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Abstract	and	Keywords

Combining	multiple	sensory	cues	is	an	effective	strategy	for	improving	perceptual
judgments	in	principle,	but	in	practice	it	demands	sophisticated	processing	to	extract
useful	information.	Sensory	cues	are	signals	from	the	environment	available	through
sensory	modalities;	perceptions	are	internal	estimates	about	the	world's	state	derived
from	sensory	cues	and	prior	assumptions	about	the	world.	The	influence	that	world
properties	have	on	sensory	cues	is	inherently	complicated,	so	recovering	information
about	the	world	from	sensations	is	a	difficult	problem.	This	chapter	discusses	“generative
knowledge”	as	a	unifying	framework	regarding	how	biological	brains	overcome	these
difficulties	to	interpret	sensory	cues.
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INTRODUCTION
Combining	multiple	sensory	cues	is	an	effective	strategy	for	improving	perceptual
judgments	in	principle,	but	in	practice	it	demands	sophisticated	processing	to	extract
useful	information.	Sensory	cues	are	signals	from	the	environment	available	through
sensory	modalities;	perceptions	are	internal	estimates	about	the	world's	state	derived
from	sensory	cues	and	prior	assumptions	about	the	world.	The	influence	that	world
properties	have	on	sensory	cues	is	inherently	complicated,	so	recovering	information
about	the	world	from	sensations	is	a	difficult	problem.	Imagine	trying	to	analyze
measurements	from	a	scientific	experiment	without	knowing	the	experimental	protocol:	It
is	impossible	to	draw	conclusions	without	knowing	the	methods	by	which	the	raw	data
were	produced.	Likewise,	converting	raw	neural	sensory	signals	into	perceptual
judgments,	like	the	distance	to	a	nearby	object	or	the	material	it	is	made	of,	requires	the
application	of	knowledge	that	is	both	structured	and	flexible.	In	this	chapter,	we	discuss
“generative	knowledge”	as	a	unifying	framework	regarding	how	biological	brains
overcome	these	difficulties	to	interpret	sensory	cues.

Challenges	for	Perception

Perceptual	processes	translate	raw	sensory	data	into	high-level	interpretations.	In	doing
so,	perception	solves	several	major	computational	challenges:

1)	The	mapping	from	sensory	data	to	interpretations	can	be	complex	and	ill	posed.
For	example,	extracting	three-dimensional	(3D)	geometry	from	two-dimensional
(2D)	images	is	fundamentally	ambiguous	because	a	multitude	of	3D	structures
can	project	to	any	single	2D	pattern	(Marroquin,	Mitter,	&	Poggio,	1987).	More
generally,	the	relationship	between	each	sensory	cue	and	the	environmental
properties	that	caused	it	may	be	intricate	and	convoluted	(the	acoustic	vibrations
arriving	at	the	eardrum	or	the	pattern	of	light	intensities	on	the	retina	have	no
simple,	unambiguous	relationship	with	the	position	of	an	object's	sound	source	or
its	geometric	shape).
2)	Many	sensory	cues	do	not	relate	directly	to	the	environmental	properties	of
interest,	but	rather	contain	“auxiliary”	information	related	to	the	quality	and
meaning	of	other	cues.	For	instance,	when	judging	the	distance	to	a	face,	knowing
its	physical	size	is	(p.47)	 irrelevant	in	isolation,	but	it	can	be	used	to
disambiguate	the	visual	image	size	(Yonas,	Pettersen,	&	Granrud,	1982).
Employing	auxiliary	information	is	important,	but	it	requires	understanding	of	how
the	multiple	cues	are	related	to	each	other.
3)	Sensory	cues	vary	in	quality:

i)	Relative	to	each	other.	For	instance,	vision	provides	higher	spatial
resolution	than	audition,	whereas	audition	provides	higher	temporal
resolution	than	vision.
ii)	Depending	on	external	factors.	For	instance,	in	fog	visual	cues	may
provide	worse	spatial	information	than	auditory	cues.
iii)	Depending	on	internal	factors.	For	instance,	cataracts	and	uncorrected
myopia	diminish	visual	acuity.
iv)	As	a	function	of	the	world	state.	For	instance,	binocular	stereo	cues	to



The Role of Generative Knowledge in Object Perception

Page 3 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.
All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber:
Massachusetts Institute of Technology (MIT); date: 02 October 2015

slant	decrease	in	reliability	as	surface	slant	increases,	whereas	texture
compression	cues	to	slant	increase	in	reliability	as	the	slant	increases
(Knill,	1998a,	1998b).

Because	of	variability	in	the	quality	of	cues,	the	brain	must	know	when,	and	how
much,	to	trust	cues'	information	and	when	they	are	too	unreliable	to	be
informative	(see	Chapter	1;	Ernst	&	Banks,	2002;	Jacobs,	1999).
4)	The	arrangements	of	objects’spatial	and	material	properties	in	the	world	follow
highly	predictable	patterns.	Though	it's	possible	for	objects	to	appear	in	an	infinite
variety	of	arrangements,	we	only	ever	encounter	a	very	small	subset	of	the
possible	configurations.	For	instance,	water	faucets	almost	exclusively	appear	in
bathrooms	and	kitchens	near	waist	level.	In	the	absence	of	particularly	strong
sensory	evidence	to	the	contrary,	such	knowledge	can	be	used	to	immediately
exclude	perceptual	scene	interpretations	that	involve	a	water	faucet	on	the
ceiling.	Statistical	distributions	about	object	properties	and	context	can	be
learned;	these	distributions	are	termed	priors.	Priors	offer	tremendous	benefits
for	perception	by	helping	overcome	ambiguity	and	impoverished	sensations,	but
because	of	the	vastness	and	complexity	of	scene	knowledge,	knowing	how	to
organize	and	use	it	is	neither	obvious	nor	trivial	(Strat	&	Fischler,	1991).

Overcoming	Perception's	Challenges	Using	Generative	Knowledge

The	challenges	presented	earlier	are	a	consequence	of	the	complex	relationships	among
the	set	of	immediate	world	properties	and	the	sensory	cues	they	generate.	The	brain
draws	percepts	from	sensations	by	taking	advantage	of	knowledge	about	these	complex
relationships.	To	study	how	observers	use	their	knowledge	for	perception,	it	is	useful	to
precisely	identify	the	potential	sources	of	this	knowledge.

We	use	the	term	sensory	generative	process	to	characterize	how	sensations	are	caused
by	the	world.	This	includes	the	physical	factors	that	lead	to	the	stimulation	of	the	sensory
organs,	and	the	relationships	among	world	properties	that	make	some	situations	more
common	than	others.	Some	examples	include	the	optical	projection	process	by	which	light
stimulates	the	retina,	and	the	typical	arrangements	of	objects	in	an	office	that	favor	large
objects	being	placed	on	the	floor	and	smaller	objects	being	placed	on	desks	and	shelves.
In	general,	the	generative	process	refers	to	those	events	that	happen	before	the
sensations	arrive	at	the	brain	and	which	constrain	sensory	input	in	a	physically
predictable	manner.

