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Abstract

Collaboration requires agents to coordinate their behavior on the fly, sometimes
cooperating to solve a single task together and other times dividing it up into
sub-tasks to work on in parallel. Underlying the human ability to collaborate is
theory-of-mind, the ability to infer the hidden mental states that drive others to
act. Here, we develop Bayesian Delegation, a decentralized multi-agent learning
mechanism with these abilities. Bayesian Delegation enables agents to rapidly infer
the hidden intentions of others by inverse planning. We test Bayesian Delegation
in a suite of multi-agent Markov decision processes inspired by cooking problems.
On these tasks, agents with Bayesian Delegation coordinate both their high-level
plans (e.g. what sub-task they should work on) and their low-level actions (e.g.
avoiding getting in each other’s way). In a self-play evaluation, Bayesian Dele-
gation outperforms alternative algorithms. Bayesian Delegation is also a capable
ad-hoc collaborator and successfully coordinates with other agent types even in
the absence of prior experience. Finally, in a behavioral experiment, we show that
Bayesian Delegation makes inferences similar to human observers about the intent
of others. Together, these results demonstrate the power of Bayesian Delegation
for decentralized multi-agent collaboration.
Keywords: coordination; social learning; inverse planning; Bayesian inference,
multi-agent reinforcement learning

1 Introduction

Working together enables a group of agents to achieve together what no individual could achieve on
their own [37, 20]. However, collaboration is challenging as it requires agents to coordinate their
behaviors. In the absence of prior experience, social roles, and norms, we still find ways to negotiate
our joint behavior in any given moment to work together with efficiency [38, 27]. Whether we are
writing a scientific manuscript with collaborators or preparing a meal with friends, core questions
we ask ourselves are: how can I help out the group? What should I work on next, and with whom
should I do it with? Figuring out how to flexibly coordinate a collaborative endeavor is a fundamental
challenge for any agent in a multi-agent world.

Central to this challenge is that agents’ reasoning about what they should do in a multi-agent context
depends on the future actions and intentions of others. When agents, like people, make independent
decisions, these intentions are unobserved. Actions can reveal information about intentions, but
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(a) Partial-Divider.

Goal
Delivery[Plate[Tomato.chopped,

Lettuce.chopped]]

(b) Salad.

Merge(Tomato.unchopped, Knife)
Merge(Lettuce.unchopped, Knife)
Merge(Tomato.chopped, Lettuce.chopped)
Merge([Tomato.chopped Lettuce.chopped],
Plate[])
Merge(Plate[Tomato.chopped,
Lettuce.chopped], Delivery)

(c) Example sub-task order for Salad.

Figure 1: The Overcooked environment. (a) The Partial-Divider kitchen offers many counters for objects, but
forces agents to move through a narrow bottleneck. (b) The Salad recipe in which two chopped foods must be
combined on a single plate and delivered, and (c) one of the many possible orderings for completing this task.
All sub-tasks are expressed in the Merge operator. Different recipes are possible in each kitchen, allowing for
variation in high-level goals while keeping the low-level navigation challenges fixed.

predicting them is difficult because of uncertainty and ambiguity – multiple intentions can produce
the same action. In humans, the ability to understand intentions from actions is called theory-of-mind
(ToM). Humans rely on this ability to cooperate in coordinated ways, even in novel situations [38, 33].
We aim to build agents with theory-of-mind and use these abilities for coordinating collaboration.

In this work, we study these abilities in the context of multiple agents cooking a meal together,
inspired by the video game Overcooked [18]. These problems have hierarchically organized sub-tasks
and share many features with other object-oriented tasks such as construction and assembly. These
sub-tasks allow us to study agents that are challenged to coordinate in three distinct ways: (A) Divide
and conquer: agents should work in parallel when sub-tasks can be efficiently carried out individually,
(B) Cooperation: agents should work together on the same sub-task when most efficient or necessary,
(C) Spatio-temporal movement: agents should avoid getting in each other’s way at any time.

To illustrate, imagine the process required to make a simple salad: first chopping both tomato and
lettuce and then assembling them together on a plate. Two people might collaborate by first dividing
the sub-tasks up: one person chops the tomato and the other chops the lettuce. This doubles the
efficiency of the pair by completing sub-tasks in parallel (challenge A). On the other hand, some
sub-tasks may require multiple to work together. If only one person can use the knife and only the
other can reach the tomatoes, then they must cooperate to chop the tomato (challenge B). In all cases,
agents must coordinate their low-level actions in space and time to avoid interfering with others and
be mutually responsive (challenge C).

Related Work Our work builds on a long history of using cooking tasks for evaluating multi-agent
coordination across hierarchies of sub-tasks [19, 12, 36]. Most recently, environments inspired by
Overcooked have been used in deep reinforcement learning studies where agents are trained using
self-play and human data [34, 8]. In contrast, our approach is based on techniques that dynamically
learn while interacting rather than requiring large amounts of pre-training experience for a specific
environment, team configuration, and sub-task structure. Instead our work shares goals with the
ad-hoc coordination literature, where agents must adapt on the fly to variations in task, environment,
or team [9, 35, 3]. However, prior work is often limited to action coordination (e.g,. chasing or
hiding) rather than coordinating actions across and within sub-tasks. Our approach to this problem
takes inspiration from the cognitive science of how people coordinate their cooperation in the absence
of communication [21]. Specifically, we build on recent algorithmic progress in Bayesian theory-
of-mind [31, 30, 2, 33] and learning statistical models of others [4, 26], and extend these works to
decentralized multi-agent contexts.

