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1.1 Introduction

Markov chain Monte Carlo (MCMCQ) methodology provides enormous scope
for realistic statistica) modelling. Until recently, acknowledging the full
complexity and structure in many applications was difficult and required
the development of specific methodology and purpose-built software. The
alternative was to coerce the problem into the over-simple framework of
an available method. Now, MCMC methods provide a unifying framework
within which many complex problems can be analysed using generic soft-
ware.

MCMC is essentially Monte Carlo integration using Markov chains. Bay-
esians, and sometimes also frequentists, need to integrate over possibly
high-dimensional probability distributions to make inference about model
parameters or to make predictions. Bayesians need to integrate over the
posterior distribution of model parameters given the data, and frequentists
may need to integrate over the distribution of observables given parameter
values. As described below, Monte Carlo integration draws samples from
the the required distribution, and then forms sample averages to approx-
imate expectations. Markoy chain Monte Carlo draws these samples by
running a cleverly constructed Markoy chain for a long time. There are
many ways of constructing these chains, but all of them, including the
Gibbs sampler (Geman and Geman, 1984), are special cases of the general
framework of Metropolis ef al. (1953) and Hastings ( 1970).
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It took nearly 40 years for MCMC to penetrate mainstream statistical
practice. It originated in the statistical physics literature, and has been
used for a decade in spatial statistics and image analysis. In the last few
years, MCMC has had a profound effect on Bayesian statistics, and has
also found applications in classical statistics. Recent research has added
considerably to its breadth of application, the richness of its methodology,
and its theoretical underpinnings.

The purpose of this book is to introduce MCMC methods and their
applications, and to provide pointers to the literature for further details.
Having in mind principally an applied readership, our role as editors has
been to keep the technical content of the book to a minimum and to con-
centrate on methods which have been shown to help in real applications.
However, some theoretical background is also provided. The applications
featured in this volume draw from a wide range of statistical practice, but
to some extent reflect our own biostatistical bias. The chapters have been
written by researchers who have made key contributions in the recent devel-
opment of MCMC methodology and its application. Regrettably, we were
not able to include all leading researchers in our list of contributors, nor
were we able to cover all areas of theory, methods and application in the
depth they deserve.

Our aim has been to keep each chapter self-contained, including notation
and references, although chapters may assume knowledge of the basics de-
scribed in this chapter. This chapter contains enough information to allow
the reader to start applying MCMC in a basic way. In it we describe the
Metropolis-Hastings algorithm, the Gibbs sampler, and the main issues
arising in implementing MCMC methods. We also give a brief introduction
to Bayesian inference, since many of the following chapters assume a basic
knowledge. Chapter 2 illustrates many of the main issues in a worked ex-
ample. Chapters 3 and 4 give an introduction to important concepts and
results in discrete and general state-space Markov chain theory. Chapters 5
through 8 give more information on techniques for implementing MCMC
or improving its performance. Chapters 9 through 13 describe methods
for assessing model adequacy and choosing between models, using MCMC.
Chapters 14 and 15 describe MCMC methods for non-Bayesian inference,
and Chapters 16 through 25 describe applications or summarize application
domains.

1.2 The problem
1.2.1 Bayesian inference

Most applications of MCMC to date, including the majority of those de-
scribed in the following chapters, are oriented towards Bayesian inference.
From a Bayesian perspective, there is no fundamental distinction between
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observables and parameters of a statistical model: all are considered random
n:w:ﬁ.:mm. Let D denote the observed data, and 8 denote model parameters
.m:a E.mmim data. Formal inference then requires setting up a joint probabil-
ity m_mmlvcaou P(D, 8) over all random quantities. This joint distribution
comprises two parts: a prior distribution P(6) and a likelihood P(D|6).
Specifying P(0) and P(D|) gives a full probability model, in which

P(D,8) = P(D|8) P(6).

Having observed D, Bayes theorem is used to determine the distribution
of 8 conditional on D:

_ _PB)P(DIF)
P(é1D) = T P(6)P(D]6)ds"

This is called the posterior distribution of 8, and is the object of all Bayesian
inference.

