Can we diagnose or detect convergence in a running simulation?

This is also a difficult problem. There are a few practical tools available, but
none of them is perfect (Cowles and Carlin, 1996).

Can we speed up the convergence time and time between indepen-

dent samples of a Markov chain Monte Carlo method? Here, there is
good news, as described in the next chapter, which describes the Hamiltonian
Monte Carlo method, overrelaxation, and simulated annealing.

�
29.9 Further practical issues

Can the normalizing constant be evaluated?

If the target density P (x) is given in the form of an unnormalized density
P ∗(x) with P (x) = 1

Z P ∗(x), the value of Z may well be of interest. Monte
Carlo methods do not readily yield an estimate of this quantity, and it is an
area of active research to find ways of evaluating it. Techniques for evaluating
Z include:

1. Importance sampling (reviewed by Neal (1993b)) and annealed impor-
tance sampling (Neal, 1998).

2. ‘Thermodynamic integration’ during simulated annealing, the ‘accep-
tance ratio’ method, and ‘umbrella sampling’ (reviewed by Neal (1993b)).

3. ‘Reversible jump Markov chain Monte Carlo’ (Green, 1995).

One way of dealing with Z, however, may be to find a solution to one’s
task that does not require that Z be evaluated. In Bayesian data modelling
one might be able to avoid the need to evaluate Z – which would be important
for model comparison – by not having more than one model. Instead of using
several models (differing in complexity, for example) and evaluating their rel-
ative posterior probabilities, one can make a single hierarchical model having,
for example, various continuous hyperparameters which play a role similar to
that played by the distinct models (Neal, 1996). In noting the possibility of
not computing Z, I am not endorsing this approach. The normalizing constant
Z is often the single most important number in the problem, and I think every
effort should be devoted to calculating it.

The Metropolis method for big models

Our original description of the Metropolis method involved a joint updating
of all the variables using a proposal density Q(x′;x). For big problems it
may be more efficient to use several proposal distributions Q(b)(x′;x), each of
which updates only some of the components of x. Each proposal is individually
accepted or rejected, and the proposal distributions are repeatedly run through
in sequence.
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. Exercise 29.12.[2, p.385] Explain why the rate of movement through the state
space will be greater when B proposals Q(1), . . . , Q(B) are considered
individually in sequence, compared with the case of a single proposal
Q∗ defined by the concatenation of Q(1), . . . , Q(B). Assume that each
proposal distribution Q(b)(x′;x) has an acceptance rate f < 1/2.

In the Metropolis method, the proposal density Q(x′;x) typically has a
number of parameters that control, for example, its ‘width’. These parameters
are usually set by trial and error with the rule of thumb being to aim for a
rejection frequency of about 0.5. It is not valid to have the width parameters
be dynamically updated during the simulation in a way that depends on the
history of the simulation. Such a modification of the proposal density would
violate the detailed-balance condition that guarantees that the Markov chain
has the correct invariant distribution.

Gibbs sampling in big models

Our description of Gibbs sampling involved sampling one parameter at a time,
as described in equations (29.35–29.37). For big problems it may be more
efficient to sample groups of variables jointly, that is to use several proposal
distributions:

x
(t+1)
1 , . . . , x(t+1)

a ∼ P (x1, . . . , xa |x(t)
a+1, . . . , x

(t)
K ) (29.47)

x
(t+1)
a+1 , . . . , x

(t+1)
b ∼ P (xa+1, . . . , xb |x(t+1)

1 , . . . , x(t+1)
a , x

(t)
b+1, . . . , x

(t)
K ), etc.

How many samples are needed?

At the start of this chapter, we observed that the variance of an estimator Φ̂
depends only on the number of independent samples R and the value of

σ2 =

∫

dNx P (x)(φ(x) − Φ)2. (29.48)

We have now discussed a variety of methods for generating samples from P (x).
How many independent samples R should we aim for?

In many problems, we really only need about twelve independent samples
from P (x). Imagine that x is an unknown vector such as the amount of
corrosion present in each of 10 000 underground pipelines around Cambridge,
and φ(x) is the total cost of repairing those pipelines. The distribution P (x)
describes the probability of a state x given the tests that have been carried out
on some pipelines and the assumptions about the physics of corrosion. The
quantity Φ is the expected cost of the repairs. The quantity σ2 is the variance
of the cost – σ measures by how much we should expect the actual cost to
differ from the expectation Φ.

Now, how accurately would a manager like to know Φ? I would suggest
there is little point in knowing Φ to a precision finer than about σ/3. After
all, the true cost is likely to differ by ±σ from Φ. If we obtain R = 12
independent samples from P (x), we can estimate Φ to a precision of σ/

√
12 –

which is smaller than σ/3. So twelve samples suffice.

Allocation of resources

Assuming we have decided how many independent samples R are required,
an important question is how one should make use of one’s limited computer
resources to obtain these samples.
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(1)

(2)

(3)

Figure 29.19. Three possible
Markov chain Monte Carlo
strategies for obtaining twelve
samples in a fixed amount of
computer time. Time is
represented by horizontal lines;
samples by white circles. (1) A
single run consisting of one long
‘burn in’ period followed by a
sampling period. (2) Four
medium-length runs with different
initial conditions and a
medium-length burn in period.
(3) Twelve short runs.

