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Abstract

Learning to cooperate with friends and compete with foes is a key component
of multi-agent reinforcement learning. Typically to do so, one requires access to
either a model of or interaction with the other agent(s). Here we show how to learn
effective strategies for cooperation and competition in an asymmetric information
game with no such model or interaction. Our approach is to encourage an agent
to reveal or hide their intentions using an information-theoretic regularizer. We
consider both the mutual information between goal and action given state, as well
as the mutual information between goal and state. We show how to optimize these
regularizers in a way that is easy to integrate with policy gradient reinforcement
learning. Finally, we demonstrate that cooperative (competitive) policies learned
with our approach lead to more (less) reward for a second agent in two simple
asymmetric information games.

1 Introduction

In order to effectively interact with others, an intelligent agent must understand the intentions of
others. In order to successfully cooperate, collaborative agents that share their intentions will do
a better job of coordinating their plans together [[Tomasello et al., 2005]]. This is especially salient
when information pertinent to a goal is known asymmetrically between agents. When competing
with others, a sophisticated agent might aim to hide this information from its adversary in order to
deceive or surprise them. This type of sophisticated planning is thought to be a distinctive aspect of
human intelligence compared to other animal species [[Tomasello et al., 2005].

Furthermore, agents that share their intentions might have behavior that is more interpretable and
understandable by people. Many reinforcement learning (RL) systems often plan in ways that can
seem opaque to an observer. In particular, when an agent’s reward function is not aligned with the
designer’s goal the intended behavior often deviates from what is expected [Hadfield-Menell et al.|
2016]). If these agents are also trained to share high-level and often abstract information about its
behavior (i.e. intentions) it is more likely a human operator or collaborator can understand, predict,
and explain that agents decision. This is key requirement for building machines that people can trust.

Previous approaches have tackled aspects of this problem but all share a similar structure [Dragan
et al., 2013} [Ho et al.,[2016} Hadfield-Menell et al., 2016, |Shatto et al., 2014]. They optimize their
behavior against a known model of an observer which has a theory-of-mind [Baker et al.| 2009,
Ullman et al.||2009| [Rabinowitz et al.| |2018]] or is doing some form of inverse-RL [Ng et al., 2000,
Abbeel and Ng| [2004]. In this work we take an alternative approach based on an information theoretic
formulation of the problem of sharing and hiding intentions. This approach does not require an
explicit model of or interaction with the other agent, which could be especially useful in settings
where interactive training is expensive or dangerous. Our approach also naturally combines with
scalable policy-gradient methods commonly used in deep reinforcement learning.
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2 Hiding and revealing intentions via information-theoretic regularization

We consider multi-goal environments in the form of a discrete-time finite-horizon discounted Markov
decision process (MDP) defined by the tuple M = (S, A, G, P, pa, ps, 7,7, T), where S is a state
set, A an action set, P : § x A x § — R, a (goal-independent) probability distribution over
transitions, G a goal set, p¢ : G — R a distribution over goals, pg : S — R, a probability
distribution over initial states, » : S X G — R a (goal-dependent) reward function v € [0,1] a
discount factor, and 7" the horizon.

In each episode, a goal is sampled and determines the reward structure for that episode. One agent,
Alice, will have access to this goal and thus knowledge of the environment’s reward structure, while
a second agent, Bob, will not and instead must infer it from observing Alice. We assume that
Alice knows in advance whether Bob is a friend or foe and wants to make his task easier or harder,
respectively, but that she has no model of him and must train without any interaction with him.

Of course, Alice also wishes to maximize her own expected reward 7[r] = E, ZtT:O ~yir(se, g)|,

where 7 = (g, s0, ag, $1,01, - ..,s7) denotes the episode trajectory, g ~ pg, So ~ ps, at ~
mglas | s¢), and sg41 ~ P(s441 | 8¢, a¢), and mg(a | 5;6) : G x § x A — Ry is Alice’s goal-
dependent probability distribution over actions (policy) parameterized by 6.

