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PROBABILISTIC 14 REASONING 

> 

Iiz which we explain how to build network models to reason under uncertainty 
according to the laws ofprobability theory. 

Chapter 13 gave the syntax and semantics of probability theory. We remarked on the im- 
portance of independence and conditional independence relationships in simplifying proba- 
bilistic representations of the world. This chapter introduces a systematic way to represent 
such relationships explicitly in the form of Bayesian networks. We define the syntax and 
semantics of these networks and show how they can be used to capture uncertain knowledge 
in a natural and efficient way. We then show how probabilistic inference, although computa- 
tionally intractable in the worst case, can be done efficiently in many practical situations. We 
also describe a variety of approxiinate inference algorithms that are often applicable when 
exact inference is infeasible. We explore ways in which probability theory can be applied to 
worlds with objects and relations-that is, tojrst-order, as opposed to propositional, repre- 
sentations. Finally, we survey alternative approaches to uncertain reasoning. 

In Chapter 13, we saw that the full joint probability distribution can answer any question about 
the domain, but can become intractably large as the number of variables grows. Furthermore, 
specifying probabilities for atomic events is rather unnatural and can be very difficult unless 
a large amount of data is available from which to gather statistical estimates. 

We also saw that independence and conditional independence relationships among vari- 
ables can greatly reduce the number of probabilities that need to be specified in order to define 

BAYESIANNETWORK the full joint distribution. This section introduces a data structure called a Bayesian network1 
to represent the dependencies among variables and to give a concise specification of any full 
joint probability distribution. 

This is the most common name, but there are many others, including belief network, probabilistic network, 
causal network, and knowledge map. In statistics. the term graphical model refers to a somewhat broader class 
that includes Bayesian networks. An extension of Bayesian networks called a decision network or influence 
diagram will be covered in Chapter 16. 
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A Bayesian network is a directed graph in which each nocfe is annotated with quantita- 
tive probability information. The full specification is as follows: 

1. A set of random variables makes up the nodes of the network. Variables may be discrete 
or continuous. 

2. A set of directed links or arrows connects pairs of nodes. If there is an arrow from node 
X to node Y, X is said to be aparent of Y. 

3. Each node X, has a conditional probability distribution P(X;I P a r t : n t s ( X ; ) )  that quan- 
tifies the effect of the parents on the node. 

4. The graph has no directed cycles (and hence is a directed, acyclic graph, or DAG). 

The topology of the network-the set of nodes and links-specifies the conditional indepen- 
dence relationships that hold in the domain, in a way that will be made precise shortly. The 
intuitive meaning of an arrow in a properly constructed network is usually that X has a direct 
injuerzce on Y. It is usually easy for a domain expert to decide what direct influences exist 
in the domain-much easier, in fact, than actually specifying the probabilities themselves. 
Once the topology of the Bayesian network is laid out, we need only specify a conditional 
probability distribution for each variable, given its parents. We will see that the combination 
of the topology and the conditional distributions suffices to specify (implicitly) the full joint 
distribution for all the variables. 

Recall the simple world described in Chapter 13, consisting of the variables Tooth,o,,cl~,e, 
Cavity, Catch,  and Weather .  We argued that Mfeathcr is independent of the other variables; 
furthermore, we argued that Toothache and Catch are conditionally independent, given 
Cavity. These relationships are represented by the Bayesian network structure shown in 
Figure 14.1. Formally, the conditional independence of Toothache and Catch given C(~o~;l?l 
is indicated by the absence of a link between Toothache and Catch. Intuitively, the network 
represents the fact that Cavi ty  is a direct cause of Toothacl~e and Ca,tch, whereas no direct 
causal relationship exists between Toothach,e and Catch,. 

Now consider the following example, which is just a little more complex. You have 
a new burglar alarm installed at home. It is fairly reliable at detecting a burglary, but also 
responds on occasion to minor earthquakes. (This example is due to Judea Pearl, a resident 
of Los Angeles-hence the acute interest in earthquakes.) You also have two neighbors, John 
and Mary, who have promised to call you at work when they hear the alarm. John always calls 

4 
Figure 14.1 A simple Bayesian network in which Rit:ath,er is independent of the other 
three variables and Toothache and Catch are conditionally independent, given C n ~ ~ i t y .  
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Alarm 

Figure 14.2 A typical Bayesian network, showing both the topology and the conditional 
probability tables (CPTs). In  the CPTs, the letters B, E, A, . I ,  and JI stand for Ulrrglary, 
Eu7,th,quakc, Alarrr~, JohnCalls, and Musry Culls, respectively. 

when he hears the alarm, but sometimes confuses the telephone ringing with the alarm and 
calls then, too. Mary, on the other hand, likes rather loud music and sometimes misses the 
alarm altogether. Given the evidence of who has or has not called, we would like to estimate 
the probability of a burglary. The Bayesian network for this domain appears in Figure 14.2. 

For the moment, let us ignore the conditional distributions in the figure and concentrate 
on the topology of the network. In the case of the burglary network, the topology shows that 
burglary and earthquakes directly affect the probability of the alarm's going off, but whether 
John and Mary call depends only on the alarm. The network thus represents our assumptions 
that they do not perceive any burglaries directly, they do not notice the minor earthquakes, 
and they do not confer before calling. 

Notice that the network does not have nodes corresponding to Mary's currently listening 
to loud music or to the telephone ringing and confusing John. These factors are summarized 
in the uncertainty associated with the links from Alarm to Johncul ls  and fLfar.yCabls. This 
shows both laziness and ignorance in operation: it would be a lot of work to find out why those 
factors would be more or less likely in any particular case, and we have no reasonable way to 
obtain the relevant information anyway. The probabilities actually summarize a potentially 
infinite set of circumstances in which the alarm might fail to go off (high humidity, power 
failure, dead battery, cut wires, a dead mouse stuck inside the bell, etc.) or John or Mary 
might fail to call and report it (out to lunch, on vacation, temporarily deaf, passing helicopter, 
etc.). In this way, a small agent can cope with a very large world, at least approximately. The 
degree of approximation can be improved if we introduce additional relevant information. 

Now let us turn to the conditional distributions shown in Figure 14.2. In the figure, 

CONDITIONAL PRosAslLITVTABLE each distribution is shown as a conditional probability table, or CPT. (This form of table 
can be used for discrete variables; other representations, including those suitable for contin- 
uous variables, are described in Section 14.2.) Each row in a CPT contains the conditional 

CONDITIONINGCASE probability of each node value for a conditioning case. A conditioning case is just a possible 
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combination of values for the parent nodes-a miniature atomic event, if you like. Each row 
must sum to 1, because the entries represent an exhaustive set of cases for the variable. For 
Boolean variables, once you know that the probability of a true value is p, the probability 
of false must be 1 - p, so we often omit the second number, as in Figure 14.2. In general, 
a table for a Boolean variable with k Boolean parents contains 2"ndependently specifiable 
probabilities. A node with no parents has only one row, representing the prior probabilities 
of each possible value of the variable. 

The previous section described what a network is, but not what it means. There are two 
ways in which one can understand the semantics of Bayesian networks. The first is to see 
the network as a representation of the joint probability distribution. The second is to view 
it as an encoding of a collection of conditional independence statements. The two views are 
equivalent, but the first turns out to be helpful in understanding how to cc~nstruct networks, 
whereas the second is helpful in designing inference procedures. 

Representing the full joint distribution 

A Bayesian network provides a complete description of the domain. Every entry in the full 
joint probability distribution (hereafter abbreviated as "joint") can be calculated from the 
information in the network. A generic entry in the joint distribution is the probability of a 
conjunction of particular assignments to each variable, such as P ( X I  = :r:l A . . . A X,, = . f i n ) .  

We use the notation P(.rl, . . . ; x,,) as an abbreviation for this. The value of this entry is 
given by the formula 

rl 

P ( q ,  . . . . J,,) = P(xilptrrents(X,)) ,  (14.1) 
i = l  

where purents(Xi) denotes the specific values of the variables in Parer~t . s (X~) .  Thus, each 
entry in the joint distribution is represented by the product of the appropriate elements of the 
conditional probability tables (CPTs) in the Bayesian network. The CPTs therefore provide 
a decomposed representation of the joint distribution. 

To illustrate this, we can calculate the probability that the alarm has sounded, but neither 
a burglary nor an earthquake has occurred, and both John and Mary call. We use single-letter 
names for the variables: 

P(.j A ni A (1, A ~b A ye) 
= P ( j / a ) P ( ~ n ) a , ) P ( a / l b  A ~ e ) P ( y b ) P ( l e )  
= 0.90 x 0.70 x 0.001 x 0.999 x 0.998 = 0.00062 . 

Section 13.4 explained that the full joint distribution can be used to answer any query 
about the domain. If a Bayesian network is a representation of the joint distribution, then it 
too can be used to answer any query, by summing all the relevant joint entries. Section 14.4 
explains how to do this, but also describes methods that are much more efficient. 
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A method for constructing Bayesian networks 

Equation (14.1) defines what a given Bayesian network means. It does not, however, explain 
how to construct a Bayesian network in such a way that the resulting joint distribution is a 
good representation of a given domain. We will now show that Equation (14.1) implies certain 
conditional independence relationships that can be used to guide the knowledge engineer in 
constructing the topology of the network. First, we rewrite the joint distribution in terms of a 
conditional probability, using the product rule (see Chapter 13): 

Then we repeat the process, reducing each conjunctive probability to a conditional probability 
and a smaller conjunction. We end up with one big product: 

P ( . q  . . . . T,,) = P(.x.,,lT,,-1, . . . , .X.~)P(.).,,-~IS~,-~. . . . . TI)  . . . P ( . r 2 1 , ~ I ) P ( ~ 1 )  

CHAIN RULE This identity holds true for any set of random variables and is called the chain rule. Compar- 

ing it with Equation (14. l ) ,  we see that the specification of the joint distribution is equivalent 
to the general assertion that, for every variable X, in the network, 

P(XilXi-l. . . . . XI) = P(Xi (Pnren t s (Xi , ) )  . (14.2) 

provided that P a r e n t s ( X i )  & {X,-l, . . . . X1) .  This last condition is satisfied by labeling 
the nodes in any order that is consistent with the partial order implicit in the graph structure. 

What Equation (14.2) says is that the Bayesian network is a correct representation of 
the domain only if each node is conditionally independent of its predecessors in the node 
ordering, given its parents. Hence, in order to construct a Bayesian network with the correct 
structure for the domain, we need to choose parents for each node such that this property 
holds. Intuitively, the parents of node X i  should contain all those nodes in X I .  . . . , XiPl 
that directly injuence X , .  For example, suppose we have completed the network in Fig- 
ure 14.2 except for the choice of parents for MuryCcrbbs. hlojr.yCullts is certainly influenced 
by whether there is a Busglary or an Enrtlayuake, but not ~Jirectly influenced. Intuitively, 
our knowledge of the domain tells us that these events influence Mary's calling behavior only 
through their effect on the alarm. Also, given the state of the alarm, whether John calls has 
no influence on Mary's calling. Formally speaking, we believe that the following conditional 
independence statement holds: 

P(Al(~,ryCull,s (JohnCalls. Alar.,rr~,. Enrthyutrke. B~~rglar.g) = P(AlnryCtrlTs(Alt~,r.rra) . 

Compactness and node ordering 

As well as being a complete and nonredundant representation of the domain, a Bayesian net- 
work can often be far more compact than the full joint distribution. This property is what 
makes it feasible to handle domains with many variables. The compactness of Bayesian net- 

LOCALLY 
STRUCTURED works is an example of a very general property of locally structured (also called sparse) 
SPARSE systems. In a locally structured system, each subcomponent interacts directly with only a 

bounded number of other components, regardless of the total number of components. Local 
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structure is usually associated with linear rather than exponential growth in complexity. In the 
case of Bayesian networks, it is reasonable to suppose that in most domains each random vari- 
able is directly influenced by at most k others, for some constant k .  If we assume n Boolean 
variables for simplicity, then the amount of information needed to specify each conditional 
probability table will be at most 2k numbers, and the complete network can be specified by 
n2k numbers. In contrast, the joint distribution contains 2r" numbers. To make this concrete, 
suppose we have n, = 30 nodes, each with five parents (k = 5). Then the Bayesian network 
requires 960 numbers, but the full joint distribution requires over a billion. 

There are domains in which each variable can be influenced directly by all the others, 
so that the network is fully connected. Then specifying the conditional probability tables re- 
quires the same amount of information as specifying the joint distribution. In some domains, 
there will be slight dependencies that should strictly be included by adding a new link. But 
if these dependencies are very tenuous, then it may not be worth the additional complexity 
in the network for the small gain in accuracy. For example, one might object to our burglary 
network on the grounds that if there is an earthquake, then John and Mary would not call 
even if they heard the alarm, because they assume that the earthquake is the cause. Whether 
to add the link from Earth,yuake to Joh,n,Calbs and n/la,r:yCa,bls (and thus enlarge the tables) 
depends on comparing the importance of getting more accurate probabilities with the cost of 
specifying the extra information. 

Even in a locally structured domain, constructing a locally structured Bayesian network 
is not a trivial problem. We require not only that each variable be directly influenced by only 
a few others, but also that the network topology actually reflect those direct influences with 
the appropriate set of parents. Because of the way that the construction procedure works, the 
"direct influencers" will have to be added to the network first if they are to become parents 
of the node they influence. Therefore, the correct order in which to add nodes is to add the 
"root cuuses" first, then the variables they influence, and so on, until we reach the "leaves," 
which have no direct causal influence on the other variables. 

What happens if we happen to choose the wrong order? Let us consider the burglary 
example again. Suppose we decide to add the nodes in the order hIa,ryCalls, John,Culls, 
Alarrn, Burgla,ry, Enrth,quake. Then we get the somewhat more complicated network 
shown in Figure 14.3(a). The process goes as follows: 

Adding MuryCalls: No parents. 

