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Abstract

Even simple, ambiguous signals can have a rich interpretation
when viewed in the context of an interaction in a shared en-
vironment. We create a model called Paternalistic Commu-
nication by combining an existing model of overloaded lan-
guage – Rational Speech Acts (RSA) – with a full agent model
of Theory of Mind (ToM). This integration allows signals to
be processed in conjunction with common ground in a princi-
pled manner dependent on task-dependent action utilities. This
modeling perspective treats communication as a way to coor-
dinate diverging perspectives in a cooperative setting. Under
Paternalistic Communication, a speaker decides what to say
by predicting their partner’s reaction based on the informa-
tion in common ground and then evaluates those reactions us-
ing their own mind which may contain additional information.
We demonstrate the flexibility and performance of Paternalis-
tic Communication in a case study with ambiguous signaling
through a set of simulations.

Keywords: communication; common ground; Theory of
Mind; Bayesian inference; pragmatics

Introduction
You’re walking with a friend in winter when your friend yells
“careful!” You look down and observe a patch of black ice
underfoot. Without context, “careful!” can mean countless
things; however, in context, this sets off a rich inferential pro-
cess: What is your friend referring to? (the ice) How should
this knowledge change your beliefs? (the ground will be slip-
pery) How should this change your actions? (falling hurts,
so tread carefully). Traditional models of communication as-
sume that words and their meaning have a one-to-one map-
ping predefined outside of the current exchange (Shannon,
1948; Valiant, 1984) which would fail at explaining this ex-
ample. However, instead of an encoding and decoding pro-
cess, human communication is highly dependent on under-
standing what is relevant in the current context (Sperber &
Wilson, 1986) allowing us to be incredibly successful at ex-
pressing rich meaning using sparse, overloaded signals. In
this work, we propose a model of signaling that targets how
the context of the situation can help solve signal ambiguity.

The example above highlights communication as a cooper-
ative tool for helping, yet communication is a unique type of
helping for two reasons. First, it is not the same as instrumen-
tal helping because instead of taking actions that change the
world, communicators send signals to change the mind. Sec-
ond, communication requires coordination of minds. Com-
municators simultaneously track what is shared in the com-

mon ground and what is private (Heller, Parisien, & Steven-
son, 2016), which requires agents to coordinate their diver-
gent minds. To achieve this, we turn to a previously stud-
ied phenomenon: paternalistic helping (Martin, Lin, & Ol-
son, 2016). In the following sections, we introduce a set of
components that allow us to build a flexible model of com-
munication using the principle of paternalistic helping.

Overloaded communication in a visual scene has been em-
pirically studied in psychology (J. B. Misyak, Melkonyan,
Zeitoun, & Chater, 2014). We model the task in one notable
study in which cooperators use and understand overloaded
signals in the form of tokens, which can either mean “open”
or “avoid”, to collect bananas (rewards) and avoid scorpi-
ons (punishments) hidden in boxes (J. Misyak, Noguchi, &
Chater, 2016). We show that partners who have never in-
teracted with each other before can successfully use ambigu-
ous signals by forming instantaneous conventions that change
flexibly, depending on context.

Background
Common Ground
Common ground is mutually shared, public knowledge as-
sumed between communicators. While common ground is
theoretically established through infinite recursion (Lewis,
1969), in practice communicators likely assume some com-
mon knowledge (Clark & Marshall, 1981). Communication
can be viewed as a mechanism to add information to this
common ground. In turn this narrows the scope of reason-
able signal interpretations (Clark & Brennan, 1991; Clark
& Marshall, 1981) making communication more efficient:
brief, indirect, and instantaneous. Even pre-linguistic in-
fants use common ground to resolve ambiguity in commu-
nication, namely through pointing (Liebal, Behne, Carpen-
ter, & Tomasello, 2009; Liszkowski, Schäfer, Carpenter, &
Tomasello, 2009). Knowledge already in the common ground
does not need to be discussed, allowing brevity and increased
clarity. Thus, a simple “careful,” achieves the same effect as
a much longer signal. Finally, common ground allows for
instantaneous interpretation without requiring a history of in-
teraction because it can be derived from the environment it-
self (Clark, 1996; Tomasello, 2010). We focus on this type of
instantaneously formed common ground which builds on an
intuitive understanding of others’ minds (Wellman, 1992).
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Flexible Linguistic Pragmatics
Using pragmatics to consider a signal’s context is key to un-
derstanding what someone means. The Rational Speech Act
framework (RSA) models how to understand a signal in the
context of what else a speaker could have said but chose not to
(Frank & Goodman, 2012; Goodman & Frank, 2016). Here
we describe an extension of this framework that considers ad-
ditional speaker context and has been proposed in order to
capture signaler types or affects (Goodman & Frank, 2016;
Kao, Wu, Bergen, & Goodman, 2014).