Our strategy for multi-agent hierarchical planning builds on previous work linking high-level coordi-
nation (sub-tasks) to low-level navigation (actions) [1]. In contrast to models which have explicit
communication mechanism or centralized controllers [24, 7], our approach is fully decentralized and
our agents are never trained together. Prior work has also investigated ways in which multi-agent
teams can mesh inconsistent plans (e.g. two agents doing the same sub-task by themselves) into con-
sistent plans (e.g. the agents perform different sub-tasks in parallel) [13, 14], but these methods have
also been centralized. We draw more closely from decentralized multi-agent planning approaches in
which agents aggregate the effects of others and best respond [11, 10]. These prior works focus on
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tasks with spatial sub-tasks called Spatial Task Allocation Problems (SPATAPs). However, there are
no mechanisms for agents to cooperate on the same sub-task as each sub-task is spatially distinct.

Contributions We develop Bayesian Delegation, a new algorithm for decentralized multi-agent
coordination that rises to the challenges described above. Bayesian Delegation leverages Bayesian
inference with inverse planning to rapidly infer the sub-tasks others are working on. Our probabilistic
approach allows agents to predict the intentions of other agents under uncertainty and ambiguity.
These inferences allow agents to efficiently delegate their own efforts to the most high-value col-
laborative tasks for collective success. We quantitatively measure the performance of Bayesian
Delegation in a suite of novel multi-agent environments. First, Bayesian Delegation outperforms
existing approaches, completing all environments in less time than alternative approaches and main-
taining performance even when scaled up to larger teams. Second, we show Bayesian Delegation is
an ad-hoc collaborator. It performs better than baselines when paired with alternative agents. Finally,
in a behavioral experiment, human participants observed others interact and made inferences about
the sub-tasks they were working on. Bayesian Delegation aligned with many of the fine-grained
variations in human judgments. Although the model was never trained on human data or other agents’
behavior, it was the best ad-hoc collaborator and predictor of human inferences.

2 Multi-Agent MDPs with Sub-Tasks

A multi-agent Markov decision process (MMDP) with sub-tasks is described as a tuple
〈n,S,A1...n, T,R, γ, T 〉 where n is the number of agents, s ∈ S are object-oriented states specified
by the locations, status and type of each object and agent in the environment [6, 15]. A1...n is the joint
action space with ai ∈ Ai being the set of actions available to agent i; each agent chooses its own
actions independently. T (s, a1...n, s

′) is the transition function which describes the probability of
transitioning from state s to s′ after all agents act a1...n. R(s, a1...n) is the reward function shared by
all agents and γ is the discount factor. Each agent aims to find a policy πi(s) that maximizes expected
discounted reward. The environment state is fully observable to all agents, but agents do not observe
the policies π−i(s) (−i refers to all other agents except i) or any other internal representations of
others agents.

Unlike traditional MMDPs, the environments we study have a partially ordered set of sub-tasks
T = {T0 . . . T|T |}. Each sub-task Ti has preconditions that specify when a sub-task can be started,
and postconditions that specify when it is completed. They provide structure when R is very sparse.
These sub-tasks are also the target of high-level coordination between agents. In this work, all
sub-tasks can be expressed as Merge(X,Y), that is, to bring X and Y into the same location. Critically,
unlike in SPATAPs, this location is not fixed or predetermined if both X and Y are movable. In the
cooking environments we study here, the partial order of sub-tasks refers to a “recipe”. Figure 1
shows an example of sub-task partial orders for a recipe.

The partial order of sub-tasks (T ) introduces two coordination challenges. First, Merge does not
specify how to implement that sub-task in terms of efficient actions nor which agent(s) should work
on it. Second, because the ordering of sub-tasks is partial, the sub-tasks can be accomplished in
many different orders. For instance, in the Salad recipe (Figure 1b), once the tomato and lettuce are
chopped, they can: (a) first combine the lettuce and tomato and then plate, (b) the lettuce can be
plated first and then add the tomato, or (c) the tomato can be plated first and then add the lettuce.
These distinct orderings make coordination more challenging since to successfully coordinate, agents
must align their ordering of sub-tasks.

2.1 Coordination Test Suite

We now describe the Overcooked inspired environments we use as a test suite for evaluating multi-
agent collaboration. Each environment is a 2D grid-world kitchen. Figure 1a shows an example
layout. The kitchens are built from counters that contain both movable food and plates and immovable
stations (e.g. knife stations). The state is represented as a list of entities and their type, location, and
status [15]. See Table 2 for a description of the different entities, the dynamics of object interactions,
and the statuses that are possible. Agents (the chef characters) can move north, south, east, west
or stay still. All agents move simultaneously. They cannot move through each other, into the same
space, or through counters. If they try to do so, they remain in place instead. Agents pick up objects
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by moving into them and put down objects by moving into a counter while holding them. Agents
chop foods by carrying the food to a knife station. Food can be merged with plates. Agents can only
carry one object at a time and cannot directly pass to each other.

The goal in each environment is to cook a recipe in as few time steps as possible. The environment
terminates after either the agents bring the finished dish specified by the recipe to the star square or
100 time steps elapse. Figure 10 and Figure 11 describe the full set of kitchen and recipes used in our
evaluations.