Adding JohnCa,bls: If Mary calls, that probably means the alarm has gone off, which 
of course would make it more likely that John calls. Therefore, cJol~,nCalls needs 
n/IaryCalbs as a parent 

Adding Ala,rrra: Clearly, if both call, it is more likely that the alarm has gone off than if 
just one or neither call. so we need both MwyCnlls and JohnCalbs as parents. 

Adding Burglary: If we know the alarm state, then the call from John or Mary might 
give us information about our phone ringing or Mary's music, but not about burglary: 

Hence we need just Ala,rrn as parent. 
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Figure 14.3 Network structure depends on order of introduction. In each network, we 
have introduced node\ in top-to-bottom order. 

Adding Enm.thy~~,ake: if the alarm is on, it is more likely that there has been an earth- 
quake. (The alarm is an earthquake detector of sorts.) But if we know that there has 
been a burglary, then that explains the alarm, and the probability of an earthquake would 
be only slightly above normal. Hence, we need both Alarm and Bu~yloyy as parents. 

The resulting network has two more links than the original network in Figure 14.2 and re- 
quires three more probabilities to be specified. What's worse, some of the links represent 
tenuous relationships that require difficult and unnatural probability judgments, such as as- 
sessing the probability of E~,rt l~qu,c~ke,  given B ~ ~ r g l u r y  and Alnrrn. This phenomenon is 
quite general and is related to the distinction between causal and diagnostic models intro- 
duced in Chapter 8. If we try to build a diagnostic model with links from symptoms to causes 
(as from iLf(~,r.yCabbs to Alarm, or Alarm, to B~srglary), we end up having to specify additional 
dependencies between otherwise independent causes (and often between separately occurring 
symptoms as well). Ifvve stick to n causal model, we end up having to specfy~fewer ~zumbers, 
nr~d the numbers will often be easier to come up with. In the domain of medicine, for exam- 
ple, i t  has been shown by Tversky and Kahneman ( 1  982) that expert physicians prefer to give 
probability judgments for causal rules rather than for diagnostic ones. 

Figure 14.3(b) shows a very bad node ordering: Mary Calls, Jo11~nCalls, Earthquake, 
B~r~g ln ry ,  Alarm. This network requires 3 1 distinct probabilities to be specified-exactly 
the same as the full joint distribution. It is important to realize, however, that any of the three 
networks can represent exactly the same joint distribution. The last two versions simply fail 
to represent all the conditional independence relationships and hence end up specifying a lot 
of unnecessary numbers instead. 
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Conditional independence relations in Bayesian networks 

We have provided a "numerical" semantics for Bayesian networks in terms of the represen- 
tation of the full joint distribution, as in Equation (14.1). Using this semantics to derive 
a method for constructing Bayesian networks, we were led to the consequence that a node 
is conditionally independent of its predecessors, given its parents. It turns out that we can 
also go in the other direction. We can start from a "topological" semantics that specifies the 
conditional independence relationships encoded by the graph structure, and from these we 
can derive the "numerical" semantics. The topological semantics is given by either of the 
following specifications, which are equivalent:2 

DESCENDANTS 1. A node is conditionally independent of its non-descendants, given its parents. For 
example, in Figure 14.2, JohnCalls is independent of Burglary and Eartlzqiiake, given 
the value of Alarm. 

2. A node is conditionally independent of all other nodes in the network, given its par- 
MARKOV BLANKET ents, children, and children's parents-that is, given its Markov blanket. For example, 

Burglary is independent of Johncalls and MalyCalls, given Alnrn? and Eurthqunke. 

These specifications are illustrated in Figure 14.4. From these conditional independence 
assertions and the CPTs, the full joint distribution can be reconstructed; thus, the "numerical" 
semantics and the "topological" semantics are equivalent. 

Figure 14.4 (a) A node X is conditionally independent of its non-descendants (e.g., the 
Zi,s) given its parents (the U,s shown in the gray area). (b) A node X is conditionally 
independent of all other nodes in the network given its Markov blanket (the gray area). 

There is also a general topological criterion called d-separation for deciding whether a set of nodes X is 
independent of another set Y, given a third set Z. The criterion is rather complicated and is not needed for 
deriving the algorithms in this chapter, so we omit it. Details may be found in Russell and Norvig (1995) or 
Pearl (1988). Shachter ( 1998) gives a more intuitive method of ascertaining d-separation. 
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Even if the maximum number of parents k is smallish, filling in the CPT for a node requires 
up to O(29 numbers and perhaps a great deal of experience with all the possible conditioning 
cases. In fact, this is a worst-case scenario in which the relationship between the parents and 
the child is completely arbitrary. Usually, such relationships are describable by a canonical 

CANONICAL 
DISTRIBUTION distribution that fits some standard pattern. In such cases, the complete table can be specified 

by naming the pattern and perhaps supplying a few parameters-much easier than supplying 
an exponential number of parameters. 

DETERMINISTIC 
NODES The simplest example is provided by deterministic nodes. A deterministic node has 

its value specified exactly by the values of its parents, with no uncertainty. The relationship 
can be a logical one: for example, the relationship between the parent nodes Canudinn, US, 
Mexican and the child node NorthAmerican is simply that the child is the disjunction of 
the parents. The relationship can also be numerical: for example, if the parent nodes are the 
prices of a particular model of car at several dealers, and the child node is the price that a 
bargain hunter ends up paying, then the child node is the minimum of the parent values; or 
if the parent nodes are the inflows (rivers, runoff, precipitation) into a lake and the outflows 
(rivers, evaporation, seepage) from the lake and the child is the change in the water level 
of the lake, then the value of the child is the difference between the inflow parents and the 
outflow parents. 

Uncertain relationships can often be characterized by so-called "noisy" logical rela- 
NOISY-OR tionships. The standard example is the noisy-OR relation, which is a generalization of the 

logical OR. In propositional logic, we might say that Fever is true if and only if Cold, Flu, 
or h4ulariu is true. The noisy-OR model allows for uncertainty about the ability of each 
parent to cause the child to be true-the causal relationship between parent and child may 
be inhibited, and so a patient could have a cold, but not exhibit a fever. The model makes 
two assumptions. First, it assumes that all the possible causes are listed. (This is not as strict 

LEAK NODE as it seems, because we can always add a so-called leak node that covers "miscellaneous 
causes.") Second, it assumes that inhibition of each parent is independent of inhibition of any 
other parents: for example, whatever inhibits Malaria from causing a fever is independent 
of whatever inhibits Flu from causing a fever. Given these assumptions, Feuer isfalse if and 
only if all its true parents are inhibited, and the probability of this is the product of the inhibi- 
tion probabilities for each parent. Let us suppose these individual inhibition probabilities are 
as follows: 

P(l fever1  cold, l f l u ,  lma lar ia )  = 0.6 , 

P ( l f e v e r l ~ c o l d , f l u .  lma lar ia )  = 0.2 . 
P ( l f e v e r l l c o l d ,  l J u ,  malaria) = 0.1 . 

Then, from this information and the noisy-OR assumptions, the the entire CPT can be built. 
The following table shows how: 
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Cold Flu 

F F 
F F 
F T 
F T 
T F 
T F 
T T 
T T 

In general, noisy logical relationships in which a variable depends on k parents can be de- 
scribed using O ( k )  parameters instead of 0 ( 2 ~ )  for the full conditional probability table. 
This makes assessment and learning much easier. For example, the CPCS network (Prad- 
han et al., 1994) uses noisy-OR and noisy-MAX distributions to model relationships among 
diseases and symptoms in internal medicine. With 448 nodes and 906 links, it requires only 
8,254 values instead of 133,93 1,430 for a network with full CPTs. 

Bayesian nets with continuous variables 

Many real-world problems involve continuous quantities, such as height, mass, temperature, 
and money; in fact, much of statistics deals with random variables whose domains are contin- 
uous. By definition, continuous variables have an infinite number of possible values, so it is 
impossible to specify conditional probabilities explicitly for each value. One possible way to 

DISCRETIZATION handle continuous variables is to avoid them by using discretization-that is, dividing up the 
possible values into a fixed set of intervals. For example, temperatures could be divided into 
(<O°C), (O°C-100°C), and (>lOO°C). Discretization is sometimes an adequate solution, 
but often results in a considerable loss of accuracy and very large CPTs. The other solution 
is to define standard families of probability density functions (see Appendix A) that are spec- 

PARAMETERS ified by a finite number of parameters. For example, a Gaussian (or normal) distribution 
N ( p ,  02) ( 2 )  has the mean p and the variance a2 as parameters. 

A network with both discrete and continuous variables is called a hybrid Bayesian 
HYBRIDBAYES'AN NETWORK network. To specify a hybrid network, we have to specify two new kinds of distributions: 

the conditional distribution for a continuous variable given discrete or continuous parents; 
and the conditional distribution for a discrete variable given continuous parents. Consider the 
simple example in Figure 14.5, in which a customer buys some frlrit depending on its cost, 
which depcnds in turn on the size of the harvest and whether thc government's subsidy scheme 
is operating. The variable Cost is continuous and has continuous and discrete parents; the 
variable Buys is discrete and has a continuous parent. 

For the Cost variable, we need to specify P(Cost 1 Harvest: Sub.sidy). The discrete par- 
ent is handled by explicit enumerationhhat is, specifying both P(Co.stl Har?,est; subsidy) 
and P( Cost 1 Harvest, l subs idy ) .  To handle H a r ~ ~ e s t ,  we specify how the distribution over 
the cost c depends on the continuous value h of Harvest. In other words, we specify the 
parameters of the cost distribution as a function of h. The most common choice is the linear 
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Buys I:: 
Figure 14.5 A simple network with discrete variables (Subsidy and Buy.s) and continuous 
variables (Hurvest and Cost). 

Figure 14.6 The graphs in (a) and (b) show the probability distribution over Cost as a 
function of Haroest size, with Svbsid?~ true and false respectively. Graph (c) shows the 
distribution P(Cost1 Harvest), obtained by summing over the two subsidy cases. 

LINEARGAUSSIAN Gaussian distribution, in which the child has a Gaussian distribution whose mean p varies 
linearly with the value of the parent and whose standard deviation a is fixed. We need two 
distributions, one for s u b s i d y  and one for l s u b s i d y ,  with different parameters: 

P(cl h., l s u b s i d y )  = N ( a  f j l  + b S .  a;) ((:) = ---- 
or& 

For this example, then, the conditional distribution for Cost is specified by naming the linear 
Gaussian distribution and providing the parameters at, bt, a t ,  af, b f ,  and o f .  Figures 14.6(a) 
and (b) show these two relationships. Notice that in each case the slope is negative, because 
price decreases as supply increases. (Of course, the assumption of linearity implies that the 
price becomes negative at some point; the linear model is reasonable only if the harvest size 
is limited to a narrow range.) Figure 14.6(c) shows the distribution P(clh),  averaging over 
the two possible values of Subsidy and assuming that each has prior probability 0.5. This 
shows that even with very simple models, quite interesting distributions can be represented. 

The linear Gaussian conditional distribution has some special properties. A network 
containing only continuous variables with linear Gaussian distributions has a joint distribu- 
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0 2 4 6 8 1 0 1 2  0 2 4 6 8 1 0 1 2  

Cost c co\t  c 

(a) (b) 

Figure 14.7 (a) A probit distribution for the probability of Buys given Go.st, with LL = 6.0 
and a = 1.0. (b) A logit distribution with the same parameters. 

tion that is a multivariate Gaussian distribution over all the variables (Exercise 1 4 . 3 . ~  (A 
multivariate Gaussian distribution is a surface in more than one dimension that has a peak at 
the mean (in n dimensions) and drops off on all sides.) When discrete variables are added 
(provided that no discrete variable is a child of a continuous variable), the network defines 
a conditional Gaussian, or CG, distribution: given any assignment to the discrete variables, 
the distribution over the continuous variables is a multivariate Gaussian. 

Now we turn to the distributions for discrete variables with continuous parents. Con- 
sider, for example, the Buys node in Figure 14.5. It seems reasonable to assume that the 
customer will buy if the cost is low and will not buy if it is high and that the probability of 
buying varies smoothly in some intermediate region. In other words, the conditional distribu- 
tion is like a "soft7' threshold function. One way to make soft thresholds is to use the integral 
of the standard normal distribution: 

' r '  

@(.L) = J-_ N(O. l ) ( x )dx  . 

Then the probability of Buys given Cost might be 

P(bzL?js 1 Cost = c)  = a((-c + ,D) /cJ )  

which means that the cost threshold occurs around /I, the width of the threshold region is 
proportional to a ,  and the probability of buying decreases as cost increases. 

PROBIT 
DISTRIBUTION This probit distribution is illustrated in Figure 14.7(a). The form can be justified 

by proposing that the underlying decision process has a hard threshold, but that the precise 
location of the threshold is subject to random Gaussian noise. An alternative to the probit 

LOGITDISTRIBUTION model is the logit distribution, which uses the sigmoid function to produce a soft threshold: 
SlGMOlD FUNCTION 1 

P(b?~:ys I Cost = C )  = 
-c+p . I + exp(-2-) 

It follows that inference in linear Gaussian networks takes only O ( n 7  time in the worst case, regardless of the 
network topology. In Section 14.4. we will see that inference for networks of discrete variables is NP-hard. 
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This is illustrated in Figure 14.7(b). The two distributions look similar, but the logit actu- 
ally has much longer "tails." The probit is often a better fit to real situations, but the logit is 
sometimes easier to deal with mathematically. It is used widely in neural networks (Chap- 
ter 20). Both probit and logit can be generalized to handle multiple continuous parents by 
taking a linear combination of the parent values. Extensions for a multivalued discrete child 
are explored in Exercise 14.6. 