The	term	sensory	generative	knowledge	refers	to	built-in	assumptions	held	by	the	brain
about	the	sensory	generative	process—it	links	sensory	cues	back	to	the	world
properties	that	caused	them.	An	observer	who	interprets	sensory	cues	in	the	context	of
their	generative	process	can	make	more	accurate	judgments	about	the	world	by
combining	sensory	cues	and	prior	information	to	constrain	possible	scene	interpretations,
which	leads	to	more	accurate	and	robust	perceptions.

As	an	example,	consider	the	relationship	between	retinal	image	size	and	object	size.	An
object's	image	size	on	the	retina	is	influenced	by	two	factors,	the	object's	physical	size
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and	distance.	Image	size	alone	does	not	allow	an	observer	to	unambiguously	determine
the	size	or	distance:	The	object	could	be	small	and	near,	or	large	and	far;	either	situation
(p.48)	 may	produce	the	same	image	size	(Fig.	3.1A).	Now,	consider	the	sensory
generative	process.	Because	of	perspective	projection,	two	factors	play	a	dominant	role
in	determining	monocular	image	size	(I	)	(measured	in	visual	angle):	the	object's	physical
size	(S)	and	distance	(D).	The	generative	relationship	between	S,	D,	and	I	can	be
summarized	by	the	function

Figure	3.1 	(A)	The	size	of	an	object's	image	does	not	uniquely
specify	its	physical	size	and	distance,	only	a	set	of	size	and	distance
combinations	consistent	with	the	image.	(B)	If	one	knows	the
distance,	the	size	can	be	uniquely	determined;	likewise,	if	one	knows
the	size,	the	distance	can	be	uniquely	determined.

(3.1)

For	an	observer	that	has	this	generative	knowledge	and	can	measure	I,	several	facts
about	S	and	D	are	immediately	apparent.	First,	it	is	possible	to	solve	for	the	precise	value
of	S	only	if	D	is	known,	and	it	is	possible	to	solve	for	D	precisely	only	if	S	is	known:	It	is	not
possible	to	solve	one	equation	for	two	unknowns.	However,	if	an	auxiliary	cue	to	size	or
distance	is	available,	estimating	the	other	becomes	possible	(Fig.	3.1B).	Second,	if
information	about	either	S	or	D	is	available,	but	uncertain,	this	provides	uncertain
information	about	the	other.	For	instance,	if	you	are	told	that	S	is	between	1	and	2
meters	in	diameter,	and	I	is	1/10	radians,	you	can	infer	that	D	is	between	10	and	20
meters.

This	simple	illustration	shows	how	generative	knowledge	can	help	overcome	the	ill-posed,
ambiguous	nature	of	perception	through	auxiliary	cues	(challenges	1	and	2	presented
earlier).	When	judging	an	object's	distance,	cues	to	its	physical	size,	although
independent	of	distance,	can	nonetheless	be	used	to	disambiguate	the	causes	of	the
extent	of	the	image	on	the	retina.

Sensory	cues	vary	in	quality	(challenge	3),	and	an	observer	who	knows	the	relative
reliability	of	available	sensory	cues	can	differentially	incorporate	cues	of	varying	quality	to
form	more	accurate	perceptions.	Consider	an	experiment	in	which	an	object	is	viewed

= I.
S

D
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binocularly	and	the	observer	also	reaches	out	and	touches	it.	Thus,	at	least	two	cues	are
available	to	the	object	distance:	vergence	angle	and	felt	arm	position	while	touching	the
object	(haptic	cue).	If	one	cue	were	less	reliable	than	the	other,	it	should	be	allowed	less
influence	on	the	perceptual	judgment.	For	instance,	if	vergence	angle	is	a	more	reliable
cue	to	the	distance,	then	in	an	experiment	in	which	the	two	cues	are	set	in	conflict
(meaning	they	indicate	different	distances),	the	observer's	perceptual	distance	judgment
would	more	closely	reflect	the	vergence-indicated	distance	than	the	haptic-indicated
distance.

Exploiting	knowledge	of	how	world	properties	relate	to	other	world	properties	(challenge
4)	can	be	useful	for	constraining	possible	perceptual	interpretations.	In	the	size/distance
example,	if	the	observer	recognizes	that	the	object	whose	size	is	being	judged	is	a	face,
this	provides	a	strong	restriction	on	possible	sizes	because	the	variance	among	face
sizes	is	very	small.	Alternatively,	if	the	observer	is	trying	to	judge	the	distance	to	the
object,	the	prior	knowledge	that	face	sizes	fall	in	a	tight	range	can	be	used	to	rule	out
size/distance	combinations	that	are	inconsistent	with	the	size	prior.	More	generally,
almost	every	perceptual	behavior	is	heavily	influenced	by	contextual	information
(Biederman,	1772;	Oliva	&	Torralba,	2007).	For	instance,	a	large,	horizontally	extended
object	on	a	street	is	likely	a	car,	whereas	a	vertically	extended	object	indoors	is	likely	a
person.

Generating	Perceptual	Samples

Although	some	kinds	of	generative	knowledge	can	be	embodied	in	a	purely	feedforward
(p.49)	 inference	process,	mechanisms	that	use	generative	knowledge	to	hypothesize
new	instances	that	have	never	been	experienced	can	provide	considerably	more	flexible
and	robust	visual	inferences	(Yuille	&	Kersten,	2006).	Such	generative	models	of	the
world	provide	a	functional	link	between	world	properties	and	sensory	cues	that	can	take
a	hypothesized	world	property	and	compute	its	probable	sensory	consequences.	Such
generative	knowledge	is	believed	to	form	a	critical	part	of	the	motor	control	system,
called	a	forward	model	(Kawato,	1999),	that	predicts	the	afferent	sensations	that	will
result	from	motor	commands.	Much	less	is	known	about	the	existence	of	sophisticated
generative	models	for	perception;	however,	neural	predictive-coding	models	posit	that
the	brain	has	higher	level	perceptual	processing	sites	that	generate	predictions	of
sensory	input	at	lower	levels	(Mumford,	1992;	Rao	&	Ballard,	1999).	In	addition,
humans'	dreams	and	visual	imagery	abilities	suggest	generating	perceptual	samples	is
possible.	For	example,	imagine	you	are	looking	at	a	kitchen.	Immediately	items	like
refrigerators,	stoves,	sinks,	and	tables	come	to	mind,	and	you	can	provide	likely	colors,
sizes,	and	positions	of	such	objects.	The	particular	kitchen	you	conjure	may	be	a	kitchen
you	have	seen	in	the	past,	but	it	is	also	possible	to	imagine	a	new	kitchen	you	have	never
before	seen.	The	ability	to	visualize	and	imaginatively	construct	unobserved	scenes	may
reflect	the	operation	of	complex	generative	models	of	the	visual	world.	Lastly,	predicting
causal	chains	of	events,	like	a	tennis	ball's	future	position	after	a	series	of	bounces,	can	be
aided	by	an	approximate	generative	model	of	elastic	collisions	and	momentum.

In	the	next	(second)	section,	we	introduce	the	theoretical	issues	concerning	generative
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knowledge	in	the	context	of	Bayesian	inference	and	the	joint	roles	of	sensory	cues	and
prior	knowledge	for	perceptual	inference.	In	the	third	section,	we	present	empirical
results	that	support	the	brain's	use	of	sensory	generative	knowledge.	In	the	fourth
section,	we	discuss	inference	of	world	properties	when	nuisance	properties	confound
available	cues.

