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Abstract

The function of vision is to get correct and useful answers about the state of the world. However,
given that the state of the world is not uniquely specified by the visual input, the visual system must
make good guesses or inferences. Thus, theories of visual system functions will be theories of inference,
and we need a language in which theories of inference can be described. Analogous to calculus having
a minimum expressiveness required to formulate theories in physics, we argue that the language of
Bayesian inference is fundamental to quantitatively describe how reliable answers about the world can be
obtained from image patterns. Bayes provides a minimal formalism that can deal with the sophistication
and versatility of perception missing from some other approaches. Key missing components include the
ability to model uncertainty, probabilistic modeling of pattern synthesis as a necessary prerequisite
to understanding pattern inference, the means to handle the complexity of natural images, and the
diversity of visual tasks.

Most of the formal elements that we describe are not new and have their roots in signal detection theory
and ideal observer analysis. We start from there to review and codify principles drawn from recent
applications of Bayesian decision theory, Bayes nets and pattern theory to vision. To emphasize the
importance of dealing with the complexity of natural image and scene patterns, we call the conjunction
of principles drawn from these contributions pattern inference theory. Because of its generality, we do
not see pattern inference theory as an experimentally testable theory of vision; however, it does provide
a set of concepts and principles to formulate testable models. The test for a good theoretical framework
is utility and completeness for deriving predictive theories. To illustrate the utility of the approach,
we propose Bayesian principles of least commitment and modularity, each of which leads to testable
hypotheses. Several recent examples of pattern inference theories are reviewed.

1 Perception is pattern decoding

Few would dispute the view that visual perception is the brain’s process for arriving at useful information
about the world from images. Divergent opinions, however, have been expressed over how to describe
the computations (or lack thereof) underlying visual behavior. Visual perception has been described
as unconscious inference (Helmholtz and Southall, 1924; Gregory, 1980), reconstruction (Craik, 1943),
resonance (Gibson, 1966), problem solving (Rock, 1983), computation (Marr, 1982), and more recently
as Bayesian inference (Knill and Richards, 1996). In part, the debate gets muddled due to lack of
a well-specified explanatory goal and level of abstraction. To clarify, we see the grand challenge to
be the development of testable, quantitative theories of visual performance that take into account the
complexities of natural images and the richness of visual behavior. But here the level of explanation is
crucial: if our theories are too abstract, we lose the specificity of quantitative predictions; if the theories
are too fine-grained, the model mechanisms for natural pattern processing will be too complex to test.

Our proposed strategy follows that of statistical mechanics. Few physicists doubt that the large-scale
properties of physical systems rest on the lawful function of individual molecules, just as few brain
scientists doubt that an organism’s behavior depends on the lawful function of neurons. Physicists
would agree that the modeling level has to be appropriate to the measurements and phenomena of
large-scale systems; thus statistical mechanics links molecular kinetics to thermodynamics. Although
the bridge between neurons and system behavior has yet to be built, the language of Bayesian statistics
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provides the level of description analogous to thermodynamics 1. For vision, theories at this level are
testable at the level of visual information and perceptual constraints 2, and are less committal about
representations, algorithms, or mechanisms.

The purpose of this chapter is to describe the fundamental principles of value in addressing the grand
challenge. These principles constitute what we will refer to as pattern inference theory. The basic
elements of pattern inference theory are not new and have their mathematical roots in communication
and information theory (Shannon and Weaver, 1949), Bayesian decision theory (Berger, 1985), pattern
theory (Grenander, 1996), and Bayes nets (Pearl, 1988). The refinement of the principles are derived
from a history of applications to human vision in the domains of signal detection theory (Green and
Swets, 1974), ideal observer analysis (Geisler, 1989; Schrater, 1998), Bayesian inference and decision
theory (Kersten, 1990; Yuille and Blthoff, 1996), and pattern theory (Mumford, 1996; Yuille et al., 1998).
“Pattern theory” was developed by Ulf Grenander to describe the mathematical study of complex
natural patterns (Grenander, 1993, 1996; Mumford, 1996; Yuille et al., 1998). Central features of
pattern theory are the importance of modeling pattern generation, and that natural pattern variation
is characterized by four fundamental classes of deformations 3. Further, the generative model is seen
as an essential part of inference (e.g. via flexible templates to fit incoming data in a feedback stage)
to deal with certain types of deformation, such as occlusion (Mumford, 1994). Our particular emphasis
is based on the synthesis and application of pattern theory and Bayesian decision theory to human
vision (Yuille et al., 1998). As an elaboration of signal detection theory, we choose the words pattern
and inference to stress the importance of modeling complex natural signals, and of considering tasks in
addition to detection, respectively. We argue that pattern inference theory provides the best language for
formulating quantitative theories of visual perception and action at the level of the naturally behaving
(human) visual system.

Our goal is to derive probabilistic models of the observer’s world and sensory input, restricted by task.
Such models have two components: the objects of the theory, and the operations of the theory. The
objects of the theory are the set of possible image measurements I, the set of possible scene descriptions
S, and the joint probability distribution of S and I: p(S, I). The operations are given by the probability
calculus, with decisions modeled as minimizing expected cost (or risk) given the probabilities. The
richness of the theory lies in exploiting the structure induced in p(S, I) by the regularities of the world
(laws of physics) and by the habits of observers. A fundamental assumption of pattern inference theory
is that Bayesian decision theory provides the best language both to describe complex patterns, and to
model inferences about them. For us, the essence of a Bayesian view is not the emphasis on subjective
prior probabilities, but rather that all variables are random variables. This assumption has ramifications
for the central role, in perception, of generative (or synthetic) models of image patterns, as well as prior
probability models of scene information. An emphasis on generative models, we believe, is essential
because of the inherent complexity of the causal structure of high-dimensional image patterns. One
must model how the multitude of variables (both the needed and unneeded variables for a task) interact
to produce image data in order to understand how to decode those patterns. But perhaps equally

1Our level of analysis falls between the computational/function and representation/algorithmic levels in the Marr
hierarchy.

2Because it is rare to find a visual cue that is sufficiently reliable to unambiguously determine a perceived scene
property, perception should be viewed as satisfying multiple constraints simultaneously. Examples are the constraint that
light sources tend to be from above, or that a sharp image edge is more likely a reflectance or depth change than a shadow.

3These four classes are intended to apply generally to natural patterns of all sorts, and not just to visual patterns.
For spatial vision, these classes would correspond to: blur and noise, geometric deformations, superposition (e.g. of basis
images), and occlusions (Mumford, 1994).
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importantly, the Bayesian view underscores the importance of confidence-driven visual processes. This
latter idea leads us to the view that perception consists of sequences of computations on probabilities,
rather than a series of estimations or decisions. We illustrate this with recent work on Bayes nets.

In the next section, we will show that pattern inference theory is a logical elaboration of ideal observer
analysis in classical signal detection theory. However, it goes beyond standard applications of ideal
observer analysis by emphasizing the need to take into account the full range of natural image patterns,
and the intimate tie between perception and successful behavior.

2 Pattern inference theory: A generalization of ideal observers

Signal detection theory (SDT) was developed in the 1950’s to model and analyze human sensory de-
cisions given internal and external background noise (Peterson et al., 1954; Green and Swets, 1974).
The theory combined earlier work in statistical decision theory (Neyman and Pearson, 1933; Wald,
1939, 1950; Grenander, 1950) with communication systems theory (Shannon and Weaver, 1949; Rice,
1944). Signal detection theory made two fundamental contributions to our understanding of human
perception. First, statistical decision theory showed how to analyze the internal processing of sensory
decisions. The application of statistical decision theory to psychophysics showed that sensory decisions
were determined by two experimentally separable factors: sensitivity (related to an inferred internal
signal-to-noise ratio) and the decision criterion. Second, communication theory showed that there were
inherent physical limits to the reliability of information transmission, and thus detection, independent
of the specific implementation of the detector, i.e. whether it be physical or biological. These limits can
be modeled by a mathematically defined ideal observer, which provides a quantitative computational
theory for the information in a task. For the ideal observer, the signal-to-noise ratio can be obtained
from direct measurements of the variations in the transmitted signal. The ideal observer presaged Marr’s
ideas of a computational theory for an information processing task, as distinct from the algorithm and
implementation to carry it out (Marr, 1982). The top panel of figure (1) illustrates the basic causal
structure for the “signal plus noise” problem in classical signal detection theory.

Experimental studies of human perceptual behavior are often left with a crucial, but unanswered ques-
tion: To what extent is the measured performance limited by the information in the task rather than
by the perceptual system itself? Answers to this question are critical for understanding the relationship
between perceptual behavior and its underlying biological mechanisms. Signal detection theory pro-
vided an answer through ideal observer analysis. One of the first applications of the ideal observer in
vision was the determination of the quantum efficiency of human light discrimination (Barlow, 1962).
By considering both the external and internal sources of variability, Barlow showed that an ideal photon
detector could get by with about one tenth the number of photons as a human for the same combination
of hit and correct rejection rates. This success of classical signal detection theory demonstrated the need
for probability in theories of visual performance, because light transmission is fundamentally stochas-
tic (emission and absorption are Poisson processes) and any real light measurement device introduces
further noise.

The example of ideal observer analysis of light detection further illustrates a fundamental strategy for
studying perception, consisting of three modeling domains. First, how does the signal (i.e. light switch
set to “bright” or “dim”) get encoded into intensity changes in the image? The answer must deal with
light variations due to quantal fluctuations. Second, how should the received image data be decoded to
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Figure 1: The top panel shows an example of generative graph structure for an ideal observer problem in
classical signal detection theory (SDT). The data are determined by the signal hypotheses plus (usually
additive gaussian) noise. Knowledge is represented by the joint probability p(x, u, n). The lower panel
shows a simplified example of the generative structure for perceptual inference from a pattern inference
theory perspective. The image measurements (x) are determined by a typically non-linear function (φ) of
primary signal variables (Se) and confounding secondary variables (Sg). Knowledge is represented by the
joint probability p(x, Se, Sg). Both scene and image variables can be high dimensional vectors. In general,
the causal structure of natural image patterns is more complex and consequently requires elaboration of
its graphical representation (see Section 3.4). For SDT and pattern inference theory, the task is to make a
decision about the signal hypotheses or primary signal variables, while discounting the noise or secondary
variables. Thus optimal perceptual decisions are determined by p(x, Se), which is derived by summing over
the secondary variables (i.e. marginalizing with respect to the secondary variables):

∫
Sg

p(x, Se, Sg)dSg.

do the best job at inferring which signal was transmitted? Answers to this question rely on theories of
ideal observers, or more generally of optimal inference. Third, how does one compare human and ideal
performance? This requires common performance measures on the same task.

2.0.1 Limitations of Signal Detection Theory for the Grand Challenge

Despite its successes, signal detection theory as typically applied in vision falls short when faced with
our grand challenge. Define perceptual signals to be some underlying causes of image data that are
required for a visual behavior. These signals include the shapes, positions, and material of objects.
The first problem is that natural perceptual signals are complex, high-dimensional functions of image
intensities. In typical applications of SDT and classical ideal observer analysis to visual psychophysics,
the input data, the noise, and the signal, are treated as the same “stuff”. For example, in contrast
detection, the input data is signal plus noise (Kersten, 1984). The signal is based on a physical quantity
(luminance) as a function of time and/or space), the noise is either physical contrast fluctuations, or
internal variability treated as equivalent to the physical noise (Pelli, 1990). Perceptual decisions are
typically limited to information which is explicit in the decoded signal. So to answer the question, Does
the signal image have more light intensity than another?, the decoder simply measures whether the
image intensity is bigger.

We need a theoretical framework for which the signals can be any properties of the world useful for the
visual behavior; for example, estimates of object shape and surface motion are crucial for actions such as
recognition and navigation, but they are not simple functions of light intensity. Natural images are high-
dimensional functions of useful signals, and arriving at decoding functions relating image measurements
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to these signals is a major theoretical challenge. Both of these problems are expressible in terms of
pattern inference theory.