EVENT 

The basic task for any probabilistic inference system is to compute the posterior probability 
distribution for a set of query variables, given some observed event-that is, some assign- 
ment of values to a set of evidence variables. We will use the notation introduced in Chap- 
ter 13: X denotes the query variable; E denotes the set of evidence variables El ,  . . . , Err,, and 
e is a particular observed event; Y will denote the nonevidence variables Y , ,  . . . . (some- 

HIDDEN VARIABLES times called the hidden variables). Thus, the complete set of variables X = {X) U E U Y. A 
typical query asks for the posterior probability distribution ~ ( ~ l e ) . ~  

In the burglary network, we might observe the event in which JohnCnlls = trwe and 
MuryCalls = true. We could then ask for, say, the probability that a burglary has occurred: 

P(Burg1ary 1 ,Johr~Calls = t r u e ,  Mary Calls = tme) = (0.284.0.716) . 

In this section we will discuss exact algorithms for computing posterior probabilities and 
will consider the complexity of this task. It turns out that the general case is intractable, so 
Section 14.5 covers methods for approximate inference. 

Inference by enumeration 

Chapter 13 explained that any conditional probability can be computed by summing terms 
from the full joint distribution. More specifically, a query P(X1e) can be answered using 
Equation ( 1  3.6), which we repeat here for convenience: 

P ( X  je) = a P(X. e) = cr P(X, e, y) . 
Y 

Now, a Bayesian network gives a complete representation of the full joint distribution. More 
specifically, Equation (14.1) shows that the terms P(.r, e, y)  in the joint distribution can be 
written as products of conditional probabilities from the network. Therefore, a q u e q  can be 
answered using a Bayesian network by computing sums of products of conditional probahili- 
ties from the network. 

In Figure 13.4, an algorithm, ENUMERATE-JOINT-ASK, was given for inference by 
enumeration from the full joint distribution. The algorithm takes as input a full joint distribu- 
tion P and looks up values therein. It is a simple matter to modify the algorithm so that it takes 

"e will assume that the query variable is not among the evidence variables; if it is, then the posterior distribu- 
tion for X simply gives probability 1 to the observed value. For simplicity, we have also assumed that the query 
is just a single variable. Our algorithms can be extended easily to handle a joint query over several variables. 
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as input a Bayesian network hri, and "looks up7' joint entries by multiplying the corresponding 
CPT entries from hn. 

Consider the query P(Bzrrglaryl JohnCubls = trwe. MaryCalls = t r ~ ~ e ) .  The hidden 
variables for this query are Earthquake and Alurrrr,. From Equation ( 13.6), using initial 
letters for the variables in order to shorten the expressions, we have" 

The semantics of Bayesian networks (Equation (14.1)) then gives us an expression in terms 
of CPT entries. For simplicity, we will do this just for Burgbary = t r u e :  

P(bl j. rn) = tr P(b)P(e)P(cltj. e )P( ,~ lo)P(7r , i~)  . 
t o  

To compute this expression, we have to add four terms, each computed by multiplying five 
numbers. In the worst case, where we have to sum out almost all the variables, the complexity 
of the algorithm for a network with 7 ,  Boolean variables is O ( n 2 " ) .  

An improvement can be obtained from the following simple observations: the P(b) 
term is a constant and can be moved outside the summations over n and e, and the P ( e )  term 
can be moved outside the summation over a. Hence, we have 

This expression can be evaluated by looping through the variables in order, multiplying CPT 
entries as we go. For each summation, we also need to loop over the variable's possible 
values. The structure of this computation is shown in Figure 14.8. Using the numbers from 
Figure 14.2, we obtain P(hIj. rr , )  = cr x 0.00059224. The corresponding con~putation for 4) 
yields (L x 0.0014919; hence 

That is, the chance of a burglary, given calls from both neighbors, is about 28%. 
The evaluation process for the expression in Equation (14.3) is shown as an expression 

tree in Figure 14.8. The ENUMERATION-ASK algorithm in Figure 14.9 evaluates such trees 
using depth-first recursion. Thus, the space complexity of ENUMERATION-ASK is only lin- 
ear in the number of variables-effectively, the algorithm sums over the full joint distribution 
without ever constructing it explicitly. Unfortunately, its time complexity for a network with 
r ,  Boolean variables is always O(2")-better than the O ( n 2 " )  for the simple approach de- 
scribed earlier, but still rather grim. One thing to note about the tree in Figure 14.8 is that it  
makes explicit the re/?eateds~~bexpressions that are evaluated by the algorithm. The products 
P ( j  1 , )  P(rr7 ( I , )  and P ( j  ( ~ n )  P(nr ( - ( I )  are computed twice, once for each value of r J .  The 
next section describes a general method that avoids such wasted computations. 

"n expression such as x( P(a .  C)  means to sum P ( i l  = n .  l5 = c )  for all pos5ible values of r .  There is an 
ambiguity in that P(rj) is used to mean both 1'(E = t rue )  and P(E = c) ,  but i t  s h o ~ ~ l d  be clear from context 
which is intended: in particular, in the context of a sum the latter is intended. 
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Figure 14.8 The structure of the expression shown in Equation (14.3). The evaluation pro- 
ceeds top-down, multiplying values along each path and summing at the "+" nodes. Notice 
the repetition of the paths for j and rn. 

function ENUMERATION-AsK(X, e, b n )  returns a distribution over X 
inputs: X,  the query variable 

e, observed values for variables E 
b ~ i , ,  a Bayes net with variables {X} U E U Y / * Y = hidden variables * / 

Q(X)  t a distribution over X, initially empty 
for each value .r, of X do 

extend e with value s, for X 
Q(T,)  t ENUMERATE-ALL(VARS[~~),  e) 

return NORMALIZE(Q(X)) 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

function ENUMERATE-ALL(?I~~S,  e) returns a real number 
if EMPTY '?(vars) then return 1.0 
y 6 F I R S T ( ~ ~ ~ . S )  
if Y has value y in e 

then return P ( y  1 parents(Y)) x ENUMERATE-ALL(REST(wrs) ,  e) 
else return XI/ P ( y  I pclr.e~~,ts(Y)) x E N ~ M E R A T E - A L L ( R E ~ T ( I ~ ( I , ~ . ~ ) , ~ , )  

where e, is e extended with Y = y 

Figure 14.9 The enumeration algorithm for answering queries on Bayesian networks. 1 
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The variable elimination algorithm 

The enumeration algorithm can be improved substantially by eliminating repeated calcula- 
tions of the kind illustrated in Figure 14.8. The idea is simple: do the calculation once and 
save the results for later use. This is a form of dynamic programming. There are several ver- 

VARIABLE 
ELIMINATION sions of this approach; we present the variable elimination algorithm, which is the simplest. 

Variable elimination works by evaluating expressions such as Equation (14.3) in right-to-left 
order (that is, bottom-up in Figure 14.8). Intermediate results are stored, and summations over 
each variable are done only for those portions of the expression that depend on the variable. 

Let us illustrate this process for the burglary network. We evaluate the expression 

P(BIj, rrz) =- tr P(B) 1 P ( e )  P ( ~ I B .  e) P(jja)  P(mla) . + v --- 
B E A J nr 

Notice that we have annotated each part of the expression with the name of the associated 
FACTORS variable; these parts are called factors. The steps are as follows: 

a The factor for AT, P(rnJ(1), does not require summing over A1 (because M ' s  value is 
already fixed). We store the probability, given each value of a ,  in a two-element vector, 

f121 (A) = 

(The fAIl means that AI was used to produce f.) 
Similarly, we store the factor for ,I as the two-element vector f,,(A). 
The factor for A is P(alB. e), which will be a 2 x 2 x 2 matrix fA(A. B, E). 
Now we must sum out A from the product of these three factors. This will give us a 
2 x 2 matrix whose indices range over just B and E. We put a bar over A in the name 
of the matrix to indicate that A has been summed out: 

+ fA l  (10. B. E) x f J ( ~ u )  x filr ( l a )  
POINTWISE 
PRODUCT The multiplication process used here is called a pointwise product and will be de- 

scribed shortly. 

We process E in the same way: sum out E from the product of fE(E) and fA,jn1(B, E): 

Now we can compute the answer simply by multiplying the factor for B (i.e., fu(B) = 
P(B)), by the accumulated matrix fEAJnr(B):  

Exercise 14.7(a) asks you to check that this process yields the correct answer. 
Examining this sequence of steps, we see that there are two basic computational oper- 

ations required: pointwise product of a pair of factors, and summing out a variable from a 
product of factors. 
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The pointwise product is not matrix ~nultiplication, nor is it element-by-element multi- 
plication. The pointwise product of two factors fl  and fi yields a new factor f whose variables 
are the union of the variables in fl and f2. Suppose the two factors have variables Yl ,  . . . , Yk 
in common. Then we have 

If all the variables are binary, then f l  and f2 have 2j+k and 2"' entries respectively, and 
the pointwise product has 2j+k+' entries. For example, given two factors f l (A,  B) and 
f2(B,  C) with probability distributions shown below, the pointwise product f l  x f2 is given 
as f3(A, B, C): 

(A, B, C) I 

Summing out a variable from a product of factors is also a straightforward computation. 
The only trick is to notice that any factor that does not depend on the variable to be summed 
out can be moved outside the summation process. For example, 

z, f ~ ( e )  X ~ A ( A ,  B, f') f J (A)  x ~ A I  (A) = 
f.J ( A )  x fA1 (A) x C,  f~ (e) f~ (A, B, e) . 

Now the pointwise product inside the summation is computed, and the variable is summed 
out of the resulting matrix: 

~ J ( A )  x f ~ d ( A )  x f ~ ( e )  X f*(A, B,  e) = f j ( A )  x f,\r (A) x fE.-4 (A, B )  
e 

Notice that matrices are not multiplied until we need to sum out a variable from the accumu- 
lated product. At that point, we multiply just those matrices that include the variable to be 
summed out. Given routines for pointwise product and summing out, the variable elimination 
algorithm itself can be written quite simply, as shown in Figure 14.10. 

Let us consider one more query: P(,Joh,nCallsI Burglary = true). As usual, the first 
step is to write out the nested summation: 

If we evaluate this expression from right to left, we notice something interesting: En, P(m1a) 
is equal to I by definition! Hence, there was no need to include it in the first place; the vari- 
able Dl is irraelevant to this query. Another way of saying this is that the result of the query 
P(JohnCa1ls) Burglary = true) is unchanged if we remove MaryCalls from the network al- 
together. In general, we can remove any leaf node that is not a query variable or an evidence 
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function E L I M I N A T I O N - A s K ( X ,  e, brr) returns a distribution over X 
inputs: X ,  the query variable 

e, evidence specified as an event 
bn,, a Bayesian network specifying joint distribution P(X1, . . . , X,) 

,factor:s + [ I ;  ~ l n r s  + R E V E R S E ( ~ A R S [ ~ ~ ] )  
for each ,uar in wars do 

factors + [ M A K E - F A C T O R ( ~ ~ ~ ,  e) 1 factors] 
if var is a hidden variable then factors +- S U M - O U T ( ~ ~ ~ ,  factors) 

return NORMALI~E(POINTWI~E-PRODUCTC~UC~~~~)) 

1 Figure 14.10 The variable elimination algorithm for answering queries on Bayesian net- 1 
I works. 

variable. After its removal, there may be some more leaf nodes, and these too may be irrele- 
vant. Continuing this process, we eventually find that every variable that is not an ancestor 
o f a  query variable or evidence variable is irrelevant to the query. A variable elimination 
algorithm can therefore remove all these variables before evaluating the query. 

The complexity of exact inference 

We have argued that variable elimination is more efficient than enumeration because it avoids 
repeated computations (as well as dropping irrelevant variables). The time and space re- 
quiretnents of variable elimination are dominated by the size of the largest factor constructed 
during the operation of the algorithm. This in turn is determined by the order of elimination 
of variables and by the structure of the network. 

The burglary network of Figure 14.2 belongs to the family of networks in which there 
is at most one undirected path between any two nodes in the network. These are called singly 

SINGLY CONNECTED connected networks or polytrees, and they have a particularly nice property: The time and 
POLYTREES space complexity of exact inference in polytrees is linear in the size ofthe network. Here, the 

size is defined as the number of CPT entries; if the number of parents of each node is bounded 
by a constant, then the complexity will also be linear in the number of nodes. These results 
hold for any ordering consistent with the topological ordering of the network (Exercise 14.7). 

MULTIPLY 
CONNECTED For multiply connected networks, such as that of Figure 14.1 1 (a), variable elimination 

can have exponential time and space complexity in the worst case, even when the number 
of parents per node is bounded. This is not surprising when one considers that, because it 
includes inference in propositional logic as a special case, inference in Bayesian networks is 
NP-hard. In fact, it can be shown (Exercise 14.8) that the problem is as hard as that of com- 
puting the number of satisfying assignments for a propositional logic formula. This means 
that it is #P-hard ("number-P hard")-that is, strictly harder than NP-complete problems. 

There is a close connection between the complexity of Bayesian network inference and 
the complexity of constraint satisfaction problems (CSPs). As we discussed in Chapter 5 ,  
the difficulty of solving a discrete CSP is related to how "tree-like" its constraint graph is. 
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Measures such as hypertree width, which bound the complexity of solving a CSP, can also 
be applied directly to Bayesian networks. Moreover, the variable elimination algorithm can 
be generalized to solve CSPs as well as Bayesian networks. 

Clustering algorithms 

The variable elimination algorithm is simple and efficient for answering individual queries. If 
we want to compute posterior probabilities for all the variables in a network, however, it can 
be less efficient. For example, in a polytree network, one would need to issue O(n,) queries 

CLUSTERING costing O(n)  each, for a total of 0 ( n 2 )  time. Using clustering algorithms (also known as 
JOIN TREE join tree algorithms), the time can be reduced to O ( ~ L ) .  For this reason, these algorithms are 

widely used in commercial Bayesian network tools. 
The basic idea of clustering is to join individual nodes of the network to form clus- 

ter nodes in such a way that the resulting network is a polytree. For example, the multiply 
connected network shown in Figure 14.1 1 (a) can be converted into a polytree by combining 
the Sprinkler and Rain, node into a cluster node called Sprinkler,+ Ruin,, as shown in Fig- 
ure 14.1 I (b). The two Boolean nodes are replaced by a meganode that takes on four possible 
values: TT, TF, FT, and FF. The meganode has only one parent, the Boolean variable 
Cloudy, so there are two conditioning cases. 