It is common in RL to consider loss functions of the form J[r] = n[x| + B¢[r], where £ is a
regularizer meant to help guide the agent toward desirable solutions. For example, the policy entropy
is a common choice to encourage exploration [Mnih et al.,[2016], while pixel prediction and control
have been proposed to encourage exploration in visually rich environments with sparse rewards
[Jaderberg et al., 2017].

The setting we imagine is one in which we would like Alice to perform well in a joint environment with
rewards Tjoinc, but we are only able to train her in a solo setting with rewards 7,1, How do we make
sure that Alice’s learned behavior in the solo environment transfers well to the joint environment? We
propose the training objective Jiain = E[rso10] + 81 (Where I is some sort of task-relevant information
measure) as a useful for proxy for the test objective Jiess = E[rjoim}. The structure of 7oy determines
whether the task is cooperative or competitive, and therefore the appropriate sign of 5. For example,
in the spatial navigation game of section [4.1] a competitive 7joine might provide +1 reward only to the
first agent to reach the correct goal (and -1 for reaching the wrong one), whereas a cooperative 7joint
might provide each of Alice and Bob with the sum of their individual rewards. In figure 2] we plot
related metrics, after training Alice with Ji,;,. On the bottom row, we plot the percentage of time
Alice beats Bob to the goal (which is her expected reward for the competitive 7jin). On the top row,
we plot Bob’s expected time steps per unit reward, relative to Alice’s. Their combined steps per unit
reward would be more directly related to the cooperative 7o, described above, but we plot Bob’s
individual contribution (relative to Alice’s), since his individual contribution to the joint reward rate
varies dramatically with (3, whereas Alice’s does not. We note that one advantage of our approach is
that it unifies cooperative and competitive strategies in the same one-parameter () family.

Below, we will consider two different information regularizers meant to encourage/discourage
Alice from sharing goal information with Bob: the (conditional) mutual information between goal
and action given state, Iion[7] = I(A4;G | S), which we will call the "action information", and
the mutual information between state and goal, Iye[7] = I(S; G), which we will call the "state
information." Since the mutual information is a general measure of dependence (linear and non-linear)
between two variables, I,cion and I measure the ease in inferring the goal from the actions and
states, respectively, generated by the policy 7. Thus, if Alice wants Bob to do well, she should choose
a policy with high information, and vice versa if not.

We consider both action and state informations because they have different advantages and disad-
vantages. Using action information assumes that Bob (the observer) can see both Alice’s states and
actions, which may be unrealistic in some environments, such as one in which the actions are the
torques a robot applies to its joint angles [Eysenbach et al.l[2019]]. Using state information instead
only assumes that Bob can observe Alice’s states (and not actions), however it does so at the cost of
requiring Alice to count goal-dependent state frequencies under the current policy. Optimizing action
information, on the other hand, does not require state counting. So, in summary, action information
is simpler to optimize, but state information may be more appropriate to use in a setting where an
observer can’t observe (or infer) the observee’s actions.



The generality with which mutual information measures dependence is at once its biggest strength
and weakness. On the one hand, using information allows Alice to prepare for interaction with
Bob with neither a model of nor interaction with him. On the other hand, Bob might have limited
computational resources (for example, perhaps his policy is linear with respect to his observations of
Alice) and so he may not be able to “decode” all of the goal information that Alice makes available
to him. Nevertheless, I ¢ion and I, can at least be considered upper bounds on Bob’s inference
performance; if Ipeion = 0 Or Igae = 0, it would be impossible for Bob to guess the goal (above
chance) from Alice’s actions or states, respectively, alone.