A typical Markov chain Monte Carlo experiment involves an initial pe-
riod in which control parameters of the simulation such as step sizes may be
adjusted. This is followed by a ‘burn in’ period during which we hope the
simulation ‘converges’ to the desired distribution. Finally, as the simulation
continues, we record the state vector occasionally so as to create a list of states
{x(r)}R

r=1 that we hope are roughly independent samples from P (x).

There are several possible strategies (figure 29.19):

1. Make one long run, obtaining all R samples from it.

2. Make a few medium-length runs with different initial conditions, obtain-
ing some samples from each.

3. Make R short runs, each starting from a different random initial condi-
tion, with the only state that is recorded being the final state of each
simulation.

The first strategy has the best chance of attaining ‘convergence’. The last
strategy may have the advantage that the correlations between the recorded
samples are smaller. The middle path is popular with Markov chain Monte
Carlo experts (Gilks et al., 1996) because it avoids the inefficiency of discarding
burn-in iterations in many runs, while still allowing one to detect problems
with lack of convergence that would not be apparent from a single run.

Finally, I should emphasize that there is no need to make the points in
the estimate nearly-independent. Averaging over dependent points is fine – it
won’t lead to any bias in the estimates. For example, when you use strategy
1 or 2, you may, if you wish, include all the points between the first and last
sample in each run. Of course, estimating the accuracy of the estimate is
harder when the points are dependent.

�
29.10 Summary

• Monte Carlo methods are a powerful tool that allow one to sample from
any probability distribution that can be expressed in the form P (x) =
1
Z P ∗(x).

• Monte Carlo methods can answer virtually any query related to P (x) by
putting the query in the form

∫

φ(x)P (x) ' 1

R

∑

r

φ(x(r)). (29.49)
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• In high-dimensional problems the only satisfactory methods are those
based on Markov chains, such as the Metropolis method, Gibbs sam-
pling and slice sampling. Gibbs sampling is an attractive method be-
cause it has no adjustable parameters but its use is restricted to cases
where samples can be generated from the conditional distributions. Slice
sampling is attractive because, whilst it has step-length parameters, its
performance is not very sensitive to their values.

• Simple Metropolis algorithms and Gibbs sampling algorithms, although
widely used, perform poorly because they explore the space by a slow
random walk. The next chapter will discuss methods for speeding up
Markov chain Monte Carlo simulations.

• Slice sampling does not avoid random walk behaviour, but it automat-
ically chooses the largest appropriate step size, thus reducing the bad
effects of the random walk compared with, say, a Metropolis method
with a tiny step size.

�
29.11 Exercises

Exercise 29.13.[2C, p.386] A study of importance sampling. We already estab-
lished in section 29.2 that importance sampling is likely to be useless in
high-dimensional problems. This exercise explores a further cautionary
tale, showing that importance sampling can fail even in one dimension,
even with friendly Gaussian distributions.

Imagine that we want to know the expectation of a function φ(x) under
a distribution P (x),

Φ =

∫

dx P (x)φ(x), (29.50)

and that this expectation is estimated by importance sampling with
a distribution Q(x). Alternatively, perhaps we wish to estimate the
normalizing constant Z in P (x) = P ∗(x)/Z using

Z =

∫

dx P ∗(x) =

∫

dx Q(x)
P ∗(x)

Q(x)
=

〈

P ∗(x)

Q(x)

〉

x∼Q

. (29.51)

Now, let P (x) and Q(x) be Gaussian distributions with mean zero and
standard deviations σp and σq. Each point x drawn from Q will have
an associated weight P ∗(x)/Q(x). What is the variance of the weights?
[Assume that P ∗ = P , so P is actually normalized, and Z = 1, though
we can pretend that we didn’t know that.] What happens to the variance
of the weights as σ2

q → σ2
p/2?

Check your theory by simulating this importance-sampling problem on
a computer.

Exercise 29.14.[2 ] Consider the Metropolis algorithm for the one-dimensional
toy problem of section 29.4, sampling from {0, 1, . . . , 20}. Whenever
the current state is one of the end states, the proposal density given in
equation (29.34) will propose with probability 50% a state that will be
rejected.

To reduce this ‘waste’, Fred modifies the software responsible for gen-
erating samples from Q so that when x = 0, the proposal density is
100% on x′ = 1, and similarly when x = 20, x′ = 19 is always proposed.
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Fred sets the software that implements the acceptance rule so that the
software accepts all proposed moves. What probability P ′(x) will Fred’s
modified software generate samples from?

What is the correct acceptance rule for Fred’s proposal density, in order
to obtain samples from P (x)?

. Exercise 29.15.[3C ] Implement Gibbs sampling for the inference of a single
one-dimensional Gaussian, which we studied using maximum likelihood
in section 22.1. Assign a broad Gaussian prior to µ and a broad gamma
prior (24.2) to the precision parameter β = 1/σ2. Each update of µ will
involve a sample from a Gaussian distribution, and each update of σ
requires a sample from a gamma distribution.

