Downloading Culture.zip: Social learning by program induction

Max Kleiman-Weiner*', Felix Sosa*!, Bill Thompson?, Bas van Opheusden?,
Thomas L. Griffiths?, Samuel Gershman', Fiery Cushman'
! Department of Psychology, Harvard University
2 Department of Psychology, Princeton University
* equal contribution

Abstract

Cumulative culture depends on the fidelity of learning be-
tween successive generations, and the robustness with which
the lessons of one generation apply to the problems of the next.
How do humans accomplish these twin goals? We formalize
social learning as a kind of program induction, and provide an
experimental test of a key prediction. To do this, we exploit a
key fact: When humans learn from others, in addition to ob-
serving inputs and outputs we often observe the process that
led to that output. For instance, when preparing a meal, we
don’t just observe a pile of vegetables and then a ratatouille.
Instead, we observe a causal process that transforms those in-
gredients into a finished food. Here, we use probabilistic pro-
grams to represent causal processes and show that the observa-
tion of an execution trace speeds up program induction, even
when learning from only a single example. This model pre-
dicts that the inferences and behavior of people will be struc-
tured by these execution traces. In two behavioral experiments,
we show that human judgments and behavior are affected by
the execution trace in the systematic ways predicted by our for-
mal model. These findings shed light on the mechanisms that
underlie high fidelity social learning in humans, and unify the
role of emulation and imitation in social learning.

Keywords: social learning; program induction; Bayesian
modeling; imitation learning; theory of mind

Introduction

Humans are the most sophisticated social learners in the nat-
ural world (Herrmann, Call, Herndndez-Lloreda, Hare, &
Tomasello, 2007). Learning from others has been called “the
secret of our success” (Henrich, 2015), and is what makes
humans a “a different kind of animal” (Boyd, 2017) because
it enables cumulative culture. That is, we can inherit culture
from previous generations, improve it, and pass on the im-
provements to the next generation. This is how we have grad-
ually developed the sophisticated tools, languages, sciences,
and moralities of today. But cumulative culture is only possi-
ble when social learning is highly reliable—i.e., the transmis-
sion of knowledge between individuals is both high fidelity
and robust (Boyd & Richerson, 1996; Lewis & Laland, 2012).
Otherwise, the knowledge is lost to errors and noise.

Two forms of social learning have been widely explored
(Tomasello, 1999; Tennie, Call, & Tomasello, 2006). “Imita-
tion” involves directly copying another person’s actions—for
instance, learning to make a canoe by chopping a mature oak
with a handsaw, burning out its interior with coals, etc. Im-
itation can be high fidelity, but it not very robust. After all,
the optimal sequence of actions to build a good canoe in one
case may not be optimal in another (e.g., if you have an ax

rather than a saw; a maple rather than an oak; an adze rather
than coals). In contrast, “Emulation” involves observing fin-
ished cultural products (e.g., a canoe) and then deriving an ad
hoc method of reproducing it. Emulation can be very robust
because ad hoc planning can accommodate variable circum-
stances. But this comes at the cost of fidelity: If a person
happens to develop a better method for producing a canoe,
mere emulation does nothing to preserve it.

We propose that human social learning naturally occupies
an intermediate point that is both high fidelity and robust.
Specifically, we hypothesize that human cultural knowledge
can take the form of probabilistic programs. These are akin
to recipes, generative grammars, or synthetic computer pro-
grams. For instance, building a canoe might be encoded as
a program like “(1) Cut a tree down; (2) Hollow the inside;
...etc. ” (Byrne & Russon, 1998). When we watch a person
build a canoe we cannot directly observe the program in their
head, but we can infer it. What we learn is thus more pre-
cise than emulation, but more abstract and robust than mere
imitation.

Our goal is to model this form of social learning in com-
putational terms. By casting social learning as program in-
duction, we can formally state how observing both process
and product allow us to learn a program. Our work is deeply
influenced by prior work on using programs to represent and
learn sophisticated structured concepts such as handwritten
characters (Lake, Salakhutdinov, & Tenenbaum, 2015), com-
posable functions (Schulz, Tenenbaum, Duvenaud, Speeken-
brink, & Gershman, 2017), geometric sequences (Amalric et
al., 2017), and list operations (Rule, Schulz, Piantadosi, &
Tenenbaum, 2018), but to our knowledge the application of
these techniques to social learning is unique.

