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Abstract
The DARPA Ground Truth project sought to evaluate social science by constructing 
four varied simulated social worlds with hidden causality and unleashed teams of 
scientists to collect data, discover their causal structure, predict their future, and pre-
scribe policies to create desired outcomes. This large-scale, long-term experiment 
of in silico social science, about which the ground truth of simulated worlds was 
known, but not by us, reveals the limits of contemporary quantitative social science 
methodology. First, problem solving without a shared ontology—in which many 
world characteristics remain existentially uncertain—poses strong limits to quanti-
tative analysis even when scientists share a common task, and suggests how they 
could become insurmountable without it. Second, data labels biased the associations 
our analysts made and assumptions they employed, often away from the simulated 
causal processes those labels signified, suggesting limits on the degree to which ana-
lytic concepts developed in one domain may port to others. Third, the current stand-
ard for computational social science publication is a demonstration of novel causes, 
but this limits the relevance of models to solve problems and propose policies that 
benefit from the simpler and less surprising answers associated with most impor-
tant causes, or the combination of all causes. Fourth, most singular quantitative 
methods applied on their own did not help to solve most analytical challenges, and 
we explored a range of established and emerging methods, including probabilistic 
programming, deep neural networks, systems of predictive probabilistic finite state 
machines, and more to achieve plausible solutions. However, despite these limita-
tions common to the current practice of computational social science, we find on 
the positive side that even imperfect knowledge can be sufficient to identify robust 
prediction if a more pluralistic approach is applied. Applying competing approaches 
by distinct subteams, including at one point the vast TopCoder.com global commu-
nity of problem solvers, enabled discovery of many aspects of the relevant struc-
ture underlying worlds that singular methods could not. Together, these lessons sug-
gest how different a policy-oriented computational social science would be than the 
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computational social science we have inherited. Computational social science that 
serves policy would need to endure more failure, sustain more diversity, maintain 
more uncertainty, and allow for more complexity than current institutions support.

Keywords Computational social science · Simulated societies · Policy · Quantitative 
social science · Machine learning · Deep learning · Simulation

1  Let the expedition begin

The DARPA Ground Truth (GT) project provided an abundance of novel and 
unexpected opportunities for participants to select and implement similarly novel 
methodological approaches. Its stated purpose was to test the viability of using 
simulated social systems to conduct productive social scientific research. To 
advance this goal, hundreds of researchers and key support personnel participated 
in the GT project in various capacities. The project was highly structured in how 
researchers were organized into groups, how these groups did (or did not) com-
municate, what information was (or was not) provided to each group, and what 
problems each group had to solve. Otherwise, participants were free to choose 
how to achieve their goals. See Fig. 1 for an overview.

Fig. 1  DARPA ground truth project collaborative research strategy
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1.1  Four worlds

The formal structure of the GT project, in terms of research teams and their roles, 
involved the creation of one simulated social system by each of four simulation 
teams (TA1A-D), which our team affectionately titled “Urban World”, “Power 
World”, “Disaster World” and “Conflict World”. These four “worlds” were then 
explored and studied by two different research teams (TA2A-B) The research 
teams who explored and studied these worlds had no knowledge about the simula-
tor teams who created them nor, for the first year, each other. Our team—one of the 
research teams—employed a pluralistic approach that sought to engage many pos-
sible methods and models. The other research team focused on a mixed methods  
design, applying and extending advances in causal analysis, conducting sociologi-
cally informed modeling, and using agent-based modeling to replicate phenomena 
of interest. A seventh testing and evaluation team (T&E) provided guidance to those 
building the simulations about the substantive features of each world, determined 
what data could be shared by simulation teams with research teams, and evaluated 
the performance of both simulators and researchers. Within this structure, T&E was 
understood to represent the research interests and intended goals of DARPA as the 
organization funding this research. Finally, an eighth team from the Pacific North-
west National Laboratory was assigned to replicate results submitted by the research 
teams during the final phase of the GT project.

As can be read in other papers of this issue of CMOT, the four worlds were varied 
in substance and mechanism. “Urban world” was created by a simulation team of 
quantitative geographers from George Washington University on the street grid of a 
modern city and was powered by an agent-based model that balanced personal pref-
erences and exigencies of locations, such as work, recreation sites, restaurants and 
home. Individuals had money, made friends, and could eventually contract disease, 
and research tasks surrounded the creation of more (or less!) income equity, more 
social connections, and lower morbidity. “Power world” was created by an indus-
try-led engineering team at Raytheon in collaboration with social scientists based 
on principles of social groups and complex collective behavior. Also powered by 
an agent-based model, Power World involved regional elections and policies, group 
competition, and group-acquired income. Individuals exhibited levels of happiness, 
and research tasks involved the creation of policies that increased happiness while 
achieving particular election outcomes and other group success criteria. “Disaster 
World” was created by machine learning and artificial intelligence researchers from 
USC’s Institute for Creative Technologies who developed an agent-based model of 
human behavior in response to risks associated with a hurricane, which was driven 
probabilistically with partially observable Markov decision processes (POMDPs). 
Disaster World inhabitants maximized their “reward” (i.e. personal health status, the 
health status of family members, etc.) by reacting to perceived risks and realized 
outcomes associated with different courses  of action vis-a-vis hurricane impact. 
“Conflict World” was created by a team from Wright State research institute in 
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partnership with experienced intelligence analysts to generate an agent-based model 
that reflected a state in crisis, with civil conflict, violent insurgency, food shortages 
and popular unrest. Their model represented the synthesis of multiple types of per-
spectives about the state of the world, possible courses of action, and the role of 
path dependency. Its defining feature was a simulation where actors’ preferences and 
choices responded to a dynamic shared environment.

The GT project timeline consisted of 30 months of activities organized around 
three project phases that each consisted of three tasks. These tasks were formally 
labeled Explain, Predict, and Prescribe, corresponding to the type of questions or 
problems research teams were expected to answer or solve. While these tasks were 
uniform in character across phases, it was understood that simulation teams would 
make their worlds more complex with each phase.