Once the network is in polytree form, a special-purpose inference algorithm is applied. 
Essentially, the algorithm is a form of constraint propagation (see Chapter 5 )  where the con- 
straints ensure that neighboring clusters agree on the posterior probability of any variables 
that they have in common. With careful bookkeeping, this algorithm is able to compute pos- 
terior probabilities for all the nonevidence nodes in the network in time O ( n ) ,  where n is 
now the size of the modified network. However, the NP-hardness of the problem has not 
disappeared: if a network requires exponential time and space with variable elimination, then 
the CPTs in the clustered network will require exponential time and space to construct. 

(a) (b) 

Figure 14.11 (a) A multiply connected network with conditional probability tables. (b) A 
clustered equivalent of the multiply connected network. 
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Given the intractability of exact inference in large, multiply connected networks, it is essen- 
tial to consider approximate inference methods. This section describes randomized sampling 

MONTECARLO algorithms, also called Monte Carlo algorithms, that provide approximate answers whose 
accuracy depends on the number of samples generated. In recent years, Monte Carlo algo- 
rithms have become widely used in computer science to estimate quantities that are difficult 
to calculate exactly. For example, the simulated annealing algorithm described in Chapter 4 
is a Monte Carlo method for optimization problems. In this section, we are interested in 
sampling applied to the computation of posterior probabilities. We describe two families of 
algorithms: direct sampling and Markov chain sampling. Two other approaches-variational 
methods and loopy propagation-are mentioned in the notes at the end of the chapter. 

Direct sampling methods 

The primitive element in any sampling algorithm is the generation of samples from a known 
probability distribution. For example, an unbiased coin can be thought of as a random variable 
Coin with values (heads, ta,ils) and a prior distribution P(Coir1) = (0.5,0.5). Sampling 
from this distribution is exactly like flipping the coin: with probability 0.5 it will return 
h,eads, and with probability 0.5 it will return tails. Given a source of random numbers in 
the range [ O ,  11, it is a simple matter to sample any distribution on a single variable. (See 
Exercise 14.9.) 

The simplest kind of random sampling process for Bayesian networks generates events 
from a network that has no evidence associated with it. The idea is to sample each variable 
in turn, in topological order. The probability distribution from which the value is sampled is 
conditioned on the values already assigned to the variable's parents. This algorithm is shown 
in Figure 14.12. We can illustrate its operation on the network in Figure 14.1 l(a), assuming 
an ordering [Cloudy, Sprir~kler , Rain;  W e t  Grass]: 

1. Sample from P( Cloudy) = (0.5.0.5) ; suppose this returns true.  

2. Sample from P(Sprinkler1 Cloudy = knre) = (0.1,0.9); suppose this returns false. 

3. Sample from P(Ra.lrsl Cloudy = t rue)  = (0.8.0.2); suppose this returns true. 

4. Sample from P( WetGrassjSprinkler = false, Rain  = t rue)  = (0 .9 ,O.l ) ;  suppose this 
returns h e .  

In this case, PRIOR-SAMPLE returns the event [truc.  false, true,  t rue] .  
It is easy to see that PRIOR-SAMPLE generates samples from the prior joint distribution 

specified by the network. First, let S p S ( x l ,  . . . : x,,) be the probability that a specific event is 
generated by the PRIOR-SAMPLE algorithm. Just looking at the sampling process, we have 

7b 

S p s ( x l  . . . x,,) = P(;c,Iptrlerrts(.?i,)) 
z = 1  

because each sampling step depends only on the parent values. This expression should look 
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function P R I O R - S A M P L E ( ~ I )  returns an event sampled from the prior \pecitied by bn 
inputs: bn, a Bayesian network specifying joint distribution P(X1.. . . . X , , )  

x + an event with 11 elements 
for I = 1 to 71 do 

x ,  + a  random sample from P ( X ,  1 parer~ ts (X , ) )  
return x 

Figure 14.12 A sampling algorithm that generate\ events from a Bayesian network. 

familiar, because it is also the probability of the event according to the Bayesian net's repre- 
sentation of the joint distribution, as stated in Equation (14.1). That is, we have 

SPS(.X., . . . .  X.,,)  = P(.X., . . . - C r 2 )  

This simple fact makes it very easy to answer questions by using samples. 
In any sampling algorithm, the answers are computed by counting the actual san~ples 

generated. Suppose there are N total samples, and let N(:cl ,  . . . . J , , )  be the frequency of the 
specific event m l ,  . . . , x,,. We expect this frequency to converge, in the limit, to its expected 
value according to the sampling probability: 

For example, consider the event produced earlier: [tlue,fa,fa,bst:, tr.t~e. t,r.ue]. The sampling 
probability for this event is 

Srs ( t 7 . ' ~ ~ ;  f a l ~ f : ,  true, h e )  = 0.5 x 0.9 x 0.8 x 0.9 = 0.324 . 

Hence, in the limit of large AT, we expect 32.4% of the samples to be of this event. 
Whenever we use an approximate equality ("z") in what follows, we mean it in exactly 

this sense-that the estimated probability becomes exact in the large-sample limit. Such an 
CONSISTENT estimate is called consistent. For example, one can produce a consistent estimate of the 

probability of any partially specified event z l .  . . . : x,, where rrl! < n, as follows: 

P(:1~1.. . . , z m )  N p S ( x l , .  . . , z, , ) /N.  (14.5) 

That is, the probability of the event can be estimated as the fraction of all complete events 
generated by the sampling process that match the partially specified event. For example, if 
we generate 1000 samples from the sprinkler network, and 5 11 of them have Rain = true, 
then the estimated probability of rain, written as ~ ( ~ a i r l =  true), is 0.5 1 1. 

Rejection sampling in Bayesian networks 

REJECTION 
SAMPLING Rejection sampling is a general method for producing samples from a hard-to-sample distri- 

bution given an easy-to-sample distribution. In its simplest form, it can be used to compute 
conditional probabilities-that is, to determine P(X1e). The REJECTION-SAMPLING algo- 
rithm is shown in Figure 14.13. First, it generates samples from the prior distribution specified 
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function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(XIe)  
inputs: X ,  the query variable 

e, evidence specified as an event 
bn, a Bayesian network 
N, the total number of samples to be generated 

local variables: N, a vector of counts over X ,  initially zero 

for j = 1 to N do 
x + PRIOR- SAMPLE(^^) 
if x is consistent with e then 

N[J] - N[.rl+l where z is the value of X in x 
return NORMALIZE(N[X]) 

( Figure 14.13 The rejection sampling algorithm for answering queries given evidence in a 1 
Bayesian network. 1 

by the network. Then, it rejects all those that do not match the evidence. Finally, the estimate 
P ( X  = z ( e )  is obtained by counting how often X = z occurs in the remaining samples. 

Let ~ ( X l e )  be the estimated distribution that the algorithm returns. From the definition 
of the algorithm, we have 

From Equation (14.5), this becomes 

That is, rejection sampling produces a consistent estimate of the true probability. 
Continuing with our example from Figure 14. Ll(a), let us assume that we wish to es- 

timate P(RaialSpr.inkber = true), using 100 samples. Of the 100 that we generate, suppose 
that 73 have Sprirbkler = false and are rejected, while 27 have Sprir~kler = true; of the 27, 
8 have Rain = tvue and 19 have Rain, = false. Hence, 

The true answer is (0.3.0.7). As more samples are collected, the estimate will converge to 
the true answer. The standard deviation of the error in each probability will be proportional 
to 1/fi, where rl is the number of samples used in the estimate. 

The biggest problem with rejection sampling is that it rejects so many samples! The 
fraction of samples consistent with the evidence e drops exponentially as the number of evi- 
dence variables grows, so the procedure is simply unusable for complex problems. 

Notice that rejection sampling is very similar to the estimation of conditional probabili- 
ties directly from the real world. For example, to estimate P(Rain1 RedSkyAtNight = true), 
one can simply count how often it rains after a red sky is observed the previous evening- 
ignoring those evenings when the sky is not red. (Here, the world itself plays the role of the 
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sample generation algorithm.) Obviously, this could take a long time if the sky is very seldom 
red, and that is the weakness of rejection sampling. 

Likelihood weighting 

Likelihood weighting avoids the inefficiency of rejection sampling by generating only events 
that are consistent with the evidence e. We begin by describing how the algorithm works; then 
we show that it works correctly-that is, generates consistent probability estimates. 

LIKELIHOOD-WEIGHTING (see Figure 14.14) fixes the values for the evidence vari- 
ables E and samples only the remaining variables X and Y. This guarantees that each event 
generated is consistent with the evidence. Not all events are equal, however. Before tallying 
the counts in the distribution for the query variable, each event is weighted by the likelihood 
that the event accords to the evidence, as measured by the product of the conditional prob- 
abilities for each evidence variable, given its parents. Intuitively, events in which the actual 
evidence appears unlikely should be given less weight. 

Let us apply the algorithm to the network shown in Figure 14.1 1(a), with the query 
P(RainlSprinlc1er = true, WetGrass = true). The process goes as follows: First, the weight 
w is set to 1 .O. Then an event is generated: 

1 .  Sample from P(Cloudy) = (0.5,0.5); suppose this returns true. 
2. Sprinkler is an evidence variable with value true. Therefore, we set 

u1 t U I  x P(Sprink1er = true I Cloudy = true) = 0.1 . 

3. Sample from P(Ruin1 Clo~~dy = t ~ u e )  = (0.8,0.2); suppose this returns true. 
4. WetGrass is an evidence variable with value true. Therefore, we set 

U I  c 1 ~ i  x P( WetGrass = trt~el Sprinkler = krwe, Rain = true) = 0.099 . 

Here WEIGHTED-SAMPLE returns the event [true. tme,  true, true] with weight 0.099, and 
this is tallied under Rain = true. The weight is low because the event describes a cloudy day, 
which makes the sprinkler unlikely to be on. 

To understand why likelihood weighting works, we start by examining the sampling 
distribution Sws for WEIGHTED-SAMPLE. Remember that the evidence variables E are 
fixed with values e. We will call the other variables Z, that is, Z = {X} U Y. The algorithm 
samples each variable in Z given its parent values: 

I 

Sw(z, e)  = P(zi pa,rerst.s(Z,)) . (14.6) 
i = l  

Notice that P~,ren t s (Z ,~ )  can include both hidden variables and evidence variables. Unlike 
the prior distribution P(z ) ,  the distribution Sws pays some attention to the evidence: the 
sampled values for each Z i  will be influenced by evidence among Zi's ancestors. On the 
other hand, Sws pays less attention to the evidence than does the true posterior distribution 
P(z (e ) ,  because the sampled values for each Zf ignore evidence among 2,'s non-ance~tors.~ 

"Ideally, we would like use a sampling distribution equal to the true posterior P ( z e ) ,  to take all the evidence 
into account. This cannot be done efficiently, however. If it could, then we could approximate the desired 
probability to arbitrary accuracy with a polynomial number of samples. It can be ~ h o w n  that no such polynoinial- 
time approximation scheme can exist. 
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function L I K E L I H O O D - W E I G H T I N G ( X ,  e, bn, N )  returns an estimate of P ( X J e )  
inputs: X ,  the query variable 

e, evidence specified as an event 
bn,, a Bayesian network 
N, the total number of samples to be generated 

local variables: W, a vector of weighted counts over X, initially zero 

forj = 1 t o N d o  
x, 711 + WEIGHTED- SAMPLE(^^) 
W[z] + W[z] + w where x is the value of X in x 

return NORMALIZE(W[X]) 
- - - - - - - -- - - ------- 

function W E I G H T E D - S A M P L E ( ~ ~ ,  e) returns an event and a weight 

x +- an event with r j  elements; in + 1 
for 1 = 1 to 1 1  do 

if X, hao a value .c, in e 
then 711 + w x P ( X ,  = .L, 1 pnrrn t s (X , ) )  
else 1, +- a random sample from P(X, ( part rlfs(X,)) 

return x, 71) 

Figure 14.14 The likelihood weighting algorithm for inference in Bayesian networks. 

The likelihood weight w makes up for the difference between the actual and desired 
sampling distributions. The weight for a given sample x, composed from z and e,  is the 
product of the likelihoods for each evidence variable given its parents (some or all of which 
may be among the Zis): 

771 

~ ( z ,  e) = n P(e;lpcl~.cn,ts(E,)) . (14.7) 
i = l  

Multiplying Equations (14.6) and (14.7), we see that the weightedprobability of a sample has 
the particularly convenient form 

because the two products cover all the variables in the network, allowing us to use Equa- 
tion (14. l )  for the joint probability. 

Now it is easy to show that likelihood weighting estimates are consistent. For any 
particular value x of X, the estimated posterior probability can be calculated as follows: 

a(,+) = a Nws (z, y, e)w(r .y .  e) from LIKELIHOOD-WEIGHTING 
Y 

c ; a ' ~ ~ ~ ~ ( x ; ~ . e ) u ? ( n : , ~ , e )  for la rgeN 
Y 
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= a' ~ ( z ,  y,  e) by Equation (14.8) 
Y 

= (~ 'P( : z , e )  = P(z(e)  . 