Optimizing information can be equivalent to optimizing reward under certain conditions, such as
in the following example. Consider Bob’s subtask of identifying the correct goal in a 2-goal setup.
If his belief over the goal is represented by p(g), then he should guess g* = argmax p(g), which
results in error probability per = 1 —maxg p(g). Since the binary entropy function H(g) = H[p(g)]
increases monotonically with pe, Optimizing one is equivalent to optimizing the other. Denoting the
parts of Alice’s behavior observable by Bob as x, then H (g | x) is the post-observation entropy in
Bob’s beliefs, and optimizing it is equivalent to optimizing I(g; x) = H(g) — H(g | x), since the
pre-observation entropy H (g) is not dependent on Alice’s behavior. If Bob receives reward r when
identifying the right goal, and 0 otherwise, then his expected reward is (1 — pey) 7. Thus, in this
simplified setup, optimizing information is directly related to optimizing reward. In general, when
one considers the temporal dynamics of an episode, more than two goals, or more complicated reward
structures, the relationship becomes more complicated. However, information is useful in abstracting
away that complexity, and preparing Alice generically for a plethora of possible task setups.

2.1 Optimizing action information: Iycton = I(A; G | S)

First, we discuss regularization via optimizing the mutual information between goal and action
(conditioned on state), Lcion = [(A4; G | S), where G is the goal for the episode, A is the chosen
action, and S is the state of the agent. That is, we will train an agent to maximize the objective
Jaction[T] = E[r] + Blaction, where 3 is a tradeoff parameters whose sign determines whether we want
the agent to signal (positive) or hide (negative) their intentions, and whose magnitude determines the
relative preference for rewards and intention signaling/hiding.

Toction 18 a functional of the multi-goal policy 7y (a | s) = p(a | s, g), that is the probability distribution
over actions given the current goal and state, and is given by:

Toction =1 A G | S Zp A G | S = S) (1)

=Y rol0) Yol Yomte | los 2L

The quantity involving the sum over actions is a KL divergence between two distributions: the goal-
dependent policy 74 (a | s) and a goal-independent policy p(a | s). This goal-independent policy
comes from marginalizing out the goal, that is p(a | s) = >, pc(g) T4(a | s), and can be thought of
as a fictitious policy that represents the agent’s “habit” in the absence of knowing the goal. We will
denote my(a | s) = p(a | s) and refer to it as the “base policy,” whereas we will refer to w4 (a | s) as
simply the “policy.” Thus, we can rewrite the information above as:

Lcion = Y pc(9) Y p(s | 9)KLlmg(a | s) | mo(a | s)] = E-[KL[ry(a | s) [ mo(a|s)]]. (3)

Writing the information this way suggests a method for stochastically estimating it. First, we sample
a goal g from p(g), that is we initialize an episode of some task. Next, we sample states s from
p(s | g), that is we generate state trajectories using our policy 74 (a | s). At each step, we measure
the KL between the policy and the base policy. Averaging this quantity over episodes and steps give
us our estimate of Icon.

Optimizing I .ion With respect to the policy parameters 6 is a bit trickier, however, because the
expectation above is with respect to a distribution that depends on 6. Thus, the gradient of I, o, With



Algorithm 1 Action information regularized REINFORCE with value baseline.

Input: 3, pg, 7, and ability to sample MDP M
Initialize 7, parameterized by 6
Initialize V', parameterized by ¢
for i = 1 to Nepisodes do
Generate trajectory 7 = (g, S0, @0, $1, 1, - - -, ST)
fort =0toT —1do
Update policy in direction of Vg Jyciion(t) using equation [6]

_\2
Update value in direction of —V (Vg(st) - Rt) with 7(¢) according to equation
end for
end for

respect to 6 has two terms:

Voluion = »_ pc(9) Y (Vop(s | 9)KL[mg(a | s) | mo(a | 5)] 4)
+3 palg) D p(s | 9) VeKL[ry(a | s) | mo(a| s)]. )

The second term involves the same sum over goals and states as in equation 3] so it can be written as
an expectation over trajectories, E-[VoKL[m,(a | 5) | mo(a | 5)]], and therefore is straightforward to
estimate from samples. The first term is more cumbersome, however, since it requires us to model (the
policy dependence of) the goal-dependent state probabilities, which in principle involves knowing
the dynamics of the environment. Perhaps surprisingly, however, the gradient can still be estimated
purely from sampled trajectories, by employing the so-called “log derivative” trick to rewrite the term
as an expectation over trajectories. The calculation is identical to the proof of the policy gradient
theorem [Sutton et al., 2000], except with reward replaced by the KL divergence above.