THE	BAYESIAN	OBSERVER	MODEL

Background

Bayesian	inference	is	a	model	for	perception	that	has	achieved	broad	support	for	several
reasons	(Knill	&	Pouget,	2004;	Körding	&	Wolpert,	2006).	Methodologically,	it	is	a
principled,	rigorous	language	for	probabilistic	models	suitable	for	characterizing
perceptual	inference	based	on	sensations	and	prior	knowledge.	As	described	earlier,
perception	solves	the	frequent	problem	of	ambiguity	due	to	the	noninvertibility	of
sensations;	formally,	inference	is	a	process	of	inversion	under	uncertainty	in	which	a	set
of	possibilities	are	obtained,	rather	than	a	unique	solution.	Bayesian	models	naturally
describe	the	combination	of	prior	knowledge	and	available	sensory	cues,	as	well	as	how
observers	learn	from	experience	to	make	better-informed	judgments	in	the	future,	both
of	which	are	common	phenomena	in	biological	perception.	Through	Bayesian	models,
numerous	studies	have	reported	optimal	and	near-optimal	performance	across	a	gamut
of	perception	tasks	(for	a	review,	see	Kersten,	Mamassian,	&	Yuille,	2004).	Of	equal
importance,	failures	of	optimality	provide	an	opportunity	for	identifying	limitations	in
neural	processing	and	deviations	between	human	and	model	assumptions	(see	Chapter
8).

Perception	as	Bayesian	Inference

As	presented	in	Chapter	1,	Bayes'	rule	specifies	how	to	optimally	combine	measurements
and	prior	information	to	gain	information	about	unobserved	quantities,	a	computation
termed	Bayesian	inference.	In	biological	perception,	the	brain	directly	measures	sensory
cues	but	does	not	directly	measure	external	world	properties.	By	treating	both	cues	and
world	properties	as	random	variables,	and	quantifying	their	respective	conditional	and
marginal	probability	distributions,	Bayesian	inference	provides	a	probability	distribution
over	possible	world	states	that	can	be	used	to	make	optimal	scene	estimates.	Bayesian
models	provide	a	(p.50)	 powerful	normative	framework	for	describing	and	evaluating
theories	of	perceptual	behavior.

Let	the	relevant	state	of	the	world,	or	those	properties	the	observer	is	interested	in,	be
represented	by	R,	and	direct	sensory	measurements	by	D.	Bayes'	rule	specifies:

(3.2)

where	 	is	the	conditional	likelihood	of	D	given	R,	P(R)isthe	prior	probability	of	R,
P(D)	is	the	marginal	likelihood	of	D,	and	 	is	the	posterior	probability	of	R	given	D.

P (R|D) = ,
P (D|R)P (R)

P (D)

P (R|D)
P (R|D)
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The	term	P(D|R)	represents	the	generative	relationship	between	world	properties	R	and
sensory	cues	D.

We	can	use	these	variables	to	represent	elements	from	the	size-	and	distance-perception
example	in	the	previous	section.	Consider	an	observer	who	is	trying	to	judge	the
distance	to	a	ball;	we	represent	distance	as	the	relevant	variable,	R.	Assume	the
observer	reaches	out	and	touches	the	ball,	so	that	the	felt	arm	position	provides	a	direct
distance	cue,	D.	We	represent	the	conditional	relationship	of	the	sensory	cue	given	the
relevant	world	property	as	 	(Fig.	3.2,	dashed	curve).	We	represent	prior
knowledge	about	different	ball	distances	as	P(R)	(Fig.	3.2,	dotted	curve).	For	this
example	the	prior	specifies	the	ball's	probable	distance	before	considering	specific
sensory	cues;	in	this	case,	it	may	reflect	knowledge	that	the	ball	is	between	1	and	2
meters	from	the	observer.	The	term	P(D)	characterizes	the	probability	of	receiving	cue
D.	For	any	particular	sensory	cue,	P(D)	is	constant	and	because	the	right-hand	side	is	a
probability	distribution	(that	integrates	to	one),	P(D)	is	fully	determined	by	

	Bayesian	inference	proceeds	by	merging	the	cue	likelihood	and	distance
prior	to	form	a	posterior	probability	distribution	over	the	possible	ball	distances.

Figure	3.2 	The	dashed	curve	represents	the	conditional	likelihood
of	a	sensory	cue	given	different	distances.	The	dotted	curve
represents	the	prior	probability	distribution	over	different
distances.	The	solid	curve	represents	the	posterior	probability
distribution	over	different	distances	given	the	cue;	note	that	its	peak
lies	between	the	likelihood	and	prior	peaks—closer	to	the	peak
specified	by	the	more	reliable,	likelihood	function.

Bayes'	Nets

Pearl	(1988)	introduced	Bayes'	nets	(see	examples	in	Fig.	3.3)	as	directed,	acyclic
graphical	models	that	express	the	conditional	probability	relationships	among	multiple
random	variables	and	their	prior	probability	distributions.	Bayes'	nets	are	a	useful	tool
for	describing	sensory	generative	processes	and	the	requisite	inference	rules	because
they	allow	graphical	expressions	of	properties	that	otherwise	must	be	represented	by
dense	symbolic	notation.	And	perhaps	more	important,	they	allow	similarities	among
seemingly	unrelated	sensation-perception	behaviors	to	be	recognized	by	the	modeler.
The	circles,	called	nodes	(Fig.	3.3),	represent	random	variables.	Nodes	that	have	no
parents,	termed	roots,	have	prior	probability	distributions	over	their	possible	values.
The	arrows	connecting	the	nodes,	called	edges,	represent	conditional	probability
distributions	among	random	variables.	In	sensory	generation,	conditional	dependencies

P (R|D)

P (R|D)

P (D|R)P (R) .
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(edges)	typically	represent	causal	relationships.	For	instance,	the	node	labeled	R	in
Figure	3.3A	can	represent	the	ball's	distance	and	D	can	represent	the	haptically	sensed
arm	position	cue	from	the	size-distance	example	in	the	previous	subsection.	The	arrow
connecting	them	represents	the	conditional	likelihood	function	of	sensory	cue	given
distance.	In	general,	the	direction	of	an	edge	is	arbitrary	(the	edge	in	Fig.	3.3A
represents	P(D|R),	but	if	its	direction	were	reversed	would	represent	P(R|D)).
Modelers	choose	directions	that	best	suit	the	problem	and	system	being	modeled.	For
perceptual	inference,	the	generative	process	relates	to	the	forward	direction	from	world
to	sensations;	the	inference	process	is	the	reverse	(p.51)	 (p.52)	 direction,	from
sensory	cues	to	world	properties.	As	a	terminology	note,	we	use	the	term	direct	to	refer
to	cues	that	are	connected	to	relevant	states	by	an	edge.	In	contrast,	the	term	auxiliary
is	used	to	refer	to	cues	that	do	not	share	an	edge	with	any	relevant	states	but	are
connected	by	a	sequence	of	edges	between	intermediate	nodes.