In signal detection theory, the non-signal causes of the input pattern are called noise. A second problem,
related to the first, is that “noise” in the perception of natural images is not simple. Useful information
is confounded by more than added external or internal image intensity noise. Uncertainty is due to
both variations in unneeded scene variables as well as by the fact that multiple scene descriptions can
produce the same image data. In contrast to the above example of contrast detection, consider the
problem of 3D shape discrimination in everyday vision. The signal is shape, but the counterpart to the
noise is very different stuff, and includes variation in viewpoint, illumination, other occluding objects,
and material (Liu et al., 1995). Further, although the discrimination decision may be able to rely on
a primary image measurement that is explicit in the image (e.g. a contour description), this is rare.
Because of projection and the confounding variables, the true 3D shape is not explicit in any simple
image measurement.

Pattern inference theory deals directly with the problem of multiple and diverse causes of image varia-
tion by modeling the generative process of image formation. Below, we distinguish between the needed
primary and unneeded secondary variables.4 The primary variables are those which the system’s func-
tion is designed to estimate. By contrast, the secondary variables are not estimated but neither are they
ignored, and there are principled methods for getting rid of unwanted variables. It should be emphasized
that the distinction between primary and secondary depends on the specific task the system is designed
to solve. Variables which are secondary for one task may be primary for another. For example, esti-
mating the illumination is unimportant for many visual tasks and so illumination variables are treated
as secondary. The theory of generic views treats viewpoint as a secondary variable, enabling resolution
of ambiguities in shape perception (Nakayama and Shimojo, 1992; Freeman, 1994). Light direction as a
secondary variable can be used to obtain a unique estimate of depth from cast shadows (Kersten, 1999).
There is a close connection between the task (discussed in Section 4 below) and the statistical structure
of the estimation problem (Schrater and Kersten, 2000).

A third limitation is that natural images are not linear combinations of their signals, and that the
probabilities describing the signal and image variables are not gaussian. Much of the success of signal
detection theory has rested on an assumption of linearity: the input is the sum of the signal and the
noise. Except in rare instances (e.g. contrast detection limited by photon fluctuations at high light
levels), natural perceptual tasks involve inputs which are non-linear functions of the signals and the
noise (or secondary variables). For example, light intensity is a non-linear function of object shape,
reflectance, and illumination.

There is a close relationship between linearity and the assumption that the random variables of interest
are Gaussian 5. Although classical signal detection explored the implications of non-Gaussian pro-
cesses (Egan, 1975), most applications of signal detection theory to vision have typically approximated
noise variations as Gaussian processes. A Gaussian approximation works very well in certain domains
(as an approximation to Poisson light emission), but is extremely limited as a model of scene variabil-
ity. Both the linear and Gaussian assumptions have had a striking success in the general problem of
modeling human perceptual and cognitive decisions, where the variability is inside the observer (Green
and Swets, 1974; Swets, 1988). But the Gaussian assumption generally fails when modeling external
variability. For example, whenever a probability density involves more than second-order correlations,

4Primary and secondary variables have also been referred to as explicit and generic (or nuisance) variables, respectively.
5Because the log of a multi-variate Gaussian is quadratic, extrema can be found using linear estimators.
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a multi-variate Gaussian model is no longer adequate. Image samples from Gaussian models of natural
images fail to capture the rich structure of natural textures (Knill et al., 1990). Simple image measure-
ments, such as those made by simple cells of the visual cortex are highly non-Gaussian (Field, 1987).
A goal of pattern inference theory is to let the vision problem determine the distributions.

Fourthly, perception involves more tasks than classification. Not surprisingly, for signal detection theory,
the primary focus is on signal detection–was the signal sent or not? Perception involves a larger class of
tasks: classification at several levels of abstraction, estimation, learning, and control. Past applications
of signal detection theory have successively handled certain kinds of abstraction (e.g. “is any one of 100
signals there or not?” or “which of 100 known signals was sent?”) as well as estimation (Van Trees,
1968); but we also require a framework that can handle diverse tasks from continuous estimations (e.g.
of distance, shape, and their associations) to more complex categorical decisions: e.g. is the input
pattern due to a cat, a dog, or “my cat”? Tools for the former build on classical estimation theory,
but include recent work on hidden markov models. The latter requires additional tools, such as flexible
template theories to model shape abstraction. A mathematical framework for perception requires tools
for the generalization of ideal observers for the functional complex tasks of natural perception. Defining
primary and secondary variables is part of task specification, and pattern inference theory handles this
by incorporating decision theory to define a risk function (Section 4).

Finally, we note that most of the interesting perceptual knowledge on priors and utility is implicit.
Signal detection theory grew out of earlier work on decision theory. Two important components of
decision theory are the specification of prior probabilities of scene properties or signals and the costs
and benefits of actions, through a risk or cost function. In most applications of SDT, it has been
the experimenter that manipulates the priors and the cost functions. The human observer is often
aware of the changes, and can adopt a conscious strategy to take these into account. We argue that
the most important perceptual priors are largely determined by the structure of the environment and
can, in principle, be modeled independently of perceptual inference (i.e. in the synthesis phase of
study)6. Modeling priors (e.g. through density estimation) is a hard theoretical problem in and of
itself, especially because of the large number of potential interactions. In classical SDT, probabilities
are typically specified over small dimensional spaces. The costs and benefits are inherent to the type of
perceptual task, and determine the primary and secondary variables. Thus, to elaborate on Helmholtz’s
definition of perception: perception is (largely) unconscious inference involving unconscious priors, and
unconscious cost functions.

Thanks to the successes of signal detection theory, we know that perception is limited by two factors:
1) the available information for reliable learning, inference, and action; 2) brain mechanisms to process
that information. But one of the principal differences between classical SDT and pattern inference
theory is the greater emphasis on modeling the external limits to inference, including both synthesis
and optimal decoding. Both problems are clearly challenging, and computer vision has shown that the
second problem is surprisingly hard. We agree with Marr when he wrote in 1982: “...the nature of the
computations that underlie perception depends more upon the computational problems that have to be
solved than upon the particular hardware in which their solutions are implemented.” Theories of human
perceptual inference require an understanding of the limits of perceptual inference through optimal
decoding theories (Barlow, 1981; Geisler, 1989). These theories, in turn, require an understanding
of the transformations and variations introduced in pattern formation. We will argue here that the

6We emphasize an empirical Bayesian approach in which, as is discussed in Section 6, one can test an hypothesis relating
a subjective prior to an objective prior.
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structure of the visual information for function is best modeled in terms of its probabilistic structure,
and that as a consequence any successful system must reflect the constraints in that structure, and
further that its computations should be in terms of probability operations.

So, in the next section, we focus on the first problem: How can we model the information required
for a task? This modeling problem can be broken down into: a) synthesis, modeling the structure of
pattern information in natural images; and b) analysis, modeling the task and extracting useful pattern
structures.

3 Encoding of scenes in images: Modeling image pattern synthesis

Computer vision has emphasized the difficulty of image understanding, which involves decoding images
to find the scene variables causing the image measurements. Although, a great deal of progress has
been made in computer vision, the best systems are typically quite constrained in their domain of
applicability (e.g. letter recognition, tracking, structure from rigid body motions, etc.). The focus has
understandably been on decoding–e.g. solving the inverse optics problem. However, the success of image
decoding depends crucially on understanding the encoding. Although the computational challenge of
image understanding is widely appreciated, the difficulty and issues of image pattern synthesis are less
so.

How do we model the information images contain about scene properties? Following Shannon (1949),
the answer is through probability distributions. Treating perception as a communication problem, we
identify certain scene variables S as the messages, and the image formation and measurement mapping
as the channel p(I|S), by which we receive the encoded messages I. Given this identification, we can
use information theoretic ideas to quantify the information that I gives about S as the transinformation

I(S; I) = H(I)−H(I|S) = Ep(I)[− log p(I)]− Ep(S,I)[− log p(I|S)].

These entropies are determined by p(I) =
∫
S p(S)p(I|S)dS, the likelihood p(I|S), and the prior p(S).7

Thus, the physics of materials, optics, light, and image measurement, which determine the likelihood,
just scratch the surface of what is required to model image encoding. In addition, we need to understand
the types of patterns and transformations that result from the fact that images are caused by a structured
world of events and potentialities for an agent, which is captured in p(S). While probability and
information theory provide the tools for understanding image encoding, constructing theories with
these tools requires work. Let’s look at the framework, tools, and principles for theory construction.

7For simplicity, we’ve restricted our expressions to probability densities on continuous random, rather than discrete,
random variables. There are well-known subtleties in translating results between discrete probabilities and continuous
densities. Examples: 1) A change of representation (e.g. changing distance to vergence angle) will in general change the
form of the density–e.g. change a uniform density into a non-uniform one. 2) Entropy for continuous variables is inherently
relative, and thus transinformation is more useful (Cover and Joy, 1991). 3) If the range of a random variable is unknown,
then the principle of insufficient reason leads to “improper” priors (Berger, 1985).
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3.1 Essence of Bayes: Everything is a random variable

A key starting assumption is that all variables are random variables, and that the knowledge required for
visual function is specified by the joint probability p(Se, Sg, I). The basic ingredients are variable classes:
image measurement data (I), variables specifying relevant scene attributes (Se), and the confounding
variables (Sg). All these variables are random variables, and thus subject to the laws of the probability
calculus, including Bayes theorem. So for pattern inference theory, a Bayesian view is more than
acknowledging the role of priors, but also emphasizes the redundancy structure of images, and the
importance of the generative process of visual pattern formation, expressible as a graphical model. Thus
the essence of a Bayesian theory of perception is more than applying Bayes’ rule to infer scene properties
from images, or that likelihoods are tweaked by prior and labile subjective “biases”. This interpretation
(Myth 1: Bayesian models of perception are distinct only by virtue of emphasis on modeling priors8)
would miss the point of our view of pattern inference theory approach to perception. By starting with
a model space completely determined by the joint probability, p(Se, Sg, I), we have the foundation to
understand:

1) input image redundancy, through:

p(I) =
∫

p(Se, Sg, I) dSe dSg

2) scene structure, through:

p(Se, Sg) =
∫

p(Se, Sg, I)dI

and

3) inference, through:

p(Se, I) =
∫

p(Se, Sg, I)dSg

.

Of course, modeling p(Se, Sg, I) in general may pose an insurmountable challenge. But there is reason
for optimism, and recent work in density estimation and image statistics suggest that tractable high-
dimensional models may be possible (Zhu et al., 1997; Zhu and Mumford, 1998; Zhu, 1999; Simoncelli,
1997, 1998).

The key point is that necessary knowledge to characterize the perceptual problem is specified by a joint
probability over the given data (usually image measurements, but could include contextual conclusions
drawn earlier or elsewhere), what the visual system needs (primary), and the variables that confound
(secondary variables).

8At several points in this chapter, we address what we see as misconceptions of the Bayesian framework for vision. We
identify these as “myths”.
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3.2 Basic operations on probabilities: Conditioning and Marginalizing

We really have only two basic computations on probabilities, which follow from the two basic rules of
probability–the sum and product rules. Each of the rules has specific roles in an inference computation,
related to the kind of variable in the inference. When inferring the values of a set of variables Se, the
remaining variables come in two types: those which we don’t know and don’t care to know, and those
which are known either by sensory measurement or a priori. How is the joint probability affected by
this knowledge? The answer is to sum over the unneeded variables (marginalization), and divide the
joint by the probability of the known ones (conditioning).