Aside from the common use of agent-based models to  generate data, the con-
tent and structure of the GT project’s four worlds differed vastly and in fundamental 
ways. For example, agents in Power World sought to maximize their utility, simulat-
ing the familiar Homo economicus located in an unfamiliar landscape of opportu-
nity (Granovetter 1985). Conversely, agents in Conflict World engaged in stigmer-
gic behavior (Padgett and Powell 2012), actively shaping and responding to their 
simulated environment in a manner characteristic of Homo sociologus (Dahrendorf 
1973), an agent driven by personally acquired or cultivated values in a landscape 
of dynamic, shifting possibilities. This range in simulated characteristics  of social 
systems, from market-based utility maximization to culture-based co-constitution 
of agents and their environment, was not known to research teams during the GT 
project but reflects extreme variation in assumptions made about human behavior 
within social systems. This variety affected not only the properties of agents, such as 
their motivations, but other properties of the simulations, such as the kinds of social 
processes that existed in each world.

Within this framework, research teams sought to validate  existing quantitative 
tools and test novel methodologies to conduct social science on these simulations, 
DARPA’s stated goal of the GT project. These efforts spanned a range of approaches 
encompassing traditional social science methods, bespoke and novel methods reli-
ant on sophisticated computational strategies, and bleeding edge neural models from 
computer science, which we discuss in the final section of the manuscript. Our team 
also tested the efficacy of crowdsourcing for completing tasks in Phases 1 and 2. 
This work sought to realize the stated goals of the GT project through any means 
necessary.

It also seemed plausible to our team the GT project might serve other valuable 
purposes for DARPA, such as the creation of better wargames or the evaluation of 
standard social science methodologies’ ability to identify a novel process not previ-
ously found in the real world but built into the simulation. The ambiguity of poten-
tial uses for project outputs created a unique situation where decisions by T&E to 
restrict or allow the flow of certain kinds of information between simulation and 
research teams (a) had definitive impacts on how and what research could be con-
ducted and, due to these impacts, (b) inspired discussions about the metagame that 
may be structuring these decisions. This feature of the GT project is notable as most 
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large-scale social science research involves proposing a specific, highly  detailed 
research plan with clear aims that align with the funding organization’s goals. While 
we were provided specific tasks, our performance was evaluated using known met-
rics, and project goals were documented/discussed explicitly, we perceived ambigu-
ity in project goals (i.e., the potential existence of an undocumented and undiscussed 
metagame) which led to real ambiguity about what we believed to constitute produc-
tive versus unproductive effort within strict project timelines. The combination of 
strict timelines, restricted information flows, and the assumed known unknown of 
the GT project’s potential “true” goal(s) presented a novel problem-solving environ-
ment that negatively affected our team yet inspired substantial reflection about the 
basic nature of social scientific research tasks such as survey data collection and 
ethnography.

Along with strict timelines, teams participating in the GT project experienced 
other constraints which shaped lines of inquiry and thus generation of knowledge 
about each world. First, simulation teams created initial data for analysis by research 
teams. In Phase 1 and 2, these initial data were incomplete, intentionally excluding 
the vast majority of data generated for each world since data collection was a major 
part of research teams’ tasks. To complete data collection tasks, research teams 
posed well-constructed questions and requests for data. Within this framework, 
questions were used as a way to learn about the existence (or properties) of objects 
in a simulated world, while requests for data, termed “research requests,” were 
used to simulate the implementation of social scientific research methods to collect 
data for analysis. Submitted questions and research requests had to adhere to strict  
guidelines regarding their structure, content, and framing. In Phase 3 this constraint 
was removed, with simulation teams providing all generated data to research teams, 
precipitating the inverse problem of data management (i.e., analysis of hundreds 
of gigabytes of high frequency simulation data). In both cases, the novelty of the 
problem-solving environment again inspired self-reflection about the idiosyncratic 
nature of social scientific inquiry as it has evolved in the real world, particularly its 
tendency to expect certain inputs for analysis. Specifically, we learned tacit disci-
plinary knowledge about human behavior led to the expectation that (a) certain fea-
tures existed in the simulation because they were so “fundamental” to understand-
ing agent behavior or, conversely, (b) certain features of human experience were so 
basic (e.g., feeling hungry) they could be ignored, both of which revealed how dif-
ficult it was for us to decontextualize simulated human behavior.

A second constraint faced by simulation and research teams was the fact that the 
research request system was managed by the T&E team, a third-party mediating 
how teams interacted. Research requests (RRs) generated by research teams were 
expected to reflect actual methods of research used within the social sciences, such 
as fielding a survey asking a series of questions about agents’ age, current status, 
and preferences. In this context, each world had a temporal component similar to 
sampling frequency, which sometimes meant that well-formed RRs inadvertently 
led to the generation of massive amounts of data. For example, Urban World’s 
agents were observed in 5-minute increments over a period of multiple simulated 
years. Not knowing the temporal scale of (sub)-mechanisms that governed these 
agents’ behavior meant it was often safest to generate RRs with maximum sampling 
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frequency. Related, when simulation teams received RRs they had to both (a) inter-
pret the intended meaning of the proposed data request and (b) conform to limits 
placed on the kind and amount of data they could provide according to the T&E 
team. This system enabled “blinding” of simulation/research teams by making T&E 
the intermediary between both. This constraint introduced yet another novel feature 
of the problem-solving environment in the form of “blinded” data collection which 
required self-reflection about the biases we held about the data collection process. 
We found through trial and error that biases about which features to try to measure 
(and further study) could, again, turn assets into liabilities, expertise into folly, if we 
failed to accept certain seemingly natural lines of inquiry were unproductive.