Figure	3.3 	(A)	Basic	Bayes:	A	relevant	world	property,	R,	causes	a
direct	cue,	D.	(B)	The	optimal	inference	strategy	is	to	combine	cue
likelihood	(red	curve)	with	the	prior	assumption	about	the	relevant
property	(blue	curve)	to	compute	a	posterior	probability
distribution	(purple	curve).	Note	that	the	prior	probability
distribution	is	over	the	root	node,	R.	(C)	Cue	combination:	A
relevant	world	property,	R,	causes	two	likelihood	(red
dashed/dotted	curves)	with	the	prior	assumption	about	the	relevant
property	(flat,	blue	curve)	to	compute	a	posterior	probability
distribution	(purple	curve).	Bayes'	rule	prescribes	calculating	their
product.	(E)	Discounting:	Two	world	properties	cause	a	direct	cue,
D.	The	observer	needs	to	perceive	the	relevant	world	property,	R,
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D.	The	observer	needs	to	perceive	the	relevant	world	property,	R,
and	not	the	nuisance	property,	N,	but	R	is	ambiguous	given	only	the
sensory	cue.	(F)	The	optimal	inference	strategy	is	to	combine	the
cue	likelihood	(red	distribution,	left)	with	the	prior	assumptions
about	the	nuisance	and	relevant	properties	(blue	distribution,	left)
to	compute	a	posterior	probability	distribution	(gray	distribution,
right).	Bayes'	rule	prescribes	calculating	their	product.	The	prior
assumptions	disambiguate	the	sensory	measurement.	(G)	Explaining
away:	Two	world	properties,	relevant,	R,	and	nuisance,	N,	cause	a
direct	cue,	D,	and	auxiliary	cue,	A.	The	observer	needs	to	perceive
R,	but	not	N,	but	R	is	ambiguous	given	only	the	cue.	Though	A	is	not
directly	related	to	R,	it	provides	information	about	N	that	can
disambiguate	R.	(H)	The	optimal	inference	strategy	is	to	combine	the
direct	(red	distribution,	left)	and	auxiliary	cue	likelihoods	(green
distribution,	left)	with	the	prior	assumptions	about	the	nuisance	and
relevant	properties	(blue	distribution,	left)	to	compute	a	posterior
probability	distribution	(black	distribution,	right).	The	prior
assumptions	and	auxiliary	cues	disambiguate	the	sensory
measurement.	The	arrow	shows	how	the	discounting	posterior
distribution	(panel	F)	shifts	(as	well	as	tightening	to	become	more
peaked)	as	a	result	of	the	auxiliary	cue.

Generative	Knowledge	in	Bayesian	Inference

Figure	3.3	illustrates	four	elementary	sensory	generative	process	models	(Kersten	et	al.,
2004).	These	are	not	unique	or	exclusive;	there	may	be	more	than	one	way	to
characterize	a	sensory	circumstance.	Instead	they	can	be	thought	of	as	choices	made	by
the	modeler	to	characterize	particular	sensation-perception	events	in	an	accurate	yet
succinct	manner.	As	an	extreme	example,	ambient	air	temperature	affects	the	index	of
refraction	between	air	and	eye,	and	thus	influences	the	visual	generative	process,	but
the	impact	is	negligible	so	the	modeler	can	choose	to	ignore	it.

Figures	3.3A	and	3.3B	represent	situations	in	which	a	single	world	property	causes	a
single	cue	and	follows	a	relatively	straightforward	generative	process.	Some	examples
include	a	moving	object	producing	a	moving	image	on	an	observer's	retina,	the	distance
to	an	object	being	measured	by	binocular	vergence,	and	the	position	of	a	sound	source
being	sensed	through	interaural	auditory	differences.	Inference	in	this	situation,	termed
basic	Bayes,	is	performed	by	inverting	the	nondeterministic	functional	relationship
between	the	cue	and	world	property,	and	combining	this	information	with	prior
knowledge	about	the	world	property	like	the	example	in	the	previous	subsection.

Figures	3.3C	and	3.3D	represent	situations	in	which	a	single	world	property	causes
multiple	cues.	Some	examples	include	a	surface	producing	binocular	stereo	and	texture
compression	cues	to	its	slant,	the	distance	to	an	object	being	measured	by	binocular
vergence	and	felt	arm	position,	and	the	position	of	a	sound	source	being	sensed	through
interaural	auditory	differences	and	visual	cues.	Inference	here,	termed	cue	combination,
is	similar	to	the	basic	Bayes	case.	It	is	performed	by	inverting	the	direction	of	influence
between	each	cue	and	world	property,	and	combining	these	inverted	relationships	with
prior	knowledge	about	the	world	property.

Figures	3.3E	and	3.3F	represent	situations	in	which	multiple	world	properties	influence
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one	cue.	Some	examples	include	illuminant	intensity	and	surface	reflectance	causing	a
sensed	luminance	cue,	or	an	object's	size	and	distance	each	influencing	its	monocular
image	size.	When	an	observer	infers	one	(relevant)	world	property	among	other,
nuisance	properties,	termed	discounting,	the	cue	only	can	constrain	the	possible	relevant
property	values	to	a	set	of	relevant-/nuisance-value	combinations.	Prior	knowledge	about
the	nuisance	property	must	be	used	to	rule	out	unlikely	relevant/nuisance	combinations.

Figures	3.3G	and	3.3H	represent	situations	in	which	multiple	world	properties	influence
multiple	cues;	the	cues	can	be	divided	into	those	that	are	directly	influenced	by	the
relevant	world	property,	and	auxiliary	ones	that	are	only	indirectly	related	to	the
relevant	world	variable.	Some	examples	include	a	surface's	shape	and	reflectance	each
influencing	a	sensed	luminance	cue	and	the	shape	also	influencing	a	visual	geometry	cue,
an	object's	size	and	distance	each	influencing	its	sensed	image	size	and	the	distance	also
influencing	a	binocular	vergence	cue,	and	two	spatially	separated	sound	sources	each
causing	interaural	auditory	difference	cues	and	one	source	also	causing	a	visual	cue	to
its	position.	When	an	observer	infers	one	(relevant)	world	property	among	other,
nuisance	properties,	termed	explaining	away,	the	direct,	confounded	cue	only	can
constrain	the	possible	relevant	property	values	to	a	set	of	possible	relevant/nuisance
value	combinations	(as	in	discounting).	However,	auxiliary	cues	(those	not	directly
related	to	the	relevant	world	property)	and	prior	knowledge	about	the	nuisance
property	can	be	used	to	rule	out	unlikely	relevant/nuisance	combinations.

The	conditional-likelihood	and	prior-probability	terms	implicitly	dictate	how	strongly	the
sensory	cues	and	prior	knowledge	should	influence	the	final	perceptual	inference.	When
sensory	information	propagates	backward	through	the	generative	structure	(p.53)	 in
inference,	the	uncertainty	in	the	conditional	distribution	determines	the	relative	impact	of
the	information:	For	conditional	dependencies	with	low	uncertainty	the	information	is
very	influential;	for	high	uncertainty	the	information	plays	a	lesser	role.	The	same	is	true
for	the	uncertainty	in	prior	probability	distributions.