First, a pragmatic speaker ps chooses a signal from a set
of possible signals and signaling type c to describe a target
referent or world state w. Signals are treated as a type of
rational action, subject to a utility soft-maximization, where
β ∈ [0,∞) represents the degree of rationality (Luce, 1959).
Here, the utility of a signal can be calculated by reasoning
how a pragmatic listener (pl) will interpret that signal:

Pps(signal,c|w) ∝ eβPpl(w,c|signal) (1)

The pragmatic listener models signal interpretation us-
ing Bayesian inference, which requires a simple generative
speaker model likelihood. A literal speaker ls provides an en-
tering point to the recursive reasoning that speakers and lis-
teners can engage in ad infinitum when communicating. The
literal speaker is defined by uniformly sending true signals
according to an indicator function of whether a signal is con-
sistent with the referent state w given the speaker type c. The
prior term is defined over both speaker type and state, which
are assumed to be independent.

Ppl(w,c|signal) ∝ Pls(signal|w,c)P(w)P(c) (2)

RSA is grounded in cooperative logic from linguistic the-
ory which proposes that communicators should choose max-
imally efficient and straightforward signals (Grice, 1975).
While some recent work has begun to develop in the direction
of adding action context (Sumers, Hawkins, Ho, & Griffiths,
2021) or grounding pragmatic signals within a utility-driven
task (McCarthy, Hawkins, Wang, Holdaway, & Fan, 2021),
RSA has primarily been used in purely linguistic settings. In
these cases, speakers have the communicative goal of describ-
ing a referent by reasoning about how different signals are ex-
pected change the listener’s beliefs, but in reality communica-
tion can be several steps more indirect than this; we commu-
nicate about not only referent states (What?) but also social
motivations (Why?) and interactions in the shared physical
environment that can achieve those motivations (How?).

Tying Signals to Actions: Bayesian Theory of Mind
Theory of Mind (ToM) posits that when deciding how to act,
one should rationally take actions that achieve desirable utili-
ties with respect to their underlying mind which contains be-
liefs, desires, and intentions:

P(action|mind) ∝ eβE[U(action,mind)] (3)

ToM has been successful in a variety of action interpreta-
tion tasks (Baker, Jara-Ettinger, Saxe, & Tenenbaum, 2017;
Kleiman-Weiner, Ho, Austerweil, Littman, & Tenenbaum,
2016) where an observer uses Bayesian inverse planning to
infer the likely mental states that generate observed actions:

P(mind|action) ∝ P(action|mind)P(mind) (4)

ToM and RSA are both models of rational decisions with
respect to a utility maximization, but where do these utili-
ties come from and why do they matter? We use ToM’s
formulation of agency to connect a signal back to its action
utility under the task since, unlike instrumental actions, sig-
nals do not directly change the world. We follow the tradi-
tion of casting communication as a planing problem driven
by a task-based utility maximization, often seen in artifi-
cial intelligence (AI) works (Russell, 2019). AI modeling
work has shown that grounding communicative interactions
in action consequences can tie the value of a signal to the
value of expected outcome actions (Gmytrasiewicz & Dur-
fee, 2001; Gmytrasiewicz & Doshi, 2005). These approaches
are promising in formalizing signal utility but assume a fixed
one-to-one mapping between the signal and meaning. To
move beyond codebook mode of communication, we inte-
grate the RSA linguistic pragmatics with a task-oriented def-
inition of signal utility.

A Paternalistic Perspective on Communication
To understand how communication serves to coordinate
minds, it is useful to view cooperative communication as a
type of paternalistic helping. Here a speaker understands and
predicts a listener’s actions according to shared knowledge
but evaluates them according to private knowledge. For ex-
ample, parents often make decisions for their children “for
their own good,” regardless of the child’s preferences. A pa-
ternalistic perspective has been successful in modeling how to
interpret helpful pointing under ambiguity (Jiang et al., 2021).

