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Sound conveys information, from which scenes and
actions can be inferred

Example 1
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Physical properties of materials determine the properties
of sound pressure waves

I How does the brain interpret the
structure of sound?

I How does the physical
environment constrain the
structure of sound?

I How does the brain infer the
physical environment from
sound?

4Shamma et al. Trends Neurosci, 2011



Simple physical models can explain many properties of
complicated sound sources
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Overview

I 1D oscillators: a painfully detailed analysis of a simple idealized
string

I Wave equation has oscillitory solutions
I Normal modes predict harmonic spectra
I Onsets remain difficult
I Sound radiation is directional
I Multiple models can be used for similar systems
I Non-linearities are hard

I 2D and 3D oscillators: same equation, harder algebra, same general
results

I Speech generation
I Modelling the statistics of the energetic forcing
I A whirlwind tour through the physics underlying common

environmental sounds
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A 1D string can be (crudely) modeled by a wave equation

I Solution:

y = Aeık(x−ct)

c =

√
T
ρ

I oscillatory solutions

I Frequency and
wavelength are related
by wave speed 8



The boundary conditions impose harmonic solutions
(Normal Modes)

I Solution:

y = Aeık(x−ct)

I two fixed ends: y(0) = 0; y(L) = 0
I discretizes spatial solutions k = 2π

L
I due to intrinsic relationship between

spatial and temporal modes, this
discretizes temporal solutions too
Some example strings: Guitar; Bass
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https://www.youtube.com/watch?v=TKF6nFzpHBU
https://vimeo.com/4041788


If oscillation is forced the string acts as a filter

I

F(t) =
ρ

T
∂2y
∂t2 −

∂2y
∂x2

I Solution:

y = Aeık(x−ct) + αF(t)

I

Example: Lab demo
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https://www.youtube.com/watch?v=BSIw5SgUirg


Real world strings are more complicated but share
similarities to the cartoon model

We have made a number of approximations
I No friction
I => exponential decay term to each mode: y = Ae−bteık(x−ct)

I A delta function initial disturbance
I => real impulses have a finite spectrum
I None-modal oscillations exist transiently
I => attacks are broadband
I We have linearized twice
I (1) Constant tension; (2) small angle
I (1) Tension changes allow longitudinal waves (Example); (2) the small

angle approximation is often violated during attacks
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https://www.youtube.com/watch?v=qzhrLnOsGx0


With different assumptions the same system can be
described by multiple models
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Non-linearities allow energy to be transferred between
different frequency modes

I Non-linear equations are
fundamentally more difficult

I The solutions are not
necessarily stable

I Energy can be exchanged
between different modes (i.e ψy

( f1, λ1) => φx ( f1, λ2) => ψy

( f2, λ2))

13O’Reilly and Holmes, J. Sound Vibration, 1992
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The geometry of the sound source effects the radiation
pattern

I To reach the ear, sound must couple
to the air

I Model: solve the 3D wave-eqn with 1D
forcing function

I Radiation is not emitted uniformly
I Sound depends upon spatial

relationship between source and the
listener
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Sound from a 1D string can therefore be modelled as a
forcing function and nested filters

I Some forcing function F(t, x) sets the string
in motion

I The resonances (modes) of the string filter
the vibration

I The radiative pattern filters this spatially
I The environment filters yet again (reverb)
I Each of these steps can be modelled by

(usually linear) filters:
s(t) = F(t, x) ∗ hstring ∗ hradiation ∗ hreverb

I The spectro-temporal properties of each
filter are determined by geometry and
material properties

I Many important features of the sound are
due to the forcing F(t, x) Example
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A 2D membrane can be modeled by the same wave and
radiation equations as a string

I As with the 1D
model the
membrane has
resonant modes

I They are not
necessarily
harmonic

Ex: Driven Chladni Plate
Ex: Bowed Chladni
Plate
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https://www.youtube.com/watch?v=wvJAgrUBF4w
https://www.youtube.com/watch?v=lRFysSAxWxI
https://www.youtube.com/watch?v=lRFysSAxWxI


3D blocks and plates are amenable to the same models

I Geometry enforces normal
modes

I They may not be harmonic
I Multiple harmonic series

associated with shearing and
pressure waves

I Damping induces exponential
decay

I The radiation pattern is likely to
be complicated

I Non-linearities are not
uncommon (thin shells)

18
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The logical framework of the 1D model still applies, only
the algebra is harder

I Finite-element analysis allows
the wave equation to be solved
in arbitrarily complicated shapes

I The nested filter model still
applies:
s(t) = F(t, x) ∗
h3D−shape ∗ hradiation ∗ hreverb

I Example (9:38-12:33)
I Even non-linear systems can be

hacked (27:28-28:16;
32:49-33:14)
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https://client.blueskybroadcast.com/SIAM14/AN/SIAM_AN14_IP9_v2/
https://client.blueskybroadcast.com/SIAM14/AN/SIAM_AN14_IP9_v2/
https://client.blueskybroadcast.com/SIAM14/AN/SIAM_AN14_IP9_v2/
https://client.blueskybroadcast.com/SIAM14/AN/SIAM_AN14_IP9_v2/


Crude features of the model are robust to a variety of
situations

I Size + Density => Bandwidth
I Geometric regularity => Harmonicity
I Density and elasticity => Damping
I Flexing => Spectro-temporal statistics
I Shape, position, distance + motion => alter spectro-temporal statistics

20
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Speech production is modelled by a harmonic source
(vocal chords) and a resonant filter (vocal tract)

I The nested filter model
still applies:
s(t) = F(t, x) ∗
hVocalChords ∗ hVocalTract

∗hradiation ∗ hreverb

I However, the filters are
time-varying...