Hence, likelihood weighting returns consistent estimates. 
Because likelihood weighting uses all the samples generated, it can be much more ef- 

ficient than rejection sampling. It will, however, suffer a degradation in performance as the 
number of evidence variables increases. Because most samples will have very low weights 
and hence the weighted estimate will be dominated by the tiny fraction of samples that ac- 
cord more than an infinitesimal likelihood to the evidence. The problem is exacerbated if 
the evidence variables occur late in the variable ordering, because then the samples will be 
simulations that bear little resemblance to the reality suggested by the evidence. 

lnference by Markov chain simulation 

In this section, we describe the Markov chain Monte Carlo (MCMC) algorithm for infer- 
ence in Bayesian networks. We will first describe what the algorithm does, then we will 
explain why it works and why it has such a complicated name. 

The MCMC algorithm 

Unlike the other two sampling algorithms, which generate each event from scratch, MCMC 
generates each event by making a random change to the preceding event. It is therefore 
helpful to think of the network as being in a particular current state specifying a value for 
every variable. The next state is generated by randomly sampling a value for one of the 
nonevidence variables Xi, conditioned on the current vulues of the variables in the Markov 
blurzker c!f Xi. (Recall from page 499 that the Markov blanket of a variable consists of its 
parents, children, and children's parents.) MCMC therefore wanders randomly around the 
state space-the space of possible complete assignments-flipping one variable at a time, but 
keeping the evidence variables fixed. 

Consider the query P(RainlSprink1er = true; WetGrass = true) applied to the net- 
work in Figure 14. I 1 (a). The evidence variables Sprinkler and WetGra.ss are fixed to their 
observed values and the hidden variables Clou,dy and Rain are initialized randomly-let us 
say to true and false respectively. Thus, the initial state is [tvue, h e ,  false, true]. Now the 
following steps are executed repeatedly: 

1 .  Cloudy is sampled, given the current values of its Markov blanket variables: in this 
case, we sample from P(C1oudy \Sprinkler = tme,  Rain =false). (Shortly, we will 
show how to calculate this distribution.) Suppose the result is Cloudy =false. Then 
the new current state is [false, true, false, true]. 

2. Rain is sampled, given the current values of its Markov blanket variables: in this case, 
we sample from P(Rain1 Cloudy = f a l s e ,  Sprinkler = true, WetGrass = true). Sup- 
pose this yields Rain = true. The new current state is [false, true; true, true]. 

Each state visited during this process is a sample that contributes to the estimate for the query 
variable Ra,in. If the process visits 20 states where Rain is true and 60 states where Rain is 
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function MCMC-AsK(X, e, bn, N) returns an estimate of P ( X / e )  
local variables: N[X], a vector of counts over X, initially zero 

Z, the nonevidence variables in bn 
x, the current state of the network, initially copied from e 

initialize x with random values for the variables in Z 
for3 = 1 t o N d o  

N[z] + N[x] + 1 where z is the value of X in x 
for each 2, in Z do 

sample the value of 2, in x from P(Z,Imb(Z,)) given the values of AIB(Z,) in x 
I return NORMALIZE(N[X]) 

Figure 14.15 The MCMC algorithm for approximate inference in Bayesian networks. 

false, then the answer to the query is  NORMALIZE((^^. 60)) = (0.25,0.75). The complete 
algorithm is shown in Figure 14.15. 

Why MCMC works 

We will now show that MCMC returns consistent estimates for posterior probabilities. The 
material in this section is quite technical, but the basic claim is straightforward: the sampling 
process settles into a "dynamic equilibrium" in which the long-run fraction o f  time spent 
in each state is exactly proportional to its posterior probability. This remarkable property 

TRANSITION 
PROBABILITY follows from the specific transition probability with which the process moves from one 

state to another, as defined by the conditional distribution given the Markov blanket of the 
variable being sampled. 

Let q(x + x') be the probability that the process makes a transition from state x to 
MARKOVCHAIN state x'. This transition probability defines what is called a Markov chain on the state space. 

(Markov chains will also figure prominently in Chapters 15 and 17.) Now suppose that we 
run the Markov chain for t steps, and let nt(x) be the probability that the system is in state x 
at time t .  Similarly, let nttl(xl) be the probability of being in state x' at time t + 1. Given 
nt (x), we can calculate nt+l ( X I )  by summing, for all states the system could be in at time t ,  
the probability of being in that state times the probability of making the transition to x': 

X 

STATIONARY 
DISTRIBUTION We will say that the chain has reached its stationary distribution if nt = ~ t + l .  Let us call 

this stationary distribution n; its defining equation is therefore 

n (XI) = ~ ( x )  q(x I x') for all x' . (14.9) 
X 

Under certain standard assumptions about the transition probability distribution q? there is 
exactly one distribution n satisfying this equation for any given q. 

The Markov chain defined by q must be ergodic-that is, essentially, every state must be  reachable from every 
other, and there can be no strictly periodic cycles. 
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Equation (14.9) can be read as saying that the expected "outflow" from each state (i.e., 
its current "population") is equal to the expected "inflow" from all the states. One obvious 
way to satisfy this relationship is if the expected flow between any pair of states is the same 

DETAILFDBALANCE in both directions. This is the property of detailed balance: 

7r (x) q (x + X I )  = 7~ (xl)q ( X I  ---t x) for all x, x' . (14.10) 

We can show that detailed balance implies stationarity simply by summing over x in Equa- 
tion (1 4. 10). We have 

C C 7r (x) y (x + X I )  = C 7T (xl)q(xl 4 x) = 7T ( X I )  C q(xl + x) = 7T ( X I )  

where the last step follows because a transition from x' is guaranteed to occur. 
Now we will show that the transition probability q(x + X I )  defined by the sampling step 

in MCMC-ASK satisfies the detailed balance equation with a stationary distribution equal 
to P(xle), (the true posterior distribution on the hidden variables). We will do this in two 
steps. First, we will define a Markov chain in which each variable is sampled conditionally 
on the current values of all the other variables, and we will show that this satisfies detailed 
balance. Then, we will simply observe that, for Bayesian networks, doing that is equivalent 
to sampling conditionally on the variable's Markov blanket (see page 499). 

Let Xi be the variable to be sampled, and let be all the hidden variables other than 
Xi .  Their values in the current state are xi and xi. If we sample a new value xi for Xi  
conditionally on all the other variables, including the evidence, we have 

GIBBSSAMPLER This transition probability is called the Gibbs sampler and is a particularly convenient form 
of MCMC. Now we show that the Gibbs sampler is in detailed balance with the true posterior: 

~ ( x ) y ( x  + x') = ~ ( x ( e ) P ( r i  1%. e) = ~ ( n . , ,  F~~)P(X:IK.  e) 

= P(X,  I F ,  e) ~ ( % ( e )  P ( . r : l ~ .  e) (using the chain rule on the first term) 

= P ( J ~  1%. e) P(si, Kle) (using the chain rule backwards) 

= 7r (~ l )~ (x '  + x) . 

As stated on page 499, a variable is independent of all other variables given its Markov 
blanket; hence, 

where m b ( X , )  denotes the values of the variables in X,'s Markov blanket, A I B ( X , ) .  As 
shown in Exercise 14.10, the probability of a variable given its Markov blanket is proportional 
to the probability of the variable given its parents times the probability of each child given its 
respective parents: 

Hence, to flip each variable X, ,  the number of multiplications required is equal to the number 
of Xi's children. 
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We have discussed here only one simple variant of MCMC, namely the Gibbs sam- 
pler. In its most general form, MCMC is a powerful method for computing with probability 
models and many variants have been developed, including the simulated annealing algo- 
rithm presented in Chapter 4, the stochastic satistiability algorithms in Chapter 7, and the 
Metropolis-Hastings sampler in Chapter 15. 

In Chapter 8, we explained the representational advantages possessed by first-order logic in 
comparison to propositional logic. First-order logic commits to the existence of objects and 
relations among them and can express facts about some or all of the objects in a domain. This 
often rewlts in representations that are vastly more concise than the equivalent propositional 
descriptions. Now, Bayesian networks are essentially propositional: the set of variables is 
fixed and finite, and each has a fixed domain of possible values. This fact limits the appli- 
cability of Bayesian networks. If we can find u way to combine probability theory with the 
expressive power of~first-order representations, we expect to he able to increure dramaticcrll~~ 
the mnge of pmhlems that can be handled. 

The basic insight required to achieve this goal is the following: In the propositional con- 
text, a Bayesian network specifies probabilities over atomic events, each of which specifies a 
value for each variable in the network. Thus, an atomic event is a model or possible world, 
in the terminology of propositional logic. In the first-order context, a model (with its inter- 
pretation) specifies a domain of objects, the relations that hold among those objects, and a 
mapping from the constants and predicates of the knowledge base to the objects and relations 
in the model. Therefore, u jirst-order probabilistic knowledge b a ~ e  slzould specifi probubili- 
tiesfor all yossiblefirst-order models. Let p(M) be the probability assigned to model Af by 
the knowledge base. For any first-order sentence 0, the probability P(o)  is given in the usual 
way by summing over the possible worlds where Q is true: 

( 1  = 1 P ( A O  
A 1  1s true In 41 

So far, so good. There is, however, a problem: the set of first-order models is infinite. This 
means that ( I )  the summation could be infeasible, and (2) specifying a complete, consistent 

RELATIONAL 
PROBABILITY MODEL 

distribution over an infinite set of worlds could be very difficult. 
Let us scale back our ambition, at least temporarily. In particular, let us devise a re- 

stricted language for which there are only finitely many models of interest. There are several 
ways to do this. Here, we present relational probability models, or RPMs, which borrow 
ideas from semantic networks (Chapter 10) and from object-relational databases. Other ap- 
proaches are discussed in the bibliographical and historical notes. 

RPMs allow constant symbols that name objects. For example, let ProfSn~,ith be the 
name of a professor, and let Jones be the name of a student. Each object is an instance of a 
class; for example, ProfSmith is a Professor and Jones is a Skudent.  We assume that the 
class of every constant symbol is known 
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SIMPLE FUNCTION Our function symbols will be divided into two kinds. The first kind, simple functions, 
maps an object not to another structured object, but to a value from a fixed domain of values, 
just like a random variable. For example, Intelliyence(,Jones) and Fur~dlng(ProfSrnith) 
might be hi  or lo; Swccess(Jones) and Farne(ProfSmith) may be true or false. Function 
symbols must not be applied to values such as tvue and false, so it is not possible to have 
nesting of simple functions. In this way, we avoid one source of infinities. The value of a 
simple function applied to a given object may be observed or unknown; these will be the basic 
random variables of our representation.' 

COMPLEX FUNCTION We also allow complex functions, which map objects to other objects. For example, 
Aduisor(Jones)  may be ProfSrnith. Each complex function has a specified domain and 
range, which are classes. For example, the domain of A h i s o r  is Student and the range is 
Professor. Functions apply only to objects of the right class; for instance, the Ad,uisor of 
ProfSmith is undefined. Complex functions may be nested: DeptHead (Advisor(  Jones))  
could be ProfMoore. We will assume (for now) that the values of all complex functions are 
known for all constant symbols. Because the KB is finite, this implies that every chain of 
complex function applications leads to one of a finite number of objects9 

The last element we need is the probabilistic information. For each simple function, 
we specify a set of parents, just as in Bayesian networks. The parents can be other simple 
functions- of the same object; for example, the F71,nding of a Professor might depend on his 
or her Furn,e. The parents can also be simple functions of related objects-for example, the 
Success of a student could depend on the Intelligence of the student and the Fame of the 
student's advisor. These are really universally quantijed assertions about the parents of all 
the objects in a class. Thus, we could write 

bf m z E Student + 
Purer~,ts(Success(n:)) = {Intel l igence(z) ,  Farne(A$visor (z ) ) )  . 

(Less formally, we can draw diagrams like Figure 14.16(a).) Now we specify the conditional 
probability distribution for the child, given its parents. For example, we might say that 

bf m n: E Student + 
P(Svcces s ( z )  = trueIIntelligence(x) = h i ,  Furne(Advisor (z ) )  = t rue)  = 0.95 . 

Just as in semantic networks, we can attach the conditional distribution to the class itself, so 
that the instances inherit the dependencies and conditional probabilities from the class. 

The semantics for the RPM language assumes that every constant symbol refers to a 
distinct object-the unique names assumption described in Chapter 10. Given this assump- 
tion and the restrictions listed previously, it can be shown that every RPM generates a fixed, 
finite set of random variables, each of which is a simple function applied to a constant symbol. 
Then, provided that the parent-child dependencies are acyclic, we can construct an equivalent 
Bayesian network. That is, the RPM and the Bayesian network specify identical probabili- 

They play a role very similar to that of the ground atomic sentences generated in the propositionalization 
process described in Section 9.1. 
"his restriction means that we cannot use co~nplex functions such as Father and Mother, which lead to 
potentially infinite chains that would have to end with an unknown object. We revisit this restriction later. 
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I I 

(a) (b) 

Figure 14.16 (a) An RPM describing two classes: P7,ofessor and S t ~ r d e ' r ~ t .  There are two 
professors and two students, and ProfSmith is the advisor of both students. (b) The Bayesian 
network equivalent to the RPM in (a). 

ties for each possible world. Figure 14.16(b) shows the Bayesian network corresponding to 
the RPM in Figure 14.16(a). Notice that the Advisor links in the RPM are absent in the 
Bayesian network. This is because they are fixed and known. They appear implicitly in the 
network topology, however; for example, S~~,ccess( ,Jor~es)  has Fame(ProfSrr~ith) as a parent 
because Advisor.(Joae.s) is Profsmith. In general, the relations that hold among the objects 
determine the pattern of dependencies among the properties of those objects. 

There are several ways to increase the expressive power of RPMs. We can allow re- 
RECURSIVE 
DEPENDENCY cursive dependencies among variables to capture certain kinds of recurring relationships. 