Paternalistic helping acts as a binding agent between com-
mon ground, RSA, ToM, and signal utilities derived from
actions. A pragmatic paternalistic signaler chooses what to
say by evaluating the utility of different signals, equivalent
to the pragmatic RSA speaker (Equation 1). However, in-
stead of deriving utility directly from the listener’s beliefs
Ppl(w,c|signal), we replace this with a more general util-
ity function grounded in task-specified actions stated below.
The speaker creates an expectation of how good a signal is
by predicting how a receiver will act upon hearing the sig-
nal P(a|signal) using public, common ground information
mindcg and evaluates how good that action is U(a,mind) us-
ing private knowledge within their own mind:

E[U(signal,mind)] = EP(a|signal,c)[U(a,mind)] (5)

There are two terms connecting signals to actions. First,
P(mindcg|signal,c) can be derived from inverse planning in
ToM where signals are treated as a type of rational action
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(Equation 4) and is similar to modeling a RSA listener (Equa-
tion 2), but is capable of reasoning more generically over
other components of the mind. Second, P(a|mindcg), which
can be derived from ToM rational action planning (Equation
3).

P(a|signal,c) = ∑
mindcg

P(mindcg|signal,c)P(a|mindcg) (6)

Here, the signal and speaker type are assumed to be inde-
pendent from other components of the mind. The integration
of common ground, ToM and RSA under the paradigm of pa-
ternalistic helping gives a flexible, context driven approach to
overloaded communication.

Case Study Modeling
We demonstrate the power of Paternalistic Communication
(PaCo) by modeling a case study with impromptu, overloaded
signaling: Misyak, Noguchi, Chater (2016). Through a non-
linguistic cooperative communication task, the authors em-
pirically demonstrate that humans coordinate to form instan-
taneous conventions using contextual cues from the common
ground, even when a signal can mean opposite things (“go
to” or “avoid” a location). We provide a computational ac-
count of these behaviors as a special case of ambiguous com-
munication captured by PaCo and compare it to a baseline
model: the version of RSA pragmatics adapted for speaker
type. Context in PaCo includes both the world features and
how an agent can act based on the knowledge of those fea-
tures; whereas, RSA is only able to consider world features.

Task
During each trial, participants saw three boxes, each contain-
ing either a banana (a reward) or a scorpion (punishment).
The goal of this task was to open as many boxes with ba-
nanas as possible while avoiding boxes with scorpions. The
signaler had full information about the contents in the boxes
but could not open them. The receiver has no information
about the contents in the box but could use axes to open the
boxes. At each trial, the signaler had some number of tokens
to mark boxes with to provide information to the receiver, and
the receiver had some number of axes to open boxes. Both in-
dividuals knew how many tokens and axes were available (see
Figure 1). Extra information about the total number of ba-
nanas and scorpions was either shown in the common ground
or occluded by a wall to hide that information (not shown in
figure). Four key conditions highlighted how humans flexi-
bly convey meaning across context: Two Token, Inversion,
One Ax, and Wall, summarized in table 1. Our analysis fo-
cuses on a version of this game with one-shot interactions be-
tween partners that represent instantaneously formed conven-
tions without learning and rapport building over a sequence of
plays (see Experiment 2 (J. Misyak et al., 2016) for details).

This experiment emphasizes the importance of common
ground as context to solve ambiguous communication. It

Figure 1: Schematic of Inversion condition setup for experi-
ment. Information is split into agent specific knowledge and
shared common ground.

Condition Tokens Axes Wall Present
Two Token 2 2 False
Inversion 1 2 False
One Ax 1 1 False

Wall 1 2 True

Table 1: Experimental conditions in (J. Misyak et al., 2016)

fully supports a ToM model with beliefs about the possible
contents of boxes and desires to collect reward and avoid
punishments for utility maximization which compose mindcg,
and axes that can be used to open boxes which define possible
actions a ∈ A. In this context, mindcg is effectively equivalent
to w in Equation 1, but can naturally generalize to include un-
certainty in joint desires. The number of tokens defines the
space of all possible signals, while the number of axes, re-
wards, and signals define a prior over the shared content of
the common ground. Communication in the task is always
fully overloaded because placing a token on a box can have
two opposite interpretations: “go there” or “avoid that,” de-
pending on the speaker type c. Thus, disambiguation occurs
on a trial-by-trial basis as receivers flexibly and jointly infer
the tokens’ meaning and, as a direct consequence, the boxes’
contents.