3 Bayesian Delegation

We now introduce Bayesian Delegation, a novel algorithm for multi-agent coordination that uses
inverse planning to make probabilistic inferences about the sub-tasks other agents are performing.
Bayesian Delegation models the latent intentions of others in order to dynamically decide whether
to divide-and-conquer sub-tasks or to cooperate on the same sub-task. An action planner finds
approximately optimal policies for each sub-task. Note that planning is decentralized at both levels,
i.e., agents plan and learn for themselves without access to each other’s internal representations.

Inferring the sub-tasks others are working on enables each agent to select the right sub-task when
multiple are possible. Agents maintain and update a belief state over the possible sub-tasks that all
agents (including itself) are likely working on based on a history of observations that is commonly
observed by all. Formally, Bayesian Delegation maintains a probability distribution over task
allocations. Let ta be the set of all possible allocations of agents to sub-tasks where all agents are
assigned to a sub-task. For example, if there are two sub-tasks ([T1, T2]) and two agents ([i, j]), then
ta = [(i : T1, j : T2), (i : T2, j : T1), (i : T1, j : T1), (i : T2, j : T2)] where i : T1 means that agent
i is “delegated” to sub-task T1. Thus, ta includes both the possibility that agents will divide and
conquer (work on separate sub-tasks) and cooperate (work on shared sub-tasks). If all agents pick
the same ta ∈ ta, then they will easily coordinate. However, in our environments, agents cannot
communicate before or during execution. Instead Bayesian Delegation maintains uncertainty about
which ta the group is coordinating on, P (ta).

At every time step, each agent selects the most likely allocation ta∗ = arg maxta P (ta|H0:T ),
where P (ta|H0:T ) is the posterior over ta after having observed a history of actions H0:T =
[(s0,a0), . . . (sT ,aT )] of T time steps and at are all agents’ actions at time step t. The agent then
plans the next best action according to ta∗ using a model-based reinforcement learning algorithm
described below. This posterior is computed according by Bayes rule:

P (ta|H0:T ) ∝ P (ta)P (H0:T |ta) = P (ta)

T∏
t=0

P (at|st, ta) (1)

where P (ta) is the prior over ta and P (at|st, ta) is the likelihood of actions at time step t for all
agents. Note that these belief updates do not explicitly consider the private knowledge that each agent
has about their own intention at time T − 1. Instead each agent performs inference based only on the
history observed by all, i.e., the information a third-party observer would have access to [29]. The
likelihood of a given ta is the likelihood that each agent i is following their assigned task (Ti) in that
ta.

P (at|st, ta) ∝
∏

i:T ∈ta
exp(β ∗Q∗Ti(s, ai)) (2)

where Q∗Ti(s, ai), is the expected future reward of a towards the completion of sub-task Ti for agent i.
The soft-max accounts for non-optimal and variable behavior as is typical in Bayesian theory-of-mind
[21, 2, 33]. β controls the degree to which an agent believes others are perfectly optimal. When
β −→ 0, the agent believes others are acting randomly. When β −→ ∞, the agent believes others
are perfectly maximizing. Since the likelihood is computed by planning, this approach to posterior
inference is called inverse planning. Note that even though agents see the same history of states and
actions, their belief updates will not necessarily be the same because updates come from QTi , which
is computed independently for each agent and is affected by stochasticity in exploration.

The prior over P (ta) is computed from the environment state. First, P (ta) = 0 for all ta that have
sub-tasks without satisfied preconditions. We set the remaining priors to P (ta) ∝

∑
T ∈ta

1
VT (s)

,
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Time Steps Completion Shuffles
(↓ better) (↑ better) (↓ better)

Two agents

BD (ours) 35.29 ± 1.40 0.98 ± 0.06 1.01 ± 0.05
UP 50.42 ± 2.04 0.94 ± 0.05 5.32 ± 0.03
FB 37.58 ± 1.60 0.95 ± 0.04 2.64 ± 0.03
D&C 71.57 ± 2.40 0.61 ± 0.07 13.08 ± 0.05
Greedy 71.11 ± 2.41 0.57 ± 0.08 17.17 ± 0.06

Three agents

BD (ours) 34.52 ± 1.66 0.96 ± 0.08 1.64 ± 0.05
UP 56.84 ± 2.12 0.91 ± 0.22 5.02 ± 0.12
FB 41.34 ± 2.27 0.92 ± 0.08 1.55 ± 0.05
D&C 67.21 ± 2.31 0.67 ± 0.15 4.94 ± 0.09
Greedy 75.87 ± 2.32 0.62 ± 0.22 12.04 ± 0.13

Table 1: Self-play performance of our model and alternative models with two versus three agents. All metrics
are described in the text. See Figure 2 for more detailed results on Time Steps and Completion for two agents in
self-play, and see Figure 6 for more detailed results on shuffles. Averages ± standard error of the mean.

where VT (s) is the estimated value of the current state under sub-task T . This gives ta that can be
accomplished in less time a higher prior weight. Priors are reinitialized when new sub-tasks have their
preconditions satisfied and when others are completed. Figure 5 shows an example of the dynamics
of P (ta) during agent interaction. The figure illustrates how Bayesian delegation enables agents to
dynamically align their beliefs about who is doing what (i.e., assign high probability to a single ta).