1) Marginalization: Presuming the utility of only a subset of the scene variables (which we treat in
Section 4), the values of some variables Sg are not known, and we don’t care to know them. Marginal-
ization is the proper way to remove the effect of these secondary, unknown, unwanted variables:

P (Se, I) =
∫

Sg

P (Se, Sg, I)dSg

The reason we marginalize is that being unneeded doesn’t mean these variables should be ignored!
Most of the time, the unwanted variables (e.g. viewpoint) crucially contribute to the generation of the
possible images, and hence cannot be ignored. The marginalization approach contrasts with traditional
modular studies of vision, in which most of the unneeded variables for a given module are left out of
the discussion entirely (e.g. independent estimation of reflectance, shape, and illumination). Often, the
modularity is adopted based on general practical and theoretical arguments. Our position is not that
we forgo modularity, but rather that modularity be grounded in the statistical structure of the problem,
rather than by what the theorist finds convenient (Schrater and Kersten, 2000). It is important to
emphasize that this approach does not necessitate that marginalizations are executed on-line by the
brain. The effects of marginalization could be built directly into the inference algorithm avoiding the
need for perception to have an explicit representation of the unneeded variables.

2) Conditioning: Some of our variables are known, through data measurements, or a priori assump-
tions. In either case, once we know something about the variables, we base our inferences on this
knowledge by conditioning the joint distribution on the known information:

P (S|I) = P (S, I)/P (I)

The way Bayes’ rule comes into the picture is that it is often easier to separately model image formation
and the prior model for the causal factors. Bayes’ rule is a straightforward application of the product
rule to P (S, I) = P (I|S)P (S):

P (S|I) = P (I|S)P (S)/P (I)

The likelihood P (I|S) is determined by the generative image formation model which produces image
measurements from a scene description. The generative model produces the image patterns, and consists
of the scene prior, and the image formation model. The likelihood is easier to model because we are
conditioning on the scene, and the image is a well-defined function of the scene–forward optics plus
measurement noise. Although the likelihood and prior terms are logically separable, the division has
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little bearing on the algorithmic implementation. When it comes to inference, Bayes is neutral with
respect to whether a priori knowledge is used in a bottom-up or top-down fashion (Myth 2: Priors
are top-down.). The regularizers in computer vision can be expressed as priors, and these are typically
instantiated as bottom-up constraints (e.g. weights in feedforward networks (Poggio et al., 1985; Poggio
and Girosi, 1990)).

Why should scene variables be treated probabilistically? In contrast to subjective Bayesian applications
(Myth 3: Priors only refer to subjective, and perhaps conscious biases.), prior probabilities on scene
variables are objectively quantifiable. They result from physical processes (e.g. material properties
such as albedo and plasticity covary due to common dependence on the substance, such as metal), and
from the relative frequencies of the scene variables in the observer’s environment. Thus, vision modelers
have a big advantage over stock market analysts: they have a better idea of what the functionally
important scene causes are, and can hypothesize and test probability density models of scene variables,
independent of visual inference. They can also test the extent to which vision respects the constraints
in the prior model (see Section 6). Why is probability essential for modeling pattern synthesis? Because
an infinite set of scenes can produce a given image. Thus, in the decoding problem it is essential to
have a model of the generative structure of images, given by p(S|I) and p(S). Below we discuss how
several kinds of generative processes produce characteristic image patterns.

3.3 Generative models in vision

Functional vision depends on the kind of abstraction required for the task at hand. But psychological
abstractions such as scene categories, object concepts, and affordances rest on the existence of objective
world structure. Without such structure, there would be no support for reliable inferences–in fact,
there would be no basis for consistent action in a world in which each image is independent of any
previous ones. From this perspective, it is not unreasonable for an otherwise functional visual system to
hallucinate in response to visual noise, because the best world interpretations will be structured. Thus,
understanding the objective generative structure is necessary although not sufficient for an account of
human visual perception9. However, a central theme of this chapter is the importance of understanding
the objective generative processes of the images received. It is an intriguing scientific question as to
the degree with which perceptual inference mechanisms mirror or recapitulate the generative image
structure. Theories of back-projections in visual cortex rest on internal generative processes to deal
with “explaining away” (Dayan et al., 1995; Hinton and Ghahramani, 1997) (see Section 4.3), the
related idea of model validation through residual calculation (Mumford, 1992, 1994), and predictive
coding (Rao and Ballard, 1999). As we discuss later, the task itself refines our model of the relevant
statistical structure through Bayesian modularity.

Visual perception deals with two broad classes of generative processes that produce photometric and
geometric image variation. Further, it is useful to distinguish scene variations (knowledge in p(S))
from those of image formation (knowledge in p(I|S)). We postpone the discussion of the experimental
implications of these variations until Section 6.

9This is one way of distinguishing the Bayesian perspective from a strict Gibsonian view which could be interpreted as
assuming that objective structure is also sufficient to explain functional vision.
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Figure 2: Illustrations of variations in scene variables. Top left: A collection of bicycles shows variations
in geometry (size, shape) and albedo (paint patterns). Top right: Two images of the same bicycle from
the same view but differing in articulation. Bottom left: A flat-tailed Gecko hides on a tree, showing
how variation in skin pigment (albedo) can match the background pattern of the tree bark (Copyright
Martin Kramer). Bottom Right: A river illustrates the complexities of spatial layout. The presence and
directionality of the water is encoded in the complex array of specularities and light scatter, determined
by the interaction between light source, water surface fluctuation, and viewpoint.
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Figure 3: Variations in illumination and viewing. Top Left: A young man’s face shows shading variation
due to the extrinsic shadows cast by leaves. Top Right: Reflection of a face on the glass door of a bookcase
creates a transparent image. Bottom Left: Two images of the same bicycle differing in viewpoint. Bottom
right: A deer hides behind foliage, illustrating occlusion/background clutter (Copyright Mark Brady).
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3.3.1 Object and scene variations

A logical prerequisite for a full understanding of image variation is a study of the nature of illumination,
surface reflectivities, object geometry, and scene structure quite independently of the properties of the
sense organs. Consider geometrical object variations that occur for a single object. An individual
object, such as a pair of scissors, or a particular human body consists of parts with a range of possible
articulations. The modeling problem is of significant interest in computer graphic synthesis because
it provides the means to model the transformations, and ultimately characterize the probabilities of
particular articulations and actions.

Objects (and scenes) can be categorized at more abstract levels, such as “dogs” or “books” (Bobick
and Richards, 1986; Rosch et al., 1976). Examples of sources of within-class scatter include geometric
variations that occur between different members of the same species, vehicles, or computer keyboards.
Certain types of within-class geometric variation (e.g. “cats”) can be modeled in terms of prototypes
together with a description of geometric deformations (Grenander et al., 1991; Yuille, 1991; Mumford,
1996) which admit a probability measure p(S). For this sort of within-class variation, it may be possible
to find p(S) through probability density estimation on scene descriptions. Estimating prior densities
(e.g. via Principal Components Analysis or PCA) for the distribution of facial surfaces (variations across
human face shapes) is now possible due to advances in technology for measuring depth maps (Atick
et al., 1996; Vetter and Troje, 1997). Material or albedo variation also occurs across an object set–
e.g. the set of books, with different covers. And of course there are mixtures of geometrical and
photometrical effects, such as within-species variation among dogs. There is a considerable body of
work on biological morphometrics whose goal is to understand the transformations connecting objects
within groups (Bookstein, 1978, 1997; Kendall, 1989). Origin of concepts at certain levels may lie in
the generative structure of objects, and debate has occurred as to whether an entry-level object concept
is based on a prototype with (possibly) a metric model of variation, or a description of the structural
relationships between parts. We touch on this point later in the context of object recognition models.

“Schemas” are an example of an even higher level of organization involving spatial layout, which rec-
ognizes the spatial relationships between objects, and their contextual contingencies. The fact that
perceptual judgments are strongly influenced by scene context, (e.g. forest, office, or grocery store
scene), suggests that p(S) is not at all uniform across spatial layout, but rather is highly ‘spiked’ which
allows scene type recognition and its exploitation for scene analysis. See figure 2 for examples of scene
variable variations.

3.3.2 Effects in the image

At the most proximal stage, the images projected into the eyes are transformed by the optics, sampled
by the retina, and have noise added to them. These operations produce the well-studied photometric
variations of luminance noise and blurring in the images..

Due to the additivity of light and the approximate linearity of reflection, photometric variations due to
illumination change are approximately linear so that under fixed view, an arbitrary lighting condition
can be approximated by the weighted sum of relatively few basis images (Epstein et al., 1995). Further,
it has been shown that the images of an object fall on or near a cone in image space (Belhumeur and
Kriegman, 1996). Cast shadows are another form of illumination variation resulting from the occlusion
of a light source from a surface. Specularity in an image is an interaction between material, shape, and
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viewpoint. Surface transparency is another source of photometric variation. Its effect in the image can
be either additive or multiplicative (Kersten, 1991). One form of additive transparency results from the
combination of reflections in a store-front window.

Variations in observer viewpoint (i.e. viewing distance and direction) produce geometric deformations
in the image. The utility of multiple-scale analysis in human and machine vision is in part a consequence
of the distribution of translations in depth of the eye (or camera) viewpoint. Over small changes in
viewing variables, the image variations are fairly smooth, although rotations around the viewing sphere
can cause large changes in the images due to significant self-occlusions. If we were only concerned with
geometry, viewpoint variations and variation in object position and orientation would produce the same
set of images. However, illumination interacts with viewpoint so that view rotation is only equivalent to
object rotation if the lighting is rigidly attached to the viewer’s frame of reference. Rotations in depth
cause particularly challenging image variations for object recognition that we briefly discuss later.

The distribution of multiple objects in a scene affects the images of objects through occlusion and
clutter. Because of the nature of imaging, the local correlations in surface features typically carry
over to local image features. However, occlusion of one object by another breaks up the image into
disconnected patches. Further, patches widely separated in the image can be statistically related, and
the challenge is to link the appropriate image measurements likely to belong to the same objects. Like
occlusion, background is a significant confounding source of image variation that thwarts segmentation.
The intensity edges at the bounding contours of an object can vary substantially as the background is
changed, even if the view and lighting remain the same. See figure 3 for examples of illumination and
viewing effects on images.

Occlusion is the result of the distribution of the kinds and spatial arrangements of objects within a
scene relative to the viewpoint. But the spatial layouts of schemas also generate statisical dependence
in images. Temporal variation in images is induced by object motion and observer actions (Bobick,
1997). Thus the spatio-temporal image distribution is affected by the distribution of observer actions,
and object dynamics (e.g. freeway driving).

3.4 Graphical models of statistical structure

S

I1 I2

S1 S2

I

S L

I

Figure 4: Components of the generative structure for image patterns involve converging, diverging, and
intermediate nodes. For example, these could correspond to: multiple (scene) causes {S1, S2} giving rise
to the same image measurement, I; one cause, S influencing more than one image measurement, {I1, I2};
a scene (or other) cause S, influencing an image measurement through an intermediate variable L.

In general, natural image pattern formation is specified by a high-dimensional joint probability, requiring
an elaboration of the causal structure that is more complex than the simplified model in the bottom
panel of figure 1. The idea is to represent the probabilistic structure of the joint distribution P (S, I)
by a Bayes net (Pearl, 1988; Ripley, 1996), which is simply a graphical model that expresses how
variables influence each other. There are just three basic building blocks: converging, diverging, and
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intermediate nodes. For example, multiple (e.g. scene) variables causing a given image measurement,
a single variable producing multiple image measurements, or a cause indirectly influencing an image
measurement through an intermediate variable (see figure 4). These types of influence provide a first
step towards modeling the joint distribution and, as we describe in Section 4 below, the means to
efficiently compute probabilities of the unknown variables given known values.