Within these constraints, the GT project consisted of three distinct tasks during 
each phase. Each task focused on producing a particular kind of knowledge:

The “Explain” task required research teams to develop as full an understanding of 
the causal relationships within each simulated world (i.e., a directed causal graph) as 
possible. This task required identification of nodes consisting of features within the 
simulation, such as agent age and current location, and edges consisting of causal 
relationships between features, such as the tendency for older agents to visit particu-
lar sites. Fulfilling this task required discovering all features within each world and 
performing an exhaustive search for all causal relationships between these features.

The “Predict” task required research teams to make an out of sample prediction 
of agent behavior—individually, in aggregate, or as an observable property of the 
simulated world—based on data provided by or solicited from simulation teams. 
This task always followed the Explain task and so, while identification of additional 
features and causal relationships sometimes continued, efforts often focused on con-
verting a working knowledge of each simulated world into a model of each social 
system. The primary requirement of this model was fidelity to the ground truth of 
each simulated world. Fulfilling this task required discovering methods that could 
accurately reproduce observed outcomes, such as agent behavior, within each world. 
Nevertheless, some prediction tasks were counterfactual—if X happened tomorrow, 
what would happen next year?—demanding a rich understanding of causal relation-
ships that were supposed to be uncovered during the “Explain” task.

The “Prescribe” task required research teams to optimize a set of possible inter-
ventions for each world to maximize or minimize a specific property of the world 
(e.g., average number of friendships, total number of casualties, etc.). As in the Pre-
dict task, team performance was evaluated via out of sample observations: simula-
tion teams implemented the interventions provided by research teams then observed 
their effects, recording relevant metrics for a period of time following the time series 
observable by research teams. Fulfilling this task required developing a counterfac-
tual understanding for each simulated world, specifically (a) submission of RRs to 
provide data on the holistic effect of interventions on various aspects of the social 
system and (b) development of an optimization strategy. The latter logically focused 
on the features and causal relationships that most strongly impacted the evaluation 
metrics before considering secondary and tertiary aspects of the world that per-
turbed these metrics.

Here we report how the structure of the GT project and the nature of its activities 
contribute to our understanding of knowledge production about social systems via 
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our experiences studying the simulated worlds generated by simulation teams. This 
is from the perspective of our research team, initially branded as Social Machine 
Intelligence for Novel Discovery (or Social MIND) to reflect our commitment to 
explore the connection between emerging artificial intelligence techniques and 
familiar social science goals. Many of our insights are best characterized in terms of 
ontological, epistemological, and methodological issues raised and accompanying 
lessons learned. We believe these issues are relevant to knowledge production in the 
social and behavioral sciences broadly, especially within collective problem solving 
settings where rapid development of effective public policy is the primary goal, such 
as during the COVID-19 pandemic.

1.2  Ontology of in silico worlds

The type and extent of ontological issues associated with the GT project were unex-
pected. Some issues, such as discovery of features and causal mechanisms, stemmed 
directly from the structure and stated goal of the project. We briefly discuss these 
expected challenges but focus discussion on broader questions with substantial 
implications for collective problem solving. These questions arose from parallels 
between the GT research setting and real world problems, like political decision 
making about complex social issues or environmental challenges. We generally con-
clude that ontological questions about the nature of social systems can pose signifi-
cant risks to the ability of disparate groups to arrive at a consensus about how to 
solve complex problems, such as racial disparities in public health and appropriate 
local responses to a global pandemic. We organize these questions according to the 
type of “game” being played when we study social systems, the ambiguity around 
what constitutes a social system, and the process of data collection given limited 
resources.

1.3  Expeditions into the unknown: a game within a game?

Limited initial knowledge about simulation teams’ worlds presented a unique oppor-
tunity to test the efficacy of different problem-solving strategies. One novel aspect of 
this extraordinary ambiguity was the fact that we had no sense of the type of “game” 
(i.e., rules used to build simulations, goals of each simulation, etc.) being played by 
simulation teams nor the potential metagame being played by DARPA, though the 
assumption of an unknown metagame was unique to our team alone. Thus, there was 
little reason to believe any one disciplinary perspective or methodological skill set 
would be better suited to achieving GT project tasks than any other. To this end, we 
tested the efficacy of approaching each task as a lone explorer, as two explorers, and 
as a team or community expedition into the four worlds.

Multiple worlds were studied as single explorer expeditions where we tested if 
the most effective way to complete a task was for one individual (or one methodo-
logical approach) to direct the bulk of our activities. In our team, each world had 
either one or two primary “explorers” with additional individuals providing support. 
A single explorer approach meant the use of a novel methodological strategy whose 
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execution was led by a single individual, sometimes supported by others acting at 
their direction. For example, for Urban World we used Granger causal networks to 
complete tasks in Phase 1 and Phase 2 (Chattopadhyay 2014; Li et al. 2019). This 
novel method was content free in terms of being broadly applicable to the type of 
data associated with Urban World regardless of what these data represented. We 
found that this flexibility sometimes helped ensure certain tasks could be completed, 
but that it relied on a small handful of experts to produce results which were not 
always interpretable within our broader understanding of the world. Single explorers 
were good at finding a way to play the game using their own rules but the idiosyn-
cratic nature of their efforts could limit the generalizability of their modeling strat-
egy even among those with domain knowledge.

Another approach to GT project tasks was to treat these tasks as a two explorer 
cooperative expedition. A two explorer approach meant that two individuals coop-
eratively explored and tested different methods for completing tasks. Cooperative 
exploration and problem solving allowed us to leverage both individuals’ perspec-
tives and skill sets to iteratively uncover effective solutions to the problems faced in 
each phase. We expected that pairing researchers with differing skill sets, differing 
levels of experiences, or both could be effective for completing GT tasks (Hall et al. 
2018).