Discounting	and	Explaining	Away

Discounting	and	explaining-away	inference	processes	critically	depend	on	generative
knowledge.	It	is	easier	to	conceive	noninferential,	associative	learning	systems	that
conduct	cue-combination-like	inference,	even	using	relative	cue	reliability,	but	it	is
difficult	to	contrive	reasoning	patterns	like	“explaining	away”	without	generative
knowledge	and	Bayesian	inference.	Thus,	discounting	and	explaining-away	phenomena
form	stronger	tests	of	humans'	use	of	generative	knowledge	for	perceptual	inference
than	cue	combination.	However,	new	analysis	tools	must	be	developed	for	testing
discounting	and	explaining-away	phenomena	that	entail	more	complex	ideal-observer
models.	The	fourth	section	presents	a	novel	framework	for	analyzing	more	complex	ideal-
observer	models.

The	following	section	reviews	qualitative	reports	of	perceptual	discounting	and	explaining
away.
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EXPERIMENTAL	EVIDENCE	FOR	THE	USE	OF	GENERATIVE	KNOWLEDGE:
DISCOUNTING	AND	EXPLAINING	AWAY
Observers	frequently	receive	ambiguous	sensory	input,	which	makes	interpreting	the
scene	challenging	because	more	than	one	possible	interpretation	could	be	correct.
Perceptual	discounting	and	explaining	away	are	behaviors	that	overcome	this	problem
using	generative	knowledge.

Discounting

Studies	of	perceptual	discounting	have	found	evidence	that	shape-from-shading
perception	is	influenced	by	prior	assumptions	about	illuminant	direction	in	accordance
with	the	generative	relationship	between	shape,	illumination,	and	sensed	luminance.
Mamassian	and	Goutcher	(2001)	measured	human	observers'	estimates	of	an	object's
shape	from	shading	cues,	which	require	an	assumption	about	what	direction	the	light
arrives	from,	to	be	useful.	This	prior	knowledge	helps	to	disambiguate	the	otherwise
ambiguous	shading	cue.	Mamassian	and	Landy	(2001)	investigated	how	multiple	priors'
weights	are	decided	by	the	brain,	specifically	lighting	direction	and	surface	slant	priors,
and	concluded	that	the	weights	reflect	their	relative	reliabilities.	Adams,	Graf,	and	Ernst
(2004)	modified	observers'	light	direction	priors	by	providing	haptic	feedback	that
suggested	a	different	lighting	direction	than	the	default	overhead	assumption.

Explaining	Away

Some	of	the	most	striking	examples	of	perceptual	explaining	away	can	be	demonstrated
with	ambiguous,	especially	bistable,	stimuli.	Bistable	stimuli	are	those	that	have	more	than
one	perceptual	interpretation,	and	when	viewing	the	stimuli	the	perceptual	experience
spontaneously	“flips”	between	interpretations	with	a	period	of	roughly	5–45	seconds,
though	sometimes	much	longer.	Examples	include	the	“Necker	cube”	and	kinetic-depth-
effect	rotating	cylinders	(see	Chapter	9	for	a	picture).	Studies	have	shown	(Blake,	Sobel,
&	James,	2004;	James	&	Blake,	2004)	that	by	providing	an	auxiliary	sensory	cue,	like
binocular	stereo	or	haptic	input,	the	bistability	can	be	reduced	or	removed	altogether.
This	auxiliary	cue	serves	to	explain	away	particular	stable	interpretations	that	are
inconsistent	with	the	cue.

Knill	and	Kersten	(1991)	reported	a	clear	instance	of	perceptual	explaining	away	in	which
an	object's	surface	shape	affects	observers'	judgments	of	albedo,	consistent	with	a
generative	model	that	explains	away	the	effect	of	the	shape	on	the	luminance.	Figure	3.4
illustrates	Knill	and	Kersten's	(1991)	stimuli	in	which	generative	knowledge	allows
auxiliary	shape	cues	to	disambiguate	an	otherwise	ambiguous	luminance	cue	to	the
albedo	of	a	surface	(adapted	from	Knill	&	Kersten,	1991).	In	the	upper	row,	the
grayscale	image	shows	two	objects	(p.54)	 with	different	shapes.	The	observer's	task	is
to	decide	what	the	albedo	is	in	a	horizontal	cross-section	across	each	object	(dashed
white	boxes).	Under	the	image,	the	rows	represent	the	actual	luminance	profile	of	the
pixels	across	each	object	(labeled	“L”),	and	the	perceived	albedo	profile	across	each
object	for	a	typical	observer	(labeled	“A”).	The	perceived	albedo	profiles	are	due	to	the
different	perceived	shapes	of	the	objects,	indicated	by	their	respective	edge	cues.	In	the
left	object,	because	the	shape	looks	flat	on	the	front,	the	luminance	difference	across	the
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object's	center	is	attributed	to	variation	in	albedo.	In	the	right	object,	the	left	side	of	each
cylinder	is	perceived	to	face	the	light	source	more	directly;	changing	albedo	is	not
required	to	explain	the	luminance	differences	across	the	center	of	the	object.

Figure	3.4 	The	image	depicts	two	objects	with	different	shapes,	yet
the	luminance	profiles	within	the	dotted	boxes	are	identical	for	both
objects,	as	plotted	below	the	objects	in	the	row	labeled	“L”.	The
perceived	albedo,	plotted	in	the	row	labeled	“A”,	is	different	for	the
different	objects.

Figure	3.3G	shows	the	graphical	model	that	characterizes	this	perceptual-inference
problem.	The	relevant	property	(R)	represents	the	object's	albedo/reflectance,	the
nuisance	property	(N	)	represents	the	object's	surface	shape,	the	direct	cue	(D)	is	the
luminance,	and	the	auxiliary	cue	(A)	is	the	object's	boundary	contour	that	provides	direct
information	about	surface	shape.	Luminance	is	a	function	of	both	surface	shape	and
albedo	(and	light	source	intensity	and	direction,	too,	but	here	we	assume	they	are
constant).	The	observer's	perceptual	task	is	to	estimate	the	albedo,	but	the	effect	that
shape	has	on	luminance	must	be	explained	away	in	order	to	disambiguate	the	albedo.
Because	there	is	auxiliary	boundary	contour	information	that	provides	an	independent
estimate	of	the	shape,	the	shape's	impact	on	luminance	can	be	explained	away	and	the
albedo	unambiguously	estimated.	The	observer	requires	knowledge	of	how	shape	and
albedo	generate	the	image	data	(boundary	contour	and	luminance)	to	use	it	for
perceptual	estimation.

Size-	and	Distance-Perception	Experiments

The	influence	of	auxiliary	distance	cues	on	human	size	perception	has	received	much
attention	for	more	than	a	half	century.	However,	few	studies	measuring	the	influence	of
size	cues	on	distance	perception	have	been	reported,	and	no	experiments	have
investigated	how	cues	to	an	object's	changing	distance	influences	perception	of	whether,
and	to	what	degree,	its	size	changes.