The resulting Monte Carlo policy gradient (MCPG) update is:
v0Jaction(t) :Aaction(t) Vg log 7"-g(at ‘ st) + ﬁVOKL[ﬂ-g<a | St) | 7TO(a | St)] s 6)

where A,cion(t) = R, — V,4(s¢) is a modified advantage, V,(s;) is a goal-state value function

regressed toward Ry, R, = Zf:t vt ~'7, is a modified return, and the following is the modified
reward feeding into that return:

Fo = o+ BKLImy(a | 50) | mola ] 1) (7)

The second term in equation [6]encourages the agent to alter the policy to share or hide information in
the present state. The first term, on the other hand, encourages modifications which lead the agent to
states in the future which result in reward and the sharing or hiding of information. Together, this
optimizes Jaction- This algorithm is summarized in algorithm[2.1

2.2 Optimizing state information: I, = I(5; G)

We now consider how to regularize an agent by the information one’s states give away about the goal,
using the mutual information between state goal, I, = I(S; G). This can be written:

e = zg: pe(9) Z p(s | g)log p(;(ls )g) —E, {log P(;’(L )9)} . )

In order to estimate this quantity, we could track and plug into the above equation the empirical

state frequencies pemp(s | 9) = N]-"V—(S) and pemp(s) = N Ji,s), where N, (s) is the number of times
g

state s was visited during episodes with goal g, Ny =", Ny(s) is the total number of steps taken
under goal g, N(s) = > p Ny (s) is the number of times state s was visited across all goals, and

N =32, Nyls) =3, Ng =3, N(s)is the total number of state visits across all goals and states.

pemp(stlg)

Thus, keeping a moving average of log e (50)
emp (St

across episodes and steps yields an estimate of Ige.



Algorithm 2 State information regularized REINFORCE with value baseline.

Input: 3, pg, 7, and ability to sample MDP M
Initialize 7, parameterized by 6
Initialize V', parameterized by ¢
Initialize the state counts Ny(s)
fori=1to Nepisodes do
Generate trajectory 7 = (g, S0, @0, S1,1, - .-, ST)
Update N, (s) (and therefore pemp(s | ¢)) according to 7
fort=0to7T — 1do
Update policy in direction of Vg Jyue(t) using equatlon.

Update value in direction of —V (V (s¢) — Rt) with 7(¢) according to equation

end for
end for

However, we are of course interested in optimizing I.. and so, as in the last section, we need to
employ a slightly more sophisticated estimate procedure. Taking the gradient of Iy, with respect to
the policy parameters 6, we get:

Vo Lstate :Z,OG Z (Vop(s | 9)) log p(s|g)

p(s)
+>_raly 2}wg<v”““” V”“W. (10)

€))

(sl9) p(s)

The calculation is similar to that for evaluating Vg I 00 and details can be found in section@} The
resulting MCPG update is:

Vo Jsae(t) =Asue(t) Vo log mg ar | 1) BZW{) «(t,9.9) Vologmy(ar | s0), (1)
g’ #g

where Agpee (t) = R, -V, (st) is a modified advantage, V,(s;) is a goal-state value function regressed

toward R, R, = Zt _; 7" ~'ry is a modified return, Ry (t,g, gl> = ZZ:t L (t/,g, g/> is

a “counterfactual goal return”, and the following are a modified reward and a “counterfactual goal
reward”, respectively, which feed into the above returns:

. D s
e =1e+ 5 (1= pemp(9 | St)+IOgM (12)
Pemp(St)
t
ch(tvg,g/) _ 71'9/ (at’ | St’) pemp(st | g) (13)
=0 7T!](at' ‘ St’) pemp(st)

where penp(g | 51) = palg) Lmlerls)

uniqueness bonus” log Mz;lg)) that tries to increase the frequency of the present state under the
(St

. The modified reward can be viewed as adding a “state

present goal to the extent that the present state is more common under the present goal. If the present
state is less common than average under the present goal, then this bonus becomes a penalty. The

counterfactual goal reward, on the other hand, tries to make the present state less common under other

goals, and is again scaled by uniqueness under the present goal %
emp

Slg )1t also includes importance
sampling weights to account for the fact that the trajectory was generated under the current goal, but
the policy is being modified under other goals. This algorithm is summarized in algorithm [2.2]

3 Related work

Whye Teh et al.|[2017] recently proposed an algorithm similar to our action information regularized
approach (algorithm [2.T)), but with very different motivations. They argued that constraining goal-
specific policies to be close to a distilled base policy promotes transfer by sharing knowledge



across goals. Due to this difference in motivation, they only explored the 5 < 0 regime (i.e. our
“competitive” regime). They also did not derive their update from an information-theoretic cost
function, but instead proposed the update directly. Because of this, their approach differs in that it did
not include the SV ¢KL[r, | | term, and instead only included the modified return. Moreover, they
did not calculate the full KLs in the modified return, but instead estimated them from single samples

(e.g. KL[my(a | s¢) | mo(a|s:)] ~ log :ggzz‘lzz;) Nevertheless, the similarity in our approaches

suggest a link between transfer and competitive strategies, although we do not explore this here.

Eysenbach et al.|[2019]] also recently proposed an algorithm similar to ours, which used both I
and Iyction but with the “goal” replaced by a randomly sampled “skill” label in an unsupervised setting
(i.e. no reward). Their motivation was to learn a diversity of skills that would later would be useful
for a supervised (i.e. reward-yielding) task. Their approach to optimizing Iy, differs from ours in
that it uses a discriminator, a powerful approach but one that, in our setting, would imply a more
specific model of the observer which we wanted to avoid.

Tsitsiklis and Xu| [[2018]] derive an inverse tradeoff between an agent’s delay in reaching a goal and
the ability of an adversary to predict that goal. Their approach relies on a number of assumptions
about the environment (e.g. agent’s only source of reward is reaching the goal, opponent only
need identify the correct goal and not reach it as well, nearly uniform goal distribution), but is
suggestive of the general tradeoff. It is an interesting open question as to under what conditions our
information-regularized approach achieves the optimal tradeoff.

Dragan et al.|[2013]] considered training agents to reveal their goals (in the setting of a robot grasping
task), but did so by building an explicit model of the observer. Ho et al.,| [2016]] uses a similar
model to capture human generated actions that “show” a goal also using an explicit model of the
observer. There is also a long history of work on training RL agents to cooperate and compete
through interactive training and a joint reward (e.g. [Littman,|1994, 2001} Kleiman-Weiner et al.|
2016/ Leibo et al., [2017} |Peysakhovich and Lerer, 2018, Hughes et al.,|2018]]), or through modeling
one’s effect on another agent’s learning or behavior (e.g. [Foerster et al.l 2018, |Jaques et al., 2018]]).
Our approach differs in that it requires neither access to an opponent’s rewards, nor even interaction
with or a model of the opponent. Without this knowledge, one can still be cooperative (competitive)
with others by being as (un)clear as possible about one’s own intentions. Our work achieves this by
directly optimizing information shared.

4 Experiments

We demonstrate the effectiveness of our approach in two stages. First, we show that training Alice
(who has access to the goal of the episode) with information regularization effectively encourages
both goal signaling and hiding, depending on the sign of the coefficient 5. Second, we show
that Alice’s goal signaling and hiding translate to higher and lower rates of reward acquisition
for Bob (who does not have access to the goal and must infer it from observing Alice), respec-
tively. We demonstrate these results in two different simple settings. Our code is available at
https://github.com/djstrouse/InfoMARL.