For example, suppose that addiction to fast food is caused by the McGer~e.  Then, for any 
a:, McGrrre(:l:) depends on %lcGe l re (~a ther ( z ) )  and i2lcGene(Mother(x)) ,  which depend 
in turn on McGer~e(Father(Father(z))), M c G e n e ( M o t l ~ e ~ ( F u t h e r ( z ) ) ) ,  and so on. Even 
though such knowledge bases correspond to Bayesian networks with infinitely many random 
variables, solutions can sometimes be obtained from fixed-point equations. For example, the 
equilibrium distribution of the McGenc can be calculated, given the conditional probability 
of inheritance. Another very important family of recursive knowledge bases consists of the 
temporal probability models described in Chapter 15. In these models, properties of the 
state at time t depend on properties of the state at time t - 1, and so on. 

RELATIONAL 
UNCERTAINTY RPMs can also be extended to allow for relational uncertainty-that is, uncertainty 

about the values of complex functions. For example, we may not know who Advisor(,Jor~es) 
is. Adv.isor(Jones) then becomes a random variable, with possible values ProfS.rn,ith and 
Profnloore. The corresponding network is shown in Figure 14.17. 

IDENTITY 
UNCERTAINTY There can also be identity uncertainty; for example, we might not know whether Mary 

and ProfSmith are the same person. With identity uncertainty, the number of objects and 
propositions can vary across possible worlds. A world where Marly and ProfSmith are the 
same person has one fewer object than a world in which they are different people. This 
makes the inference process more complicated, but the basic principle established in Equa- 
tion (14.12) still holds: the probability of any sentence is well defined and can be calculated. 
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Figure 14.17 Part of the Bayesian network corresponding to an RPM in which 
Ad~~isor~(.Jon,r~s)  is unknown, but is either PrufSmith or ProfMoore. The choice of advisor 

( depends on how much funding each professor has. Notice that S7~ccess(Jo~~es)  will now 1 
/ depend on the Fwrn of both professors, although the value of Ad ,o i sor (Jo~~es )  determines 1 

which one actually has an influence. 1 
Identity uncertainty is particularly important for robots and for embedded sensor systems that 
must keep track of multiple objects. We return to this problem in Chapter 15. 

Let us now examine the question of inference. Clearly, inference can be done in the 
equivalent Bayesian network, provided that we restrict the RPM language so that the equiv- 
alent network is finite and has a fixed structure. This is analogous to the way in which 
first-order logical inference can be done via propositional inference on the equivalent propo- 
sitional knowledge base. (See Section 9.1 .) As in the logical case, the equivalent network 
could be too large to construct, let alone evaluate. Dense interconnections are also a prob- 
lem. (See Exercise 14.12.) Approximation algorithms. such as MCMC (Section 14.5), are 
therefore very useful for RPM inference. 

When MCMC is applied to the equivalent Bayesian network for a simple RPM knowl- 
edge base with no relational or identity uncertainty, the algorithm samples from the space of 
possible worlds defined by the values of simple functions of the objects. It is easy to see that 
this approach can be extended to handle relational and identity uncertainty as well. In that 
case, a transition between possible worlds might change the value of a simple function or it 
might change a complex function, and so lead to a change in the dependency structure. Tran- 
sitions might also change the identity relations among the constant symbols. Thus, MCMC 
seems to be an elegant way to handle inference for quite expressive first-order probabilistic 
knowledge bases. 

Research in this area is still at an early stage, but already it is becoming clear that first- 
order probabilistic reasoning yields a tremendous increase in the effectiveness of A1 systems 
at handling uncertain information. Potential applications include computer vision, natural 
language understanding, information retrieval, and situation assessment. In all of these areas, 
the set of objects-and hence the set of random variables-is not known in advance, so 
purely "propositional" methods, such as Bayesian networks, are incapable of representing 
the situation completely. They have been augmented by search over the space of model, but 
RPMs allow reasoning about this uncertainty in a single model. 
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Other sciences (e.g., physics, genetics, and economics) have long favored probability as a 
model for uncertainty. In 1819, Pierre Laplace said "Probability theory is nothing but com- 
mon sense reduced to calculation." In 1850, James Maxwell said "the true logic for this world 
is the calculus of Probabilities, which takes account of the magnitude of the probability which 
is, or ought to be, in a reasonable man's mind." 

Given this long tradition, it is perhaps surprising that A1 has considered many alterna- 
tives to probability. The earliest expert systems of the 1970s ignored uncertainty and used 
strict logical reasoning, but it soon became clear that this was impractical for most real-world 
domains. The next generation of expert systems (especially in medical domains) used prob- 
abilistic techniques. Initial results were promising. but they did not scale up because of the 
exponential number of probabilities required in the full joint distribution. (Efficient Bayesian 
network algorithms were unknown then.) As a result, probabilistic approaches fell out of 
favor from roughly 1975 to 1988, and a variety of alternatives to probability were tried for a 
variety of reasons: 

One common view is that probability theory is essentially numerical, whereas human 
judgmental reasoning is more "qualitative." Certainly, we are not consciously aware 
of doing numerical calculations of degrees of belief. (Neither are we aware of doing 
unification, yet we seem to be capable of some kind of logical reasoning.) It might be 
that we have some kind of numerical degrees of belief encoded directly in strengths 
of connections and activations in our neurons. In that case, the difficulty of conscio~ls 
access to those strengths is not surprising.) One should also note that qualitative rea- 
soning mechanisms can be built directly on top of probability theory, so that the "no 
numbers" argument against probability has little force. Nonetheless, some qualitative 
schemes have a good deal of appeal in their own right. One of the best studied is de- 
fault reasoning, which treats conclusions not as "believed to a certain degree," but as 
"believed until a better reason is found to believe something else." Default reasoning is 
covered in Chapter 10. 

Rule-based approaches to uncertainty also have been tried. Such approaches hope to 
build on the success of logical rule-based systems, but add a sort of "fudge factor" to 
each rule to accon~modate uncertainty. These methods were developed in the mid- 1970s 
and formed the basis for a large number of expert systems in medicine and other areas. 

One area that we have not addressed so far is the question of ignorance, as opposed 
to uncertainty. Consider the flipping of a coin. If we know that the coin is fair, then a 
probability of 0.5 for heads is reasonable. If we know that the coin is biased, but we 
do not know which way, then 0.5 is the only reasonable probability. Obviously, the 
two cases are different, yet probability seems not to distinguish them. The Dempster- 
Shafer theory uses interval-valued degrees of belief to represent an agent's knowledge 
of the probability of a proposition. Other methods using second-order probabilities are 
also discussed. 
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Probability makes the same ontological commitment as logic: that events are true or 
false in the world, even if the agent is uncertain as to which is the case. Researchers 
in fuzzy logic have proposed an ontology that allows vagueness: that an event can be 
"sort of" true. Vagueness and uncertainty are in fact orthogonal issues, as we will see. 

The next three subsections treat some of these approaches in slightly more depth. We will not 
provide detailed technical material, but we cite references for further study. 

Rule-based methods for uncertain reasoning 

Rule-based systems emerged from early work on practical and intuitive systems for logical 
inference. Logical systems in general, and logical rule-based systems in particular, have three 
desirable properties: 

LOCALITY 0 Locality: In logical systems, whenever we have a rule of the form A + B, we can 
conclude B, given evidence A, without worrying about any other rules. In probabilistic 
systems, we need to consider all the evidence in the Markov blanket. 

DETACHMENT 0 Detachment: Once a logical proof is found for a proposition B, the proposition can be 
used regardless of how it was derived. That is, it can be detached from its justification. 
In dealing with probabilities, on the other hand, the source of the evidence for a belief 
is important for subsequent reasoning. 

TRUTH- 
FUNCTIONALITY 0 Truth-functionality: In logic. the truth of complex sentences can be computed from 

the truth of the components. Probability combination does not work this way, except 
under strong global independence assumptions. 

There have been several attempts to devise uncertain reasoning schemes that retain these 
advantages. The idea is to attach degrees of belief to propositions and rules and to devise 
purely local schemes for combining and propagating those degrees of belief. The schemes 
are also truth-functional; for example, the degree of belief in A V B is a function of the belief 
in A and the belief in B. 

The bad news for rule-based systems is that the properties of locality, detachment, and 
truth-functionality are simply not appropriate for uncertain reasoning. Let us look at truth- 
functionality first. Let HI be the event that a fair coin flip comes up heads, let TL be the event 
that the coin comes up tails on that same flip, and let H2 be the event that the coin comes 
up heads on a second flip. Clearly, all three events have the same probability, 0.5, and so a 
truth-functional system must assign the same belief to the disjunction of any two of them. 
But we can see that the probability of the disjunction depends on the events themselves and 
not just on their probabilities: 

It gets worse when we chain evidence together. Truth-functional systems have rules of the 
form A H B that allow us to compute the belief in B as a function of the belief in the rule 
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and the belief in A. Both forward- and backward-chaining systems can be devised. The belief 
in the rule is assumed to be constant and is usually specified by the knowledge engineer-for 
example, as A -0.9 B. 

Consider the wet-grass situation from Figure 14.11 (a). If we wanted to be able to do 
both causal and diagnostic reasoning, we would need the two rules 

Rain H W e t  Grass and W e t  Grass H Rain  

These two rules form a feedback loop: evidence for R a m  increases the belief in W f , t G m s s ,  
which in turn increases the belief in Ram even more. Clearly. uncertain reasoning systems 
need to keep track of the paths along which evidence is propagated. 

Intercausal reasoning (or explaining away) is also tricky. Consider what happens when 
we have the two rules 

Sprinkler H. WetGrass and PV7etGmss H Rain . 

Suppose we see that the sprinkler is on. Chaining forward through our rules, this increases the 
belief that the grass will be wet, which in turn increases the belief that it is raining. But this 
is ridiculous: the fact that the sprinkler is on explains away the wet grass and should reduce 
the belief in rain. A truth-functional system acts as if it also believes Sprankler H Rnzr~. 

Given these difficulties, how is it possible that truth-functional systems were ever con- 
sidered useful? The answer lies in restricting the task and in carefully engineering the rule 
base so that undesirable interactions do not occur. The most famous example of a truth- 

CERTAINTY FACTORS functional system for uncertain reasoning is the certainty factors model, which was devel- 
oped for the MYCIN medical diagnosis program and was widely used in expert systems of the 
late 1970s and 1980s. Almost all uses of certainty factors involved rule sets that were either 
purely diagnostic (as in MYCIN) or purely causal. Furthermore, evidence was entered only at 
the "roots" of the rule set, and most rule sets were singly connected. Heckerman (1986) has 
shown that, under these circumstances, a minor variation on certainty-factor inference was 
exactly equivalent to Bayesian inference on polytrees. In other circumstances, certainty fac- 
tors could yield disastrously incorrect degrees of belief through overcounting of evidence. As 
rule sets became larger, undesirable interactions between rules became more common, and 
practitioners found that the certainty factors of many other rules had to be "tweaked" when 
new rules were added. Needless to say, the approach is no longer recommended. 

Representing ignorance: Dempster-Shafer theory 

DEMPSTER-SHAFER The Dempster-Shafer theory is designed to deal with the distinction between uncertainty 
and ignorance. Rather than computing the probability of a proposition, it computes the 
probability that the evidence supports the proposition. This measure of belief is called a 

BELIEF FUNCTION belief function, written Be1 (X) . 
We return to coin flipping for an example of belief functions. Suppose a shady character 

comes up to you and offers to bet you $10 that his coin will come up heads on the next flip. 
Given that the coin might or might not be fair, what belief should you ascribe to the event 
that it comes up heads? Dempster-Shafer theory says that because you have no evidence 
either way, you have to say that the belief Bel(Heads)  = 0 and also that Brl(1Heud.s) = 0. 
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This makes Dempster-Shafer reasoning systems skeptical in a way that has some intuitive 
appeal. Now suppose you have an expert at your disposal who testifies with 90% certainty 
that the coin is fair (i.e., he is 90% sure that P ( H e a d s )  = 0.5). Then Dempster-Shafer 
theory gives Bel(Heads)  = 0.9 x 0.5 = 0.45 and likewise Be1  heads) = 0.45. There 
is still a 10 percentage point "gap" that is not accounted for by the evidence. "Dempster's 
rule" (Dempster, 1968) shows how to combine evidence to give new values for Bel ,  and 
Shafer's work extends this into a complete computational model. 

As with default reasoning, there is a problem in connecting beliefs to actions. With 
probabilities, decision theory says that if P ( H e n d s )  = P ( 1 W e a d s )  = 0.5, then (assuming 
that winning $10 and losing $10 are considered equal magnitude opposites) the reasoner 
will be indifferent between the action of accepting and declining the bet. A Dempster- 
Shafer reasoner has Bel (1Hcads)  = 0 and thus no reason to accept the bet, but then it 
also has Bel(Hen,ds) = 0 and thus no reason to decline it. Thus, it seems that the Dempster- 
Shafer reasoner comes to the same conclusion about how to act in this case. Unfortunately, 
Dempster-Shafer theory allows no definite decision in many other cases where probabilistic 
inference does yield a specific choice. In fact, the notion of utility in the Dempster-Shafer 
model is not yet well understood. 

One interpretation of Dempster-Shafer theory is that it defines a probability interval: 
the interval for Heuds is [O: 11 before our expert testimony and [0.45.0.55] after. The width 
of the interval might be an aid in deciding when we need to acquire more evidence: it can 
tell you that the expert's testimony will help you if you do not know whether the coin is fair, 
but will not help you if you have already learned that the coin is fair. However, there are 
no clear guidelines for how to do this, because there is no clear meaning for what the width 
of an interval means. In the Bayesian approach, this kind of reasoning can be done easily 
by examining how much one's belief would change if one were to acquire more evidence. 
For example, knowing whether the coin is fair would have a significant impact on the belief 
that it will come up heads, and detecting an asymmetric weight would have an impact on the 
belief that the coin is fair. A complete Bayesian model would include probability estimates 
for factors such as these, allowing us to express our "ignorance" in terms of how our beliefs 
would change in the face of future information gathering. 