. Any features of the posterior distribution are legitimate for Bayesian
inference: moments, quantiles, highest posterior density regions, etc. All
»rmmo.ncwssnmmm can be expressed in terms of posterior expectations of
functions of 6. The posterior expectation of a function f(8) is

[ f(6)P(6)P(D|6)df
[ P(9)P(D|#)d6

The integrations in this expression have until recently been the source of
most .o*. the practical difficulties in Bayesian inference, especially in high di-
mensions. In most applications, analytic evaluation of E[f(6)|D] is imposs-
ible. .>:2.=w3<m approaches include numerical evaluation, which is difficult
w:a Inaccurate in greater than about 20 dimensions; analytic approxima-
tion such as the Laplace approximation (Kass et al., 1988), which is some-
times appropriate; and Monte Carlo integration, including MCMC.

E[f(6)|D] =

1.2.2 Calculating ezpectations

The problem of calculating expectations in high-dimensional distributions
w_.mo occurs in some areas of frequentist inference; see Geyer (1995) and
U_ovo_a.w:n_ Ip (1995) in this volume. To avoid an unnecessarily Bayesian
flavour in the following discussion, we restate the problem in more general
terms. hwﬁ X be a vector of k random variables, with distribution 7(.).
In wm«mm_wz applications, X will comprise model parameters and missing
data; in frequentist applications, it may comprise data or random effects.
m,n.x. Bayesians, 7(.) will be a posterior distribution, and for frequentists it
will be a likelihood. Either way, the task is to evaluate the expectation

Elf(X)} = QHMHMM.% (1.1)
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for some function of interest f(.). Here we allow for the possibility that the
distribution of X is known only up to a constant of normalization. That is,
[ #(z)dz is unknown. This is a common situation in practice, for example in
Bayesian inference we know P(8|D) « P(6)P(D|#), but we cannot easily
evaluate the normalization constant [ P(§)P(D|6)d8. For simplicity, we
assume that X takes values in k-dimensional Euclidean space, i.e. that X
comprises k continuous random variables. However, the methods described
here are quite general. For example, X could consist of discrete random
variables, so then the integrals in (1.1) would be replaced by summations.
Alternatively, X could be a mixture of discrete and continuous random
variables, or indeed a collection of random variables on any probability
space. Indeed, k can itself be variable: see Section 1.3.3. Measure theoretic
notation in (1.1) would of course concisely accommodate all these possib-
ilities, but the essential message can be expressed without it. We use the
terms distribution and densily interchangeably.

1.3 Markov chain Monte Carlo

In this section, we introduce MCMC as a method for evaluating expressions
of the form of (1.1). We begin by describing its constituent parts: Monte
Carlo integration and Markov chains. We then describe the general form
of MCMC given by the Metropolis-Hastings algorithm, and a special case:
the Gibbs sampler.

1.3.1 Monte Carlo integration

Monte Carlo integration evaluates E[f(X)] by drawing samples {X;, t =
1,...,n} from 7(.) and then approximating

ELFCO) % = 3 F(X0)

So the population mean of f(X) is estimated by a sample mean. When
the samples {X;} are independent, laws of large numbers ensure that the
approximation can be made as accurate as desired by increasing the sample
size n. Note that here n is under the control of the analyst: it is not the
size of a fixed data sample.

In general, drawing samples { X} independently from 7(.) is not feasible,
since 7(.) can be quite non-standard. However the {X;} need not neces-
sarily be independent. The {X:} can be generated by any process which,
loosely speaking, draws samples throughout the support of (.) in the cor-
rect proportions. One way of doing this is through a Markov chain having
x(.) as its stationary distribution. This is then Markov chain Monte Carlo.

H
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1.3.2 Markov chains

Suppose we generate a sequence of random variables, {Xo, X1, X2, ...},
such that at each time ¢ > 0, the next state Xt4+1 is sampled from a
&ma._.mvcsoz P(X141|X:) which depends only on the current state of the
chain, X;. That is, given X;, the next state Xi41 does not depend further
on the history of the chain {Xo, X),..., X¢—1}. This sequence is called a
Markov chain, and P(.|.) is called the transition kernel of the chain. We will
assume that the chain is time-homogenous: that is, P(.|.) does not depend
on t.