4.1 Spatial navigation

The first setting we consider is a simple grid world spatial navigation task, where we can fully
visualize and understand Alice’s regularized policies. The 5 x 5 environment contains two possible
goals: the top left state or the top right. On any given episode, one goal is chosen randomly (so
pc is uniform) and that goal state is worth +1 reward. The other goal state is then worth —1. Both
are terminal. Each of Alice and Bob spawn in a random (non-terminal) state and take actions in
A = {left, right, up, down, stay }. A step into a wall is equivalent to the stay action but results in a
penalty of —.1 reward. We first train Alice alone, and then freeze her parameters and introduce Bob.

Alice was trained using implementations of algorithms [2.1] and [2.2] in TensorFlow [Abadi et al.
2016]. Given the small, discrete environment, we used tabular representations for both m and V. See
section [S2.T| for training parameters.

Examples of Alice’s resulting policies are shown in figure[T} The top row contains policies regularized
with Icion, the bottom with Ig,e. The left column contains “cooperative” policies encouraged to
share goal information (8 = .025), the middle “ambivalent” policies that are unregularized (8 = 0),
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Figure 1: Information-regularized policies. Top row: regularization with I cj0n. Bottom row:
regularization with Ige. Left column: § = .025. Center column: S = 0. Right column: 5 = .025.
See main text for additional details.

and the right “competitive” policies encouraged to hide goal information (5 = —.025). In each case,
two policies are shown - at left, the policy when the goal is in the top left, and at right, when it is in
the top right. The arrows are proportional to Alice’s action probabilities. The color scale indicates

pemp( |g)
mp ()

KL[mg | o] and log in bits for action and state information regularization, respectively. Thus,

bluer indicates more goal information shared in that state.

In the cooperative case with action information regularization, Alice wants to maximize KL [y | o]
and thus she wants her goal-dependent policies to differ as much as possible. This primarily results
in her going left in most states when the goal is in the top left, and right when its in the top right.
She can also choose to have some probability of going up in those states, as long as she only does
so under one goal or the other and not both. Ultimately this means that no matter what state Alice
spawns in, she immediately signals the goal with her very first action, and continues to do so with
each subsequent action.

In the competitive case with action information regularization, Alice instead wants to minimize
KL[m4 | mo] and thus she wants her goal-dependent policies to match as much as possible. In the
present case, this means that she chooses to go up as far as she can until she must pivot in order to
still reach the goal in the minimal number of steps. This leads to her hiding the goal for as long as
possible without sacrificing reward.

Without information regularization, Alice’s policy is a random mixture of the competitive and
cooperative strategies, the details of which are determined by initialization and the randomness of
training trajectories. Regularization with state information yields similar policies to those generated
with action information in all three cases, since in this deterministic setting, different action choices
are tightly coupled with different state trajectories.

To demonstrate that Alice’s goal revealing and hiding behaviors are useful for cooperation and
competition, respectively, we then trained a second agent, Bob, who does not have access to the goal
and instead must infer it from observing Alice. Thus, while Alice’s inputs at time ¢ were the present
goal g and her state 53, Bob’s are Alice’s present state and action 53¢ and a2, as well as his
own state s?*°. Details are available in section but in brief, Bob processes Alice’s state-action
trajectories with an RNN to form a belief about the goal, which then feeds into his policy, all of which
is trained end-to-end via REINFORCE.

We trained 5 of each of the 3 versions of Alice above, and 10 Bobs per Alice. We plot the results for
the best performing Bob for each Alice (so 5 x 3 = 15 curves) in figure[2] We use all 5 Alices to
estimate the variance in our approach, but the best-of-10 Bob to provide a reasonable estimate of the
best performance of a friend/foe.