Representing vagueness: Fuzzy sets and fuzzy logic 

FUZZYSETTHEORY FUZZY set theory is a means of specifying how well an object satisfies a vague description. 
For example, consider the proposition "Nate is tall." Is this true, if Nate is 5' lo"? Most 
people would hesitate to answer "true" or "false," preferring to say, "sort of." Note that this 
is not a question of uncertainty about the external world-we are sure of Nate's height. The 
issue is that the linguistic term "tall" does not refer to a sharp demarcation of objects into two 
classes-there are degrees of tallness. For this reason, fuzzy set theory is not a method for 
uncertain reasoning at all. Rather, fuzzy set theory treats To,ll as a fuzzy predicate and says 
that the truth value of Tulb(Nate) is a number between 0 and 1, rather than being just true 
or fulse. The name "fuzzy set" derives from the interpretation of the predicate as implicitly 
defining a set of its members-a set that does not have sharp boundaries. 



Section 14.7. Other Approaches to Uncertain Reasoning 527 

FUZZY LOGIC Fuzzy logic is a method for reasoning with logical expressions describing membership 
in fi~zzy sets. For example, the complex sentence T ( ~ , l l ( N a i r )  A Hea~ly (Natc>)  has a fuzzy 
truth value that is a function of the truth values of its components. The standard rules for 
evaluating the fuzzy truth, T, of a complex sentence are 

T ( A  A B )  = i n i n ( T ( A ) ,  T ( B ) )  
T ( A  V B)  = max(T(A) . T ( B ) )  
T ( 1 A )  = 1 -T(L4).  

Fuzzy logic is therefore a truth-functional system-a fact that causes serious difficulties. 
For example, suppose that T ( T u l l ( N n , t e ) )  = 0.6 and T ( H f : a , v y ( N a t e ) )  = 0.4. Then we have 
T ( T u l l ( N a t e )  A T ( H e u o y ( N a t c ) )  = 0.4, which seems reasonable, but we also get the result 
T(Tu ld (Nn , t e )  A ~ T a , l l ( N a t e ) )  = 0.4, which does not. Clearly, the problem arises from the 
inability of a truth-functional approach to take into account the correlations or anticorrelations 
among the component propositions. 

FUZZY CONTROL Fuzzy control is a methodology for constructing control systems in which the mapping 
between real-valued input and output parameters is represented by fuzzy rules. Fuzzy con- 
trol has been very successful in commercial products such as automatic transmissions, video 
cameras, and electric shavers. Critics (see, e.g., Elkan, 1993) argue that these applications 
are successful because they have small rule bases, no chaining of inferences, and tunable 
parameters that can be adjusted to improve the system's performance. The fact that they are 
implemented with fuzzy operators might be incidental to their success; the key is simply to 
provide a concise and intuitive way to specify a smoothly interpolated, real-valued function. 

There have been attempts to provide an explanation of fuzzy logic in terms of probabil- 
ity theory. One idea is to view assertions such as "Nate is Tall" as discrete observations made 
concerning a continuous hidden variable, Nate's actual Height. The probability model speci- 
fies P(0bserver says Nate is tall I Height) ,  perhaps using a probit distribution as described 
on page 503. A posterior distribution over Nate's height can then be calculated in the usual 
way, for example if the model is part of a hybrid Bayesian network. Such an approach is not 
truth-functional, of course. For example, the conditional distribution 

P(0bserver says Nate is tall and heavy I Heigh,t, Wrigh,t) 

allows for interactions between height and weight in the causing of the observation. Thus, 
someone who is eight feet tall and weighs 190 pounds is very unlikely to be called "tall and 
heavy," even though "eight feet" counts as "tall7' and "1 90 pounds" counts as "heavy." 

Fuzzy predicates can also be given a probabilistic interpretation in terms of random 
RANDOMSETS sets-that is, random variables whose possible values are sets of objects. For example, T(~,ll 

is a random set whose possible values are sets of people. The probability P(To, l l= SI) ,  
where S1 is some particular set of people, is the probability that exactly that set would be 
identified as "tall" by an observer. Then the probability that "Nate is tall" is the sum of the 
probabilities of all the sets of which Nate is a member. 

Both the hybrid Bayesian network approach and the random sets approach appear to 
capture aspects of fuzziness without introducing degrees of truth. Nonetheless, there remain 
many open issues concerning the proper representation of linguistic observations and contin- 
uous quantities-issues that have been neglected by most outside the fuzzy community. 
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This chapter has described Bayesian networks, a well-developed representation for uncertain 
knowledge. Bayesian networks play a role roughly analogous to that of propositional logic 
for definite knowledge. 

a A Bayesian network is a directed acyclic graph whose nodes correspond to random 
variables; each node has a conditional distribution for the node, given its parents. 

a Bayesian networks provide a concise way to represent conditional independence rela- 
tionships in the domain. 

A Bayesian network specifies a full joint distribution; each joint entry is defined as the 
product of the corresponding entries in the local conditional distributions. A Bayesian 
network is often exponentially smaller than the full joint distribution. 

a Many conditional distributions can be represented compactly by canonical families of 
distributions. Hybrid Bayesian networks, which include both discrete and continuous 
variables, use a variety of canonical distributions. 

a Inference in Bayesian networks means computing the probability distribution of a set 
of query variables, given a set of evidence variables. Exact inference algorithms, such 
as variable elimination, evaluate sums of products of conditional probabilities as effi- 
ciently as possible. 

a In polytrees (singly connected networks), exact inference takes time linear in the size 
of the network. In the general case, the problem is intractable. 

a Stochastic approximation techniques such as likelihood weighting and Markov chain 
Monte Carlo can give reasonable estimates of the true posterior probabilities in a net- 
work and can cope with much larger networks than can exact algorithms. 

Probability theory can be combined with representational ideas from first-order logic to 
produce very powerful systems for reasoning under uncertainty. Relational probabil- 
ity models (RPMs) include representational restrictions that guarantee a well-defined 
probability distribution that can be expressed as an equivalent Bayesian network. 

a Various alternative systems for reasoning under uncertainty have been suggested. Gen- 
erally speaking, truth-functional systems are not well suited for such reasoning. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

The use of networks to represent probabilistic information began early in the 20th century, 
with the work of Sewall Wright on the probabilistic analysis of genetic inheritance and animal 
growth factors (Wright, 1921, 1934). One of his networks appears on the cover of this book. 
I. J. Good (1961), in collaboration with Alan Turing, developed probabilistic representations 
and Bayesian inference methods that could be regarded as a forerunner of modern Bayesian 
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networks-although the paper is not often cited in this context."' The same paper is the 
original source for the noisy-OR model. 

The influence diagram representation for decision problems, which incorporated a 
DAG representation for random variables, was used in decision analysis in the late 1970s 
(see Chapter 16), but only enumeration was used for evaluation. Judea Pearl developed the 
message-passing method for carrying out inference in tree networks (Pearl, 1982a) and poly- 
tree networks (Kim and Pearl, 1983) and explained the importance of constructing causal 
rather than diagnostic probability models, in contrast to the certainty-factor systems then 
in vogue. The first expert system using Bayesian networks was CONVINCE (Kim, 1983; 
Kim and Pearl, 1987). More recent systems include the MUNIN system for diagnosing neu- 
romuscular disorders (Andersen et al., 1989) and the PATHFINDER system for pathology 
(Heckerman, 1991). By far the most widely used Bayesian network systems have been the 
diagnosis-and-repair modules (e.g., the Printer Wizard) in Microsoft Windows (Breese and 
Heckerman, 1996) and the Office Assistant in Microsoft Office (Horvitz et al., 1998). 

Pearl (1 986) developed a clustering algorithm for exact inference in general Bayesian 
networks, utilizing a conversion to a directed polytree of clusters in which message passing 
was used to achieve consistency over variables shared between clusters. A similar approach, 
developed by the statisticians David Spiegelhalter and Steffen Lauritzen (Spiegelhalter, 1986; 
Lauritzen and Spiegelhalter, 1988), is based on conversion to an undirected (Markov) net- 
work. This approach is implemented in the HUGIN system, an efficient and widely used 
tool for uncertain reasoning (Andersen et nl., 1989). Ross Shachter, working in the influ- 
ence diagram community, developed an exact method based on goal-directed reduction of the 
network, using posterior-preserving transformations (Shachter, 1986). 

The variable elimination method described in the chapter is closest in spirit to Shachter's 
method, from which emerged the symbolic probabilistic inference (SPI) algorithm (Shachter 
et al., 1990). SPI attempts to optimize the evaluation of expression trees such as that shown 
in Figure 14.8. The algorithm we describe is closest to that developed by Zhang and Poole 
(1994, 1996). Criteria for pruning irrelevant variables were developed by Geiger et al. (1 990) 
and by Lauritzen et al. (1990); the criterion we give is a simple special case of these. Rina 
Dechter (1999) shows how the variable elimination idea is essentially identical to nonserial 

~ ~ ~ ~ ~ @ ~ p N ~ A M i C  dynamic programming (Bertele and Brioschi, 1972), an algorithmic approach that can be 
applied to solve a range of inference problems in Bayesian networks-for example, finding 
the most probable explanation for a set of observations. This connects Bayesian network 
algorithms to related methods for solving CSPs and gives a direct measure of the complexity 
of exact inference in terms of the hypertree width of the network. 

The inclusion of continuous random variables in Bayesian networks was considered 
by Pearl (1988) and Shachter and Kenley (1989); these papers discussed networks contain- 
ing only continuous variables with linear Gaussian distributions. The inclusion of discrete 
variables has been investigated by Lauritzen and Wermuth (1989) and implemented in the 

I. J. Good was chief statistician for Turing's code-breaking team in World War 11. In 2001: A Space Odysse~ 
(Clarke, 1968a), Good and Minsky are credited with making the breakthrough that led to the development of the 
HAL 9000 computer. 
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CHUGIN system (Olesen, 1993). The probit distribution was studied first by Finney (1947). 
who called it the sigmoid distribution. It has been used widely for modeling discrete choice 
phenomena and can be extended to handle more than two choices (Daganzo, 1979). Bishop 
( 1995) gives a justification for the use of the logit distribution. 

Cooper ( 1  990) showed that the general problem of inference in unconstrained Bayesian 
networks is NP-hard, and Paul Dagum and Mike Luby (1993) showed the corresponding 
approximation problem to be NP-hard. Space complexity is also a serious problem in both 
clustering and variable elimination methods. The method of cutset conditioning, which was 
developed for CSPs in Chapter 5, avoids the construction of exponentially large tables. In a 
Bayesian network, a cutset is a set of nodes that, when instantiated, reduces the remaining 
nodes to a polytree that can be solved in linear time and space. The query is answered by 
summing over all the instantiations of the cutset, so the overall space requirement is still lin- 
ear (Pearl, 1988). Darwiche (2001) describes a recursive conditioning algorithm that allows 
a complete range of spaceltime tradeoffs. 

The development of fast approximation algorithms for Bayesian network inference is a 
very active area, with contributions from statistics, computer science, and physics. The rejec- 
tion sampling method is a general technique that is long known to statisticians; it was first ap- 
plied to Bayesian networks by Max Henrion (1 988), who called it logic sampling. Likelihood 
weighting, which was developed by Fung and Chang (1 989) and Shachter and Peot ( 1  989), 
is an example of the well-known statistical method of importance sampling. A large-scale 
application of likelihood weighting to medical diagnosis appears in Shwe and Cooper (1991). 
Cheng and Druzdzel (2000) describe an adaptive version of likelihood weighting that works 
well even when the evidence has very low prior likelihood. 

Markov chain Monte Carlo (MCMC) algorithms began with the Metropolis algorithm, 
due to Metropolis et nl. (1953), which was also the source of the simulated annealing algo- 
rithm described in Chapter 4. The Gibbs sampler was devised by Geman and Geman (1984) 
for inference in undirected Markov networks. The application of MCMC to Bayesian net- 
works is due to Pearl (1987). The papers collected by Gilks et al. (1996) cover a wide variety 
of applications of MCMC, several of which were developed in the well-known BUGS pack- 
age (Gilks et al., 1994). 

There are two very important families of approximation methods that we did not cover 
VARIATIONAL in the chapter. The first is the family of variational approximation methods, which can be 

used to simplify complex calculations of all kinds. The basic idea is to propose a reduced 
version of the original problem that is simple to work with, but that resembles the original 
problem as closely as possible. The reduced problem is described by some variational pa- 

VARIATIONAL 
PARAMETERS rameters X that are adjusted to minimize a distance function D between the original and 

the reduced problem, often by solving the system of equations dD/ i )X = 0. In many cases, 
strict upper and lower bounds can be obtained. Variational methods have long been used in 

MEAN FIELD statistics (Rustagi, 1976). In statistical physics, the mean field method is a particular vari- 

ational approximation in which the individual variables making up the model are assumed 
to be completely independent. This idea was applied to solve large undirected Markov net- 
works (Peterson and Anderson, 1987; Parisi, 1988). Saul et al. (1996) developed the math- 
ematical foundations for applying variational methods to Bayesian networks and obtained 
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accurate lower-bound approximations for sigmoid networks with the use of mean-field meth- 
ods. Jaakkola and Jordan (1996) extended the methodology to obtain both lower and upper 
bounds. Variational approaches are surveyed by Jordan et al. (1999). 

A second important family of approximation algorithms is based on Pearl's polytree 
message-passing algorithm (1982a). This algorithm can be applied to general networks, as 
suggested by Pearl (1988). The results might be incorrect, or the algorithm might fail to ter- 
minate, but in many cases, the values obtained are close to the true values. Little attention was 

BELIEF 
PROPAGATION paid to this so-called belief propagation (or loopy propagation) approach until McEliece 

et al. (1998) observed that message passing in a multiply-connected Bayesian network was 
TURBODECODING exactly the computation performed by the turbo decoding algorithm (Berrou et al., 1993), 

which provided a major breakthrough in the design of efficient error-correcting codes. The 
implication is that loopy propagation is both fast and accurate on the very large and very 
highly connected networks used for decoding and might therefore be useful more generally. 
Murphy et al. (1999) present an empirical study of where it does work. Yedidia et al. (2001) 
make further connections between loopy propagation and ideas from statistical physics. 