How does the starting state X, affect X;? This question concerns the
distribution of X; given Xy, which we denote P()(X,]X,). Here we are not
given the intervening variables {X;, X3,..., X;—1}, so X, depends directly
on Xg. Subject to regularity conditions, the chain will gradually ‘forget’ its
initial state and P()(.|Xo) will eventually converge to a unique stationary
(or invariant) distribution, which does not depend on t or Xp. For the
moment, we denote the stationary distribution by ¢(.). Thus as ¢ increases,
the sampled points {X;} will look increasingly like dependent samples from
¢(.). This is illustrated in Figure 1.1, where ¢(.) is univariate standard
normal. Note that convergence is much quicker in Figure 1.1(a) than in
Figures 1.1(b) or 1.1(c).

Thus, after a sufficiently long burn-in of say m iterations, points {Xy;
t =m+1,...,n} will be dependent samples approximately from é(.).
We discuss methods for determining m in Section 1.4.6. We can now use
the output from the Markov chain to estimate the expectation E[f(X ),
where X has distribution ¢(.). Burn-in samples are usually discarded for
this calculation, giving an estimator

F=—— Y 5x0. (1.2)

t=m+1
”HEm is called an ergodic average. Convergence to the required expectation
is ensured by the ergodic theorem.

. See Wocmgm (1995) and Tierney (1995) in this volume for more technical
discussion of several of the issues raised here.

1.5.3 The Metropolis-Hastings algorithm

Equation (1.2) shows how a Markov chain can be used to estimate E[f(X)],
where the expectation is taken over its stationary distribution ¢(.). This
would seem to provide the solution to our problem, but first we need to dis-
cover how to construct a Markov chain such that its stationary distribution
¢(.) is precisely our distribution of interest (.).

Constructing such a Markov chain is surprisingly easy. We describe the
form due to Hastings (1970), which is a generalization of the method
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iteration t

iteration t

. . . . . . . istribution
Figure 1.1 500 iterations from Metropolis algorithms with stationary distri
N(0,1) and proposal distributions (a) ¢(.|X) = N(X,0.5); (b} ¢(.|X) = ZAN.P.S..
and (c) g(.|X) = N(X,10.0). The burn-in is taken to be to the left of the vertical
broken line.
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first proposed by Metropolis et al. (1953). For the Metropolis-Hastings
(or Hastings-Metropolis) algorithm, at each time ¢, the next state X,y is
chosen by first sampling a candidate point Y from a proposal distribution
q(.|X¢). Note that the proposal distribution may depend on the current
point X;. For example, ¢(.|X) might be a multivariate normal distribution
with mean X and a fixed covariance matrix. The candidate point Y is then
accepted with probability a(X,,Y) where

1. iﬁix:\v
QANL\VIBE AH, iNKG\_NVV . (1.3)

If the candidate point is accepted, the next state becomes X;; = Y. If the
candidate is rejected, the chain does not move, i.e. X;;; = X;. Figure 1.1
illustrates this for univariate normal proposal and target distributions; Fig-
ure 1.1(c) showing many instances where the chain did not move for several
iterations.

Thus the Metropolis—Hastings algorithm is extremely simple:

Initialize Xy; set t =0.
Repeat {
Sample a point Y from ¢(.|X:)
Sample a Uniform(0,1) random variable U
If U M QAN?M\V set NIL =Y
otherwise set X;41 = X,
Increment t ,
}.