We measure Bob’s performance in terms of his episode length, relative to Alice’s, as well as the
percentage of time he beats Alice to the goal. For both action and state information regularization,
encouraging Alice to hide goal information leads to Bob taking about 30% longer to reach the goal
relative to when Alice is encouraged to share goal information. Information-hiding Alice receives a
boost of similar magnitude in the frequency with which she beats Bob to the goal. Training without
information regularization leads to results in between the competitive and cooperative strategies,



action regularized state regularized

o

—— competitive
—— ambivalent ¢
—— cooperative

—— competitive
—— ambivalent
—— cooperative

©

o

=

=
Y

Bob Normalized Episode Length

L/ ‘" i)

0 R PR L)

g 10 TRy g 0‘ A

40000 60000 80000 100000 120000 140000 160000 180000 200000 40000 ~ 60000 ~ 80000 100000 120000 140000 160000 180000 200000
Time Steps Time Steps

I3
°

<
o

0.5
—— cooperative
0d — amblvalle.nt
—— competitive

—— cooperative
—— ambivalent
—— competitive

°
=

°
w

0.3

°

0.2

°

0.1

% of time Bob beats Alice to goal

00 25000 50000 75000 100000 125000 150000 175000 200000 %0 25000 50000 75000 100000 _ 125000 150000 175000 200000
Time Steps Time Steps

Figure 2: The effect of Alice hiding/sharing goal information on Bob’s performance. Left
column: regularization with [,con. Right column: regularization with Ig,.. Top row: Bob’s episode
length relative to Alice’s (moving average over 500 episodes). Bottom row: the percentage of time
Alice beats Bob to the goal (moving average over 1000 episodes).

although closer to the cooperative strategy in this case. We also note that the variance in Bob’s
performance was higher for the unregularized case, and much higher for the competitive case, with
nearly zero variance in performance for the cooperative case, indicating that information hiding and
sharing make training harder and easier, respectively.

4.2 Key-and-door game

In the above spatial navigation task, information regularization of Alice breaks symmetries between
equally-preferred (in terms of reward) navigation strategies. However, in many scenarios, it might
be worthwhile for an agent to give up some reward if it means large gains in the ability to hide or
share information. To demonstrate that our approach could also discover such “lossy” strategies, we
designed a simple key-and-door game with this feature (figure 3] left).

It is again a two-goal (door) game with the same action space and reward structure as the spatial
navigation setting. Alice again alone receives the goal, and Bob must infer it from observing her. The
difference is that, in order to enter the terminal states, Alice and Bob must first pick up an appropriate
key. Each agent has goal-specific keys that only they can pick up (top/bottom rows, color-coded to
door, labeled with A/B for Alice/Bob). Alice also has access to a master key that can open both doors
(center right). Agents can only pick up one key per episode - the first they encounter. Bob spawns in
the same location every time (the “B”), while Alice spawns in any of the 3 spaces between her two
goal-specific keys (the “A” and spaces above/below). This means that Bob has a shorter path to the
goals, and thus if Alice telegraphs the goal right away, Bob will beat her to it. While Alice’s master
key is strictly on a longer path to the goal, picking it up allows her to delay informing Bob of the goal
such that she can beat him to it.

We trained Alice with action information regularization as in the previous section (see section [S2.2]
for training parameters). When unregularized or encouraged to share goal information (5 = .25),
Alice simply took the shortest path to the goal, never picking up the master key. When Bob was
trained on these Alices, he beat/tied her to the goal on approximately 100% of episodes (figure 3
right). When encouraged to hide information (8 = —.25), however, we found that Alice learned to
take the longer path via the master key on about half of initializations (example in figure 3] center).
When Bob was trained on these Alices, he beat/tied her to the goal much less than half the time
(figure 3] right). Thus, our approach successfully encourages Alice us to forgo rewards during solo
training in order to later compete more effectively in an interactive setting.
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which Alice picks up goal-specific vs master key during training in an example run (moving average
over 100 episodes). Right: percentage episodes in which Bob beats/tie Alice to the goal (moving
average over 1000 episodes).