Influences between variables are represented by conditioning, and a graphical model expresses the condi-
tional independencies between variables. Two random variables may only become independent, however,
once the value of some third variable is known. This is called conditional independence.10

Using labels to represent variables and arrows to represent conditioning (with a → b indicating b is
conditioned on a11), independence can be represented by the absence of connections between variables.
For example, if the joint probability p(a, b, c, d, e, f, g) factors by independence into p(a, b, c, d, e, f, g) =
p(a)p(b)p(c|d)p(d)p(e|a, b)p(f |b, c)p(g|d), then the variables can be represented by the graph in figure 5.
Had the variables factored into two independent groups the graph would have shown two separate nets.
The example graph can represent a Bayes network for computing structure from stereo and texture if
we allow some of the nodes to represent multiple variables. To illustrate, let the node a represent the
geometric and material causes of a particular image texture, and e represent the collection of texture
measurements made by the observer. The node b represents absolute depth from the observer and is the
variable of interest for the task. The horizontal and vertical disparity measurements are bundled into
f , which depends on both the depth variable b and the direction and distance of the observer’s fixation
point, c, in space. The fixation point distance is determined by the convergence angle, d, between the
eyes. The convergence angle can be inferred from non-visual proprioceptive feedback from the eyes
represented by the data variable g.

Note that the graphical structure captures the structure of the data formation. The top layer of the
graph represents the scene and viewing variables, whose causal effect on the sensory data in the bottom
layer is represented by the directed arrows.

4 Optimal decoding: Modeling the tasks

The basic tenet is that perception enables successful behavior, and thus any decoding scheme is designed
to extract useful information about the true state of the world. But the essence of decision theory
analysis is the trade-off between truth and utility. A complete characterization of optimal behavior
cannot dispense with either dimension. Even the simple problem of deciding whether a flash of light is
bright or dim is only a useful visual function, if the task is to decide whether one or the other determines
a true state of the world. Was the light switch set to high or low? Was the object closer or nearer? The
fundamental computational problem of vision is: given visual data, how can the system determine the
environmental causes of that data, when it is confounded by other variables. If one accepts this, then
we can make the case that visual perception is fundamentally image decoding. But whether to draw
an inference, or the precision with which it must be drawn is determined by the visual function. As

10Two random variables are independent if and only if their joint probability is equal to the product of their individual
probabilities. Thus, if p(A, B) = p(A)p(B), then A and B are independent. If p(A, B|C) = p(A|C)p(B|C), then A and B
are conditionally independent. When corn prices drop in the summer, hay fever incidence goes up. However, if the joint
on corn price and hay fever is conditioned on “ideal weather for corn and ragweed”, the correlation between corn prices
and hay fever drops. Corn price and hay fever symptoms are conditionally independent.

11In graph theory, a is called the parent of b
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a = texture model
b =  depth
c = fixation distance
d = convergence
e = monocular cue (texture)
f = disparity
g = proprioception
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Figure 5: Example Bayes Net. a) Bayes net representing the factored distribution p(a, b, c, d, e, f, g) =
p(a)p(b)p(c|d)p(d)p(e|a, b)p(f |b, c)p(g|d). The graphical model can express the probabilistic structure of
depth from stereo and texture inference. b) When estimating the depth variable b, the Net can be
decomposed into two separate depth modules (depth from texture and depth from stereo). The dashed
boxes show the modules. c) When estimating the fixation distance c, the net can be decomposed into two
separate distance modules (distance from texture and stereo, and distance from proprioception). Note
that the left hand side of the graph does not decompose as before. This illustrates Bayesian modularity
(see Section 4.3).
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with any decoding system, perception operates with target goals that depend on the task. A complete
theory of vision needs to account for three classes of behavioral tasks:

1) The visual system draws discrete (categorical) conclusions about objective world. These decisions
invariably involve taking into account potentially large variations in confounding secondary variables.
For example, to reliably detect a face, a system must allow for variations in view, lighting, background,
as well as the geometrical variations in individual facial shape, expression, and hair. Finer-grain identi-
fications require more estimates of primary variables, and less marginalization with respect to secondary
variables (Kersten, 1997). Because the causes are objective, decisions have a right or wrong answer.
Further, the cost due to incorrect decisions can be large or small. A mistake in animal identification
can have serious consequences. Failing to anticipate the change in color of a sweater going from indoor
to outdoor lighting may cause only mild social embarrassment, requiring little investment in perceptual
(vs. learned cognitive) resources.

2) The visual system provides continuously valued estimations for actions. For example, visual informa-
tion for depth and size determine the kinematics of reach and grasp. Like discrete decisions, estimations
can have degrees of utility.

3) The visual system adapts to environmental contingencies in the images received. This adaptation is
at longer time scales than inference required for perceptual problem solving, occurring over both phylo-
genetic and ontogenetic scales. One form of adaptation requires implicit probability density estimation.

Can we describe these processes from the point of view of pattern inference theory–i.e. as image
decoding by means of probability computations? To do so requires a probabilistic model of tasks. We
consider a task as specifying four things, the required or primary set of scene variables Se, the nuisance
or secondary scene variables Sg, the scene variables which are presumed known Sf , and the decision
to be made. Each of the four components of a task plays a role in determining the structure of the
optimal inference computation. First, we review how to model the decision as a risk functional on
the posterior distribution, then we show that Se and Sf can be used to simplify the joint distribution
through independence relations, while Sg and the decision rule can make one choice of Se simpler than
another.

Bayesian decision theory provides a precise language to model the costs of errors determined by the
choice of visual task (Yuille and Blthoff, 1996; Brainard and Freeman, 1997). The cost or risk R(Σ; I)
of guessing Σ when the image measurement is I is defined as the expected loss:

R(Σ; I) =
∫

S
L(Σ, S)P (S | I)dS,

with respect to the posterior probability, P (S|I). The best interpretation of the image can then be
made by finding the Σ which minimizes the risk function. The loss function L(Σ, S) specifies the cost
of guessing Σ when the scene variable is S. One possible loss function is −δ(Σ − S). In this case the
risk becomes R(Σ; I) = −P (Σ | I), and then the best strategy is to pick the most likely interpretation.
This is standard maximum a posteriori estimation (MAP). A second kind of loss function assumes that
costs are constant over all guesses of a variable. This is equivalent to marginalization of the posterior
with respect to that variable.

The introduction of a cost function makes Bayesian decision theory an extremely general theoretical tool.
However, this flexibility has drawbacks from a scientific perspective. We could potentially introduce
a loss function for each scene variable, which makes it impractical to independently test cost function
hypotheses empirically–and we are stuck with an additional set of free parameters. However, we can
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achieve modeling economy by assuming the delta function or constant loss functions depending on
whether the variable is needed (primary) or not. Thus, we advocate initially constructing simpler
Bayesian theories in which we estimate the most probable relevant scene value (MAP estimation), while
marginalizing with respect to the irrelevant generic variables. Bloj and colleagues have a recent example
of this strategy applied to the interaction of color and shape (Bloj et al., 1999).

We now describe how the statistical structure and task interact in determining the inference computa-
tions. While the statistical structure of the joint distribution determines which variables interact, the
choice of decision rule and marginalization variables determine the details of how they interact. In the
next section, we show how the task, in choosing the relevant variables, partitions the scene variables
through statistical independence.

4.1 Partitioning the scene causes: Task dependency and conditional independence

Considering a single task allows us to focus our attention on a particular set of variables Se. In some
cases, we may be justified in ignoring a number of scene properties irrelevant to the task. This idea
can be expressed in terms of the distributions through statistical independence. We may factor p(S, I)
into two parts, one of which contains all the variables which are statistically independent of Se and the
other which contains all of the dependent variables, p(S, I) = p(Iind|Sind)p(Idep|Sdep)p(Sind)p(Sdep)12.
In terms of a graphical model, this partitioning corresponds to unconnected sub-graphs. Specifying a
task restricts our base of inference to p(Idep, Sdep).

In addition, the nature of a task or context fixes some of the scene variables Sf . For instance, if an
observer is doing quality checking on an assembly line, then the lighting variables and viewpoint can
be considered fixed. Note that constraints used to regularize vision problems can often be expressed as
fixing a set of scene variables. For instance, in a world of polynomial surfaces, the constraint that the
task only involves flat surfaces can be rephrased as all non-linear polynomial coefficients are fixed at
zero.

Since the variables in Sf are presumed known, we can subdivide the dependent variables still further,
Sdep → S′

dep, Sf and condition p(Idep, Sdep) on Sf , p(Idep, S
′
dep|Sf ), which increases the statistical inde-

pendence of the variables. This is true because variables which are not statistically independent, because
they are dependent on a common variable, become independent when conditioned on the common vari-
able. Thus we expect the conditional distribution to further decompose into relevant and irrelevant
scene variable components.

Thus given the task, we can first factor p(S, I|Sf ) =
∏N

i=1 p(Si, I|Sf ). To do inference we need only
consider the factors in which the Si contain the variables in Se. Let Sj denote the minimal set of
statistically dependent variables containing Se. The variables in Sj excluding Se are just the secondary
variables Sg. Then, p(Se, Sg, I|Sf ) contains all the information we need to perform the inference task,
and has automatically specified the task relevant and irrelevant variables, i.e. the primary and secondary
variables. Thus the independence structure determines which variables should be involved in an inference
computation. This is an important issue for modeling cue integration.

In terms of graphical models, the set of variables Se and Sg for the task have the property that they are
connected by the image data. In other words, Se and Sg are both involved in generating the image data.
The basic generative structure of the perceptual inference problem is illustrated in the lower panel in

12For notational convenience, here we use S to indicate the set of scene variables to be partitioned, {S}.
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Object perception Spatial layout
Object-centered World-centered Observer-centered

(object recognition) (hand action)
Basic-level Subordinate-level Planning Reach Grasp

Shape E E G G G
Material G E G G G

Articulation G E G G E
Viewpoint G G G E G

Relative position G G E G G
Illumination G G G G G

Table 1: Table illustrating how the visual task partitions the scene variables into primary (E) and
secondary (G) variables. The pattern of image intensities is determined by all of the scene variables, object
shape, material, object articulation (e.g. body limb movements or facial expression), viewpoint, relative
position between objects, and illumination. Basic-level recognition involves more abstract categorization
(e.g. dog vs. cat) than subordinate-level recognition (Doberman vs. Dachshund), and is typically thought
to be shape-based, with material properties such as fur color discounted. Finer-grain subordinate-level
recognition requires estimates of shape and material.

figure 1 from the point of view of pattern inference theory. Comparing this diagram to the generative
diagram for the standard signal detection theory above it, we can better see how pattern inference
theory is a generalization of the typical way of using signal detection theory. In most applications of
SDT to vision, the image data are generated by signals plus noise, which allow us to identify Se as the
signal set, and Sg as the noise. Thus, one of the key ideas of pattern inference theory is that unwanted
variables act like noise in the context of a particular inference task. However, the noise is multivariate,
highly structured and in general cannot be modeled by a unimodal distribution. While the set of generic
variables, Sg, play the role of noise for one task, they form the “signal” for another task, because the
distinction between primary and secondary depends on the visual function. What is a primary variable
for one task may be secondary for another. Table 1 illustrates how various visual tasks determine the
primary vs. secondary variables.

One of the consequences of deciding a task, is that ambiguity can be reduced through marginaliza-
tion (Freeman, 1994; Knill et al., 1996b). The basic principle is: perception’s model of the image
measurement ((i.e. the generative consequence of the primary variable’s prediction of the image mea-
surement) should be robust with respect to variations in the secondary variables. In fact, the general
viewpoint principle is a consequence of viewpoint being a secondary variable (Freeman, 1994).

4.2 Partitioning image measurements: Sufficient statistics

Once we have determined which scene variables are relevant to the task, the independence structure
of p(Se, Sg, I|Sf ) specifies the image measurements to make. Assuming we have a set of measure-
ments {m1(I),m2(I),m3(I), . . .} which form a good code for p(I), then we can determine which image
measurements to use by partitioning the joint distribution. The joint distribution,

p(Se, {m1(I),m2(I),m3(I), . . .}|Sf )

will further factor into relevant and irrelevant image measurements, yielding a set M of measurements
required for the task. If we inspect the posterior distribution needed for inference p(Se|M,Sf ), we
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can interpret the set M as the set of sufficient statistics for Se, since p(Se|I,M, Sf ) = p(Se|M,Sf ) fits
the standard definition of a sufficient statistic (Duda and Hart, 1973). While many different sets of
measurements can form sufficient statistics, minimal sufficient statistics are the smallest set of sufficient
statistics and have the property that any other set of sufficient statistics are a function of them. This
new perspective leads to the principle: a good image code for a visual system is one that forms a set of
minimal sufficient statistics for the tasks the observer performs.