Remarkably, the proposal distribution ¢(.|.) can have any form and the
stationary distribution of the chain will be #(.). (For regularity conditions
see Roberts, 1995: this volume.) This can be seen from the following argu-
ment. The transition kernel for the Metropolis—Hastings algorithm is

P(X411X:) = @(Xeg1lXe)a(Xe, Xig)
H(Xip = X0 - [ ¥ 1X)a(X, V)aY], (1)

where I(.) denotes the indicator function (taking the value 1 when its
argument is true, and 0 otherwise). The first term in (1.4) arises from
acceptance of a candidate Y = X;4;, and the second term arises from
rejection, for all possible candidates Y. Using the fact that

T(X1)g(Xet11Xe)a(Xe, Xe41) = 7(Xe41)9( Xt Xet1)o(Xe41, Xi)

which follows from (1.3), we obtain the detailed balance equation:

T(X)P(Xe41|Xe) = m(Xeg1 ) P(Xe} Xe41). (1.5)
Integrating both sides of (1.5) with respect to X, gives: ‘
\S‘Axnvmgkn+u_kuv&>\« = S‘ANILV. AHOV
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The left-hand side of equation (1.6) gives the marginal distribution of X, 44
under the assumption that X; is from #(.). Therefore (1.6) says that if X, is
from #(.), then X;4; will be also. Thus, once a sample from the stationary
distribution has been obtained, all subsequent samples will be from that
distribution. This only proves that the stationary distribution is w(.), and
is not a complete justification for the Metropolis-Hastings algorithm. A
full justification requires a proof that P()(X;|X,) will converge to the sta-
tionary distribution. See Roberts (1995) and Tierney (1995) in this volume
for further details.

So far we have assumed that X is a fixed-length vector of k continuous
random variables. As noted in Section 1.2, there are many other possib-
ilities, in particular X can be of variable dimension. For example, in a
Bayesian mixture model, the number of mixture components may be vari-
able: each component possessing its own scale and location parameters.
In this situation, 7(.) must specify the joint distribution of ¥ and X, and
¢(Y|X) must be able to propose moves between spaces of differing dimen-
sion. Then Metropolis—Hastings is as described above, with formally the
same expression (1.3) for the acceptance probability, but where dimension-
matching conditions for moves between spaces of differing dimension must
be carefully considered (Green, 1994a,b). See also Geyer and Mgller (1993),
Grenander and Miller (1994), and Phillips and Smith (1995: this volume)
for MCMC methodology in variably dimensioned problems.

1.4 Implementation

There are several issues which arise when implementing MCMC. We discuss
these briefly here. Further details can be found throughout this volume, and
in particular in Chapters 5-8. The most immediate issue is the choice of
proposal distribution g(.|.).

1.4.1 Canonical forms of proposal distribution

As already noted, any proposal distribution will ultimately deliver sam-
ples from the target distribution =(.). However, the rate of convergence
to the stationary distribution will depend crucially on the relationship be-
tween g(.|.) and m(.). Moreover, having ‘converged’, the chain may still miz
slowly (i.e. move slowly around the support of #(.)). These phenomena
are illustrated in Figure 1.1. Figure 1.1(a) shows rapid convergence from a
somewhat extreme starting value: thereafter the chain mixes rapidly. Fig-
ure 1.1(b),(c) shows slow mixing chains: these would have to be run much
Ionger to obtain reliable estimates from (1.2), despite having been started
at the mode of =(.).

In high-dimensional problems with little symmetry, it is often necessary
to perform exploratory analyses to determine roughly the shape and ori-

i
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entation of x(.). This will help in constructing a proposal ¢(.|.) which leads
to rapid mixing. Progress in practice often depends on experimentation
and craftmanship, although untuned canonical forms for ¢(.].) often work
surprisingly well. For computational efficiency, ¢(.|.) shouid be chosen so
that it can be easily sampled and evaluated.

Here we describe some canonical forms for ¢(.].). Roberts (1995), Tier-
ney (1995) and Gilks and Roberts (1995) in this volume discuss rates of
convergence and strategies for choosing ¢(.|.) in more detail.

The Metropolis Algorithm

The Metropolis algorithm (Metropolis et al., 1953) considers only symmet-
ric proposals, having the form ¢(Y|X) = ¢(X|Y) for all X and Y. For
example, when X is continuous, ¢(.|X) might be a multivariate normal
distribution with mean X and constant covariance matrix X. Often it is
convenient to choose a proposal which generates each component of Y
conditionally independently, given X,. For the Metropolis algorithm, the
acceptance probability (1.3) reduces to

I. AC\V
QAXL\V|EE Afikvv C..J
A special case of the Metropolis algorithm is random-walk Metropolis, for
which ¢(Y[X) = ¢(J]X — Y|). The data in Figure 1.1 were generated by
random-walk Metropolis algorithms.