Overall, work on Urban and Disaster Worlds supported this hypothesis about the 
nature of the GT project’s challenges and the best way to handle inherent uncer-
tainties about simulated worlds. In each case, insights from both explorers contrib-
uted significantly to completing tasks depending on the underlying ground truth of 
simulated relationships. For example, in Urban World one player was well-versed 
in GIS and spatial analysis, which proved more salient to performing certain tasks, 
while the second player was versed in social theory and network analysis, which 
helped provide initial directions for analysis. We elaborate below how this role-tak-
ing worked in practice. We observed that even when empirically grounded, theory-
based analysis proved uninformative it still allowed us to rule out common theories 
of social behavior or common modes of social scientific analysis (e.g., the use of 
exponential random graph models to study friendship networks between agents). 
Our experience with the GT project suggests that two heads are, indeed, better than 
one when presented with a complex research task whose parameters are not fully 
known—which reflects the vast majority of research tasks (Tambe et al. 1999; Denz-
inger 1995; Xyrichis and Ream 2008).

The final approach we tested for effectively completing GT tasks was to assume 
each task represented a team or community expedition. In this context, a team 
expedition involved many individuals working to independently complete a task 
using their personal understanding of the task and the most suitable methods for 
completing the task. The “team” aspect of this approach is embodied by shared 
striving toward a common destination given identical information and constraints. 
Team expeditions were operationalized through use of crowdsourcing competi-
tions to solicit solutions to the challenges associated with GT tasks. For Phase 
2, we worked with TopCoder.com, which maintains a vast community of “solv-
ers” who engage with data science, programming, and other scientific challenges 
to win prizes for the top solutions. TopCoder represents a large global network 
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of technologists, boasting approximately 1.5 million community members. Up 
to 450,000 members of this community are data scientists with backgrounds in 
computer science, physics, mathematics, and engineering. In Phase 2 of the pro-
ject, we involved TopCoder in a four tournament Grand Challenge through which 
we solicited community assistance to: (1) suggest possible social entities, forces, 
and causal relations in each of the four worlds to stimulate our requests for data, 
as well as (2) accomplish the explain, predict, and prescribe tasks alongside our 
teams. We scheduled completion of these challenges a week before each of our 
solutions were due, with our independent or cooperative explorers intensively 
engaging with their results to improve our final submissions. Across all three 
competitions we had 686 registered participants, from 15 countries; 64% from 
India, 7% from Russia, 5% from Indonesia, 4% from the United States and less 
than 2% were from Kenya, Iran, China, Philippines, South Africa, Italy, Canada, 
Romania, Brazil, Mexico and Egypt.

For the first of our four challenges, we received a barrage of suggestions that 
broadened our scope of questions and research requests to simulation teams . These 
included using more of the research methods available to us, such as experimenta-
tion, social media analyses or use of government records, and the proposition of 
out-of-the box causal possibilities (e.g. boredom; importance of cultural diversity, 
public safety, presence of public transit; innate intelligence, actively blogging, hav-
ing a criminal background, participating in ongoing criminal behavior, experience 
of bullying, alcohol/drug use, number of languages spoken, fatigue, emotional state, 
materialism, global warming, pollution, drug addiction, volcanic eruption, etc.).

For the remaining challenges, TopCoder solvers had a more difficult time, at 
least in part because they had to work with an evolving dataset in a compressed 
time frame without the benefit of direct feedback on the success of their strategies. 
We found this problem solving context made the creation of a leaderboard, and the 
accelerating competition it engenders at the end of a competition, infeasible. This 
finding illustrates how the features of such contexts shape how effectively crowd-
sourcing can be leveraged as a form of collective problem solving. Moreover, the 
tasks were complex and involved many continuously evolving forms of data to pro-
duce many different required predictions and prescriptions. We observed it was dif-
ficult for solvers to put together a complete solution despite efforts to share code that 
integrated and cleaned relevant data. In other cases, community solutions misun-
derstood the data or questions, or added nothing new to own analyses. Other times, 
community members proposed methods like Bayesian Networks for causal discov-
ery (Cheng et  al. 2002) or categorical boosted forests, implementing these meth-
ods via working python code that successfully uncovered world dynamics. We then 
extended these with new data and applied them to those same worlds and others.

Consider Urban World’s Phase 2 Prescribe task as an illustration of how these 
different problem solving strategies worked in practice to help triangulate the best 
possible submission. The goal of this task was to select a subset of 200 agents in 
the world who will, over a 30 day period and in isolation (i.e. all other agents in 
the world are removed), collectively exhibit higher average daily friendship network 
degree over the final week of this period than any other subset of 200 agents subject 
to the same conditions. As part of this task, we were provided a sample evaluation 
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metric (i.e. 5.05) in the initial data package representing the outcome of drawing a 
uniform random sample of 200 agents. We were then allowed to submit up to four 
mock test sets of 200 agents where the simulation team would then provide the cor-
responding value of the evaluation metric based on each test set of agents. Table 1 
summarizes the results of these mock tests and relative change in the evaluation 
metric versus the sampling strategy and metric included in the initial data package.

Each of the four mock tests in Urban World’s Phase 2 Prescribe task repre-
sented a systematic approach to the selection of 200 agents. The first mock test 
drew a stratified random sample of agents designed to reflect the age, educa-
tion, and income distributions of all agents, under the belief that these agent-
based characteristics, including homophily (McPherson et al. 2001), might sys-
tematically affect friendship networks. The second mock test used a matched 
sampling approach designed to maximize insight into how other features of the 
world affected friendship networks, such as the role of location. The third mock 
test focused on the effect of geographic propinquity on friendship networks (e.g. 
Holzhauer et al. 2013).