Specifically, we show that when people observe the se-
quence of actions that an expert uses to construct a cultural
artifact, their inferences and generalizations are consistent
with the possibility that they infer key aspects of the program
that generated the artifact. In our experiments, this cannot re-
duce to mere imitation, because participants are readily able
to generalize the program to generate novel sequences of ac-
tions. We also show that it cannot reduce to mere emulation,
because observing the same end products generated by two
different processes leads people to infer very different pro-
grams, and thus to generalize very differently to novel arti-
facts.

1667
©2020 The Author(s). This work is licensed under a Creative
Commons Attribution 4.0 International License (CC BY).

The remainder of the paper is structured as follows. We
first motivate the importance and power of observing pro-
cess, rather than mere products, when learning from others
(Caldwell & Millen, 2009; Derex, Godelle, & Raymond,
2013). We then introduce a social learning task that is
amenable to both formal computational modeling and human
behavioral experiments. Next, we introduce a computational
model based on probabilistic program induction for this task
and conduct a study of its dynamics in simulation. Finally,
we compare our model to human behavioral data.

Example: Learning to sort a list of numbers

We begin with a simple case study of probabilistic program
induction involving transforming a string of numbers. Sup-
pose, that an observer watches an expert input the list of num-
bers [5,3,4,1] and then output the list [1,3,4,5]. What pro-
gram will she learn? She might infer that the program sorts
numbers, but there is significant ambiguity. A valid program
to describe this transformation would be to just swap the first
and last elements of the input. And, even among sorting al-
gorithms, there are many different kinds.

The learner would be able to draw much stronger infer-
ences if she could observe not just the inputs and the outputs,
but the precise sequence of intermediate operations. (This is
analogous to observing not just that a person turned a log into
a canoe, but the sequence of actions they used to do so). This
sequence of state transformations is called the program’s ex-
ecution trace, or just trace. For instance, if the trace for our
example is observed, one might see [5,3,4,1] — [3,5,4,1] —
[3,4,5,1] — [3,4,1,5] — [3,1,4,5] — [1,3,4,5]. Here the en-
tire trace of the “bubble sort” algorithm is observable, where
elements are swapped if the left is greater than the right until
no element on the left is greater than an element on the right.
Observing this execution trace not only makes it clear that the
underlying program is a sorter but also gives clues as to how
to write a sorting algorithm.

As this example illustrates, observing a program’s trace
allows efficient and high-fidelity inference of the program’s
structure. Meanwhile, the program is more robust than the
specific sequence of actions encoded in the trace: The trace
tells you how to sort one list, whereas the program allows you
to sort any list. In this way, probabilistic program induction
over execution traces enables a form of efficient, high-fidelity
and robust social learning.

Task: Learning from traces

In this section, we describe a novel task meant to imitate
some basic aspects of social learning where rich trace infor-
mation is available to the learner. Our task is designed to be
both intuitive for behavioral experiments and also tractable
for formal modeling. In this task, a participant is asked to
watch another agent create a necklace made of beads. The
beads come in red and blue circles (although this can easily
be extended to include arbitrary colors and shapes) and can
be placed on the necklace in any order, one at a time. Par-
ticipants are told that these necklaces are culturally important

1668

EDDDDDDDDD (]]

R}
21 O O O
oeee |][I el I ee
ooeeee® [I][] oee | I oee
oce0eeee® | o000 | e0ee

R ¥

o000 000ee

Figure 1: Two different procedures can generate the same
necklace. Observing different execution traces of the same
necklace leads to different inferences about the program
which generated the necklace. Note: beads are placed one
at a time but added in doubles to save space. (left) The seq
method highlights a sequence of alternating beads. (right)
The outin method highlights mirror symmetry.

to the agents who make them and only certain types of neck-
laces are acceptable. A participant either watches an agent
create an acceptable necklace one bead at a time (“process”),
or instead observes only the resulting necklace (“product”).
The task of the participant is to infer the underlying program
that generated this necklace.