When choosing a proposal distribution, its scale (for example L) may
need to be chosen carefully. A cautious proposal distribution generating
small steps Y — X, will generally have a high acceptance rate (1.7), but
will nevertheless mix slowly. This is illustrated in Figure 1.1(b). A bold
proposal distribution generating large steps will often propose moves from
the body to the tails of the distribution, giving small values of #(Y)/7(X)
and a low probability of acceptance. Such a chain will frequently not move,
again resulting in slow mixing as illustrated in Figure 1.1(c). Ideally, the
proposal distribution should be scaled to avoid both these extremes.

The independence sampler

The independence sampler (Tierney, 1994) is a Metropolis—Hastings algo-
rithm whose proposal ¢(Y|X) = ¢(Y') does not depend on X. For this, the
acceptance probability (1.3) can be written in the form

a(X,Y) = min Ar %V _ :.3

where w(X) = w(X)/¢(X).
In general, the independence sampler can work very well or very badly
(see Roberts, 1995: this volume). For the independence sampler to work
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well, ¢(.) should be a good approximation to =(.), but it is safest if ¢(.) is
heavier-tailed than 7(.). To see this, suppose g(.) is lighter-tailed than =(.),
and that X, is currently in the tails of 7(.). Most candidates will not be in
the tails, so w(X,) will be much larger than w(Y’) giving a low acceptance
probability (1.8). Thus heavy-tailed independence proposals help to avoid
long periods stuck in the tails, at the expense of an increased overall rate
of candidate rejection.

In some situations, in particular where it is thought that large-sample
theory might be operating, a multivariate normal proposal might be tried,
with mean at the mode of m(.) and covariance matrix somewhat greater
than the inverse Hessian matrix

T d?log ia; -

dzTdz

evaluated at the mode.

Single-component Metropolis—-Hastings

Instead of updating the whole of X en bloc, it is often more convenient and
computationally efficient to divide X into components {X , X s,..., X}
of possibly differing dimension, and then update these components one by
one. This was the framework for MCMC originally proposed by Metropolis
et al. (1953), and we refer to it as single-component Metropolis-Hastings.
Let X ; = {X,,...,Xi-1, Xit+1,---, X n}, so X _; comprises all of X
except X ;.

An iteration of the single-component Metropolis—-Hastings algorithm com-
prises h updating steps, as follows. Let X, ; denote the state of X; at
the end of iteration t. For step i of iteration t + 1, X ; is updated using
Metropolis-Hastings. The candidate Y; is generated from a proposal dis-
tribution ¢;(Y|X¢.i, Xt.—i), where X _; denotes the value of X _; after
completing step i — 1 of iteration ¢ + 1:

Xi i = {Xep1.1y- 00 Xegrio1, Xeig1, - Xenh

where components 1,2,...,i — 1 have already been updated. Thus the ith
proposal distribution g;(.]., .) generates a candidate only for the i*" compon-
ent of X, and may depend on the current values of any of the components

of X. The candidate is accepted with probability a(X; —;, X:i,Y;) where

iv\.,._x‘l.vn%k..._v\....N.l..v v
"X X )i (Yl X, X =) )

Here (X ;|X -) is the full conditional distribution for X ; under =(.) (see
below). If Y; is accepted, we set X;+1.i = Y;; otherwise, we set Xy41.4 =
X;:. The remaining components are not changed at step 1.

Thus each updating step produces a move in the direction of a coordinate
axis (if the candidate is accepted), as illustrated in Figure 1.2. The proposal

a(X -, Xi,Y;) = min AH (1.9
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distribution g¢;(.|.,.) can be chosen in any of the ways discussed earlier in
this section.