4.3 Putting the pieces together: Needed scene estimates, sufficient image measure-
ments, and probability computation.

We have shown for optimal inference, how the choice of required variables determines which scene
variables we need to consider through statistical independence, and the set of image measurements
through the notion of sufficient statistics. We now illustrate how the variables interact in optimal
inference, which is determined by the details of the generative model and the choice of loss functions.
The generative model, in specifying how the secondary variables interact with the primary variables to
produce an image, determines to a large extent how the primary and secondary variables interact in
an inference computation. However, the choice of cost function, by specifying different costs for errors,
modulates the relevance of errors induced by the ignorance of particular secondary variables.

To be more specific, we return to the generative model for texture, disparity and proprioceptive data.
(figure 5), but now from the point of view of decoding–estimating depth from measurements of dis-
parity and texture. In Bayesian inference, the change in certainty of the scene variables causing the
image after receiving image data respects the generative model. Both prior knowledge and image mea-
surements fix values in the network, and the problem is to update the probabilities of the remaining
variables. Updating the probabilities is straightforward for simple networks, but requires more sophis-
ticated techniques such as probability or belief propagation, or the junction-tree algorithm for more
complex networks (Frey, 1998; Weiss, 1997; Jordan, 1998). The primary effect of receiving image data
is to change the certainty of all the variables which could possibly generate the image data. One effect
of having more than one image measurement is known as “explaining away” in Bayes nets. For example,
suppose we observe that the texture measurements e are compressed in the y direction relative to an
isotropic texture. The compression might be the result of our texture being non-isotropic (i.e. attribut-
ing the observation to the texture model a), it might be due to the surface having a depth gradient (i.e.
attributing the measurement to the surface depth b), or it might be due to a little of both. Given only
the texture measurement, the data supplies evidence for both a and b. However, if we have additional
disparity data f which is consistent with a depth gradient, then our best inference is that both the
texture compression and the disparity gradient are caused by a depth gradient. This second piece of
information drives the additional inference that our texture model should be isotropic–a common depth
gradient “explains away” the coincidence between the disparity gradient and the texture compression.
Bayesian inference does this naturally by updating probabilities of each needed but unknown variable.
The process of updating probabilities in a network is more powerful than estimating a single state. For
example, if the random variables in the network are Gaussian, then updating probabilities requires new
estimates of the mean and variance.

The task also affects the algorithmic structure. To illustrate, consider trying to do inference based on
the total probability distribution. We would need to maintain a probability distribution on more than 7
dimensions (one for each node in the network plus the nodes with multiple variables). Thus, computing
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using the entire distribution would be computationally prohibitive. However, the statistical independen-
cies show a kind of modularity we call Bayesian modularity. In Bayesian modularity, the independence
structure allows us to produce separate likelihood functions for the variable of interest, which can be
combined by multiplication. For instance, if we are doing inference on b in the above example, p(e|b) =∫
a p(e|a, b)da produces one likelihood function and p(f, g|b) =

∫
c [

∫
d p(g|d)p(c|d)p(d)dd] p(f |b, c)dc pro-

duces the other. This division creates two ’modules’ illustrated in figure 5b. The division also creates
enormous computational savings, as we only need to maintain three likelihoods over two variables:
{a, b}, {b, c} & {c, d}. Modularity is modulated by the task. Figure 5c shows how Bayesian modularity
changes as a function of which variables are estimated.

The quantitative influence of the data on the inference depends critically on both the likelihood and the
knowledge we have about the secondary variables. The value of priors on secondary variables is clear,
however the effect of likelihood is more subtle, as it depends on the number of possible scene causes
for an image and the change in the image given a change in the scene variables. For example, Knill
has shown that texture information is less reliable for frontal parallel surfaces than for strongly slanted
surfaces because large changes in slant for fronto-parallel surfaces cause small changes in image texture
compared to slant changes for strongly slanted surfaces (Knill, 1998b).

Now depending on our cost function, the two likelihood functions p(e|b) and p(f, g|b) for the depth b
will have different influences on the decision. For example, consider a depth task in which the cost of
depth errors is only high when the depth gradient is small (i.e. the surfaces are nearly fronto-parallel).
In this case the depth from texture module will be nearly irrelevant to the decisions, because texture
information is only reliable for large depth gradients(Knill, 1998b), whereas disparity information can
be reliable for small depth gradients.

5 Learning generative structure

In pattern inference theory, learning is estimating the density p(S, I), and discovering the appropriate
cost function for the task. For example, learning to classify images of faces as male or female requires
knowledge of intragender facial variability (i.e. p(S)), knowledge about how faces produce images
(i.e. p(I|S)), and the decision boundary set by the cost of incorrectly identifying the faces. The
two components, density estimation and cost function specification, have a rough correspondence to
what we might call task-general and task-specific constraints respectively. Task-general constraints are
those which hold irregardless of the specific nature of the task, which correspond to the fundamental
constraints on inference set by the structure of the joint density. On the other hand, the choice of cost
function is always task-specific, since it involves specifying the costs for a particular task. For generality,
we focus on density estimation below.

It is one thing to talk about what one could do given the joint probability for a visual problem, and
it is quite another matter to actually obtain it. High-dimensional probability density estimation is
notoriously difficult. This observation has lead to radically different alternatives to learning, which
place focus on the decision boundaries, largely ignoring the within-class structure (e.g. Support vector
machines (Vapnik, 1995)). We discuss here several reasons to be optimistic.

An essential requirement for density estimation is to have a rich vocabulary of possible densities, which
are typically parametric, from which a best fit to the image data can be achieved. The second require-
ment is having a sensible error metric to assess the best fitting density model. Zhu, Wu & Mumford
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(1997) have developed a general method for density estimation based on the Minimax Entropy Princi-
ple which allows the consideration of both the best fitting model and what image measurements should
be used. They assume that the density can be approximated well by a Gibbs distribution. Given
a set of image measurements, they fit the best Gibbs distribution using the maximum entropy prin-
ciple (Jaynes, 1957)13, which in essence chooses the least structured distribution consistent with the
image measurements. They then use the Kullback-Leibler divergence to select between different models
and sets of image measurements. Maximum entropy fits prevent model overfitting and choose the Gibbs
distributions for which the set of image measurements are sufficient statistics.

Another approach to density estimation works by evaluating the evidence (MacKay, 1992). Let G
represent an index across the set of generative models we are considering. Then we select the best fitting
model by maximizing the evidence p(G|I) = p(I|G)p(G), where p(I|G) =

∫
SG

p(I|SG, G)p(SG)dSG.
Assuming we have a lot of image data, the prior across models does not matter much and the decision is
based on p(I|G). Choosing models by maximizing the evidence naturally instantiates Occam’s Razor,
i.e. models with lots of parameters are penalized (MacKay, 1992). Schwarz (Schwarz, 1978) has found
an asymptotic approximation to log p(I|G) for well behaved priors which makes the penalty for the
number of parameters of G explicit: log p(I|G) � log p(I|G, ŜG)− log N

2 Dim(G), where N is the number
of training samples, ŜG is the maximum likelihood estimate of the scene parameters and Dim(G) is
the number of parameters for the model G. A similar formula arises from the Minimum Description
Length (MDL) principle, which through Shannon’s optimal coding theorem, is formally equivalent to
MAP. While embodying Occam’s Razor, evaluating the evidence works by choosing the model which is
the best predictor of the data.

There have also been a few studies that try to directly learn a mapping from image measurements to
scene descriptions (Freeman and Pasztor, 1999; Kersten et al., 1987). However, these approaches are
limited in requiring the availability of sample pairs of scene and image data. While general methods
could be used by the visual system for learning, the visual system may employ quite impoverished models
of the joint density. The key point is that learning algorithms for both objective physical modeling or
biological learning can be expressed in the Bayesian language of pattern inference theory.

6 Testing models of human perception

In order for the pattern inference theory approach to be useful, we need to be able to construct predictive
theories of visual function which are amenable to experimental testing. While we have discussed the
elements of constructing Bayesian theories throughout the paper, it is important to distinguish the role
of the mathematical language from the elements of a theory of vision.

6.1 Pattern Inference Theories of Vision

How do Bayesian or pattern inference theories of vision differ from other theories (e.g. Gestalt)? The
answer so far is that they express observer principles in terms of probabilities and cost functions. Thus,
these theories will involve explicit statements about the scene variables and image measurements used,

13The Maximum Entropy Principle is a generalization of the symmetry principle in probability, and is also known as the
principle of insufficient reason. For example, it says that one should assume a random variable is uniformly distributed
over a known range unless there is sufficient reason to assume otherwise.
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the prior probabilities on scene variables, the image formation and measurement model assumed by
the observer, and the relative costs assigned to potential outcomes in a task. We also hope however,
that pattern inference theory lead to a set of fundamental and deep principles akin to the laws of
thermodynamics, also expressible in the same framework. The importance of such principles for scientific
economy should not be underestimated. From the right first principles, an infinite set of experimentally
testable consequences can be derived, not all of which are testable. Instead, it is enough to focus
on testing the surprising consequences, which, when enough are verified, make it possible to reliably
predict perceptual performance in unstudied domains. Past and recent work has built on the Bayesian
perspective to advance a number of what we might call “deep principles” applicable to human perception.

1) The visual system seeks codes which minimize redundancy in the input (Barlow, 1959; Olshausen and
Field, 1996; Atick and Redlich, 1992; Bell and Sejnowski, 1997). This principle exists in various forms,
such as MDL encoding, minimax entropy (Zhu et al., 1997), principal components analysis (Bossomaier
and Snyder, 1986) and independent components analysis (Bell and Sejnowski, 1997).

2) Given equally likely causes of an image, the visual system chooses the model with the least number
of assumptions. In this sense, quantitative versions of the Gestalt principle of simplicity (e.g. via MDL
realization of Occam’s razor) apply as a principle to resolve ambiguity (Restle, 1982; Leeuwenberg,
1969). The pattern inference theory distinctive is that it has the (yet to be obtained) goal of deriving
the rules of simplicity from density models based on ensembles of natural image (e.g. (Zhu, 1999)).

3) The visual system actively acquires new information by maximizing the expected utility or minimizing
entropy of the information for the task (Amit and Geman, 1997). This principle has been applied to an
ideal observer model of human reading (Legge et al., 1997).

4) Perceptual decisions are confidence-driven. This requires that computations take into account both
estimates and the degree of uncertainty in those estimates. Evidence that human perception does
this comes from studies on cue integration (Landy et al., 1995), orientation from texture discussed
above (Knill, 1998a), motion perception, discussed below (Weiss and Adelson, 1998), and visual motor
control (Wolpert et al., 1995).

5) Perception’s model of the image measurement should be robust with respect to variations in the
secondary variables. We noted above that the general viewpoint principle is a consequence of viewpoint
being a secondary variable (Freeman, 1994), and that ambiguity in depth from shadows can be resolved
by treating illumination direction as secondary.

6) The visual system predictively models its behavioral outcomes. Until recently, the Bayesian approach
to perception has been largely static; however, Bayesian techniques can be used to model both learn-
ing (Jordan, 1998) and time-variant processes (Dean, 1988; Barker et al., 1995).(Myth 4: Bayes lacks
dynamics.) For example, the Kalman filter provides a good account of kinematics of visual control of
human reach (Wolpert et al., 1995). Consistent with the probability computation theme of this chapter,
the Kalman filter goes beyond estimates of central tendency, and estimates both the mean and variance
of control parameters.