Action planning transforms sub-task allocations into efficient actions and provides the critical likeli-
hood for Bayesian Delegation (see Equation 1). Action planning takes the ta selected by Bayesian
Delegation and outputs the next best action while modeling the movements of other agents. In this
work, we use bounded real-time dynamic programming (BRTDP) extended to a multi-agent setting to
find approximately optimal Q-values and policies [25]. See Appendix D for implementation details.

Agents use ta∗ from Bayesian Delegation to address two types of low-level coordination problems:
(1) avoiding getting in each others way while working on distinct sub-tasks, and (2) cooperating
efficiently when working on a shared sub-task. ta∗ contains agent i’s best guess about the sub-tasks
carried out by others, T−i. In the first case, Ti 6= T−i. Agent i first creates models of the others
performing T−i assuming others agents are stationary (π0

T−i(s), level-0 models). These level-0
models are used to reduce the multi-agent transition function to a single agent transition function T ′
where the transitions of the other agents are assumed to follow the level-0 policies, T ′(s′|s, a−i) =∑

ai
T (s′|s, a−i, ai)

∏
A∈−i π

0
TA(s). Running BRTDP on this transformed environment finds an

approximately optimal level-1 policy π1
Ti(s) for agent i that “best responds” to the level-0 models of

the other agents. This approach is similar to level-K or cognitive hierarchy [40, 21, 33].

When Ti = T−i, agent i attempts to work together on the same sub-task with the other agent(s).
The agent simulates a fictitious centralized planner that controls the actions of all agents working
together on the same sub-task [21]. This transforms the action space: if both i and j are working on
Ti, then A′ = ai × aj . Joint policies πJ

Ti(s) can similarly be found by single-agent planners such as
BRTDP. Agent i then takes the actions assigned to it under πJ

Ti(s). Joint policies enable emergent
decentralized cooperative behavior—agents can discover efficient and novel ways of solving sub-tasks
as a team such as passing objects across counters. Since each agent is solving for their own πJ

Ti(s),
these joint policies are not guaranteed to be perfectly coordinated due to stochasticity in the planning
process. Note that although we use BRTDP, any other model-based reinforcement learner or planner
could also be used.

4 Results

We evaluate the performance of Bayesian Delegation across three different experimental paradigms.
First, we test the performance of each agent type when all agents are the same type with both two and
three agents (self-play). Second, we test the performance of each agent type when paired with an
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Tomato Tomato-Lettuce Salad
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Figure 2: Performance results for each kitchen-recipe composition (lower is better) for two agents in self-play.
The row shows the kitchen and the column shows the recipe. Within each composition, the left graph shows
the number of time steps needed to complete all sub-tasks. The dashed lines on the left graph represent the
optimal performance of a centralized team. The right graph shows the fraction of sub-tasks completed over time.
Bayesian Delegation completes more sub-tasks and does so more quickly compared to baselines.

agent of a different type (ad-hoc). Finally, we test each model’s ability to predict human inferences of
sub-task allocation after observing the behavior of other agents (human inferences).

We compare the performance of Bayesian Delegation (BD) to four alternative baseline agents:
Uniform Priors (UP), which starts with uniform probability mass over all valid ta and updates
through inverse planning; Fixed Beliefs (FB), which does not update P (ta) in response to the
behavior of others; Divide and Conquer (D&C) [16], which sets P (ta) = 0 if that ta assigns two
agents to the same sub-task (this is conceptually similar to Empathy by Fixed Weight Discounting
[11] because agents cannot share sub-tasks and D&C discounts sub-tasks most likely to be attended to
by other agents based on P (ta|H)); Greedy, which selects the sub-task it can complete most quickly
without considering the sub-tasks other agents are working on. See Appendix D for more details. All
agents take advantage of the sub-task structure because end-to-end optimization of the full recipe
using techniques such as DQN [28] and Q-learning [39] never succeeded under our computational
budget.

To highlight the differences between our model and the alternatives, let us consider an example with
two possible sub-tasks ([T1, T2]) and two agents ([i, j]). The prior for Bayesian Delegation puts
positive probability mass on ta = [(i : T1, j : T2), (i : T2, j : T1), (i : T1, j : T1), (i : T2, j : T2)]
where i : T1 means that agent i is assigned to sub-task T1. The UP agent proposes the same ta, but
places uniform probability across all elements, i.e., P (ta) = 1

4 for all ta ∈ ta. FB would propose the
same ta with the same priors as Bayesian Delegation, but would never update its beliefs. The D&C
agent does not allow for joint sub-tasks, so it would reduce to ta = [(i : T1, j : T2), (i : T2, j : T1)].
Lastly, Greedy makes no inferences so each agent i would propose ta = [(i : T1), (i : T2)]. Note that
j does not appear.