X.2

> X4

Figure 1.2 Nlustrating a single-component Metropolis-Hastings algorithm for a
bivariate target distribution x(.). Components 1 and 2 are updated alternately,
producing alternate moves in horizontal and vertical directions.

The full conditional distribution #(X ;|X —;) is the distribution of the
i** component of X conditioning on all the remaining components, where

X has distribution #{.):

m(X)
fm(X)dX;

Full conditional distributions play a prominent role in many of the applica-
tions in this volume, and are considered in detail by Gilks (1995: this vol-
ume). That the single-component Metropolis-Hastings algorithm with ac-
ceptance probability given by (1.9) does indeed generate samples from the
target distribution (.) results from the fact that x(.) is uniquely deter-
mined by the set of its full conditional distributions (Besag, 1974).

In applications, (1.9) often simplifies considerably, particularly when =(.)
derives from a conditional independence model: see Spiegelhalter et al.
(1995) and Gilks (1995) in this volume. This provides an important com-
putational advantage. Another important advantage of single-component
updating occurs when the target distribution #(.) is naturally specified in
terms of its full conditional distributions, as commonly occurs in spatial

(XX i) = (1.10)
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modeis; see Besag (1974), Besag et al. (1995) and Green (1995: this vol-

ume).

Gibbs sampling

A special case of single-component Metropolis-Hastings is the Gibbs sam-
pler. The Gibbs sampler was given its name by Geman and Geman (1984),
who used it for analysing Gibbs distributions on lattices. However, its
applicability is not limited to Gibbs distributions, so ‘Gibbs sampling’ is
really a misnoma. Moreover, the same method was already In use in statis-
tical physics, and was known there as the heat bath algorithm. Nevertheless,
the work of Geman and Geman (1984) led to the introduction of MCMC
into mainstream statistics via the articles by Gelfand and Smith (1990)
and Gelfand et al. (1990). To date, most statistical applications of MCMC
have used Gibbs sampling.

For the Gibbs sampler, the proposal distribution for updating the i**
component of X is

gi(YilX i, X —i) = w(YilX =) (1.11)

where m(Y;|X -i) is the full conditional distribution (1.10). Substitut-
ing (1.11) into (1.9) gives an acceptance probability of 1; that is, Gibbs
sampler candidates are always accepted. Thus Gibbs sampling consists
purely in sampling from full conditional distributions. Methods for sam-
pling from full conditional distributions are described in Gilks (1995: this

volume).

1.4.2 Blocking

Our description of single-component samplers in Section 1.4.1 said nothing
about how the components should be chosen. Typically, low-dimensional or
scalar components are used. In some situations, multivariate components
are natural. For example, in a Bayesian random-effects model, an entire
precision matrix would usually comprise a single component. When com-
ponents are highly correlated in the stationary distribution =(.), mixing
can be slow: see Gilks and Roberts (1995: this volume). Blocking highly
correlated components into a higher-dimensional component may improve
mixing, but this depends on the choice of proposal.

1.4.3 Updating order

In the above description of the single-component Metropolis-Hastings al-
gorithm and Gibbs sampling, we assumed a fixed updating order for the
components of X;. Although this is usual, a fixed order is not necessary:
random permutations of the updating order are quite acceptable. More-
over, not all components need be updated in each iteration. For example,

i
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we could instead update only one component per iteration, selecting com-
ponent ¢ with some fixed probability s(¢). A natural choice would be to
set s(i) = m Zeger and Karim (1991) suggest updating highly correlated
components more frequently than other components, to improve mixing.
Note that if s(z) is allowed to depend on X; then the acceptance prob-
ability (1.9) should be modified, otherwise the stationary distribution of
the chain may no longer be the target distribution =(.). Specifically, the
acceptance probability becomes

min 0, 7(Y X _)s(ilY s, X i)ai(XalVin X =) v
(XX )s(il X, X )@Yl X5, X =5) )