7) The visual system performs ideal inference given its limitations in representing image data, but only
for a limited number of tasks (Schrater and Kersten, 2000). In the next section, we discuss using this
principle to develop models of ideal performance as a default hypotheses. It is essentially a statement
that the visual system should be optimally adapted to perform certain visual tasks relevant to the
observer’s needs.
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For Bayesian theory construction to be useful, we must show that the theories admit experimental
testing. In the next section we discuss practical aspects of testing pattern theoretic hypotheses at
several levels of specificity. In particular, we return to principle (7).

6.2 Ideal observers and human scene inference

How do we formulate and test theories of human behavioral function within a pattern inference theory
framework? In psychophysical experiments, one can: a) test at the constraint level–what information
does human vision avail itself of?, or; b) test at the mechanism level–what neural subsystem can account
for performance? Pattern inference theory is of primary relevance to hypotheses testable at the former
level. Tests of human perception can be based on hypotheses regarding constraints contained in: the two
components of the generative model, 1) the prior p(S) and 2) the likelihood p(I|S); 3) the image model
p(I); or 4) the posterior p(S|I). A distinction based on the source of a constraint serves to clarify the
otherwise confusing idea of “cue” which muddles scene and image constraints (Knill et al., 1996b). For
example, the “occlusion cue” is sometimes defined in terms of “overlapping surfaces”, and sometimes
as a “T-junction” in the image contours. But surface occlusion is the causal source of a “T-junction”.
(Myth 5: Identifying “Bayesian constraints” provides no advantage over identifying traditional “cues”.)

1) The prior. The well-known “light from above” assumption in shape-from-shading is an example of
an hypothesis expressed solely in terms of a prior distribution on a scene variable, light source direction.
Given that primary lighting for most of human history has been the sun, a prior bias on lighting from
above is an example of a prediction which could be generated by a study of the natural distribution
of scene variables, which can be quantitatively documented using density estimation. A fruitful first
pass could be a more widespread use of principal components analysis as a way of seeking economical
density models. Indeed, empirical measurements of the distribution of spectral reflectance functions
of natural surfaces have shown that the set of naturally occurring spectral reflectance functions can
be well-modeled as linear combinations of three basis functions (Maloney and Wandell, 1986). When
restricted to natural illumination conditions, this result supplies an especially simple interpretation of
trichromacy: three spectral measurements are usually enough to determine spectral reflectance. Earlier
we noted research on prior models for facial surfaces (Atick et al., 1996; Vetter and Troje, 1997). In a
different example, an observer’s assessment of the 3-D position of a moving ball is affected by moving cast
shadow information. The observer’s data can be qualitatively described in terms of a prior “stationary
light source” constraint (Knill et al., 1996a). The subjective biases in the perception of shape from
line contours have been studied by Mamassian and Landy(1998) (Mamassian and Landy, 1998). An
interesting problem for the future will be to relate these subjective priors to ones discovered objectively
through density estimation (Zhu, 1999).

2) The likelihood term. The independent variables in a psychophysical experiment can be specified in
terms of the scene or image variables, or in the language of perceptual psychology, in terms of the
distal or the proximal stimulus. Even if one doesn’t have an ideal observer model, it is still possible to
manipulate the scene variables in the generative model to test hypotheses at these levels, if one has some
way to account for changes in performance due to changes in image information. For example, object
recognition must deal with variations in both viewpoint and illumination. View-based theories of object
recognition rest on experiments showing that human vision doesn’t compensate for all view variations
with equal facility (Tarr and Bülthoff, 1995). Scale changes are handled with less sensitivity to view
familiarity than either rotations in the image or rotations in depth. However, the degree to which
the human visual system is view-dependent will require developing ideal observer models for object
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recognition, because part of performance variation due to viewpoint can be due to the informativeness
of the viewpoint for the recognition task. In fact, Liu et al. (1996) showed that human observers are
more efficient than simple view-based algorithms at recognizing simple wire objects (Liu et al., 1995).

Object recognition must also compensate for illumination variations. The fact, mentioned above, that
under fairly general conditions, the space of images generated by an object under fixed view is a cone in
image space makes predictions regarding how object recognition should generalize under illumination
change, as well as the discriminability of two objects with distinct illumination cones (Belhumeur and
Kriegman, 1996; Tarr et al., 1998).

3) The image density. Given a model, p(I; Λ), of an image ensemble in a domain Λ (i.e. natural image
prior, or more specific texture priors, such as “fur”), one can test how well the human visual system
is “tuned” to the statistical structure specified by the parameters Λ. An example of this approach is
the ideal observer analysis of human discrimination of Gaussian textures with 1/fα spatial frequency
spectra (Knill et al., 1990). Current theoretical work on non-Gaussian texture modeling (e.g. Minimax
entropy discussed above) is providing richer models of natural images that provide testable psychophys-
ical hypotheses (Buccigrossi and Simoncelli, 1997; Zhu et al., 1997; Ruderman and Bialek, 1994). More
domain-specific density models, e.g. using PCA, have been used to model face variation in the im-
age domain (Sirovich and Kirby, 1987; Turk and Pentland, 1991), and have motivated psychological
theories (Valentin et al., 1997).

4) The posterior. A full quantitative model (the grand challenge) requires tests at the level of the
posterior. A statistical theory of visual inference plays two roles, it normalizes performance and models
perception. An ideal observer model, which bases its performance on P (S|I), provides the benchmark
to normalize human performance relative to the information available for the task (Barlow, 1962). The
importance of this normative measure cannot be overstated. Without carefully assessing how the in-
formation changes across experimental conditions, the mechanisms underlying changes in performance
become nearly impossible to determine. In fact, normalizing human performance with respect to the
available information can lead to the opposite conclusions from those based on the unnormalized per-
formance (Eagle and Blake, 1995).

But in what sense does an ideal observer serve a modeling function? The fact that perception enables
successful behavior has a non-trivial impact on the principles required to understand perception. In this
regard, pattern inference theory is sympathetic with one aspect of the ecological approach to perception,
namely that theories of visual perception cannot be built in isolation from functional visual tasks. If
this is indeed the case, our grand challenge is unavoidably grand. This raises a dilemma for scientific
methodology. If we have to worry about the large set of variables involved in normal perception, how
can we manage controlled experimental tests of the theory? We believe the answer is to use the ideal
observer as the default experimental hypothesis–in other words, first test whether human vision utilizes
the information available for the task optimally. Of course, in general it won’t. However, because the
ideal starts off (at least in principle) with no free parameters, a sub-optimal theory can still achieve
economy through modification of the ideal theory through the frugal introduction of free parameters.
Further, any parameters introduced should be related to some biologically (or ecologically) relevant
limitation on processing. This idea is very much in the spirit of sequential ideal observer analysis of
photon and biological limits to resolution (Geisler, 1989). In the domain of surface perception, Knill has
shown that human discrimination of surface slant improves with slant–a behavior that can be predicted
from an ideal observer analysis of the information (Knill, 1998a).

As mentioned earlier, the true test of a quantitative framework such as pattern inference theory is its
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ability to generate economical and predictive theories. A rather striking recent success story is Weiss
and Adelson’s Bayesian theory of motion perception in which they tackled the problem of combining
local motion measurements. Previously, distinct models (often with distinct hypothesized physiological
realizations) have been proposed for various classes of motion effects. Weiss and Adelson were able
to account for a wide and diverse range of human perceptual results with only one free parameter,
the uncertainty in the local motion measurement (Weiss and Adelson, 1998). By assuming that the
visual system takes into account the uncertainties in local motion measurements, rather than just the
motion estimates (i.e. confidence-driven processing), and assuming simple priors for slower speeds and
smooth velocity fields, the MAP estimate from the resulting posterior modeled: the barber-pole effect,
the biases in the direction and speed of moving plaids due to differences in component orientation and
contrast, the wagon-wheel effect, non-rigid contour perception, as well as others.

A crucial aspect to the success of such a program is to choose an information processing task for which
the human visual system is well-suited. Our assumption is that if this is done, the ideal performance
will be a good first-approximation to a model for human performance. This argument is similar to
those made with regard to adaptability in cognitive tasks (Cosmides, 1989; Murray, 1987; Gigerenzer,
1998). Pattern inference theory provides the language to express experimentally testable theories in a
way analogous to calculus being useful for expressing quantitative theories in science generally. As such
it is a mathematical theory, not a falsifiable experimental theory . However, pattern inference theory
provides the means to generate testable scientific theories of perception with few free parameters; such
theories should be more easily falsifiable than, for example connectionist theories with lots of free
parameters (Myth 6: Bayesian theories are not falsifiable).

7 Does the brain compute probabilities?

7.1 Computing probabilities is not probabilistic computing.

Shortly before his death in 1957, John von Neumann wrote “The language of the brain is not the language
of mathematics” (Von Neumann, 1958). He went on to predict that brain theory would eventually come
to resemble the physics of statistical mechanics and thermodynamics. His argument was based on the
apparent imprecision in neural pulse-train coding, rather than an underlying computational function
for stochastic processing elements. Nevertheless, Von Neumann would no doubt have been intrigued
by the algorithms, developed since, that do in fact rely on stochastic processing. But it is one thing
to say that brain processing is limited by neural noise, or that it uses noise to compute, and quite
another to state that the brain computes probabilities. An information processing system can compute
probabilities quite deterministically (see example below).

The main purpose of this chapter is to argue that the perceptual system must necessarily do statistical
inference, and thus compute probabilities. The degree of sophistication of such processes and the
brain mechanisms are open questions. For example, a standard assumption in vision has been that
probability computations are limited to computing central tendencies of distributions, which produce
estimates of quantities of interest for decisions. But this leads to a premature commitment by discarding
the information about the uncertainty in the estimate. In addition to the empirical worked discussed
earlier, it has also been shown from work in Bayes nets that significant improvements in computational
convergence time are obtained when probabilities are propagated (e.g. (Weiss, 1997)), thus preserving
information about the degree of uncertainty.
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∫ r(x) s(x,θ1) dx
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Figure 6: Computing probabilities in visual cortex. Probabilities can be computed across ‘labeled line’
maps of neurons. The diagram shows an example of how a set of linear receptive fields can compute a
posterior distribution. Assume the visual signal r(�x) can be decomposed into a sum of basis signals which
vary according to some parameter θ plus some gaussian image noise: r(�x) =

∑
i s(�x, θi)+N . For instance,

the image could be decomposed into a sum oriented Gabor patches. The sampled (unnormalized) posterior
probability of the parameter θ can be computed using an array of linear filters, each corresponding to a
particular value of θ. The inner product of the signal with the receptive field produces the log likelihood
for the presence of the component s(�x, θi) The log prior probability and needed bias are lumped as the
additive constant B(θ), and the result is mapped from log likelihoods to probabilities by passing the
results through a point-wise accelerating exp() non-linearity.

7.2 How could probability densities be represented in the brain?

Although Bayesian theories require the computation of probabilities, they do not necessarily require
probabilities to be explicitly computed. For example, the knowledge regarding probability densities
could be implicitly encoded in neural non-linearities and neural weights. For example, the form of
the photoreceptor transducer can be interpreted as the result of mapping a non-uniform distribution
of contrasts to a uniformly distributed response variable–i.e. histogram equalization (Laughlin, 1981).
Knowledge of the image probability density function is implicit in the photoreceptor in the sense that
the density is the derivative of its transducer function.14

At a higher level, for a classification task the visual system need only deterministically map the image
data onto an appropriate decision variable space and then choose the category boundaries, neither of
which require probabilities to be explicitly computed.