Holway	and	Boring	(1941)	found	size	constancy	(in	which	perceived	size	is	proportional
to	object	size)	was	best	facilitated	by	providing	many,	strong	distance	cues,	though
others	(Epstein,	Park,	&	Casey,	1661;	Gogel,	Wist,	&	Harker,	1663;	Ono,	1966)
concluded	that	size	constancy	was	subject	to	a	variety	of	failures.	Epstein	et	al.	(1961)
and	other	authors	(Brenner	&	van	Damme,	1999;	Gruber	&	Dinnerstein,	1665;
Heinemann	&	Nachmias,	1665;	Ono,	Muter,	&	Mitson,	1974)	acknowledge	that	distance
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judgments	are	not	always	veridical	(apparent	distances	do	not	always	match	physical
distances),	which	accounts	for	some	size	mis-perceptions,	and	specific	experimental
design	choices	and	task	demands	often	contribute	to	the	nature	of	the	experiment's
recorded	failure	of	size	constancy	(Blessing,	Landauer,	&	Coltheart,	1667;	Kaufman	&
Rock,	1662;	Mon-Williams	&	Tresilian,	1999).

Several	studies	investigated	humans'	use	of	size	information	for	making	distance
judgments.	Granrud,	Haake,	and	Yonas	(1985)	showed	that	7-month-old	infants	who
were	allowed	to	learn	the	size	of	different	objects	by	playing	with	them	used	the	size	to
judge	the	distance	in	postplay	test	phases.	In	contrast,	5-month-old	infants	did	not	exhibit
the	use	of	size	information	for	distance	judgments,	suggesting	(p.55)	 the	development
of	knowledge	about	size	and	distance	occurs	as	early	as	5–6	months	old.	Yonas,	Granrud,
and	Pettersen	(1985)	showed	that	when	presented	with	two	objects	of	different	retinal
visual	angles,	infants	older	than	5	months	perceived	the	larger	as	nearer,	but	not	5-
month-olds.	Yonas,	Pettersen,	and	Granrud	(1982)	showed	that	7-month-old	infants'	and
adults'	distance	judgments	are	influenced	by	familiar-size	information	associated	with
faces,	but	5-month-olds	are	insensitive	to	familiar	size.	These	results	suggest	that	size
information	can	influence	distance	judgments.

We	now	describe	results	from	two	experiments,	one	investigates	how	sensory
measurements	of	depth	changes	influence	judgments	of	physical	object	size	changes,	and
a	second	in	which	measurements	of	size	influence	a	depth-dependent	action.

The	role	of	auxiliary	distance	information	in	size	perception	was	addressed	by	a	recent
study.	Battaglia	et	al.	(2010)	conducted	an	experiment	in	which	they	presented
participants	with	balls	that	moved	in	depth	and	simultaneously	either	inflated	or	deflated,
and	they	asked	participants	to	decide	“inflation”	or	“deflation”	for	each	stimulus.	The
experimenters	provided	binocular	and	haptic	cues	to	the	ball's	distance	change	to	test
the	effect	these	auxiliary	sensory	cues	had	on	size-change	perception.	They	reasoned
that	because	objects	do	not	usually	change	in	size,	if	participants	make	use	of	the
auxiliary	cues	they	must	have	general	knowledge	of	the	relationship	between	size	and
distance,	and	not	simply	exploit	a	learned	association	between	the	auxiliary	sensory	cues
and	size-change	perception.	The	results	were	that	in	the	absence	of	auxiliary	cues,
participants	relied	on	prior	assumptions	that	the	object	was	stationary	to	judge	the	size
change	proportional	to	the	image	size	change,	and	they	made	perceptual	mistakes	in
cases	when	the	distance	change	had	a	large,	opposite	effect	on	image	size	than	the
physical	size	change.	But	both	the	binocular	and	haptic	cues	were	effective	in	nulling	that
bias	by	providing	disambiguating	distance-change	information.	Interestingly,	binocular
cues	were	more	effective	than	haptic	cues,	which	may	reflect	observers'	weaker	“trust”
of	haptic	cues	due	to	possible	dissociation	from	the	visual	object.	They	concluded	that
humans	must	have	knowledge	of	the	relationship	between	size,	distance,	image	size,	and
the	auxiliary	distance	cues	to	make	these	perceptual	judgments.

Figure	3.5	depicts	one	participant's	data	in	Battaglia	e	al.	(2010)'s	experiment;	H	refers	to
“haptic”	auxiliary	cues,	B	means	“binocular”	auxiliary	cues,	a	plus	sign	means	the	cue	was
present,	and	a	minus	sign	means	the	cue	was	absent.	Notice	that	in	the	case	with	no



The Role of Generative Knowledge in Object Perception

Page 14 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.
All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber:
Massachusetts Institute of Technology (MIT); date: 02 October 2015

haptic	and	no	binocular	auxiliary	cues	(labeled	H–/B–),	those	stimuli	perceived	as
“inflating”	(gray	region)	were	predicted	by	whether	the	image	size	was	growing	or
shrinking	(black,	diagonal,	dashed	line).	When	haptic	and/or	binocular	cues	were	available
(labeled	H+/B–,	H–/B+,	H+/B+),	participants'	perception	of	inflating	balls	changed	to
reflect	the	true	physical	size	change	more	accurately.

Battaglia,	Schrater,	and	Kersten	(2005)	conducted	an	experiment	in	which	participants
were	asked	to	intercept	a	moving	ball	that	varied	in	size	across	trials,	by	positioning	their
hand	at	a	distance	of	their	choice.	The	participant's	hand	was	constrained	so	that	it	could
only	move	along	the	line	of	sight,	and	the	ball	moved	from	left	to	right,	crossing	the	hand's
constraint	line	at	variable	distance.	The	hand's	distance	placement	was	considered	to	be	a
measure	of	the	participant's	percept	of	the	ball's	distance.	In	some	trials	the	participants
were	allowed	preinterception	haptic	interaction	with	the	ball,	which	provided	an	auxiliary
cue	to	the	ball's	size.	By	comparing	participants'	distance	judgments	in	the	“haptic
auxiliary	cue”	condition	with	those	in	the	“no	haptic	auxiliary	cue”	condition	for	trials	with
identical	ball	image	sizes,	experimenters	were	able	to	measure	participants'	abilities	to
explain	away	the	confounding	influence	of	the	ball's	physical	size	on	the	image	size.	The
distance	judgments	of	an	“explaining-away	observer”	should	be	less	dependent	on	the
physical	size	than	the	distance	judgments	of	an	observer	with	no	auxiliary	information	(for
one	participant,	Fig.	3.6).	Figure	3.7	summarizes	all	participants'	results,	which	support
the	hypothesis	that	participants	explain	away	the	influence	of	physical	size	when	making
distance	(p.56)	 judgments.	In	particular,	Figure	3.7A	depicts	the	correlation	between
participants'	distance	judgments	and	the	balls'	physical	sizes	and	shows	that	participants'
distance	judgments	were	less	dependent	on	the	ball's	physical	size	when	auxiliary	size
cues	were	available	to	explain	away	the	size	confound.	Figure	3.7B	shows	that
interception	performance	improved	as	a	result	of	this	explaining-away	reasoning.
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Figure	3.5 	One	participant's	judgments	of	balls	as	inflating	(gray)	or
deflating	(white)	balls.	Each	box	represents	a	unique	combination	of
haptic	and	binocular	distance	cues	(indicated	by	“H*	/	B*”	on	the	left
side	of	each	box).	The	black	dots	represent	different	size-	and
distance-change	stimulus	values.	The	black	diagonal	dashed	line
represents	those	stimuli	whose	image	size	did	not	change;	left	of	the
line	indicates	shrinking	image	sizes,	and	right	of	the	line	indicates
growing	image	sizes.	The	black	vertical	dotted	line	indicates	the	true
boundary	between	inflating	and	deflating	balls.	We	interpolated
between	the	50%	points	of	psychometric	functions	across	the	solid
diagonal	lines	to	estimate	the	gray/white,	inflation/deflation
boundaries.	When	haptic	and	binocular	distance	cues	are	available,
the	participant's	judgments	of	which	stimuli	were	inflating	became
more	accurate	because	the	confounding	influence	of	distance	on
image	size	was	explained	away	by	the	auxiliary	distance	cue.