1.4.4 Number of chains

So far we have considered running only one chain, but multiple chains
are permissible. Recommendations in the literature have been conflicting,
ranging from many short chains (Gelfand and Smith, 1990), to several long
ones (Gelman and Rubin, 1992a,b), to one very long one (Geyer, 1992). It
is now generally agreed that running many short chains, motivated by a
.mom:.m to obtain independent samples from =(.), is misguided unless there
is some special reason for needing independent samples. Certainly, inde-
pendent samples are not required for ergodic averaging in (1.2). The de-
bate between the several-long-runs school and the one-very-long-run school
seemns set to continue. The latter maintains that one very long run has
the best chance of finding new modes, and comparison between chains
can never prove convergence, whilst the former maintains that comparing
several seemingly converged chains might reveal genuine differences if the
chains have not yet approached stationarity; see Gelman (1995: this vol-
ume). If several processors are available, running one chain on each will
generally be worthwhile.

1.4.5 Starting values

Not much has been written on this topic. If the chain is irreducible, the
choice of starting values X will not affect the stationary distribution. A
rapidly mixing chain, such as in Figure 1.1(a), will quickly find its way
from extreme starting values. Starting values may need to be chosen more
carefully for slow-mixing chains, to avoid a lengthy burn-in. However, it is
seldom necessary to expend much effort in choosing starting values. Gelman
and Rubin (1992a,b) suggest using ‘over-dispersed’ starting values in muiti-
ple chains, to assist in assessing convergence; see below and Gelman (1995:

" $his volume).
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1.4.6 Determining burn-in

The length of burn-in m depends on Xp, on the rate of convergence of
PM(X,|Xo) to m(X:) and on how similar P()(.|.) and w(.) are required
to be. Theoretically, having specified a criterion of ‘similar enough’, m
can be determined analytically. However, this calculation is far from com-
putationally feasible in most situations (see Roberts, 1995: this volume).
Visual inspection of plots of (functions of) the Monte-Carlo output {X;,

=1,...,n}is the most obvious and commonly used method for determin-
ing burn-in, as in Figure 1.1. Starting the chain close to the mode of (.)
does not remove the need for a burn-in, as the chain should still be run long
enough for it to ‘forget’ its starting position. For example, in Figure 1.1(b)
the chain has not wandered far from its starting position in 500 iterations.
In this case, m should be set greater than 500.

More formal tools for determining m, called convergence diagnostics,
have been proposed. Convergence diagnostics use a variety of theoretical
methods and approximations, but all make use of the Monte Carlo output in
some way. By now, at least 10 convergence diagnostics have been proposed;
for a recent review, see Cowles and Carlin (1994). Some of these diagnostics
are also suited to determining run length n (see below).

Convergence diagnostics can be classified by whether or not they are
based on an arbitrary function f(X) of the Monte Carlo output; whether
they use output from a single chain or from multiple chains; and whether
they can be based purely on the Monte Carlo output.

Methods which rely on monitoring {f(X:),t = 1,...,n} (e.g. Gelman
and Rubin, 1992b; Raftery and Lewis, 1992; Geweke, 1992) are easy to
apply, but may be misleading since f(X:;) may appear to have converged
in distribution by iteration m, whilst another unmonitored function g(X;)
may not have. Whatever functions f(.) are monitored, there may be others
which behave differently.

From a theoretical perspective, it is better to compare globally the full
joint distribution P(*)(.) with x(.). To avoid having to deal with P(*)(.) dir-
ectly, several methods obtain samples from it by running multiple parallel
chains (Ritter and Tanner, 1992; Roberts, 1992; Liu and Liu, 1993), and
make use of the transition kernel P{(.|.). However, for stability in the proced-
ures, it may be necessary to run many parallel chains. When convergence
is slow, this is a serious practical limitation.

Running parallel chains obviously increases the computational burden,
but can be useful, even informally, to diagnose slow convergence. For ex-
ample, several parallel chains might individually appear to have converged,
but comparisons between them may reveal marked differences in the ap-
parent stationary distributions (Gelman and Rubin, 1992a).

From a practical perspective, methods which are based purely on the
Monte Carlo output are particularly convenient, allowing assessment of
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convergence without recourse to the transition kernel P(.|.), and hence
without model-specific coding.