In the first two computational experiments, we analyze the results in terms of three key metrics. The
two pivotal metrics are the number of time steps to complete the full recipe and the total fraction
of sub-tasks completed. We also analyze average number of shuffles, a measure of uncoordinated
behavior. A shuffle is any action that negates the previous action, such as moving left and then right,
or picking an object up and then putting it back down (see Figure 6a for an example). All experiments
show the average performance over 20 random seeds. Agents are evaluated in 9 task-environment
combinations (3 recipes × 3 kitchens). See Appendix D for videos of agent behavior.
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Self-play Table 1 quantifies the performance of all agents aggregated across the 9 environments.
Bayesian Delegation outperforms all baselines and completes recipes with less time step and fewer
shuffles. The performance gap was even larger with three agents. Most other agents performed
worse with three agents than they did with two, while the performance of Bayesian Delegation did
not suffer. Figure 2 breaks down performance by kitchen and recipe. All five types of agents are
comparable when given the recipe Tomato in Open-Divider, but when faced with more complex
situations, Bayesian Delegation outperform the others. For example, without the ability to represent
shared sub-tasks, D&C and Greedy fail in Full-Divider because they cannot explicitly coordinate
on the same sub-task to pass objects across the counters. Baseline agents were also less capable of
low-level coordination resulting in more inefficient shuffles (Figure 6). A breakdown of three agent
performance is shown in Figure 8.

Learning about other agents is especially important for more complicated recipes that can be com-
pleted in different orders. In particular, FB and Greedy, which do not learn, have trouble with the
Salad recipe on Full Divider. There are two challenges in this composition. One is that the Salad
recipe can be completed in three different orders: once the tomato and lettuce are chopped, they can
be (a) first combined together and then plated, (b) the lettuce can be plated first and then the tomato
added or (c) the tomato can be plated first and then the lettuce added. The second challenge is that
neither agent can perform all the sub-tasks by themselves, thus they must converge to the same order.
Unless the agents that do not learn coordinate by luck, they have no way of recovering. Figure 7
shows the diversity of orderings used across different runs of Bayesian Delegation. Another failure
mode for agents lacking learning is that FB and Greedy frequently get stuck in cycles in which both
agents are holding objects that must be merged (e.g., a plate and lettuce). They fail to coordinate
their actions such that one puts their object down in order for the other to pick it up and merge.
Bayesian Delegation can break these symmetries by yielding to others so long as they make net
progress towards the completion of one of the sub-tasks. For these reasons, only Bayesian Delegation
performs on par (if not more efficiently) with three agents than with two agents. As additional agents
join the team, aligning plans becomes even more important in order for agents to avoid performing
conflicting or redundant sub-tasks.

Ad-hoc Next, we evaluated the ad-hoc performance of the agents. We show that Bayesian Delega-
tion is a successful ad-hoc collaborator. Each agent was paired with the other agent types. None of the
agents had any prior experience with the other agents. Figure 3 shows the performance of each agent
when matched with each other and in aggregate across all recipe-kitchen combinations. Bayesian
Delegation performed well even when matched with baselines. When paired with UP, D&C, and
Greedy, the dyad performed better than when UP, D&C, and Greedy were each paired with their own
type. Because Bayesian Delegation can learn in-the-moment, it can overcome some of the ways that
these agents get stuck. UP performs better when paired with Bayesian Delegation or FB compared to
self-play, suggesting that as long as one of the agents is initialized with smart priors, it may be enough
to compensate for the other’s uninformed priors. D&C and Greedy perform better when paired with
Bayesian Delegation, FB, or UP. Crucially, these three agents all represent cooperative plans where
both agents cooperate on the same sub-task. Figure 9 breaks down the ad-hoc performance of each
agent pairing by recipe and kitchen.

Human inferences Finally, we evaluated the performance of Bayesian Delegation in predicting
human inferences in these same settings. We designed a novel behavioral experiment where human
participants first observed a few time steps of two agents behaving, and then made inferences about
the sub-tasks each agent was carrying out. We measured the correlation between their judgements
and the model predictions.

Participants (N = 45) were recruited on Amazon Mechanical Turk and shown six scenes of two
agents working together in the same scenarios as in the previous experiment (see for the Figure 12
for the six scenarios) and asked to make inferences about the agent’s intentions as the interaction
unfolded. Participants made judgments on a continuous slider [0, 1] with endpoints labeled “not
likely at all” to “certainly” (Figure 13). Beliefs were normalized into a probability distribution for
each subject and then averaged across all subjects. These scenes include a variety of coordinated
plans such as instances of clear task allocation (e.g., Figure 12a) and of ambiguous plans where the
agent intentions become more clear over time as the interaction continues (e.g., Figure 12d). These
averages were compared to the beliefs formed by our model (P (ta|H)) after observing the same
trajectory H . Each participant made 51 distinct judgments.
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Figure 3: Ad-hoc performance of different agent pairs in time steps (the lower and lighter, the better). (Left)
Rows and columns correspond to different agents. Each cell is the average performance of one the row agent
playing with the column agent. (Right) Mean performance (± SE) of agents when paired with the others.
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Figure 4: Correlation between model and human inferences. Our model (BD, far left) is the most aligned with
human judgements compared to the baselines.

Figure 12 shows the inferences made by humans and our model for each scenario at each time step.
Figure 4 quantifies the overall correspondence of each model with human judgements, and shows
that all four baseline models are less aligned with human judgements than Bayesian Delegation.

In particular, priors may help capture people’s initial beliefs about high-level plans among agents
in a scene, and belief updates may be important for tracking how people’s predictions evolve over
the course of an interaction. For instance, updates are especially important in Figure 12(d) where
the observed actions are initially ambiguous. When the left agent moves to put the tomato on
the counter; this may be interpreted as performing either Merge(Tomato.chopped, Plate[]) or
Merge(Lettuce.unchopped, Knife), but after only a few time steps, the former emerges as more
probable. Without any training on human Bayesian Delegation captures some of the fine-grained
structure of human sub-task inferences. These results suggest that Bayesian Delegation may help us
build better models of human theory-of-mind towards the ultimate goal of building machines that can
cooperate with people.