INFERENCE	IN	THE	PRESENCE	OF	NUISANCE	WORLD	PROPERTIES
Until	now	our	discussion	has	dealt	with	normative	models	of	perceptual	inference,	and
we	have	presented	qualitative	evidence	that	observers	use	generative	knowledge	to
make	perceptual	judgments.	To	model	perceptual	inference	quantitatively,	a	Bayesian
observer	model	is	required.	We	now	describe	how	to	use	a	behavioral	experiment	to
test,	and	estimate	parameters	of,	such	a	model.

It	is	important	to	realize	that	for	more	complex	perceptual-inference	situations,	like
discounting	and	explaining	away	(Fig.	3.3),	the	observer	requires	generative	knowledge
to	interpret	input	sensations	and	prior	knowledge.	An	important	question	is:	What
generative	knowledge	does	the	human	observer	possess?	On	the	one	hand,	it	seems
unlikely	that	observers	know	the	exact	nature	and	quality	of	each	sensory	cue's
relationship	with	the	world.	On	the	other	hand,	human	observers'	excellent	perceptual
performance	across	a	wide	range	of	tasks	suggests	that	they	use	very	sophisticated
strategies	that	(p.57)	 (p.58)	 may	include	detailed	internal	knowledge	of	generative
processes.	The	remainder	of	this	section	describes	a	formal	framework	to	analyze	this
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question.

Figure	3.6 	These	scatter	plots	show	a	typical	participant's
interception	behavior.	Each	dot	represents	a	single	trial's	data	point;
red	were	smaller	balls,	green	were	medium	balls,	and	blue	were
large	balls.	The	x-axis	shows	the	actual	distance	of	the	ball.	The	y-axis
shows	the	participant's	judged	distance.	The	black	diagonal	line
shows	the	line	that	indicates	perfect	judgments.	The	colored	lines
are	regression	fits	to	the	small,	medium,	and	large	balls,	with	color
corresponding	to	the	dot	colors.	The	left	figure	shows	the	no-
auxiliary-haptic-size-cue	condition;	the	right	figure	shows	the
condition	in	which	the	auxiliary	haptic	size	cue	was	provided.

Figure	3.7 	(A)	Each	pair	of	bars	represents	the	correlation	between
distance	judgments	and	ball	size	for	one	participant;	the	gray	bars
depict	the	“no-auxiliary-size-cue”	condition,	and	the	white	bars
depict	the	“haptic-auxiliary-size-cue”	condition.	All	participants'
distance	judgments	are	less	correlated	with	the	physical	size	cue
when	auxiliary	information	is	available	to	disambiguate	the	image	size
cue.	(B)	Each	pair	of	bars	represents	participants'	average	error
(standard	deviation	of	distance	judgments).	Auxiliary	cues	improved
all	participants'	performance.
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Figure	3.8 	Full	psychophysical-observer	model.	The	sensation
process	is	characterized	by	the	sensory	generative	process	in
which	world	properties	(W	)	produce	sensory	input	(σ	)	in	the
observer.	Perception	is	characterized	by	the	inference	process	in
which	the	observer	combines	sensory	cues	(σ	)	with	prior
knowledge	(π)	to	compute	beliefs	(β)	about	the	state	of	the	external
environment	(W	).	Actions	are	characterized	by	the	decision-making
process	in	which	the	observer	combines	beliefs	(β)	with	goals	(γ	)	to
select	actions	(α)	that	are	predicted	to	result	in	highest	reward.	This
model	can	be	formally	quantified	using	the	Bayesian	decision-
theoretic	formalism,	provided	in	Eq.	1.5	in	Chapter	1.

Generative	Processes	versus	Knowledge

The	distinction	between	the	sensory	generative	process	and	an	observer's	generative
knowledge	must	be	recognized	when	modeling	an	observer's	performance	in	a
psychophysical	task.	The	generative	process	entails	how	the	world	produces	sensory
cues	through	physical	processes	and	the	statistical	regularities	of	natural	scenes	that	are
external	to	the	observer.	Generative	knowledge	is	the	observer's	model,	or
understanding,	of	the	generative	process	that	is	either	built	in	or	acquired	through
experience.	For	subjectively	optimal	Bayesian	inference,	the	observer	uses	its	generative
knowledge	in	accordance	with	Bayes'	rule	for	inference.	However,	for	the	stronger	case
of	objectively	optimal	Bayesian	inference,	the	generative	knowledge	also	accurately
reflects	the	true	generative	process.

Figure	3.8	represents	a	model	observer	who	receives	sensory	cues	from	the	world
(labeled	“generative”),	integrates	prior	assumptions	with	those	cues	to	form	perceptual
inferences	(labeled	“inference”),	and	selects	actions	based	on	those	inferences	and	its
internal	goals	(labeled	“decision”).	Though	it	does	not	capture	phenomena	like	attention,
sensorimotor	feedback,	or	learning,	this	framework	is	very	useful	for	quantifying	how	a
psychophysical	observer	produces	responses	based	on	input	stimuli.

The	state	of	the	world	is	represented	by	the	top	node	and	is	labeled	W	;	the	actor's
sensory	cues	are	labeled	σ	;	the	actor's	prior	knowledge	is	labeled	π;	the	actor's
inferred	state	of	the	world,	or	beliefs1	about	the	world,	are	labeled	β;	the	actor's	goals
are	labeled	γ	;	and	the	actor's	actions	are	labeled	α.	The	arrow	from	 	represents
the	sensory	generative	process;	the	arrows	from	 	represent	the
perceptual	inference	process,	which	is	guided	by	generative	knowledge;	and	the	arrows
from	 	represent	the	decision	process	by	which	the	actor	chooses	actions
in	response	to	his	or	her	beliefs	about	the	world	and	internal	goals.	The	actor	has	access
to	sensory	cues,	σ	;	prior	knowledge,	π;	beliefs	about	the	world,	β;	and	goals,	γ.

W → σ

σ → βandπ → β

β → σandγ → α
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Although	the	actor	controls	his	or	her	actions,	the	actual	outcome	of	the	actions,	α,	varies
with	respect	to	the	intended	behavior.

(p.59)	 The	experimenter	has	access	to	the	world	state,	W,	and	action	measurements,	α.