This volume does not contain a review of convergence diagnostics. This
is still an active area of research, and much remains to be learnt about
the behaviour of existing methods in real applications, particularly in high
dimensions and when convergence is slow. Instead, the chapters by Raftery
and Lewis (1995) and Gelman (1995) in this volume contain descriptions
of two of the most popular methods. Both methods monitor an arbitrary
function f(.), and are based purely on the Monte Carlo output. The former
uses a single chain and the latter multiple chains.

Geyer (1992) suggests that calculation of the length of burn-in is un-
necessary, as it is likely to be less than 1% of the total length of a run
sufficiently long to obtain adequate precision in the estimator f in (1.2),
(see below). If extreme starting values are avoided, Geyer suggests setting
m to between 1% and 2% of the run length n.

1.4.7 Determining stopping lime

Deciding when to stop the chain is an important practical matter. The aim
is to run the chain long enough to obtain adequate precision in the estimator
f in (1.2). Estimation of the variance of f (called the Monte Carlo variance)
is complicated by lack of independence in the iterates {X;}.

The most obvious informal method for determining run length n is to
run several chains in parallel, with different starting values, and compare
the estimates f from (1.2). If they do not agree adequately, n must be
increased. More formal methods which aim to estimate the variance of f
have been proposed: see Roberts (1995) and Raftery and Lewis (1995) in
this volume for further details.

1.4.8 Output analysis

In Bayesian inference, it is usual to summarize the posterior distribution
x(.) in terms of means, standard deviations, correlations, credible intervals
and marginal distributions for components X ; of interest. Means, standard
deviations and correlations can all be estimated by their sample equivalents
in the Monte Carlo output {X;;,t = m+1,...,n}, according to (1.2). For
example, the marginal mean and variance of X ; are estimated by

and
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Note that these estimates simply ignore other components in the Monte
Carlo output.

A 100(1 - 2p)% credible interval [cy,c1—p] for a scalar component X ;
can be estimated by setting ¢, equal to the p* quantile of {X;;, ¢t =
m+1,...,n}, and ¢;_, equal to the (1 - p)* quantile. Besag et al. (1995)
give a procedure for calculating rectangular credible regions in two or more
dimensions.

Marginal distributions can be estimated by kernel density estimation.
For the marginal distribution of X ;, this is

1 N
(X)) ~ — Tmz K(X|Xy),

where K(.|X;) is a density concentrated around X;;. A natural choice for
K(X ;|X:) is the full conditional distribution (X :|Xi.—i). Gelfand and
Smith (1990) use this construction to estimate expectations under w(.).
Thus their Rao-Blackwellized estimator of E[f(X ;)] is

- 1 1
frB = — HMML E{f(X )| Xs.-i), (1.12)

where the expectation is with respect to the full conditional (X .| Xe.—i).
With reasonably long runs, the improvement from using (1.12) instead
of (1.2) is usually slight, and in any case (1.12) requires a closed form for
the full conditional expectation.

1.5 Discussion

This chapter provides a brief introduction to MCMC. We hope we have
convinced readers that MCMC is a simple idea with enormous potential.
The following chapters fill out many of the ideas sketched here, and in
particular give some indication of where the methods work well and where
they need some tuning or further development.

MCMC methodology and Bayesian estimation go together naturally, as
many of the chapters in this volume testify. However, Bayesian model vali-
dation is still a difficult area. Some techniques for Bayesian model validation
using MCMC are described in Chapters 9-13.

The philosophical debate between Bayesians and non-Bayesians has con-
tinued for decades and has largely been sterile from a practical perspective.
For many applied statisticians, the most persuasive argument is the avail-
ability of robust methods and software. For many years, Bayesians had dif-
.mnEQ solving problems which were straightforward for non-Bayesians, so
1t is not surprising that most applied statisticians today are non-Bayesian.
With the arrival of MCMC and related software, notably the Gibbs sam-
pling program BUGS (see Spiegelhalter et al., 1995: this volume), we hope
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more applied statisticians will become familiar and comfortable with Bayes-
ian ideas, and apply them.
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