I ... and this variation
provides much of the
structure that we actually
care about in speech

22
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Recap: Simple physical models can explain many
properties of complicated sound sources
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Recap: The algebra is tedious but tractable

s(t) = F(t, x) ∗ f1 ∗ f2 ∗ . . . ∗ freverb

The filter properties are determined by physical properties:
I Size + Density => Bandwidth
I Geometric regularity => Harmonicity
I Density and elasticity => Damping
I Flexing => Spectro-temporal statistics
I Shape, position, distance + motion => alter spectro-temporal statistics
I Example: 32:30
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Structure in the Forcing Function results in structure in
the sound

I Sound may depend sensitively
on the forcing function F(t, x)

I Filters may be easy to model:
s(t) =
F(t, x)∗h1 ∗ h2 ∗ hradiation ∗ hreverb

I But realistic synthesis may
require modelling the forcing
fuction as well F(t)

I This is relatively unexplored by
acousticians...

I ... but not by everyone. Example
(12:33-13:14; 14:24-14:58;
15:27-16:47; 41:12-42:43)

26Cavaco & Lewicki ,JASA, 2007

https://client.blueskybroadcast.com/SIAM14/AN/SIAM_AN14_IP9_v2/
https://client.blueskybroadcast.com/SIAM14/AN/SIAM_AN14_IP9_v2/
https://client.blueskybroadcast.com/SIAM14/AN/SIAM_AN14_IP9_v2/


Spoiler-alert: Sound can be well modelled by acoustical
physics and regular physics

I Cartoon models of the world predict:
I Size + Density => Bandwidth
I Geometric regularity => Harmonicity
I Density and elasticity => Damping
I Flexing => Spectro-temporal statistics
I Shape, position, distance + motion => alter

spectro-temporal statistics

I The statistics of the forcing function F(t, x) affect
the statistics of the sound

I Realistic sound synthesis requires modelling
object and filter dynamics in addition to acoustic
properties

I The filters are largely solved (k-wave toolbox for
matlab)

I The dynamics of this forcing function are just more
physics. And are often tractable.
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bangs , crashes , clangs , claps , taps , knocks
and rings

Impact driven resonant bodies

Filters can be
I Spectrally sharp or

broad (geometry,
density elasticity)

I Bandlimited (Size,
density)

I harmonic or
inharmonic
(geometry)

I Ringing or damped
(density, elasticity)

I Linear or Non-linear
(flexibility)
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Rattles , buzzes and hums

Periodic impacted driven resonant bodies

I Filters are identical
to the impulse
cases

I Statistics of impacts
are important
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Scrapes , grates , rolls , squeaks , creaks ,
squeals , screeches , renders , rustles ,

brushes , sweeps and buzzes

Frictionally driven resonant bodies

I Filters are identical
to the impulse
cases

I Only the statistics
of the forcing
function have
changed

31



Hisses , whistles , toots , whooshes , rushes ,
gushes , flutters and roars

Turbulent air flow

I Source is white
noise-like

I Often coupled to a
resonating body

I Typically the
filtering is less
dramatic than in
friction sounds –
hence they sound
quite different
Example (37:48)
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https://client.blueskybroadcast.com/SIAM14/AN/SIAM_AN14_IP9_v2/


Gurgles , drops , bubbles , sloshes , bloops ,
laps , crashes and splashes

Cavitation

I Source is
dependant upon
statistics of bubbles

I Sound is filtered in
rapidly changing
resonant cavities
Example (37:22)
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https://client.blueskybroadcast.com/SIAM14/AN/SIAM_AN14_IP9_v2/


Cracks , claps and booms

Acceleration driven shock waves

I Impulse is usually
louder than the
resonant modes

I (Except in the case
of thunder)

I Many pedestrian
sounds have an
impulsive
component:
Example (23:07)

34

https://client.blueskybroadcast.com/SIAM14/AN/SIAM_AN14_IP9_v2/


Shattering , splintering , splitting , bursting and
crushing

Deforming resonant oscillators

I The number of
resonators and
their normal modes
change with time
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Real-world sound sources are complicated to model, but
simplified models allow realistic sound synthesis

I Cartoon models of the world predict:
I Size + Density => Bandwidth
I Geometric regularity => Harmonicity
I Density and elasticity => Damping
I Flexing => Spectro-temporal

statistics
I Shape, position, distance + motion

=> alter spectro-temporal statistics

I Realistic sound synthesis requires
modelling object and filter dynamics in
addition to acoustic properties

I This is just more physics and can be
crunched to synthesize quite realistic
sounds (with patience and a lot of
CPU power)
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Final thoughts...

I The statistics of sounds are filtered versions of the statistics of motion
I The properties of the filters are determined by the physical properties

of everyday objects
I Both the filters and the motion are largely solved problems
I ... but only very recently have they are rarely combined to synthesize

compelling sounds
I The inference problem remains to be solved (by scientists):

F(t, x) =? fresonator =?
38



The final word to Lord Rayleigh....
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