This	modeling	framework	allows	an	experimenter	to	manipulate	W	in	order	to	study	the
generative,	inference,	and	decision	processes	within	observers.	An	ideal-observer	model
(see	Chapter	1)	can	be	used	to	parameterize	the	experimentalist's	assumptions	and
hypotheses	about	the	generative,	inference,	and	decision	processes	for	a	psychophysical
observer,	and	to	compute	predicted	actions	α,	given	W.	In	this	way	behavioral
measurements	can	be	directly	compared	to	model	predictions	and	used	to	estimate	the
model's	parameter	values.	When	observers'	behaviors	outperform	suboptimal	models,
these	models	can	be	immediately	dismissed.	Observers'	deviations	from	optimality	(see
Chapter	8)	suggest	their	use	of	heuristics,	which	may	be	more	easily	pinpointed	by
considering	the	ideal-observer	model.	Additionally,	because	of	the	relationship	between
human	generative	knowledge	and	the	true	generative	process,	the	estimated	generative
knowledge	model	parameters	can	be	compared	to	the	estimated	generative	process
parameters	to	assess	the	quality	of	the	observer's	knowledge.	Generally	ideal-observer
predictions	allow	experimentalists	to	classify	observers	into	three	groups:	(1)	those	who
have	accurate	generative	knowledge	and	make	optimal	perceptual	inferences	(objectively
optimal	observer),	(2)	those	who	are	suboptimal	because	they	apply	inaccurate
generative	knowledge	in	a	Bayes-consistent	manner	(subjectively	optimal	observer),	and
(3)	those	who	are	suboptimal	because	they	do	not	draw	perceptual	conclusions	in
accordance	with	Bayesian	inference	rules	at	all.

This	modeling	framework	also	allows	the	experimenter	to	ensure	a	proposed	experiment
has	sufficient	power	to	adequately	test	a	hypothesis.	Often	there	are	many	assumptions
and	unknown	parameters	in	a	model,	and	a	single	experiment	is	insufficient	to	distinguish
between	all	possibilities.	In	this	case,	multiple	tasks	may	be	necessary	to	estimate	them
unambiguously.	For	instance,	this	is	why	most	experiments	include	control	studies—to
isolate	certain	parameters	and	reduce	the	number	of	parameters	each	experiment
effectively	estimates.	This	framework	lets	the	experimenter	simulate	the	experiment	using
ideal-observer-model	predictions	ahead	of	time	to	determine	whether	the	experiment	is
sensitive	and	selective	for	distinguishing	among	individual	hypotheses.

Limitations	of	Bayes'	Nets	and	Statically	Structured	Generative	Models

While	humans	incorporate	vast	contextual	information	to	aid	perception	(Oliva	&	Torralba,
2007),	Bayes'	nets	are	best	suited	for	representing	situations	in	which	several	property
variables	are	known	to	exist,	but	their	state	is	uncertain.	This	limits	the	set	of	perceptual
situations	well	characterized	by	Bayes'	nets	because	the	structures	are	predefined,	and
modifying	them	is	not	trivial.	For	instance,	the	generative	process	of	a	kitchen	may	not	be
well	modeled	by	a	Bayes'	net	because	some	objects	may	occur	only	infrequently	(e.g.,	a
waffle	maker),	may	have	widely	varying	sets	of	parts	(e.g.,	overhead	lamps	can	have	very
different	numbers/types	of	bulbs),	and	exhibit	unique	hierarchical	and	recurrent
patterns	(e.g.,	a	faucet	is	typically	part	of	a	sink	but	may	instead	be	part	of	a	refrigerator
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door).	Although	theoretically	Bayes'	nets	are	able	to	model	such	generative	processes,
they	are	inefficient	because	many	nodes	will	never	take	values.	Moreover,	an	interesting
structure	that	constrains	the	set	of	possible	scenes	is	not	explicitly	or	efficiently
represented.	Nonparametric	methods	have	recently	been	applied	in	computer-vision
applications	to	overcome	this	type	of	problem	and	aid	visual	inference	(Sudderth	&
Jordan,	2009;	Sudderth,	Torralba,	Freeman,	&	Willsky,	2008).	These	models	use	Bayes-
net	formalism	to	define	abstract	relationships	among	classes	of	objects	and	scenes,	and
nonparametric	clusters	to	characterize	specific	instances	of	objects	and	scenes.	This
allows	the	models	to	share	properties	across	similar	objects	and	scenes	while	allowing
specific	instances	to	have	unique	and	rich	properties	of	their	own.

Graph	grammars	are	models	that	define	rules	for	creating	graph	instances—in	a	sense
they	are	a	generative	process	for	making	generative	processes—and	may	also	be	used	to
overcome	(p.60)	 some	of	the	limitations	of	Bayes'	nets.	For	example,	a	graph	grammar
may	specify	that	each	object	in	a	scene	must	have	material	and	spatial	properties,	and
they	generate	visual	cues	as	long	as	they	are	not	occluded	by	any	other	object.	And	a
grammar	may	define	how	parts	are	shared	across	multiple	object	instances,	such	as
similar	cabinet	doors/handles	across	different	cabinets	in	a	kitchen.	Recently,	probabilistic
approaches	to	computer	vision	have	begun	achieving	success	by	applying	graph
grammars	to	aid	object	recognition	and	image	segmentation	(Aycinena,	Kaelbling,	&
Lozano-Perez,	2008;	Han	&	Zhu,	2009;	Zhu,	Chen,	&	Yuille,	2009).	In	addition,	graph
grammars	have	been	used	to	explain	cognitive	behaviors	in	a	variety	of	situations	(Kemp
&	Tenenbaum,	2008;	Tenenbaum,	Griffiths,	&	Niyogi,	2007).

CONCLUSION
Human	perception	entails	a	sophisticated	reasoning	strategy	that	combines	sensory
measurements	with	internal	knowledge	to	construct	accurate,	detailed	estimates	about
the	state	of	the	world.	Generative	knowledge	is	a	useful	formalism	for	characterizing
observers'	internal	knowledge	about	the	relationships	among	world	properties	and	how
they	generate	sensory	cues.	An	observer	can	achieve	Bayes-optimal	perceptual
inference	if	the	generative	knowledge	accurately	reflects	the	true	generative	process.

The	challenges	presented	in	the	first	section	characterize	the	fundamental	difficulties
perceptual	processing	must	overcome,	and	generative	knowledge	provides	a	natural
solution	to	each	challenge.	Specifically,	generative	knowledge	allows	prior	knowledge	and
indirect,	auxiliary	cues	to	disambiguate	perception	by	ruling	out	unlikely	and	inconsistent
potential	interpretations.	Generative	knowledge	can	characterize	relationships	among
world	properties	to	allow	vast	contextual	information	to	influence	perception.

We	presented	a	number	of	studies	that	qualitatively	support	discounting	and	explaining-
away	behavior	in	humans.	An	outstanding	question	is	whether	human	perception	is
quantitatively	consistent	with	Bayesian	explaining	away.	By	using	the	experimental
framework	illustrated	by	Figure	3.8	it	will	be	possible	to	conduct	strong	quantitative	tests
of	humans'	generative	knowledge.
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