On the other hand, the visual system may explicitly compute probabilities in terms of population codes
across a variable of interest. The basic idea is straightforward: the firing rate of a labeled line code for
an image or scene variable is proportional to the posterior probability for the variable. Population codes
occur in the coding of motor planning for eye movements in superior colliculus (Lee et al., 1988) and for
reaching (Georgopoulos et al., 1989) in motor cortex, and they have been proposed for the representation

14This is a consequence of the density mapping theorem: py(y) =
∫

δ(y− f(x))f−1(x)px(x)dx over each monotonic part
of f .
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of sensory information such as a population code for image velocities (Simoncelli, 1993; Schrater, 1998).
Population codes hold the promise of being able to represent probabilities for computation. For instance,
the uncertainty can be represented as the entropy over the ensemble or spread of activity across the
population, and multiple values can be represented as multi-modal distributions of activity. Probability
information can be transmitted from one functional group of neurons to the next by transforming the
distributions between parameter spaces using the density mapping theorem. In contrast, a system that
performs “estimation propagation” would summarize the population first (e.g. mean or mode) into an
estimate of state, and then only propagate the estimate. Of course, making discrete decisions is one
of the main types of task discussed above, and at some point the probability distribution could be
collapsed to one decision variable.

The connection between population codes and probability distributions goes back to early work in
communication engineering, where it was shown that an array of linear filters could produce a sampled
log likelihood function (Van Trees, 1971). As an example, assume the input visual signal r(�x), is a sum
of components of interest, s(�x, θi), plus Gaussian noise N : r(�x) =

∑
i s(�x, θi) + N . The components

could be oriented edge segments, in which case s(�x, θi) are prototypical edge images, parametrized by
the orientation θi. Given the input signal r(�x), it is straightforward to show that the likelihood function
for the signal given an orientation is given by log p(r(�x)|θi) =

∫
�x r(�x)s(�x, θi)d�x. This likelihood can

be converted into an unnormalized posterior probability by adding a constant equal to the log prior
probability θi, and running the outputs through an accelerating exponential non-linearity (see figure 6).
The limitation to sampled likelihood functions can be overcome by using “steerable filters” (Freeman,
1992), which allow the likelihood values between the samples to be computed as weighted sums of the
samples. Given the linear receptive fields in visual area V1, this simple example may have an analog in
the brain. The key idea is that a simple filtering operation yields a neuron whose firing rate can represent
a likelihood. For local image velocity estimation, Simoncelli (Simoncelli et al., 1991; Simoncelli, 1993)
showed how the posterior distribution for local image velocity could be computed in terms of simple
combinations of the outputs of spatial and temporal derivatives of Gaussian filters. More recently,
Schrater (Schrater, 1998) has shown how the likelihood for image velocity could be computed by the
weighted sum of a set of units similar to V1 complex cells.

Several authors have proposed more general ways in which probability distributions could be represented
by a population of neurons (Anderson, 1994; Sanger, 1996; Zemel, 1997, 1998). The basic idea is that
a population of neurons which are tuned to some parameter can act like a kernel density estimate, in
which a probability density is approximated as a combination of simpler densities. To illustrate, assume
we have a posterior distribution p(x|D) of some scene variable x (like position), given a set of image
measurements D, and a set of receptive fields fi(x). Then the firing rates of the neurons will be given by
the projection ri =

∫
x p(x|D)fi(x)dx. Unlike the previous examples, the firing rate computed this way

is not explicitly proportional to a probability or likelihood. Instead, the posterior is coded implicitly
by the firing rates. To explicitly compute the posterior from the ri, a fixed set of interpolation kernels
φi(x) is used to invert the projection. Zemel et al. (Zemel, 1998) discuss two similar schemes to do the
encoding and decoding of posterior distributions from firing rates. The number of ways of encoding
posterior distributions by similar methods is limitless, and whether or not the brain uses a particular
scheme of this sort is an intriguing problem for the future.
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8 Summary

We have argued that probability computation by the visual system is a necessary consequence of na-
ture’s visual signal patterns being inherently statistical. The origins of this perspective on perception
began with the development of signal detection theory, and in particular, with ideal observer analysis.
The basic operations of probability theory provide the means to model information for a task, and
decision theory provides tools to model task requirements. The application of these tools to natural
pattern understanding falls in the domain of what we have referred to as pattern inference theory–the
combination of Bayesian decision theory and pattern theory. Pattern inference theory is clearly more
powerful than any specific experimentally testable theory of human perception. However, it provides a
sufficiently rich language to develop theories of natural perceptual function. In addition to reviewing a
number of principles that fall out of the Bayesian formalism, we highlighted two relatively new princi-
ples: 1) A Bayesian principle of least commitment, in which one propagates probabilities, rather than
estimates, thereby weighting evidence according to reliability; 2) A Bayesian principle of modularity, in
which Bayes nets show how statistical structure and task determine modularity.

30



9 Acknowledgments

We thank Larry Maloney for providing exceptionally thoughtful and constructive criticisms on the first
draft of this paper. This research was supported by NSF SBR-9631682 and NIH RO1 EY11507-001.

31



References

1. Amit, Y., & Geman, D. (1997). Shape quantization and recognition with random trees. Neural Com-
putation, 9(7), 1545–1588.

2. Anderson, C. H. (1994). Basic elements of biological computational systems. International Journal of
Modern Physics C, 5(2), 135–137.

3. Atick, J. J., Griffin, P. A., & Redlich, A. N. (1996). Statistical Approach to Shape from Shading:
Reconstruction of Three-Dimensional Face Surfaces from Single Two-Dimensional Images. Neural
Computation, 8(6), 1321–1340.

4. Atick, J. J., & Redlich, A. N. (1992). What does the retina know about natural scenes? Neural
Computation, 4(2), 196–210.

5. Barker, A., Brown, D., & Martin, W. (1995). Bayesian estimation and the Kalman filter. Computers
Math. Applic., 30(10), 55–77.

6. Barlow, H. (1959). Sensory mechanisms, the reduction of redundancy, and intelligence. In Proceedings
of the symposium on the mechanization of thought processes, National Physical Laboratory. HMSO,
London.

7. Barlow, H. (1962). A method of determining the overall quantum efficiency of visual discriminations.
J. Physiol. (Lond.), 160, 155–168.

8. Barlow, H. (1981). Critical Limiting Factors in the Design of the Eye and Visual Cortex. Proc. Roy.
Soc. Lond. B, 212, 1–34.

9. Belhumeur, P., & Kriegman, D. (1996). What is the set of images of an object under all possible
lighting conditions? In IEEE Conf. on Computer Vision and Pattern Recognition, pages 270–277,
San Francisco, CA.

10. Bell, A. J., & Sejnowski, T. J. (1997). The ”independent components” of natural scenes are edge filters.
Vision Res, 37(23), 3327–38.

11. Berger, J. (1985). Statistical Decision Theory and Bayesian Analysis: Springer.

12. Bloj, M. G., Kersten, D., & Hurlbert, A. C. (1999). Perception of three-dimensional shape influences
colour perception through mutual illumination. Nature, 402(6764), 877–879.

13. Bobick, A. (1997). Movement, activity and action: the role of knowledge in the perception of motion.
Philosophical Transactions of the Royal Society B, 352(1358), 1257–1265.

14. Bobick, A., & Richards, W. (1986). Classifying Objects from Visual Information. Technical Report A.I.
Memo No. 879, Artificial Intelligence Laboratory Massachusetts Institute of Technology.

15. Bookstein, F. L. (1978). The Measurement of Biological Shape & Shape Change: Springer-Verlag, New
York Incorporated.

16. Bookstein, F. L. (1997). Morphometric Tools for Landmark Data: Geometry and Biology: Cambridge
University Pres.

32



17. Bossomaier, T., & Snyder, A. (1986). Why Spatial Frequency Processing in the Visual Cortex? Vision
Research, 26((8)), 1307–1309.

18. Brainard, D. H., & Freeman, W. T. (1997). Bayesian color constancy. J Opt Soc Am A, 14(7), 1393–411.

19. Buccigrossi, R., & Simoncelli, E. (1997). Progressive Wavelet Image Coding Based on a Conditional
Probability Model. In ICASSP, Munich, Germany.

20. Cosmides, L. (1989). The logic of social exchange: Has natural selection shaped how humans reason?
Studies with the Wason selection task. Cogntion, 31, 187–276.

21. Cover, T. M., & Joy, A. T. (1991). Elements of Information Theory. Wiley Series in Telecommunications.
New York: John Wiley & Sons, Inc.

22. Craik, K. J. W. (1943). The Nature of Explanation. Cambridge: Cambridge University Press.

23. Dayan, P., Hinton, G. E., Neal, R. M., & Zemel, R. S. (1995). The Helmholtz Machine. Neural
Computation, 7(5), 889–904.

24. Dean, T. & Kanazawa, K. (1988). Probabilistic temporal reasoning. In AAAI-88, pages 524–528.

25. Duda, R., & Hart, P. (1973). Pattern classification and scene analysis. New York.: John Wiley & Sons.

26. Eagle, R. A., & Blake, A. (1995). Two-dimensional constraints on three-dimensional structure from
motion tasks. Vision Res, 35(20), 2927–41.

27. Egan, J. P. (1975). Signal detection theory and ROC-analysis. Academic Press series in cognition and
perception. New York: Academic Press.

28. Epstein, R., Hallinan, P., & Yuille, A. (1995). 5 ± Eigenimages Suffice: An Empirical Investigation
of Low-Dimensional Lighting Models. In IEEE Workshop on Physics-Based Modeling in Computer
Vision, pages 108–116, Boston, MA.

29. Field, D. J. (1987). Relations between the statistics of natural images and the response properties of
cortical cells. Journal of the Optical Society of America A, 4(12), 2379–2394.

30. Freeman, W. T. (1992). Steerable Filter and Local Analysis of Image Structure. Technical Report 190,
Massachusetts Institute of Technology.

31. Freeman, W. T. (1994). The generic viewpoint assumption in a framework for visual perception. Nature,
368(7 April 1994), 542–545.

32. Freeman, W. T., & Pasztor, E. C. (1999). Learning to estimate scenes from images. In M. S. Kearns, S.
A. S., & Cohn, D. A., editors, Adv. Neural Information Processing Systems 11. MIT Press, Cambridge
MA.

33. Frey, B. J. (1998). Graphical Models for Machine Learning and Digital Communication. Adaptive
Computation and Machine Learning series. A Bradford Book. Cambridge, Massachusetts: MIT Press.

34. Geisler, W. (1989). Sequential Ideal-Observer analysis of visual discriminations. Psychological Review,
96(2), 267–314.

33



35. Georgopoulos, A., Lurito, J., Petrides, M., Schwartz, A., & Massey, J. (1989). Mental Rotation of the
Neuronal Population Vector. Science, 243, 234–236.

36. Gibson, J. J. (1966). The Senses Considered as Perceptual Systems. Boston, MA: Houghton Mifflin.

37. Gigerenzer, G. (1998). Ecological intelligence: An adaptation for frequencies. In Cummins, D. D., &
Allen, C., editors, The Evolution of Mind. Oxford University Press, Oxford.

38. Green, D. M., & Swets, J. A. (1974). Signal Detection Theory and Psychophysics. Huntington, New
York: Robert E. Krieger Publishing Company.

39. Gregory, R. (1980). Perceptions as hypotheses. Philosophical Transactions of the Royal Society, B 290,
181–197.

40. Grenander, U. (1950). Stochastic processes and statistical inference. Arkiv. Mathematik, 1(17), 195.

41. Grenander, U. (1993). General Pattern Theory. Oxford: Oxford University Press.

42. Grenander, U. (1996). Elements of Pattern theory. Baltimore,MD: Johns Hopkins University Press.

43. Grenander, U., Chow, Y., & Keenan, D. M. (1991). Hands. A Pattern Theoretic Study of Biological
Shapes. New York: Springer.

44. Helmholtz, H. v., & Southall, J. P. C. (1924). Helmholtz’s treatise on physiological optics. Rochester,
N.Y.: The Optical Society of America.

45. Hinton, G., & Ghahramani, Z. (1997). Generative models for discovering sparse distributed represen-
tations. The Philosophical Transactions of the Royal Society, 352(1358), 1177–1190.

46. Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review, 106, 620–630.

47. Jordan, M. (1998). Learning in Graphical Models. Cambridge, MA: MIT Press.

48. Kendall, D. (1989). A survey of the statistical theory of shape. Statistical Science, 4(2), 87–120.

49. Kersten, D. (1984). Spatial summation in visual noise. Vision Research, 24, 1977–1990.

50. Kersten, D. (1990). Statistical limits to image understanding. In Blakemore, C., editor, Vision: Coding
and Efficiency, pages 32–44. Cambridge University Press, Cambridge, UK.

51. Kersten, D. (1997). Perceptual categories for spatial layout. Philosophical Transactions of the Royal
Society B, 352(1358), 1155–1163.

52. Kersten, D. (1999). High-level vision as statistical inference. In Gazzaniga, M. S., editor, The New
Cognitive Neurosciences – 2nd Edition, pages 353–363. MIT Press, Cambridge, MA.

53. Kersten, D., O’Toole, A., Sereno, M., Knill, D. C., & Anderson, J. (1987). Associative learning of scene
parameters from images. Appl. Opt., 26, 4999–5006.

54. Kersten, D. J. (1991). Transparency and the Cooperative Computation of Scene Attributes. In Landy,
M., & Movshon, A., editors, Computational Models of Visual Processing, pages 209–228. M.I.T. Press,
Cambridge, Massachusetts.

55. Knill, D., Field, D., & Kersten, D. (1990). Human discrimination of fractal images. 7, 1113–1123.

34



56. Knill, D., & Richards, W. (1996). Perception as Bayesian Inference. Cambridge: Cambridge University
Press.

57. Knill, D. C. (1998a). Discrimination of planar surface slant from texture: human and ideal observers
compared. Vision Res, 38(11), 1683–711.

58. Knill, D. C. (1998b). Surface orientation from texture: ideal observers, generic observers and the
information content of texture cues. Vision Research, 38(11), 1655–1682.

59. Knill, D. C., Kersten, D., & Mamassian, P. (1996a). The Bayesian Framework for visual information
processing: implications for psychophysics. In D.C., K., & W., R., editors, Perception as Bayesian
Inference, pages 239–286, Chap. 5. Cambridge University Press.

60. Knill, D. C., Kersten, D., & Yuille, A. (1996b). A Bayesian Formulation of Visual Perception. In D.C.,
K., & W., R., editors, Perception as Bayesian Inference, page Chap. 0. Cambridge University Press.

61. Landy, M. S., Maloney, L. T., Johnston, E. B., & Young, M. J. (1995). Measurement and modeling of
depth cue combination: In defense of weak fusion. Vision Research, 35, 389–412.

62. Laughlin, S. (1981). A simple coding procedure enhances a neuron’s information capacity. Z. Natur-
forsch.

63. Lee, C., Rohrer, W. H., & Sparks, D. L. (1988). Population coding of saccadic eye movements by
neurons in the superior colliculus. Nature, 332(6162), 357–60.

64. Leeuwenberg, E. (1969). Quantitative specification of information in sequential patterns. Psychological
Review, 76, 216–220.

65. Legge, G. E., Klitz, T. S., & Tjan, B. S. (1997). Mr. Chips: an ideal-observer model of reading. Psych.
Review, 104(3), 524–53.

66. Liu, Z., Knill, D. C., & Kersten, D. (1995). Object Classification for Human and Ideal Observers. Vision
Research, 35(4), 549–568.

67. MacKay, D. J. C. (1992). Bayesian interpolation. Neural Computation, 4(3), 415–447.

68. Maloney, L., & Wandell, B. (1986). Color Constancy: A Method for Recovering Surface Spectral
Reflectance. Journal of the Optical Society America, 3, 29–33.

69. Mamassian, P., & Landy, M. S. (1998). Observer biases in the 3D interpretation of line drawings. Vision
Res, 38(18), 2817–32.

70. Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing
of Visual Information. San Francisco, CA: W.H. Freeman and Company.

71. Mumford, D. (1992). On the computational architecture of the neocortex. II. The role of cortico-cortical
loops. Biological Cybernetics, 66, 241–251.

72. Mumford, D. (1994). Neuronal architectures for pattern-theoretic problems. In Koch, C., & Davis,
J. L., editors, Large-Scale Neuronal Theories of the Brain, pages 125–152. MIT Press, Cambridge,
MA.

35



73. Mumford, D. (1996). Pattern theory: A unifying perspective. In Knill, D., & W., R., editors, Perception
as Bayesian Inference, page Chapter 2. Cambridge University Press, Cambridge.

74. Murray, G. . (1987). Cognition as Intuitive Statistics: Erlbaum.

75. Nakayama, K., & Shimojo, S. (1992). Experiencing and perceiving visual surfaces. Science, 257,
1357–1363.

76. Neyman, J., & Pearson, E. (1933). On the problem of the most efficient tests of statistical hypotheses.
Phil. Trans. Roy. Soc. London, Series A, page 289.

77. Olshausen, B., & Field, D. (1996). Emergence of simple-cell receptive field properties by learning a
sparse code for natural images. Nature, 381, 607–609.

78. Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. San Mateo, CA: Morgan Kaufmann
Publishers Inc.

79. Pelli, D. G. (1990). The quantum efficiency of vision. In Blakemore, C., editor, Vision:Coding and
Efficiency. Cambridge University Press, Cambridge.

80. Peterson, W., Birdsall, T., & Fox, W. (1954). The theory of signal detectability. Trans. IRE Professional
Group on Information Theory, PGIT-4, 171–212.

81. Poggio, T., & Girosi, F. (1990). Regularization algorithms for learning that are equivalent to multilayer
networks. Science, 247, 978–982.

82. Poggio, T., Torre, V., & Koch, C. (1985). Computational vision and regularization theory. Nature, 317,
314–319.

83. Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional interpretation
of some extra-classical receptive-field effects [see comments]. Nat Neurosci, 2(1), 79–87.

84. Restle, F. (1982). Coding theory as an integration of Gestalt psychology and information processing
theory. In Beck, J., editor, Organization and Representation in Perception, pages 31–56. Erlbaum,
Hillsdae, NJ.

85. Rice, S. O. (1944). Mathematical Analysis of Random Noise. Bell System Technical Journal, 23,
282–332.

86. Ripley, B. (1996). Pattern Recognition and Neural Networks. Cambridge, UK: Cambridge University
Press.

87. Rock, I. (1983). The Logic of Perception. A Bradford Book. Cambridge, Massachusetts: M.I.T. Press.

88. Rosch, E., Mervis, C., Gray, W., Johnson, D., & Boyes-Braem, P. (1976). Basic objects in natural
categories. Cognitive Psychology, 8, 382–439.

89. Ruderman, D., & Bialek, W. (1994). Statistics of Natural Images: Scaling in the Woods. Physical
Review Letters, 73, Number 6(8 August 1994), 814–817.

90. Sanger, T. D. (1996). Probability density estimation for the interpretation of neural population codes.
Journal of Neurophysiology, 76(4), 2790–2793.

36



91. Schrater, P. (1998). Local motion detection: Comparison of human and model observers. Ph.d., Uni-
versity of Pennsylvania.

92. Schrater, P. R., & Kersten, D. (2000). The role of task specification in optimal cue integration. Inter-
national Journal of Computer Vision, 40(1), 71–89.

93. Schwarz, G. (1978). Estimating the dimension of a model. Ann. Stat., 6, 461–463.

94. Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Champaign, IL: U.
Illinois Press.

95. Simoncelli, E. P. (1993). Distributed Analysis and Representation of Visual Motion. Ph.d., Mas-
sachusetts Institute of Technology, Department of Electrical Engineering and Computer Science.

96. Simoncelli, E. P. (1997). Statistical Models for Images: Compression, Restoration and Synthesis. In
Proc. 31st Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA. (c) IEEE
Signal Processing Society.

97. Simoncelli, E. P., Adelson, E. H., & Heeger, D. J. (1991). Probability Distributions of Optical Flow. In
IEEE Conf on Computer Vision and Pattern Recognition, Mauii, Hawaii.

98. Simoncelli, E. P. & Portilla, J. (1998). Texture Characterization via Joint Statistics of Wavelet Coeffi-
cient Magnitudes. In 5th IEEE International Conference on Image Processing, Chicago, IL.

99. Sirovich, L., & Kirby, M. (1987). Low-dimensional procedure for the characterization of human faces.
JOSA, 4(3), 519–524.

100. Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285–93.

101. Tarr, M., & Bülthoff, H. (1995). Is human object recognition better described by geon-structural-
descriptions or by multiple-views? Journal of Experimental Psychology: Human Perception and
Performance, 21(6), 1494–1505.

102. Tarr, M. J., Kersten, D., & Bulthoff, H. H. (1998). Why the visual recognition system might encode
the effects of illumination. Vision Res, 38(15-16), 2259–75.

103. Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1),
??

104. Valentin, D., Abdi, H., Edelman, B., & O’Toole, A. J. (1997). Principal Component and Neural Network
Analyses of Face Images: What Can Be Generalized in Gender Classification? J Math Psychol, 41(4),
398–413.

105. Van Trees, H. L. (1968). Detection, Estimation and Modulation Theory. Part I., volume 1. New York:
John Wiley and Sons.

106. Van Trees, H. L. (1971). Detection, Estimation and Modulation Theory. Part III., volume 3. New York:
John Wiley and Sons.

107. Vapnik, V. (1995). The nature of statistical learning. New York: Springer-Verlag.

108. Vetter, T., & Troje, N. (1997). Separation of texture and shape in images of faces for image coding and
synthesis. Journal of the Optical Society of America A, 14(9), 2152–2161.

37



109. Von Neumann, J. (1958). The computer and the brain. New Haven,: Yale University Press.

110. Wald, A. (1939). Contributions to the of statistical estimation and testing hypotheses. Ann. Math.
Stat., 10, 299–326.

111. Wald, A. (1950). Statistical Decision Functions. New York: John Wiley & Sons.

112. Weiss, Y. (1997). Interpreting images by propagating Bayesian beliefs. In M.C. Mozer, M. J., &
Petsche, T., editors, Advances in Neural Information Processing Systems 9, pages 908–915. MIT
Press, Cambridge MA.

113. Weiss, Y., & Adelson, E. H. (1998). Slow and smooth: a Bayesian theory for the combination of local
motion signals in human vision. Technical Report A.I. Memo No. 1624, M.I.T.

114. Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An Internal Model for Sensorimotor Integra-
tion. Science, 269(29 September), 1880–1882.

115. Yuille, A. (1991). Deformable templates for face recognitoin. Journal of Cognitive Neuroscience, 3(1),
59–70.

116. Yuille, A. L., & Blthoff, H. H. (1996). Bayesian decision theory and psychophysics. In D.C., K., & W.,
R., editors, Perception as Bayesian Inference. Cambridge University Press, Cambridge, U.K.

117. Yuille, A. L., Coughlan, J. M., & Kersten, D. (1998). Computational Vision: Principles of Perceptual
Inference.

118. Zemel, R. S. (1997). Combining probabilistic population codes. In International Joint Conference on
Artifical Intelligence, Denver, CO. Morgan Kaufmann.

119. Zemel, R. S. (1998). Probabilistic interpretation of population codes. Neural Computation, 10(2),
403–430.

120. Zhu, S. (1999). Embedding Gestalt Laws in Markov Random Fields. IEEE Trans. Pattern Analysis
and Machine Intelligence., 21(11).

121. Zhu, S., & Mumford, D. (1998). GRADE: A framework for pattern synthesis, denoising, image enhance-
ment, and clutter removal. In Proceedings of International Conference on Computer Vision, Bombay,
India. Morgan Kaufmann.

122. Zhu, S. C., Wu, Y., & Mumford, D. (1997). Minimax Entropy Principle and Its Applications to Texture
Modeling. Neural Computation, 9(8), 1627–1660.

38