5 Discussion

We developed Bayesian Delegation, a new algorithm inspired by and consistent with human theory-
of-mind. Bayesian Delegation enables efficient ad-hoc coordination by rapidly inferring the sub-tasks
of others. Agents dynamically align their beliefs about who is doing what and determine when they
should help another agent on the same sub-task and when they should work divide and conquer for
increased efficiency. It also enables them to complete sub-tasks that neither agent could achieve on its
own. Our agents reflect many natural aspects of human theory-of-mind and cooperation [37]. Indeed,
like people, Bayesian Delegation makes predictions about sub-task allocations from only sparse data,
and does so in ways consistent with human judgments.

While Bayesian Delegation reflects progress towards human-like coordination, there are still limita-
tions which we hope to address in future work. One challenge is that when agents jointly plan for a
single sub-task, they currently have no way of knowing when they have completed their individual
“part” of the joint effort. Consider a case where one agent needs to pass both lettuce and tomato
across the divider for the other to chop it. After dropping off the lettuce, the first agent should reason
that it has fulfilled its role in that joint plan and can move on to next task, i.e., that the rest of the
sub-task depends only on the actions of the other agent. If agents were able to recognize when
their own specific roles in sub-tasks are finished they could look ahead to future sub-tasks that will
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need to be done even before their preconditions are satisfied. At some point, as one scales up the
number of agents, there can be “too many cooks” in the kitchen! Other, less flexible mechanism
and representations will likely play a crucial role in coordinating the behavior of larger groups of
agents such as hierarchies, norms, and conventions [41, 5, 23, 22]. These representations are essential
for building agents that can form longer term collaborations which persist beyond a single short
interaction and are capable of partnering with human teams and with each other.
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Broader Impact

We foresee several benefits of our work. Mechanisms that can align an AI agent’s beliefs with those
of other agents without communication could be valuable for producing assistive technologies that
help people in their daily lives. These future technologies could range from virtual assistants on a
computer to household robots for the elderly. In many cases, a common communication channel may
not be feasible. It is possible that Bayesian Delegation could help align the goals and intentions of
agents to those of people and prevent AI systems from acting in ways inimical to humans. Finally,
our model makes agent’s decision-making process interpretable: to understand why agents take
certain actions, we can simply review the beliefs of those agents leading up to that action. This
interpretability is not present in many end-to-end trained deep reinforcement learning policies.

At the highest level, we also think it is worth considering what general sub-tasks agents should infer,
who gets to decide those sub-tasks, and how to represent sub-tasks that are aligned with human values
i.e., VT where T is a specific “human value” [32]. Finally, another risk in our work that is left for
future efforts is not having communication to resolve conflicts. The ability to communicate meaning
and intention could be helpful in resolving such uncertainties, if agents had a common communication
channel. The ability to make intentions clear is extremely important if systems like are deployed in
sensitive applications like such as surveillance, law enforcement or military applications.
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A Analysis of Agent Behavior

Videos of the agents can be viewed at https://manycooks.github.io/. This page summarizes
the levels (see Figure 10) and recipes (see Figure 11) and includes videos of two and three agents in a
variety of environments. It also includes a link to a closed version of the behavioral experiment.

Agent 1 Agent 2
Merge(Lettuce.unchopped, Knife)

Merge(Tomato.unchopped, Knife)

Merge(Tomato.chopped, Plate[])

Merge(Lettuce.chopped, Plate[Tomato])

Merge(Lettuce.chopped, Plate[])

Merge(Plate[Tomato.chopped, Lettuce.chopped], Delivery[])

Figure 5: Dynamics of the belief state, P(ta) for each agent during Bayesian delegation with the Salad recipe on
Partial-Divider (Figure 1). During the first 7 time steps, only the Merge(Lettuce.unchopped, Knife) and
Merge(Tomato.unchopped, Knife) sub-tasks are nonzero because their preconditions are met. These beliefs
show alignment across the ordering of sub-tasks as well as within each sub-task. Salad can be completed in three
different ways (see Figure 7), yet both agents eventually drop Merge(Lettuce.unchopped, Plate[]) in fa-
vor of Merge(Tomato.unchopped, Plate[]) followed by Merge(Lettuce.chopped, Plate[Tomato]).
Agents’ beliefs also converge over the course of each specific sub-task. For instance, while both agents are at
first uncertain about who should be delegated to Merge(Lettuce.unchopped, Knife), they eventually align
to the same relative ordering. This alignment continues, even though there is never any communication or prior
agreement on what sub-task each agent should be doing or when.
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(a) Example “shuffle.” (b) Open-Divider. (c) Partial-Divider.

Figure 6: Shuffles observed for recipe Tomato+Lettuce. (a) Example of a shuffle, where both agents simulta-
neously move back and forth from left to right, over and over again. This coordination failure prevents them
from passing each other. Note that they are not colliding. Average number of shuffles by each agent in the (b)
Open-Divider and (c) Partial-Divider environments. Error bars show the standard error of the mean. Bayesian
Delegation and Joint Planning help prevent shuffles, leading to better coordinated behavior.

(a) Open-Divider. (b) Partial-Divider.

Figure 7: Frequency
that three orderings of
Salad are completed by
our model agents, in (a)
Open-Divider and (b)
Partial-Divider.