5 Discussion

In this work, we developed a new framework for building agents that balance reward-seeking with
information-hiding/sharing behavior. We demonstrate that our approach allows agents to learn
effective cooperative and competitive strategies in asymmetric information games without an explicit
model or interaction with the other agent(s). Such an approach could be particularly useful in settings
where interactive training with other agents could be dangerous or costly, such as the training of
expensive robots or the deployment of financial trading strategies.

We have here focused on simple environments with discrete and finite states, goals, and actions,
and so we briefly describe how to generalize our approach to more complex environments. When
optimizing I,.on With many or continuous actions, one could stochastically approximate the action
sum in KL [, | mo] and its gradient (as in [Whye Teh et al.| 2017]). Alternatively, one could choose a
form for the policy 7, and base policy 7 such that the KL is analytic. For example, it is common for
74 to be Gaussian when actions are continuous. If one also chooses to use a Gaussian approximation
for mo (forming a variational bound on Jyeion), then KL [y | 7] is closed form. For optimizing e
with continuous states, one can no longer count states exactly, so these counts could be replaced
with, for example, a pseudo-count based on an approximate density model. [Bellemare et al., 2016,
Ostrovski et al., 2017] Of course, for both types of information regularization, continuous states or
actions also necessitate using function approximation for the policy representation. Finally, although
we have assumed access to the goal distribution p¢g, one could also approximate it from experience.
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Supplemental Materials

S1 Calculating Vg /s (t)

We want to evaluate:

Volue =Y paly Z (Vop(s | 9))log (8('3)9) (SD)
g
\Y%

+2n6l9) Y opls | L"S'g) (s2)

> ZCRNY)
- raly Zp Wp ?) (83)

g

ETl + T2 — Tg, (S4)

where we denote the three terms by 75 , 75, and T5. The effect of 17 follows from the policy gradient
theorem and amounts to adding the following to the reward return:

Zl pemp St | 9) (S5)

pemp Sy )
By the same argument, 7> = > p(9) ZS Vop(s | g) simply results in the addition of 1 to the info
return at each time step.
Finally, we have the third term:
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where in the fourth line we multiply and divide by the policy under both g and g/ in order to employ
the log derivative trick and to express the equation as an expectation under the present goal. The end
result is the update in equation[TT]

S2 Experimental parameters and details

S2.1 Simple spatial navigation

In order to allow Bob to integrate information about the goal over time and remember it to guide
future actions, we endow Bob with a recurrent neural network (RNN) to process Alice’s state-action
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pairs. We used a gated recurrent unit (GRU) |Cho et al.|[2014] to which Alice’s state-action pairs
are fed as a one-hot vector. We chose to use a scalar core state for the GRU since it was simply
tasked with tracking Bob’s belief about one of two goals, and could thus assign each goal to a
sign of the GRU core state/output, which is what Bob chose to do in practice. The GRU output
2z = RNN (3¢, q2l°®) was then concatenated with a one-hot representation of Bob’s own state st°
and fed into a fully-connected, feed-forward layer of 128 units with two readout heads: a policy head

(a linear layer with |.A| units followed by a softmax, yielding ay® ~ 7° (52 2,)) and a value head

(a single linear readout node, yielding v; = V" (5, 2,)).

Alice Bob
training time, in steps 100k 200k
max episode length, in steps 100 100
entropy bonus (logarithmically annealed from/to) .5, .005 .5,.01
learning rate (Adam) 25x1072 [ 5x10~°
weight on value function regression term 5 5
discount y 8 .8

Table 1: Training parameters.

S2.2 Key game

The only difference from the previous set of training parameters is that Alice now trains longer (250k

instead of 100k steps).
Alice Bob
training time, in steps 250k 200k
max episode length, in steps 100 100
entropy bonus (logarithmically annealed from/to) .5, .005 .5,.01
learning rate (Adam) 25x 1072 | 5x107°
weight on value function regression term 5 .5
discount y .8 8

Table 2: Training parameters.
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