The fourth and final mock test represented an entirely new perspective on the 
selection of agents. The first and second test sets were drawn based on input 
from a team member trained in social theory and social network analysis, the 
third test set was developed between this team member and another team mem-
ber trained in GIS methods, but  the fourth set was generated based on intui-
tions about spatial processes as understood by the GIS-trained team member. 
The fourth set was derived by applying a clustering algorithm to the location of 
agents’ homes weighted by the “popularity” of each home (i.e. how many friend-
ship ties were linked to a home through its residents). The substantial improve-
ment in evaluation metric over the other three mock tests was exciting and 
moderately unexpected. However, the overall utility of this clustering approach 
became apparent when we learned that one of the TopCoder submissions used 
clustering in a similar yet more intricate manner. This work inspired us to pursue 
essentially the same strategy used in fourth mock test for our final submission, 
tweaking our approach based on input from the TopCoder submission that also 
used clustering. Ultimately, this fine tuning led to a slightly lower final evalu-
ation metric. However, without the TopCoder submission we would have felt 
more uncertain about the exclusive use of clustering and might have made more 

Table 1  Comparison of 
evaluation metrics in urban 
world phase 2 prescribe

Source Average degree (08/08–
08/14)

Change

Initial data package 5.05 –
Mock test #1 6.15  + 22%
Mock test #2 5.87  + 16%
Mock test #3 6.36  + 26%
Mock test #4 15.04  + 298%
Final submission 14.10  + 279%
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substantial changes to our strategy that would have resulted in a much lower 
evaluation metric. In this case, the two explorers experimented with strategies 
based on analytic perspectives cultivated in two distinct fields of study, but the 
value of one explorer’s perspective (i.e. GIS-based clustering) became unam-
biguous via use of crowdsourcing to externally validate its efficacy.

1.4  Simulated social systems still require real definitions

Ontological questions about what constituted a social system presented both the 
most difficult challenges to accomplishing GT tasks as well as, arguably, the most 
insight into social science as a practice. The basic ontological questions that plagued 
both simulation and research teams was “What exists in the simulated social sys-
tem?” and “How do objects in the simulated social system interact with each other?” 
when it was made clear to all involved that these simulations were not meant to be 
realistic representations of social behavior; the GT project recreated the basic fea-
tures of “first contact” with an unknown civilization (and, at times, used language 
to suggest that research teams should assume they are studying an alien planet). The 
setting, then, was intended to be functionally similar to a real world social system 
where individuals’ roles, motivations, and behaviors are not known to the observer.

Determining what objects exist and how these objects interact was the most 
fundamental task in the GT project; without this information it is impossible to 
explain/predict behavior or prescribe interventions. Because GT worlds were simu-
lated social systems whose features were artificially generated and intentionally not 
reflective of real social systems, and because research teams had to communicate 
with simulation teams to request additional data, who in turn had to interpret these 
requests in order to provide the requested data, the interpretation of these requests 
proved to be fundamental for making sense of each world. Basic ontological ques-
tions about what objects exist and how these objects interact were thus complicated 
by each team’s use of words in naming data attributes. For example, the team behind 
Urban World explicitly renamed variables in Phase 2 to prevent observed cases in 
Phase 1 where research teams had inferred erroneous information based on variable 
names (e.g., assuming that “has Child” meant the existence of family units when, in 
fact, “has Child” was only meant to indicate that agents had increased expenses if 
they had a child).

Another ontological question raised by GT project tasks was the overall pur-
pose of each world or, more properly, the win condition(s) of each game embed-
ded within these four worlds. For example, Conflict World presented unique chal-
lenges to our team because we assumed that all simulated agents followed a basic 
utility maximization principle. While more or less true in other worlds, the stigmer-
gic basis of Conflict World meant that agents pursued shifting goals in reaction to 
their experiences as well as changing motivations in response to these experiences 
and available options (Heylighen 2016; Dorigo et al. 2000). Put simply, we found 
that the existence of a stable human nature and stable  social system was itself an 
assumption that we should not have made. Making this assumption led to significant 
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misinterpretation of data and a poor understanding of the world in question, despite 
success in some tasks.

This finding lends novel support to the idea that even certain forms of social 
science inquiry (e.g., identifying utility maximizing behavior) can be effectively 
blind to coherent, rule-based behavior if agents’ understanding of their world dif-
fers from researchers’ understanding. Such an idea has gained prominence in discus-
sions about systemic inequality, especially racial inequality, where scholars dispute 
what constitutes agentic versus structural sources of inequality (Royce 2018; Wilson 
1987; Massey and Denton 1993). Our experience with the GT project indicates it is 
possible for agents to be embedded in a social structure perfectly navigable to them-
selves but so alien to scholars that the latter cannot conceive its existence. Moreover, 
the social ontology of Conflict World was relatively intuitive once revealed, suggest-
ing that access to agents’ own understanding of their social system (e.g., through 
interviews, ethnography, etc.) would have been key to understanding it correctly and 
thus making accurate inferences.

1.5  Data collection versus data generating processes: the language 
of observation

A final constraint that applied across simulated worlds was, again, the role of lan-
guage, but this time in the context of data collection. Research teams requested 
information from simulation teams in order to test hypotheses about each simula-
tion. These requests were a focal point of frustration due to (a) the desire to test the 
full range of social science research methods for studying simulated social systems 
and (b) the reliance of research teams on the resulting data to both construct a basic 
understanding of each simulation and complete GT tasks. The former is best illus-
trated by persistent attempts to employ qualitative methods, in particular ethnog-
raphy. We suggest that such dissonance between stated GT project goals and the 
specific goals of our research team reflect distinctions between data collection as 
often practiced in the social sciences and data generating processes foundational to 
simulated social systems.

In short, it was effectively impossible to conduct ethnography in these simulated 
worlds. This finding was not self-evident at the time, nor do we believe it inten-
tional on the part of simulation teams or the T&E team. Rather, the natural value 
of ethnography is its ability to leverage human perception to identify gaps in our 
understanding of social phenomena (Becker et  al. 2004; Jessor et  al. 1996; Small 
2009; Pacewicz 2020), often through discovery of persistent, multi-dimensional 
configurations. For example, in Urban World if an agent enters a site and we can 
determine how that agent knows what time of day it is then we may better under-
stand why agents spend less time at one type of site compared to another type of 
site—an important factor in human behavior exploited by casino designers. An eth-
nographic account of agents visiting each type of site could reveal that one type of 
site always has a clock prominently displayed on the wall while the other type of site 
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never does. However, we ultimately learned that agents simply “know” what time it 
is, and that time spent at sites was an inherent property of site type.