Simulation 1: Capturing Human-like Use of the
Same Signal for Opposite Meanings

While RSA can use signals flexibly to maximally resolve be-
liefs about the world state this may not always be the optimal
communication strategy: a fact which humans are sensitive
to. For example, in the Inverse and One Ax conditions the
world state and available signals remain the same. However,
in the One Ax condition, because participants can get at most
one reward, extra information about the second reward is ex-
traneous. Humans use tokens to denote punishments in the
Inverse condition (providing maximal information about the
world) but in the One Ax condition where they could provide
maximal information by marking punishments, they tend to
use their token to mark a reward (providing an action direc-
tive). Signaling in opposite ways in these two conditions re-
lies on the signaler’s expectation formed through ToM action
prediction that the receiver will act differently based on the
rational integration of beliefs and the available actions. We
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predict that PaCo will robustly capture human-like flexible
use of tokens in these conditions as well as the other key con-
ditions tested in the original study.

Methods
Task Specification To translate the task’s goal into an ex-
plicit utility calculation, we assign a positive value (+1) for
each banana and a negative cost (-1) for a scorpion. Unlike
traditional RSA, this cost ratio could natural vary using PaCo;
however, this is not a factor considered in the original be-
havioral experiment, thus we choose a fixed constant where
the benefit of choosing a banana is equivalent to the cost of
choosing the scorpion. There is no explicit cost of using more
tokens, if available, following the original study. PaCo and
RSA can both be characterized by two free parameters: β and
P(open). β offers an estimation of how rational an agent is;
we assume partners are equally rational. P(open) represents
the prior distribution over signaler type. We focus on the two
types primarily employed by humans: c ∈ {avoid,open}. An
open-type signaler may only place tokens on bananas while
an avoid-type signaler may only place tokens on scorpions.
The prior over beliefs p(mindcg) is uniformly split across all
possible assignments of bananas and scorpions; when there
is no wall, all assignments inconsistent with the common
ground beliefs are given 0 probability. To test the robustness
of the models, we compare model predictions of how the sig-
naler will act under a wide range of parameter combinations
(β = [1, 2, . . . , 17], P(open) = [.4, .425, . . . , .675, .7]). For
each combination, we let the two models play the same task
as seen by humans in the original experiment.

Descriptive Statistics An averaged root-mean-squared-
error (RMSE) quantifies how closely the model approximates
human signal generation, where a smaller RMSE indicates
better agreement between human and model. For a particular
condition, we first categorize behavior into the two strategies
a signaler could employ and take the RMSE between model x
and human x∗ distribution. Then, across the four conditions,
these RMSEs are averaged to get obtain RMSE:

RMSE =
1
4 ∑

m∈Condition

(√
1
2 ∑

x∈open,avoid
(xm− x∗m)2

)
(7)

Results
To understand how robust each model is to changes in hyper-
parameters, we calculate the RMSE across the grid of β and
meaning priors for each model, summarized in Figure 2.To
compare overall tolerance to parameter changes between the
two models, we conducted a one-sided Wilcoxon signed-rank
test for matched-pairs. Under equivalent conditions, the me-
dian error under PaCo is significantly smaller than RSA (W
= 630, p = 1.1×10−34). This supports PaCo’s robustness
across a wide range of parameters, and suggests that these
properties are not the product of over-fitting human data, but
rather, a specific example of a general class of phenomena a
paternalistic perspective is capable of handling.

Figure 2: PaCo and RSA heatmaps of RMSE for key trials:
The RMSE for each model and parameter combination is rep-
resented as a color intensity in the heatmap. Lighter colors
represent better agreement between human and model.

Beyond the overall fit, we look at specific strategies em-
ployed in the four key conditions, paying specific attention
to difference between Inversion and One Ax, where humans
tend to change their strategy between conditions. To do
this, we select the parameter set that best approximates hu-
man strategies in terms of error minimization for each model
(PaCo: β = 3, P(open) = .575 results in RMSE = 2.94×10−2

, RSA: β = 5, P(open) = .65 results in RMSE = 7.05×10−2).
Like humans, PaCo is sensitive to the common ground:

how many signals and axes were available and the pres-
ence/absence of the wall, and instantaneously changes which
strategy is dominant between the Inversion and One Ax con-
ditions (Human P(open): Inv =.42, One Ax = .63; PaCo: Inv
= .47, One Ax =.57). In contrast, RSA fails to make this strat-
egy switch or even distinguish between these conditions (In-
version = One Ax = .58). Next, we explore these phenomena
through simulation results beyond the original study.