Exercise 29.16.[3C ] Gibbs sampling for clustering. Implement Gibbs sampling
for the inference of a mixture of K one-dimensional Gaussians, which we
studied using maximum likelihood in section 22.2. Allow the clusters to
have different standard deviations σk. Assign priors to the means and
standard deviations in the same way as the previous exercise. Either fix
the prior probabilities of the classes {πk} to be equal or put a uniform
prior over the parameters π and include them in the Gibbs sampling.

Notice the similarity of Gibbs sampling to the soft K-means clustering
algorithm (algorithm 22.2). We can alternately assign the class labels
{kn} given the parameters {µk, σk}, then update the parameters given
the class labels. The assignment step involves sampling from the proba-
bility distributions defined by the responsibilities (22.22), and the update
step updates the means and variances using probability distributions
centred on the K-means algorithm’s values (22.23, 22.24).

Do your experiments confirm that Monte Carlo methods bypass the over-
fitting difficulties of maximum likelihood discussed in section 22.4?

A solution to this exercise and the previous one, written in octave, is
available.2

. Exercise 29.17.[3C ] Implement Gibbs sampling for the seven scientists inference
problem, which we encountered in exercise 22.15 (p.309), and which you
may have solved by exact marginalization (exercise 24.3 (p.323)) [it’s
not essential to have done the latter].

. Exercise 29.18.[2 ] A Metropolis method is used to explore a distribution P (x)
that is actually a 1000-dimensional spherical Gaussian distribution of
standard deviation 1 in all dimensions. The proposal density Q is a
1000-dimensional spherical Gaussian distribution of standard deviation
ε. Roughly what is the step size ε if the acceptance rate is 0.5? Assuming
this value of ε,

(a) roughly how long would the method take to traverse the distribution
and generate a sample independent of the initial condition?

(b) By how much does lnP (x) change in a typical step? By how much
should lnP (x) vary when x is drawn from P (x)?

(c) What happens if, rather than using a Metropolis method that tries
to change all components at once, one instead uses a concatenation
of Metropolis updates changing one component at a time?

2http://www.inference.phy.cam.ac.uk/mackay/itila/
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. Exercise 29.19.[2 ] When discussing the time taken by the Metropolis algo-
rithm to generate independent samples we considered a distribution with
longest spatial length scale L being explored using a proposal distribu-
tion with step size ε. Another dimension that a MCMC method must
explore is the range of possible values of the log probability lnP ∗(x).
Assuming that the state x contains a number of independent random
variables proportional to N , when samples are drawn from P (x), the
‘asymptotic equipartition’ principle tell us that the value of − lnP (x) is
likely to be close to the entropy of x, varying either side with a standard
deviation that scales as

√
N . Consider a Metropolis method with a sym-

metrical proposal density, that is, one that satisfies Q(x;x′) = Q(x′;x).
Assuming that accepted jumps either increase lnP ∗(x) by some amount
or decrease it by a small amount, e.g. ln e = 1 (is this a reasonable
assumption?), discuss how long it must take to generate roughly inde-
pendent samples from P (x). Discuss whether Gibbs sampling has similar
properties.

Exercise 29.20.[3 ] Markov chain Monte Carlo methods do not compute parti-
tion functions Z, yet they allow ratios of quantities like Z to be esti-
mated. For example, consider a random-walk Metropolis algorithm in a
state space where the energy is zero in a connected accessible region, and
infinitely large everywhere else; and imagine that the accessible space can
be chopped into two regions connected by one or more corridor states.
The fraction of times spent in each region at equilibrium is proportional
to the volume of the region. How does the Monte Carlo method manage
to do this without measuring the volumes?

Exercise 29.21.[5 ] Philosophy.

One curious defect of these Monte Carlo methods – which are widely used
by Bayesian statisticians – is that they are all non-Bayesian (O’Hagan,
1987). They involve computer experiments from which estimators of
quantities of interest are derived. These estimators depend on the pro-
posal distributions that were used to generate the samples and on the
random numbers that happened to come out of our random number
generator. In contrast, an alternative Bayesian approach to the problem
would use the results of our computer experiments to infer the proper-
ties of the target function P (x) and generate predictive distributions for
quantities of interest such as Φ. This approach would give answers that
would depend only on the computed values of P ∗(x(r)) at the points
{x(r)}; the answers would not depend on how those points were chosen.

Can you make a Bayesian Monte Carlo method? (See Rasmussen and
Ghahramani (2003) for a practical attempt.)

�
29.12 Solutions

Solution to exercise 29.1 (p.362). We wish to show that

Φ̂ ≡
∑

r wrφ(x(r))
∑

r wr
(29.52)

converges to the expectation of Φ under P . We consider the numerator and the
denominator separately. First, the denominator. Consider a single importance
weight

wr ≡ P ∗(x(r))

Q∗(x(r))
. (29.53)