To demonstrate how observing process versus product can
lead to significantly different inferences about the underlying
program consider the examples in Figure 1. On the left, the
observer first sees two red beads placed left-to-right, then two
blue beads after that, and so on in sequential order. From this
example, an observer might infer that the rule that makes a
necklace acceptable is one where the bead colors alternate
every two beads. Now consider the same necklace but built
a different way: on the right of Figure 1, the two red beads
are placed on the outer ends of the necklace, and then the rest
of the beads are placed by alternating between the sides in an
“out-in” fashion. From this example, even though the product
is the same as on the left, an observer might be more likely to
infer that the rule is that the necklaces must have some level of
symmetric structure. These are two different rules that define
two completely different spaces of acceptable necklaces and
they’re readily differentiated with trace information. Without
trace information, they are completely identical.

Computational Model

To test the hypothesis that traces enable rapid and more accu-
rate program learning we present a program induction system
for the necklace learning task described above. There are 2V
possible necklaces of length N, so our goal is to describe the
necklaces and the different ways of making them using sim-
ple compositional primitives. We first formalize the space of
necklaces and their traces with a domain-specific language
(DSL) that concisely expresses two major concepts in our
task definition: repeated and symmetric structure. We then
describe how latent programs can be inferred from necklaces
using Bayesian inference.

Programs in a domain-specific language

0: start -> program

1: program -> placer INT picker

placer primitives

2: placer -> NONPARAM | PARAM

3: NONPARAM -> “seq” | “outin”

4: PARAM -> “skip” INT

picker primitives

5: picker -> grow | random | repeat
6: grow -> “grow” INT picker

7: repeat -> “repeat” INT picker

8: random -> “random” INT INT |”random” LETTER INT

Figure 2: The syntax of the domain-specific language (DSL)
for the necklace programs. Terms explained in The Model
section of the main text.

The DSL defines the space of syntactically valid programs,
which we denote as the set pp. The DSL in this model is
shown in Figure 2. Programs were represented in Extended
Backus-Naur Form and read using an Earley parser. A syntac-
tically valid program consists of a sequence of expressions,
where each expression is one of six primitives in the DSL.
These six primitives belong to two major types: “placers”
and “pickers”. Placers define the different ways that individ-
ual beads within a bead set can be placed on a necklace:

seq(L, B): place the beads B from left to right on a neck-
lace of size L,

outin (L, B): place the beads B in an “out-in” pattern (al-
ternate between placing beads on the far left and far right)
on a necklace of size L,

skip (L, S, B): place the beads B every S spaces on a
necklace of size L.

Pickers are composed to generate different sequences of
beads (B). These sequences are then passed as arguments to
pickers:

random(Z,C): randomly sample, w/o replacement, C
beads and duplicate them in place Z times,

repeat (Z, A): memoize the resulting bead set from the
program A and repeat it Z times,

grow(Z,\): execute the program A Z times and return
those outputs as a contiguous bead set.

Figure 3 shows two example programs (and a sample neck-
lace for each one) that are expressible in this DSL.

A guiding principle in the design of this DSL is that the
primitives should be based on general building blocks such
as repetition, memoization, and random sampling. This gives
the generated program commonsense interpretations which
can be translated into natural language. For example, seq
10 repeat 5 random 1 2 translates to “pick two beads of
different colors and repeat them for the length of the neck-
lace and place them left-to-right” and outin 10 repeat 2

1669

a)

0: seq 8 repeat 2 grow

rand 1 2> @@
rand 1 2> 0 00O
1
1

-

: seq 8 repeat 2 grow
2> 00000000
2> 00000000

N

seq 8 repeat 2 grow rand

N N NN

rand

w

seq 8 repeat 2 grow

b)
0: outin 8 repeat 2 rand 2 2> @O0 O

1: outin 8 repeat 2 rand 2 2> 00000000
2: outin 8 repeat 2 rand 2 2> 00000000

Figure 3: Example of how different programs are executed
into necklaces. Each line shows how the sequence of beads
is incrementally expanded by each term of the program and
then eventually placed on the necklace by the placer. (a) A
symmetric sequence that composes repeat and grow. (b) A
repeating sequence.

grow 5 random 1 1 translates to “pick a random sequence
of 5 beads, repeat that sequence and place the beads alternat-
ing between the left and right ends of the necklace”.