Simulation 2: Understanding the Effects of
Action Driven Utility

PaCo and RSA behave differently at capturing human signal-
ing flexibility: PaCo derives its utility from how desirable ac-
tion outcomes under the task are expected to be whereas RSA
focuses on minimizing the uncertainty in a listener’s beliefs.
We explain these differences by dividing the context into two
separate sources of uncertainty within the common ground:
world space and action space. We expect RSA to be sensitive
only to the world space knowledge, whereas PaCo’s perfor-
mance should depend on whether considering the receiver’s
action space can act as a constraint on signaling. Specifically,
we expect PaCo’s action-based reasoning to become more im-
portant in cases where the world state is highly uncertain.

Methods
Task Specification We use the same task utility structure
as before, adding a small cost (-.1) per token used to encour-
age shorter signals. In addition, to look at how performance
varies across scaled-up environments, we expand the world to
have five boxes. Token meaning priors are set at the optimal
ones that match human performance in Simulation 1, and the
models are set to high rationality (β = 20) to emphasize theo-
retical performance. The number of axes are manipulated (1,
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2, 3, 4), with and without a wall. The number of tokens are set
to be high (3, 4) which ensures that a signaler has the means
to send a longer signal if desired. Similarly, the number of
rewards are set to be high (3, 4) which ensures the possibility
of achieving a high utility. We sample N=250 environments
for each combination of wall and number of axes.

Descriptive Statistics To test how PaCo and RSA com-
municated using different strategies, we used the Kullback-
Leibler (KL) divergence between P, the true belief that the
signaler privately knows and Q, the receiver’s belief posterior
about the box contents mindcg to describe the uncertainty over
the set of possible beliefs M. Because the receiver’s posterior
is highly dependent on which signal they observe, the expec-
tation accounts for the signaler’s probability of sending each
signal given the true world:

E[KL(P||Q)] = E[ ∑
mindcg∈M

P(mindcg) log
P(mindcg)

Q(mindcg)
] (8)

A larger KL divergence occurs when the receiver is uncertain
about the true state of the world, here, contents of boxes.

Results
When there is no wall, both models achieve the upper bound
of possible performance. Consistent with our hypothesis,
these models make different predictions when there is higher
uncertainty in the world from adding a wall. When the wall
is added, performance drops for both models; however, mul-
tiple comparison tests show that PaCo outperforms RSA at
each level of ax (all pad j < .05 under Tukey’s HSD) except
when there are four axes (pad j = .074) (see Fig. 3). When
the receiver has four axes, there are no constraints on the ac-
tion space and thus, considering actions is not able to restrict
signaling behavior. Because PaCo cooperators take into ac-
count the receiver’s action space, a less capable agent requires
less information to do its best making PaCo predict that it is
sometimes better to tell their partner exactly how to act.

Figure 3: Utility achieved as a function of axes for RSA and
PaCo with 95% CI. Dashed lines represent when there is no
wall and solid lines represent cases when there is a wall.

Even more striking, PaCo uses fewer tokens than RSA to
achieve a higher task utility under high uncertainty (Fig. 4).

Constraints of the action space help reduce the space of rea-
sonable signals; however, when the wall is absent, PaCo uses
more tokens than RSA, seemingly over-informing. When
PaCo judges their partner as capable, it prefers a longer, more
cautious signal to ensure clarity even when a shorter signal
can be understood with high probability.

Figure 4: Proportion of tokens used by PaCo and RSA given
the available receiver actions for cases with a wall (left) and
when the shadow is present (right).

By definition, RSA always aims to provide the most infor-
mative message, whereas PaCo’s action driven utility sends a
task outcome oriented one. From Fig. 5, we see this clearly in
the breakdown of model KL divergences. When the shadow
is shown, both models always have virtually 0 divergence, in-
dicating that the signal can fully resolve the state of the world.
However, in the wall condition, higher uncertainty leads to a
different pattern of results. RSA achieves a much smaller KL
divergence than PaCo, indicating that RSA agents are likely
to have a better understanding of the true world state, but that
this alone is not enough to succeed at the task.

Figure 5: Distribution of KL divergence between receiver be-
lief posterior and true world state for each sampled environ-
ment. True world belief distribution is adjusted to give incor-
rect world states a negligible, non-zero (10−6) weight.

Simulation 3: Generalized Performance
Coordinating minds and maximizing a utility calculus are two
modeling pillars in PaCo. Given this, we investigate to what
extent adding recursion improves performance for PaCo and
RSA. We also use this task to examine whether PaCo’s ad-
vantage generalizes beyond the specific conditions from the
previous simulations to cases on a larger scale and with few
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constraints in the environment. We expect PaCo’s coordina-
tion of minds will reduce the need for deep recursion and al-
low generalization across a larger variety of settings.