Similar instances of perfect information and just-so features of each world could 
be found in other simulations. For example, in Disaster World, hurricane dynamics 
were governed by fixed parameters with deterministic impact on the risk posed to 
regions/individuals. Yet our experience with this ontological question (i.e. “What 
observations are possible?” regardless of their truth value) provided an important 
lesson learned that complemented the lesson learned from Conflict World’s radically 
different ontology compared to the other simulations:

Regardless of the type of social system being studied, the accessibility of one 
type of data does not negate the need for access to additional types. Because we 
knew the simulations were simulations, we understood that they lacked the complex-
ity of real life, but uncertainty around what was observable compounded uncertainty 
around the objects and causal relationships being simulated. This doubly shifting 
landscape is a common feature of real social systems and represents the social scien-
tific equivalent of the “state of nature” where one has no knowledge of what is or is 
not socially meaningful. Historically, empirical social science was more qualitative 
in nature and made extensive use of interviews, participant observation, and ethnog-
raphy. Over time, quantitative social science developed in parallel, emerging as soon 
as suitable methods were developed (Hacking 1990). Our experience with the GT 
project suggests that the initial use of qualitative methods as a tool for uncovering 
ontological properties of social systems logically precedes quantification of those 
properties.

The GT simulated worlds represented an anachronistic case where we began with 
quantification then attempted to understand how a social system works in order to 
develop effective interventions. However, we did not have the benefit of human per-
ception to identify meaningful properties and/or their configurations in each world. 
Ultimately, this parallels the hyper-quantification of social behavior we observe 
today (Lazer et al. 2009; Edelmann et al. 2020) and suggests that without the ability 
to observe the social system in vivo we risk developing a working model of behavior 
that excludes key properties of the world. For example, in Urban World there existed 
an entire process for “eating” that we never uncovered because we thought it was 
self-evident from other behavioral data, but this process proved crucial for under-
standing simulated disease transmission in Phase 3.

1.6  Ontological lessons learned

In addition to the specific lessons learned noted throughout, we identified two broad 
lessons learned from the ontological questions raised by the GT project. First, suc-
cessful quantitative social science requires well-posed questions that use well-
defined terms. Data does not, in itself, induce understanding, and descriptions of 
data can impart significant bias, even when it is known that such bias exists and 
could substantively affect analysis. Second, collective problem solving without a 
shared ontology about the object of study is extraordinarily difficult. Both have real 
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world implications, but we will focus briefly on the latter as the former may be an 
artifact of the GT project’s design.

The lack of a shared ontology concerning what objects exist in a social system 
and the causal relationships between these objects generated significant challenges 
for resource allocation. Specifically, cognitive responses to GT tasks (i.e., problem 
solving) required some level of certainty concerning this ontology, but without this 
certainty many team members could not intuit how to proceed. For example, con-
sistent lack of progress in learning how agents behaved in the Conflict World simu-
lation made it difficult to justify devoting additional resources to associated tasks. 
Conversely, the expansive nature of the Urban World simulation meant that it was 
difficult to gauge whether progress had been made at all since we never knew if we 
had uncovered all relevant properties of the world. Both situations led to ambiguity 
about the entities and relationships under study which often resulted in pursuing an 
exhaustive understanding of causal relationships (i.e., perfecting the “Explain” task 
during each phase). However, this ambiguity has implications for real world prob-
lem solving in the form of issue advocacy and public policy recommendations.

A limited understanding of salient social entities (e.g., agents, processes, con-
texts) limited our ability to conduct experiments within these worlds. Experimen-
tation requires control in the form of sufficient knowledge about relevant forces 
shaping behavior and the variation of one or a few factors. Without this knowledge, 
experiments can become fishing expeditions where other research methods may pro-
duce more insight with less effort. It was not until we approached the end of the pro-
ject that we came to understand enough about these worlds to cultivate expectations 
about which features would be most insightful to systematically vary for the direct 
identification of causes and useful policies. This delayed understanding, combined 
with the significant turnaround time of research requests, made experimentation a 
high-risk endeavor during most of the project. Future simulation studies of this kind 
might consider how to support a sufficient ontological framework for posing mean-
ingful experiments.

The GT project constituted a highly structured yet cooperative team-based assess-
ment of agent based simulations as a platform for productively testing different 
methods for studying social behavior. Despite prolific uncertainty around the form 
and content of these simulated social systems, project participants committed to 
achieving the same goal under the belief that this goal was, generally speaking, ben-
eficial to advancing social science and its applications. Most complex policy debates 
involve similar levels of uncertainty about the true nature of social problems and 
policymakers must typically make decisions based on an incomplete understanding 
of these problems (Head 2019; Ney 2009; Yung et al. 2019). However, policymakers 
are also often subject to a barrage of information from issue advocates, popularly 
termed lobbyists (Bok 2001; Nelson and Yackee 2012). These advocates advance a 
particular understanding of a social problem so that policymakers can address this 
problem in the manner they believe most effective.

Yet it is rarely clear which policies will be most effective because advocates must 
begin with their own assumptions about the social system they intend to influence 
(Markusen and Venables 1988; Schneider and Ingram 1990; Pielke et  al. 2008). 
Competing assumptions will naturally produce disparate policy solutions. Thus, 
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uncertainty regarding assumptions in real world policy debates, to some extent, mir-
rors the ontological uncertainty experienced by GT participants. In the case of the 
GT project, participants’ commitment to rigorous scientific inquiry and shared striv-
ing toward a common goal were not enough to overcome the effects of this uncer-
tainty in many cases. More broadly, we tentatively conclude that ontological differ-
ences in how issue advocates understand the same social problems will constrain the 
ability of policymakers to identify compromise solutions to these problems. Further, 
our experience with Conflict World suggests it is possible for good faith actors to be 
incapable of identifying key features of social systems if they rely on a limited array 
of evidentiary sources.