Inference

Given a sample necklace, we formalize program induction as
Bayesian inference over the possible programs defined by the
DSL. We denote individual programs in this space as T € pp
(see Figure 3 for examples of ®). Each w defines a space of
possible necklaces N and steps for making those necklaces
(traces) T. Using Bayes’ rule, the posterior probability of a
program T given an observed necklace N is:

P(n|N) e P(N|m)P(m) (1

where P(N|r) is the likelihood that Tt generates N and P(T)
is the prior probability for generating . This probabilistic
formulation amplifies the weight on programs that produce N
and few other necklaces over those that produce N and a large
number of necklaces. This feature of probabilistic inference
is sometimes called the “size principle” (Tenenbaum & Grif-
fiths, 2001). As a result, the model predicts that people should
prefer programs that can generate the observed necklace in-
versely proportional to how many other necklaces that pro-
gram can also generate. A preference for specificity emerges
out of the probabilistic approach to inference.

We also use a prior over the space of programs that weights
shorter programs over longer and more complex ones (Ho,
Sanborn, Callaway, Bourgin, & Griffiths, 2018):

P(m) o — @)

where |rt| is the length of the program (i.e., the number of
primitives and parameters that make up ®). While the DSL
can produce an infinite number of possible programs, for
computational tractability, we only consider programs up to
length 11.

We have now introduced sufficient notation to formally
state our key claim: social learning from execution traces en-
hances the efficiency and accuracy of learning compared to

Random Repeating Symmetric
0000000000 0000000000 0000000000
outin outin outin outin outin
gro 10 ran 1 1 rep 5 ran 1 2 rep 3 gro 2 ran 1 2 gro 3 ran 2 2 gro 2 ran 4 2
0.5 1.0
0.07 0.08 03
*l:' 0.0 0.0 0.0 0.0 0.01
o 1121 31 41 50 1121 31 41 50 1121 31 41 50 11 21 31 41 50 1121 31 41 50
— seq seq seq seq seq
g gro 10 ran 1 1 random 5 2 rep 4 gro 3 ran 1 1 rep 2 gro 5 ran 1 1 rep 3 ran 2 2
g 03 05 0.08 0.12 03
0.0 0.0 0.0 0.0 0.0
0 11 21 31 41 50 0 11 21 31 41 50 11 21 31 41 50 11 21 31 41 50 11 21 31 41 50
B Trace W No Trace Number of beads

Figure 4: Results of computational experiments comparing accuracy and efficiency of inference with trace information (P(x|T),
blue) vs without (P(r|N), orange). Experiment averaged over 50 trials. Error bands are the standard error of the mean. In each
trial, the model observed samples from the program listed above each plot, either bead-by-bead (trace) or all at once (no trace).

learning from only a final product. Stated formally:

P(n*|T) > P(m*|N) 3)
where P(1*|T) is the posterior belief in a ground-truth pro-
gram T having observed the trace of steps taken to generate
its output necklace 7. Stated plainly: you will always be
more accurate inferring the underlying program if you take
into account trace information than if you just saw the output.
Formally, the difference is in the likelihood, one only con-
siders the complete necklace N, P(N|r) and the other also
considers the steps taken to complete the necklace T, P(T|m).
These likelihoods are computed analytically for each program
by enumerating all necklaces and their corresponding traces
that a given program could produce.

Computational Results

We simulated learning to empirically investigate the predic-
tions made in Eq (3) and compared the dynamics of learn-
ing with and without trace information. We tested learning
on three different types of programs (random, repeating, and
symmetric) and both of the DSL’s placer primitives (seq and
outin). Performance was measured by learning efficiency
(how many data points were needed in either condition to
make reasonable inferences) and asymptotic accuracy (how
well it inferred the ground-truth program in either condition).

The three separate types of programs we chose have
salient, differing structure (see Figure 4): random programs
that generate arbitrary necklaces of a given length, repeat-
ing programs that generate necklaces with simple, repeating
motifs, and symmetric programs that generate necklaces with
symmetry across the middle of a necklace. For each of these
types, we used both seq and out in and used necklace lengths
of ten. In the trace condition, the model performed inference
about the underlying program bead by bead. In the no trace

condition, the model saw the complete necklace of ten beads
all at once without access to the trace.