B Environment Details

The full set of environments and tasks used in the experiments is shown in Figure 10 and Figure 11.
The state of the environment is described by the objects and dynamics in Table 2. The partially
ordered set of sub-tasks T is given in the environment and generated by representing each recipe as an
instance of STRIPS, an action language [17]. Each instance consists of an initial state, a specification
of the goal state, and a set of actions with preconditions that dictate what must be true/false for the
action to be executable, and postconditions that dictate what is made true/false when the action is
executed. For instance, for the STRIPS instance of the recipe Tomato, the initial state is the initial
configuration of the environment (i.e. all objects and their states), the specification of the goal state is
Delivery[Plate[Tomato.chopped]], and the actions are the Merge sub-tasks e.g. the ones show
in Figure 11a. A plan for a STRIPS instance is a sequence of actions that can be executed from the
initial state and results in a goal state. Examples of such plans are shown in Figure 11. To generate
these partial orderings, we construct a graph for each recipe in which the nodes are the states of the
environment objects and the edges are valid actions. We then run breadth-first-search starting from
the initial state to determine the nearest goal state, and explore all shortest “recipe paths" between the
two states. We then return T , the set of actions collectively taken on those recipe paths terminating at
a completed recipe.
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Figure 8: Performance results for each kitchen-recipe composition (lower is better) for three agents. The
row shows the kitchen and the column shows the recipe. Within each composition, the left graph shows the
number of time steps needed to complete all sub-tasks. The dashed lines on the left graph represent the optimal
performance of a centralized team. The right graph shows the fraction of sub-tasks completed over time. The
full agent completes more sub-tasks and does so more quickly compared to the alternatives.

Object state representation:
Type Location Status
Agent {x, y} []
Plate {x, y} []
Counter {x, y} []
Delivery {x, y} []
Knife {x, y} N/A
Tomato {x, y} {chopped, unchopped}
Lettuce {x, y} {chopped, unchopped}

Interaction dynamics:
Food.unchopped + Knife −→ Food.chopped + Knife
Food1 + Food2 −→ [Food1, Food2]
X + Y[] −→ Y[X]

Table 2: State representation and transitions for the objects and interactions in the Overcooked environments.
The two food items (tomato and lettuce) can be in either chopped or unchopped states. Objects with status []
are able to “hold” other objects. For example, an Agent holding a Plate holding an unchopped tomato would
be denoted Agent[Plate[Tomato.unchopped]]. Once combined, these nested objects share the same {x, y}
coordinates and movement. Interaction dynamics occur when the two objects are in the same {x, y} coordinates.

C Behavioral Experiment

Our experiment can be viewed at: https://manycooks.github.io/website/experiment.html.
60 participants were recruited from Amazon Mechanical Turk and were paid $0.80 for the experiment,
which took 10-15 minutes to complete. Participants first answered two practice questions designed to
test their understanding of the instructions, which were to observe each scene and make judgements
about what tasks the two agents shown are doing and whether they are working together or not. After
the practice questions, each participant was presented with the set of trajectories shown in Figure 12
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Figure 9: Heat map performance for each kitchen-recipe composition (lower is better) for two agents using
different models. The figure breaks down the aggregate performance from Figure 3 by kitchen (row) and
recipe(column). In most compositions, as models perform as better adhoc coordinators as they become more
“Bayesian Delegation”-like (going bottom to top by row, right to left by column).

(a) (b) (c)

Figure 10: The Overcooked kitchens only
differ in counter placements. In (a) Open-
Divider, agents can move between both
sides of the kitchen. In (b) Partial-Divider,
agents must pass through a narrow bot-
tleneck. In (c) Full-Divider, agents are
confined to one half of the space.

spread out over 15 questions. Each question was modelled like Figure 13: the page displayed the
recipe information followed by a past trajectory of the agents and a series of judgement queries. After
filtering for correct understanding based on the responses to the practice questions, we used N = 45
participants in our final analysis.

D Computational Experiments

We used a computing cluster to run all computational experiments and model predictions for the
behavioral experiment trajectories shown in Figure 12. Each simulation with two agents was run in
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(a)

Goal
Delivery[Plate[Tomato.chopped]]

Example Plan

Merge(Tomato.unchopped, Knife)
Merge(Tomato.chopped, Plate[])
Merge(Plate[Tomato.chopped],
Delivery)

(b)

Goal
Delivery[Plate[Tomato.chopped],

Plate[Lettuce.chopped]]

Example Plan

Merge(Tomato.unchopped, Knife)
Merge(Tomato.chopped, Plate[])
Merge(Plate[Tomato.chopped],
Delivery)
Merge(Lettuce.unchopped, Knife)
Merge(Lettuce.chopped, Plate[])
Merge(Plate[Lettuce.chopped],
Delivery)

(c)

Goal
Delivery[Plate[Tomato.chopped,

Lettuce.chopped]]

Example Plan

Merge(Tomato.unchopped, Knife)
Merge(Lettuce.unchopped, Knife)
Merge(Tomato.chopped,
Lettuce.chopped)
Merge([Tomato.chopped
Lettuce.chopped], Plate[])
Merge(Plate[Tomato.chopped,
Lettuce.chopped], Delivery)