It is unclear how this issue might be addressed in the short term except to 
acknowledge its effects. Our experience with the GT project, however, suggests that 
long term efforts to formalize ontological assumptions about social systems must 
be supported to avoid inefficient, ineffective, or counterproductive public policies 
enacted by elected politicians. Because there is much we do not understand about 
social systems, and representative political systems rely on popular understandings 
of social problems and their solutions, it is important that social scientists highlight 
this barrier to consensus building and begin adopting a means of communicating the 
social ontologies used within their work.

2  Epistemology

All work that overlaps neighboring fields, such as we occasionally undertake 
and which the sociologists must necessarily undertake again and again, is bur-
dened with the resigned realization that at best one provides the specialist with 
useful questions upon which [they] would not so easily hit from [their] own 
specialized point of view.
~ Science as a Vocation, Weber (1958)

The type and extent of epistemological issues associated with the GT project 
were often predictable and provided significant insight regarding fundamental ten-
sions associated with (a) doing social science research versus (b) applying findings 
from social science research. Issues, such as choice of problem solving strategy for 
each task, stemmed directly from the structure and stated goal of the project. We do 
not discuss the specifics of these issues but, as with our examination of ontological 
issues, focus on broader questions with substantial implications for collective prob-
lem solving. These questions arose from the nature of the GT tasks performed dur-
ing each phase of the project and speak to what Weber termed “science as a voca-
tion” in reference to the external economic forces associated with and the lack of 
intrinsic value characteristic of scientific inquiry in practice. We thus organize our 
discussion of these issues and related lessons learned according to each type of GT 
task.

A clear pattern emerged over the course of the GT project around the types of 
knowledge that were necessary to complete GT tasks. Each phase of the project was 
identical insofar as research teams had to complete the same three tasks for each 
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world: explain, predict, and prescribe. While social systems differed in their struc-
ture and content according to the simulation teams’ models, explaining each social 
system, predicting out-of-sample properties of each social system, and prescribing 
interventions for each social system represented loosely related yet distinct episte-
mological goals.

The first epistemological goal during each phase of the GT project was to 
explain the simulated social system. Explanation was defined as the develop-
ment of a directed acyclic graph constituted by all relevant features (i.e., nodes) 
and causal relationships between features (i.e., directed edges). Relevancy was 
defined through prompts—such as “explain how agents form friendships”—that 
served to anchor inquiries for additional information. This GT task required cop-
ing with the ontological uncertainties noted above to produce an acyclic graph 
effectively reproducing the agent-based rules and/or agent-based model param-
eter relationships used to generate the simulation data provided to research teams.

A defining characteristic of this task was its holistic framing. While prompts 
provided a way to help research teams begin studying each phase’s simulated 
world, research teams were evaluated according to their ability to uncover nodes 
and directed edges. This evaluation approach presents an egalitarian epistemol-
ogy where all knowledge had approximately equal value regardless of the relative 
importance of individual pieces of knowledge for understanding the social sys-
tem. This egalitarianism incentivized investigation of potentially second and third 
order effects that were, at best, tangentially related to properties of interest. Any 
knowledge was good knowledge.

A secondary characteristic of this task was significant slippage between what 
research teams believed they were investigating and what simulation teams had 
identified as relevant features. Specifically, the ground truth under study was 
an assortment of data generated by simulation teams and analyzed by research 
teams. The terminology used by simulation/research teams was, as noted, ill-
defined and referred to simulated social processes. To “explain” these social sys-
tems research teams had to name causal nodes and provide a written explanation 
of how each node influences another if a directed edge existed. However, evaluat-
ing these explanations required simulation teams to interpret nodes and directed 
edges according to their internal understanding of the data generating processes 
they had developed.

This situation meant it was possible that research teams could describe a simu-
lated social process but, without further clarification, simulation teams infer research 
teams were referring to a different simulated social process than intended, a phenom-
ena reminiscent of boundary objects (Star and Griesemer 1989) that attract shared 
attention despite being understood and used in very different ways. Once the ground 
truth of each simulation was revealed, it was clear that there were many cases where 
this applied, such as agents’ affinities for particular sites in Urban World. While our 
understanding of site visitation was based on the desire to form and maintain friend-
ships with similar agents, the Phase 2 Urban World simulation replicated this agent-
based form of homophily through a process where agents chose to visit preferred 
sites based on both agents’ and sites’ characteristics. However, our understanding of 
the ground truth causal diagram for Urban World’s Phase 3 simulation suggests that 
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agents of a similar type formed friendships by choosing to visit similar sites rather 
than explicitly choosing similar agents. This minor distinction had serious implica-
tions for our ability to understand the simulated social system in the predict and 
prescribe tasks and highlights the fact that simulation/research teams could believe 
they are referring to the same social processes verbally (i.e., homophily in friendship 
formation) but are actually referring to different ground truths. Our experience with 
this epistemological issue suggests that clearly defined, shared referents are vital for 
constructing an accurate ground truth understanding of a social system, and we rec-
ommend future simulations testing the utility of different social science methodolo-
gies remove this ambiguity to ensure the robustness of results.

Conversely, terminological ambiguity also meant that research teams could refer 
to features using different words or phrases than simulation teams yet still reference 
the same ground truth processes. For example, it is unclear how much our failure to 
identify the nodes and directed edges associated with the process of food consump-
tion in Urban World affected the evaluation of our explanation of this world in Phase 
3. Without additional information, this lack of clarity cannot be resolved since we 
assumed data referring to relevant agent behavior (e.g., entering a restaurant) were 
sufficient to understand the process of quelling hunger and we could not know this 
explanation was deficient since we, as a research team, did not have access to the 
ground truth (i.e., the simulation) or other feedback indicating that our understand-
ing was incomplete (i.e., knowledge about unobserved features). Our experience 
suggests it is vital to identify such measurement issues before attempting to con-
struct an exhaustive causal model of a social system. This finding supports multiple 
arguments made in the social sciences about the role of measurement theory and 
highlights their applicability to data-driven analysis where measurement is assumed 
to be error free (or correctable with sufficient data) (Shultz et  al. 2013; Bandalos 
2018; Leplège 2003; Goertz and Mahoney 2012).