As shown in Figure 4, observing and being able to integrate
trace information enabled better accuracy with less data in
each of the ten cases. In two cases, the model in the trace con-
dition placed the highest probability it could on the ground-
truth program after observing only a single necklace. In some
cases, this evidence was integrated after observing just a few
of the beads. In contrast, without trace information, a single
necklace was never enough to provide conclusive evidence of
the program and eight of the twelve programs were not given
maximal probability in all 50 runs as there was often still sig-
nificant uncertainty about the underlying program. The belief
in T does not reach 1 in most cases because the DSL al-
lows for programs which are functionally equivalent but are
represented by different code. This places a ceiling on how
much weight the model can put on the ground-truth program,
", even as the samples grow asymptotically towards infin-
ity. Just as there are many way to write the same function, in
future work we will look into ways of clustering or merging
functionally equivalent programs or developing more sophis-
ticated priors to distinguish between them.

Behavioral Experiments

We test the predictions of our framework in two behavioral
experiments run on Amazon Mechanical Turk. In both ex-
periments, participants were told to watch a craftsman from a
culture they’ve never seen before create an acceptable neck-
lace. An animation then showed the craftsman create the
necklace one bead at a time until the necklace was com-
plete and the animation then looped. In both experiments the
key between-subjects manipulation is whether participants
observed the necklaces being made using the seq or outin
program. That is, all participants saw the same final neck-

1670

a) Observation: 000000000 O

Data Model
0.5 0.2
0.1
2
=} 0.0
]
a
Q
Q
Q
<
I seq
025 I outin
(1] Y)
uery: .. ®
b) Observation: 000000000 O
Data Model
0.8 1.0
0.5
2
"'% 0.01
% 0.5
Q
Q
<
B seq
H outin
0.2
o0® °®
uery: .. ®
WY ge0@® o0?

Figure 5: Participants judged whether the two necklaces on
the X-axis (i.e., the queries) are acceptable after observing the
necklace above the graph being created with seq or outin.
The inset shows model predictions that were made by assess-
ing the probability that the space of programs inferred after
observing the above necklace would generate the necklaces
on the X-axis. Error bars show the standard error of the mean.
The interaction terms between query and trace type for both
(a) and (b) are statistically significant (p < 0.01).

laces but the sequence of actions to create those necklaces
differed. In Experiment 1, we tested for systematic gener-
alizations by having participants judge the acceptability of
novel necklaces. In Experiment 2, we had participants cre-
ate new necklaces that they believed would be acceptable.

These experiments test whether or not human learners are
sensitive to the execution trace when making judgments or
generating their own acceptable necklaces after an observa-
tion. If people purely emulate the goal, their inferences will
be invariant to the specific trace that generated the necklace.
If people are purely imitating the sequences they have seen,
they will not make systematic generalizations about novel
necklaces. If instead, humans are using program induction to
learn from others, we will see systematic influences on their
judgments and behavior, and these will be influenced by trace
information in ways predicted by our model.

Experiment 1: Judgment

In the first experiment, participants (N=145) first observed
the creation of an acceptable necklace. Figure 5 shows two
necklaces (panels a and b) used which were shown to partici-

1671

a) b)
0.6+
0.30 -
— 8 0.5
2 0.25 E
Q >
£ 0.20- g 04
o =]
< -
2 0.15- g 03
(=] Q
'S 0.10 g 0.2
o g
= 0.054 2 0.17
(=¥
0.00- 0.0-
outin seq outin seq

Figure 6: Statistics of participant generated necklaces. Error
bars show the standard error of the mean. Both differences
are statistically significant (p < 0.01).

pants on separate pages (order randomized). These necklaces
were chosen because they have both sequential and symmet-
ric structure. After watching the creation of the necklace, par-
ticipants were asked to judge the acceptability of two new
necklaces (shown on the X-axis of Figure 5) are also accept-
able. One of the necklaces had repeated but not symmetric
structure (left) while the other had symmetric but not repeated
structure (right). These judgments were made on a slider with
100 ticks between 0 and 1 with end-points labeled “not ac-
ceptable” and “acceptable”.