The connection between probability and first-order languages was first studied by Car- 
nap (1950). Gaifman (1964) and Scott and Krauss (1966) defined a language in which proba- 
bilities could be associated with first-order sentences and for which models were probability 
measures on possible worlds. Within AI, this idea was developed for propositional logic by 
Nilsson (1986) and for first-order logic by Halpern (1 990). The first extensive investigation of 
knowledge representation issues in such languages was carried out by Bacchus ( 1  990), and 
the paper by Wellman et al. (1 992) surveys early implementation approaches based on the 
construction of equivalent propositional Bayesian networks. More recently, researchers have 
come to understand the importance of complete knowledge bases-that is, knowledge bases 
that, like Bayesian networks, define a unique joint distribution over all possible worlds. Meth- 
ods for doing this have been based on probabilistic versions of logic programming (Poole, 
1993; Sato and Kameya, 1997) or semantic networks (Koller and Pfeffer, 1998). Relational 
probability models of the kind described in this chapter are investigated in depth by Pfeffer 
(2000). Pasula and Russell (2001) examine both issues of relational and identity uncertainty 
within RPhIs and the use of MCMC inference. 

As explained in Chapter 13, early probabilistic systems fell out of favor in the early 
1970s, leaving a partial vacuum to be filled by alternative methods. Certainty factors were 
invented for use in the medical expert system MYCIN (Shortliffe, 1976), which was intended 
both as an engineering solution and as a model of human judgment under uncertainty. The 
collection Rule-Based Expert Systems (Buchanan and Shortliffe, 1984) provides a complete 
overview of MYCIN and its descendants (see also Stefik, 1995). David Heckerman (1986) 
showed that a slightly modified version of certainty factor calculations gives correct proba- 
bilistic results in some cases, but results in serious overcounting of evidence in other cases. 
The PROSPECTOR expert system (Duda et al., 1979) used a rule-based approach in which the 
rules were justified by a (seldom tenable) global independence assumption. 

Dempster-Shafer theory originates with a paper by Arthur Dempster (1968) propos- 
ing a generalization of probability to interval values and a combination rule for using them. 
Later work by Glenn Shafer (1976) led to the Dempster-Shafer theory's being viewed as a 
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competing approach to probability. Ruspini et al. (1992) analyze the relationship between 
the Dempster-Shafer theory and standard probability theory. Shenoy (1989) has proposed a 
method for decision making with Dempster-Shafer belief functions. 

Fuzzy sets were developed by Lotfi Zadeh (1965) in response to the perceived difficulty 
of providing exact inputs to intelligent systems. The text by Zimnlermann (2001) provides 
a thorough introduction to fuzzy set theory; papers on fuzzy applications are collected in 
Zimmermann (1999). As we mentioned in the text, fuzzy logic has often been perceived 
incorrectly as a direct competitor to probability theory, whereas in fact it addresses a different 

PosslelLlTYTHEoRY set of issues. Possibility theory (Zadeh, 1978) was introduced to handle uncertainty in fuzzy 
systems and has much in common with probability. Dubois and Prade (1994) provide a 
thorough survey of the connections between possibility theory and probability theory. 

The resurgence of probability depended mainly on the discovery of Bayesian networks 
as a method for representing and using conditional independence information. This resur- 
gence did not come without a fight; Peter Cheeseman's (1985) pugnacious "In Defense of 
Probability," and his later article "An Inquiry into Computer Understanding" (Cheeseman, 
1988, with commentaries) give something of the flavor of the debate. One of the principal 
objections of the logicists was that the numerical calculations that probability theory was 
thought to require were not apparent to introspection and presumed an unrealistic level of 
precision in our uncertain knowledge. The development of qualitative probabilistic net- 
works (Wellman, 1990a) provided a purely qualitative abstraction of Bayesian networks, 
using the notion of positive and negative influences between variables. Wellman shows that 
in many cases such information is sufficient for optimal decision making without the need for 
the precise specification of probability values. Work by Adnan Darwiche and Matt Gins- 
berg (1992) extracts the basic properties of conditioning and evidence combination from 
probability theory and shows that they can also be applied in logical and default reasoning. 

The heart disease treatment system described in the chapter is due to Lucas (1996). 
Other fielded applications of Bayesian networks include the work at Microsoft on inferring 
computer user goals from their actions (Horvitz et al., 1998) and on filtering junk email 
(Sahami et al., 1998), the Electric Power Research Institute's work on monitoring power 
generators (Morjaria et al., 1995), and NASA's work on displaying time-critical information 
at Mission Control in Houston (Horvitz and Barry, 1995). 

Some important early papers on uncertain reasoning methods in A1 are collected in the 
anthologies Readings in Uncertain Reasoning (Shafer and Pearl, 1990) and Uncertainty in 
Artijicial Intelligence (Kana1 and Lemmer, 1986). The most important single publication in 
the growth of Bayesian networks was undoubtedly the text Probabilistic Reasoning in Intelli- 
gent Systems (Pearl, 1988). Several excellent texts, including Lauritzen (1996), Jensen (200 1)  
and Jordan (2003), contain more recent material. New research on probabilistic reasoning 
appears both in mainstream A1 journals such as Artijicial Intelligence and the Journal of A1 
Research, and in more specialized journals, such as the international Journal ofApproxinzate 
Reasoning. Many papers on graphical models, which include Bayesian networks, appear in 
statistical journals. The proceedings of the conferences on Uncertainty in Artificial Intelli- 
gence (UAI), Neural Information Processing Systems (NIPS), and Artificial Intelligence and 
Statistics (AISTATS) are excellent sources for current research. 
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Figure 14.18 A Bayesian network describing some features of a car's electrical system 
and engine. Each variable is Boolean, and the true value indicates that the corresponding 
aspect of the vehicle is in working order. 

14.1 Consider the network for car diagnosis shown in Figure 14.18. 

a. Extend the network with the Boolean variables Icy Weather and Stnrterh/lotor. 

b. Give reasonable conditional probability tables for all the nodes. 

c. How many independent values are contained in the joint probability distribution for 
eight Boolean nodes, assuming that no conditional independence relations are known 
to hold among them? 

d. How many independent probability values do your network tables contain? 

e. The conditional distribution for Starts could be described as a noisy-AND distribution. 
Define this family in general and relate it to the noisy-OR distribution. 

14.2 In your local nuclear power station, there is an alarm that senses when a temperature 
gauge exceeds a given threshold. The gauge measures the temperature of the core. Consider 
the Boolean variables A (alarm sounds), FA (alarm is faulty), and FG (gauge is faulty) and 
the multivalued nodes G (gauge reading) and T (actual core temperature). 

a. Draw a Bayesian network for this domain, given that the gauge is more likely to fail 
when the core temperature gets too high. 

b. Is your network a polytree? 

c. Suppose there are just two possible actual and measured temperatures, normal and high; 
the probability that the gauge gives the correct temperature is z when it is working, but 
y when it is faulty. Give the conditional probability table associated with G. 
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d. Suppose the alarm works correctly unless it is faulty, in which case it never sounds. 
Give the conditional probability table associated with A. 

e. Suppose the alarm and gauge are working and the alarm sounds. Calculate an expres- 
sion for the probability that the temperature of the core is too high, in terms of the 
various conditional probabilities in the network. 

14.3 Two astronomer? in different parts of the world make measurements A l l  and Af2 of 
the number of stars N in some small region of the sky, using their telescopes. Normally, there 
is a small possibility e of error by up to one star in each direction. Each telescope can also 
(with a much smaller probability f )  be badly out of focus (events F1 and F'), in which case 
the scientist will undercount by three or more stars (or, if N is less than 3, fail to detect any 
stars at all). Consider the three networks shown in Figure 14.19. 

a. Which of these Bayesian networks are correct (but not necessarily efficient) represen- 
tations of the preceding information? 

b. Which is the best network? Explain. 

c. Write out a conditional distribution for P(Afl IN), for the case where N E {1.2,3) and 
A f l  E {0.1 ,2 ,3 ,4) .  Each entry in the conditional distribution should be expresed as a 
function of the parameters r andlor f .  

d. Suppose A l l  = 1 and A12 = 3. What are the possible numbers of stars if we assume no 
prior constraint on the values of N? 

e. What is the most likely number of stars, given these observations? Explain how to 
compute this, or, if it is not possible to compute, explain what additional information is 
needed and how it would affect the result. 

14.4 Consider the network shown in Figure 14.19(ii), and assume that the two telescopes 
work identically. N E (1.2.3) and MI .  A12 E {0,1,2,3.4),  with the symbolic CPTs as de- 
scribed in Exercise 14.3. Using the enumeration algorithm, calculate the probability distribu- 
tionP(NIAfl = a ,  h12 = a ) .  

(i) (ii) (iii) 

Figure 14.19 Three possible networks for the telescope problem. 
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CUMULATIVE 
DISTRIBUTION 

14.5 Consider the family of linear Gaussian networks, as illustrated on page 502. 

a. In a two-variable network, let XI be the parent of X2 ,  let X have a Gaussian prior. 
and let P ( X 2 j X I )  be a linear Gaussian distribution. Show that the joint distribution 
P ( X I .  X 2 )  is a multivariate Gaussian, and calculate its covariance matrix. 

b. Prove by induction that the joint distribution for a general linear Gaussian network on 
XI,  . . . . X,, is also a multivariate Gaussian. 

14.6 The probit distribution defined on page 503 describes the probability distribution for a 
Boolean child, given a single continuous parent. 

a. How might the definition be extended to cover multiple continuous parents? 

b. How might it be extended to handle a multivalued child variable? Consider both cases 
where the child's values are ordered (as in selecting a gear while driving, depending 
on speed, slope, desired acceleration, etc.) and cases where they are unordered (as in 
selecting bus, train, or car to get to work). [Hint: Consider ways to divide the possible 
values into two sets, to mimic a Boolean variable.] 

14.7 This exercise is concerned with the variable elimination algorithm in Figure 14.10. 

a. Section 14.4 applies variable elimination to the query 

P(Burglar?yl JohnC'alls = true, Mary Calls = true) . 

Perform the calculations indicated and check that the answer is correct. 

b. Count the number of arithmetic operations performed , and compare it with the number 
performed by the enumeration algorithm. 

c. Suppose a network has the form of a chain: a sequence of Boolean variables XI, . . . , X ,  
where Parcr~ts(X,)  = { X i - l )  for i = 2 , .  . . , n. What is the complexity of computing 
P ( X 1  IX, = true) using enumeration? Using variable elimination? 

d. Prove that the complexity of running variable elimination on a polytree network is linear 
in the size of the tree for any variable ordering consistent with the network structure. 

14.8 Investigate the complexity of exact inference in general Bayesian networks: 

a. Prove that any 3-SAT problem can be reduced to exact inference in a Bayesian network 
constructed to represent the particular problem and hence that exact inference is NP- 
hard. [Hint: Consider a network with one variable for each proposition symbol, one for 
each clause, and one for the conjunction of clauses.] 

b. The problem of counting the number of satisfying assignments for a 3-SAT problem is 
#P-complete. Show that exact inference is at least as hard as this. 

14.9 Consider the problem of generating a random sample from a specified distribution on 
a single variable. You can assume that a random number generator is available that returns a 
random number uniformly distributed between 0 and 1 .  

a. Let X be a discrete variable with P(X = x i )  = p i  for i E (1,. . . , k ) .  The cumulative 
distribution of X gives the probability that X E {zl , . . . , z j )  for each possible j. Ex- 
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plain how to calculate the cumulative distribution in O ( k )  time and how to generate a 
single sample of X from it. Can the latter be done in less than O ( k )  time? 

b. Now suppose we want to generate N samples of X, where N >> k .  Explain how to do 
this with an expected runtime per sample that is constant (i.e., independent of k ) .  

c. Now consider a continuous-valued variable with a parametrized distribution (e.g., Gaus- 
sian). How can samples be generated from such a distribution? 

d. Suppose you want to query a continuous-valued variable and you are using a sampling 
algorithm such as LIKELIHOODWEIGHT~NG to do the inference. How would you have 
to modify the query-answering process? 

14.10 The Markov blanket of a variable is defined on page 499. 

a. Prove that a variable is independent of all other variables in the network, given its 
Markov blanket. 

b. Derive Equation (14.1 1).  

14.11 Consider the query P(Rain1 Sprir~,kler = true, TVefGrass = frue) in Figure 14.1 1 (a) 
and how MCMC can answer it. 

a. How many states does the Markov chain have? 

b. Calculate the transition matrix Q containing q(y + y') for all y, y'. 
c. What does Q ~ ,  the square of the transition matrix, represent? 

d. What about Q "  as n -+ m? 

e. Explain how to do probabilistic inference in Bayesian networks, assuming that Qr" is 
available. Is this a practical way to do inference? 

IgiiiJz-p 14.12 Three soccer teams A, B, and C, play each other once. Each match is between two 
teams, and can be won, drawn, or lost. Each team has a fixed, unknown degree of quality- 
an integer ranging from 0 to 3-and the outcome of a match depends probabilistically on the 
difference in quality between the two teams. 

a. Construct a relational probability model to describe this domain, and suggest numerical 
values for all the necessary probability distributions. 

b. Construct the equivalent Bayesian network. 

c. Suppose that in the first two matches A beats B and draws with C. Using an exact 
inference algorithm of your choice, compute the posterior distribution for the outcome 
of the third match. 

d. Suppose there are n teams in the league and we have the results for all but the last 
match. How does the complexity of predicting the last game vary with n? 

e. Investigate the application of MCMC to this problem. How quickly does it converge in 
practice and how well does it scale? 