Methods
Task Specification For both PaCo and RSA, we include a
simple partner where the signaler simulates a receiver, but
the receiver does not model the signaler (naive). We com-
pare this to models with an added level of recursion to the
receiver to see how having a partner model can change per-
formance (pragmatic). To scale up reasoning in the environ-
ment, we look at environments with three to six boxes and
remove all free parameters from the models, focusing on how
well the models can perform in general settings without any
prior biases. To measure the best possible performance under
uncertainty, partners greedily select the action or signal with
the maximum expected utility. We put a uniform prior over
a token’s meaning and remove all signaling costs. We then
uniformly sample from the space of possible worlds all pos-
sible worlds with three to six boxes which have at least one
scorpion and one banana. The number of axes and tokens are
sampled independently such that there is at least one and at
most n−1 for each, given a world with n boxes. The presence
of a wall is also sampled as a binary variable. Each model at
each reasoning level has a total of 3000 simulated trials.

Figure 6: Average achieved utility by model (PaCo/RSA) and
pragmatics (yes/no). Labels denote means.

Results
A factorial ANOVA (2 x 2) indicates a significant interaction
between receiver pragmatics (Yes/No) and model: that is, the
contribution of pragmatics on utility is different depending on
whether you’re using PaCo or RSA (p < .05). Moreover, we
see that even the version of PaCo without pragmatics is con-
sistently outperforming RSA with pragmatics. Post Hoc anal-
ysis using Tukey’s HSD Test for multiple comparisons finds
this difference in performance to be significant (p = 0.001,
95% C.I. = [-0.4295, -0.2165]). That is, the simple version of
PaCo is still able to outperform RSA.

When comparing PaCo and RSA with and without recur-
sion, we see that even the version of PaCo without recur-
sion consistently outperforms RSA with pragmatics (Fig. 6).
These results indicate that PaCo’s success does not neces-
sarily rely heavily on deep recursion. Instead sensitivity to
other task-related information may shift some of the burden

off complex reasoning. Here, PaCo’s flexibility in convey-
ing information about actions and not just beliefs about the
environment allow it to outperform RSA, especially in the
absence of common ground information.

Both RSA and PaCo receiver models benefit from adding
pragmatics; however, this benefit seems especially large for
RSA. Even without receiver pragmatics, PaCo is able to out-
perform the equivalent RSA model and the more complex
RSA model. This suggests that in place of complex prag-
matics, more flexible processing of the mind and actions seen
in PaCo can stand in without a cost to performance.

Discussion

PaCo builds upon RSA’s pragmatic reasoning framework by
integrating infrastructure from cognitive science to take task-
driven action context into account. This provides a holistic
view of the interplay between common ground, the mind, and
the shared environment which allows communicators to rea-
son beyond beliefs. PaCo also uses predicted actions to deter-
mine the value of a signal, allowing us to argue for commu-
nication as a way to align cooperators’ minds. Through mod-
eling a case study, we highlighted (1) the importance of treat-
ing common ground as a multi-faceted constraint to signal-
ing, which requires treating partners as rational and capable
of achieving things in the world and (2) the benefit of framing
communication as a means to coordinate perspectives, which
highlights how different components of cooperators’ minds
interact to reduce reliance on deep social recursion.

In this task, restrictions on world beliefs and available ac-
tions led to different human behaviors contributing uncer-
tainty to the common ground. While both models switch be-
tween signaling strategies, RSA selects a signal based on in-
formativeness whereas PaCo considers action consequences
and underlying beliefs in conjunction. Using only expected
outcome utility, PaCo naturally switched between sending
signals that were maximally informative and signals that were
imperative. This behavior was supported in Simulation 2
through token usage and KL divergence in the wall condition.
These results can motivate future behavioral study exploring
this phenomenon in humans.

Moreover, achieved task utility in Simulation 2 established
the theoretical improvement of PaCo’s action-driven model
which generalized in this task, as demonstrated by Simula-
tion 3. PaCo reached a higher asymptotic performance un-
der maximal rationality across different sized environments
without relying on informative signal meaning priors or costs.
In addition, while increased recursion could improve perfor-
mance within a model, even a shallow PaCo model outper-
formed a recursive RSA one as seen in Simulation 3. Princi-
pled use of common ground information ultimately allowed
PaCo signalers to use the same signal in opposite ways in
Simulation 1 to flexibly and robustly capture human behav-
ioral data and additionally shifts some of the inferential bur-
den of deep recursion to other heuristics such as utility.
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