Figure 11: Recipes and example partial orderings. All sub-tasks are expressed in the Merge operator. In (a)
Tomato, the task is to take an unchopped tomato and then chop, plate, and deliver it. In (b) Tomato+Lettuce,
the task builds on Tomato and adds chopping, plating, and delivering a piece of lettuce. In (c) Salad, the two
chopped foods are combined on a single plate and delivered. The example plans show one of many possible
orderings for completing the recipe.
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(f) Recipe: Salad
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Figure 12: Scenarios and results for the human behavioral experiment. Each agent’s past trajectory is illustrated
by a dotted path, with sharp curves into counters representing picking up or putting down an object. To the right
of each trajectory are the inferences made by the model and the average participant inference. The legend notes
the possible task allocations of agents (1 or 2) working individually or together (Joint): C = chop, P = plate, D =
deliver, T = tomato, L = lettuce, and S = salad. E.g., 1:C(T) refers to Agent 1 chopping the tomato. Error bars
are the standard error of the mean.

parallel (3 recipes, 3 environments, 5 models, 20 seeds) each on 1 CPU core, which took up to 15 GB
of memory and roughly 3 hours to complete.

We next describe the details of our BRTDP implementation: [25].

V b
Ti(s) = min

a∈Ai
Qb
Ti(s, a), V b

Ti(g) = 0

Qb
Ti(s, a) = CTi(s, a) +

∑
s′∈S

T (s′|s, a)V b
Ti(s

′)

where C is cost and b = [l, u] is the lower and upper bound respectively. Each time step is penalized
by 1 and movement (as opposed to staying still) by an additional 0.1. This cost structure incentivizes
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Figure 13: Example question for the behavioral experiment. Each question contains a description of the recipe at
hand and all of the tasks needed to complete that recipe. The question also shows all the feasible tasks (see Next
tasks to do) in the current environment state shown on the left gridworld. Below are the likelihood judgements
for the task allocations of the feasible tasks.

efficiency. The lower-bound was initialized to the Manhattan distance between objects (which ignores
barriers). The upper-bound was the sum of the shortest-paths between objects which ignores the
possibility of more efficiently passing objects. While BRTDP and these heuristics are useful for the
specific spatial environments and subtask structures we develop here, it could be replaced with any
other algorithm for finding an approximately optimal single-agent policy for a given sub-task. For
details on how BRTDP updates on V and Q, see [25]. BRTDP was run until the bounds converged
(α = 0.01, τ = 2) or for a maximum of 100 trajectories each with up to 75 roll-outs for all models.
The softmax during inference used β = 1.3, which was optimized to data from the behavioral
experiment. At each time step, agents select the action with the highest value for their sub-task.

When agents do not have any valid sub-tasks, i.e. sub-task is None, they take a random action
(uniform across the movement and stay-in-place actions). This greatly improves the performance of
the alternative models from Section 4: Without this noise, they often get stuck and block each other
from completing the recipe. It has no effect on Bayesian Delegation.

Code for reproducibility Our code for the environment and models is in-
cluded in a zip file under supplemental materials. It can also be found at
https://github.com/manycooks/manycooks.github.io.
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E Pseudocode

Algorithm 1 Bayesian Delegation from agent i’s perspective
1: Input: BRTDP # BRTDP plans in <s, T , T , A> and outputs VT , QT , and πT .
2: Input: env # The environment.
3: Input: Other terms defined in the main text.
4: s0 = env.reset()
5: t = 0
6: while not env.done() do
7: tat ← task allocation set at time t whose preconditions have been satisfied (Appendix B)
8: if t = 0 or tat−1 6= tat then
9: # Initialize beliefs on the first time step or when task allocation set is updated.

10: for ta in tat do
11: # Run BRTDP to approximate VT , QT .
12: P (tat) = ΣT ∈ta

1
VT (st)

13: end for
14: else
15: # Otherwise, update beliefs based on action likelihoods.
16: for ta in tat do
17: # Calculate likelihood (Equation 2).
18: P (at−1|st−1, ta) = ΠT ∈ta

eβ∗QT (st−1,at−1)∑
a∈A eβ∗QT (st−1,a)

19: # Update posterior (Equation 1).
20: P (ta) = P (ta) ∗ P (at−1|st−1, ta)
21: end for
22: end if
23: P (ta) = P (ta)/

∑
ta P (ta) # Normalize P (ta).

24: # Pick the maximum a posteriori task allocation (ta∗).
25: ta∗ = arg maxta P (ta)
26: Ti = ta∗.get(i) # Get own task, Ti
27: # Update transitions with models of others performing T−i ∈ ta∗
28: π0

T−i = BRTDP (st, T, T−i,A−i)
29: T ′(st+1|st, a−i) =

∑
ai
T (st+1|st, a−i, ai)ΠT−i 6=Ti π0

T−i(st)

30: if ∃ T−i ∈ ta∗s.t.T−i = Ti then
31: # Plan cooperatively using the joint policy returned by BRTDP.
32: A′ = Ai ×A−i
33: πJ

Ti = BRTDP (st, T
′, Ti,A′)

34: ai,t = arg maxaJ π
J
Ti(a

J |st, T ′)[i]
35: else
36: # Plan a best response to the level-0 models of other agents.
37: πTi = BRTDP (st, T

′, Ti,Ai)
38: ai,t = arg maxai πTi(ai|st, T

′)
39: end if
40: # Step all agents’ actions and update the environment.
41: at, st+1 ← env.step(ai,t)
42: t = t+ 1
43: end while
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