The model predicts that the subjects who observe an ac-
ceptable necklace created with the seq primitive will judge
the novel necklace with repeated structure as more accept-
able (since they are more likely to be generated by a similar
program). Likewise, it predicts that those who observe an
acceptable necklace created with the outin primitive will be
more likely to judge the necklace with symmetric structure as
more acceptable. The pattern of human judgments supports
all of the key model predictions. Participants’ acceptability
judgments were significantly higher for necklaces that were
consistent with the observed execution trace. We tested for
statistical significance by running a linear mixed effects re-
gression that predicted participants’ acceptability responses
as a function of the initial necklace, trace type, and query
and included all two way and three way interactions with
participants as random intercepts. The key predicted interac-
tion between trace type and query was statistically significant
(Brrace x query = —0.26, Closg, = [—0.40,—0.08], p = 0.004).

Experiment 2: Generation

In a second experiment, participants (N=46) were shown the
same two example acceptable necklaces as in Experiment 1
that contain both repeated and symmetric structure. As be-
fore, the animation showing the construction of the neck-
laces was randomly varied between participants between seq
or outin. Instead of making judgments, in this experiment
participants were asked to generate two new necklaces that
they believed would also be acceptable. Participants used
their mouse to drag beads onto empty squares in the necklace.
Both the order the beads were placed and the final necklaces
were recorded.

Given the diversity of the generated samples, we conducted
analyses on features of the generated samples. Our model
makes two clear quantitative predictions. The first predic-
tion is that participants should be more likely to generate a
necklace with mirror symmetry when they see the ambigu-
ous necklace created with the outin program than with the
seq program. The second prediction is that they should be
more likely to adopt the out in placement method themselves
when building a necklace. Figure 6 shows the results of the
experiment on these two metrics. These differences were sta-
tistically significant. Participants who saw the necklace gen-
erated with outin were statistically more likely to generate
symmetric necklaces (B = —0.19, Clgsg, = [—0.34,—0.05],
p =0.01) and make their own necklace using an in-out proce-
dure (B = —0.24, Clysq, = [—0.35,—0.15], p < 0.001). These
results show that the trace structured participants internal rep-
resentations and impacted both the structure of necklaces that
they generated and also how they built the necklaces them-
selves.

Discussion

We have proposed that key features of human social learn-
ing can be modelled as a kind of “program induction”. Un-
der this model, people infer and exploit the underlying causal
structure that gives rise to expert performance by others. In
our experiments participants clearly learned more than what
products are permissible (i.e., more than emulation), because
their judgments and behaviors were also deeply influenced
by viewing the expert’s process (or “trace”). But, they also
clearly learned more than a specific sequence of actions (i.e.,
more than imitation), because they readily generalized to
novel sequences of actions. Our model, based on program in-
duction, predicted the precise form of these generalizations.
Thus, based on the observation of a single expert sequence of
actions, participants were able to infer the hidden generative
logic underlying the actor’s expertise. Further, using simu-
lations of this process, we showed that this form of social
learning is efficient, high-fidelity, and robust.

These results may help to explain why human learners oc-
casionally reproduce even useless actions performed by ap-
parent experts, which is sometimes called “overimitation”.
Overimitation may not reflect the blind imitation of actions,
but rather a sophisticated (if sometimes misguided) attempt to
infer a programmatic logic underlying these actions (Lyons,
Young, & Keil, 2007). Experimental research suggests that
great apes are much less prone to such overimitation (Tennie
et al., 2006). An intriguing possibility is that apes are less
likely to spontaneously interpret others’ actions as the prod-
uct of abstract generative programs.

Additionally, social learning by program induction can be
integrated into a pedagogical framework, where teachers in-
tentionally select better examples and learners interpret them
as such (Csibra & Gergely, 2009; Shafto, Goodman, & Grif-
fiths, 2014). For instance, if one wants to teach that any neck-
lace is acceptable, they would wisely pick a necklace that

1672

has no repeated or symmetric structure. Pedagogical sam-
ples would help rule out many alternative programs and lead
to more efficient social learning.

By representing cultural and social knowledge as a proba-
bilistic program within a domain specific language, we cast
the problem of observational learning as one of program in-
duction. This formal approach invites connections to other
forms of social learning, such as learning from feedback. In
the context of our necklace paradigm, imagine that a novice
is building a necklace and an expert intervenes to correct a
specific action. If the feedback is given at the moment in the
trace when the error occurs (like a stack trace in a debugger
when a program crashes), then the learner might have a bet-
ter chance of “debugging” her program and finding the right
causal next step.

More generally, how can an account of social learning as
program induction shed light on cumulative culture and cul-
tural evolution? We can think of cultural know-how as an
ever growing library of programs distributed across a popula-
tion. Metaphorically, the challenge of cultural learning facing
a young learner is to efficiently “download Culture.zip”, that
is, to rapidly acquire the abstract and generative knowledge
of one’s culture by a variety of means. As previous work em-
phasizes, program-like representations are compositional and
modular. One could learn different pieces from different in-
dividuals and pick and choose the best parts. Similarly, one
could innovate on a single sub-program without disrupting
the rest of the accumulated knowledge. This would enable in-
novation without the loss in fidelity that occurs when the only
source of innovation is unstructured random perturbations.

Acknowledgments

We thank Joe Henrich for discussion on imitation and emu-
lation. This work was funded by the Harvard Data Science
Initiative, the Harvard Center for Research on Computation
and Society, and N00014-19-1-2025 from the Office of Naval
Research.

References

Amalric, M., Wang, L., Pica, P, Figueira, S., Sigman, M.,
& Dehaene, S. (2017). The language of geometry: Fast
comprehension of geometrical primitives and rules in hu-
man adults and preschoolers. PLoS computational biology,
13(1), e1005273.

Boyd, R. (2017). A different kind of animal: How culture
transformed our species (Vol. 46). Princeton University
Press.

Boyd, R., & Richerson, P. J. (1996). Why culture is com-
mon, but cultural evolution is rare. In Proceedings-british
academy (Vol. 88, pp. 77-94).

Byrne, R. W, & Russon, A. E. (1998). Learning by imitation:
A hierarchical approach. Behavioral and brain sciences,
21(5), 667-684.

Caldwell, C. A., & Millen, A. E. (2009). Social learning
mechanisms and cumulative cultural evolution: is imitation
necessary? Psychological Science, 20(12), 1478-1483.

Csibra, G., & Gergely, G. (2009). Natural pedagogy. Trends
in cognitive sciences, 13(4), 148—153.

Derex, M., Godelle, B., & Raymond, M. (2013). Social
learners require process information to outperform individ-
ual learners. Evolution: International Journal of Organic
Evolution, 67(3), 688-697.

Henrich, J. (2015). The secret of our success: how culture
is driving human evolution, domesticating our species, and
making us smarter. Princeton University Press.

Herrmann, E., Call, J., Hernandez-Lloreda, M. V., Hare, B.,
& Tomasello, M. (2007). Humans have evolved specialized
skills of social cognition: The cultural intelligence hypoth-
esis. Science, 317(5843), 1360-1366.

Ho, M. K., Sanborn, S., Callaway, F., Bourgin, D., & Grif-
fiths, T. (2018). Human priors in hierarchical program
induction. Computational Cognitive Neuroscience (CCN),
1.

Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015).
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266), 1332—-1338.

Lewis, H. M., & Laland, K. N. (2012). Transmission fidelity
is the key to the build-up of cumulative culture. Philosoph-
ical Transactions of the Royal Society B: Biological Sci-
ences, 367(1599), 2171-2180.

Lyons, D. E., Young, A. G., & Keil, F. C. (2007). The hid-
den structure of overimitation. Proceedings of the National
Academy of Sciences, 104(50), 19751-19756.

Rule, J., Schulz, E., Piantadosi, S. T., & Tenenbaum, J. B.
(2018). Learning list concepts through program induction.
BioRxiv, 321505.

Schulz, E., Tenenbaum, J. B., Duvenaud, D., Speekenbrink,
M., & Gershman, S. J. (2017). Compositional inductive
biases in function learning. Cognitive psychology, 99, 44—
79.

Shafto, P., Goodman, N. D., & Griffiths, T. L. (2014). A ra-
tional account of pedagogical reasoning: Teaching by, and
learning from, examples. Cognitive psychology, 71, 55—
89.

Tenenbaum, J. B., & Griffiths, T. L. (2001). Generalization,
similarity, and bayesian inference. Behavioral and brain
sciences, 24(4), 629-640.

Tennie, C., Call, J., & Tomasello, M. (2006). Push or pull:
Imitation vs. emulation in great apes and human children.
Ethology, 112(12), 1159-1169.

Tomasello, M. (1999). The cultural origins of human cogni-
tion. Harvard University Press.

1673