The second epistemological goal of each phase of the GT project was to predict 
out-of-sample characteristics of the simulated social system. For each world, simula-
tion teams provided data for a discrete period of time. The primary goal of research 
teams was to then make predictions about what happens immediately following this 
time period. Evaluation metrics were typically based on predictions made over a dis-
crete period of time (e.g., 7 days of simulated behavior). This GT task avoided many 
of the ontological issues noted above since the simulated data was itself the ground 
truth for each world and research teams did not need to explain the set of causal rela-
tionships used to generate predictions.

A defining characteristic of this task was a data-centric approach to modeling 
each simulated social system. Because the goal was to predict outcomes based on 
the data provided it was not necessary to construct any broader understanding of 
the social system than was needed to accurately predict future behavior. This feature 
of the predict task provided both natural scoping conditions for analysis and clear 
priorities in terms of analytic effort. The most efficient strategy was to identify the 
primary causal relationships governing the outcome of interest, such as the average 
number of friendships in the world or agents’ responses to a natural disaster. Other 
aspects of the simulation could be ignored to the extent that they did not affect this 
outcome.
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In some ways, the prediction task was the most familiar to our research team 
members as it most accurately reflects both current expectations around effective 
data science and historic efforts in the social sciences to identify the features most 
important for understanding social phenomena. For example, residential segrega-
tion is a well-known phenomenon in the United States which could allow simple 
and often correct guesses about your neighbors’ race given your own (Massey and 
Denton 1988; Charles 2003; Reardon et  al. 2015). Even if predicting your neigh-
bors’ race based on your own race is not something social scientists typically do, the 
fundamental epistemological issue remains reproducibility via prediction. In some 
ways, data scientists are more familiar with this issue given that many applications 
of machine learning involve generating out-of-sample predictions. Our experience 
with the GT project suggests that, when interpretation of features is irrelevant, even 
basic data science approaches, such as clustering, can yield a huge payoff in terms of 
predictive accuracy.

Notably, however, the explain task and predict task were only loosely related. 
Knowledge production in the former required a robust understanding of the social 
systems’ ontology in order to exhaustively test possible causal relationships, but 
knowledge production in the latter only required a “good enough” understanding of 
each social system to accurately reproduce and then predict agent behavior. Empha-
sis on explicit directed causal relationships and predictive accuracy by those study-
ing causal inference in the social sciences would suggest both tasks are important, 
but our experience with the GT project suggests the opposite: Fully understanding 
how a social system operates does not necessarily reveal which parts of this system 
are most important for outcomes of interest, and the ability to predict outcomes of 
interest does not indicate a full understanding of the social system. One can even 
imagine a GT task between explanation and prediction in which a causal weight is 
assigned to each edge in the graph.

There are three potential implications from  this observation. First, if the goal 
of generating new knowledge is not clear, then it is easy to fall into a trap where 
researchers examine either a small part of a social system or attempt to fully explain 
the social system when one or the other will suffice. Second, marginal advances in 
our understanding of a social system need to be put into context relative to an out-
come of interest. If no outcome is specified, then the value of these advances can-
not be judged. Third, when the social system is unintuitive, as in the case of Con-
flict World, then it may be unclear whether a full or partial understanding has been 
attained. This last implication is the most serious as it means we can have a working 
understanding of one part (or even multiple parts) of a social system that produces 
good predictive accuracy but that does not capture key causal relationships operat-
ing essentially out of sight. Consider Captain Cook’s fateful encounter with indig-
enous Hawaiians: he believed he understood enough about Hawaiian culture to play 
god, but was killed when he and his men failed to meet Hawaiian expectations about 
how gods behave. It was not that Cook could not predict the average reactions of the 
Hawaiians, but that he did not fully understand the social system generating those 
reactions (Sahlins 1995).

The third and final epistemological goal of each phase of the GT project was 
to optimize a set of policy prescriptions to maximize or minimize an outcome of 
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interest. As with the predict task, research teams were evaluated based on out-of-
sample prescriptions where interventions had been introduced into the simulation as 
prescribed. The primary goal of research teams was to construct counterfactual pre-
dictions of agent behavior based on their understanding of how each world operated. 
In this respect, the predict and prescribe tasks were tightly coupled, largely avoided 
ontological issues noted above, and reflected a pragmatic approach to knowledge 
production. The prescribe task differed from the predict task in that the effects of 
interventions had to be estimated and, once known, optimized to elicit the “best” 
possible outcome in each world. This task was akin to data-driven policymaking 
where the effectiveness of policies are empirically tested after the fact. Given the 
practical implications for policymakers, the purpose of this knowledge production 
was clear and the problem (i.e., optimization) well-defined. As with the predict task, 
however, only a pragmatic understanding of each social system was required to gen-
erate high quality prescriptions.

Our experience with the prescribe task during each phase of the GT project 
again led us to conclude that the types of knowledge generated during each phase 
were loosely coupled, at best. Identifying the optimal timing and implementation 
of prescriptions for each social system did not require a complete understanding 
of its causal structure. It also did not necessarily require high predictive accuracy, 
only high impact prescriptions leading to the best outcomes possible. The latter was 
illustrated in Urban World during Phase 3 when efforts to develop an accurate pre-
dictive model of the simulation fell short of our expectations, yet we had sufficient 
knowledge of the world to develop effective prescriptions based on little more than 
logic and basic estimates regarding the relative efficacy of each type of prescription 
available.

Other epistemological issues came to the fore during the GT project, such as what 
constituted ground truth and how to evaluate it, but we have organized our experi-
ence by task since each task had unique requirements that led to fairly discrete forms 
of knowledge production. Performing well on each task required a slightly differ-
ent type of knowledge. Due to the fast-paced nature of the GT project, these differ-
ences manifested in our problem solving (i.e., knowledge production) strategies. As 
noted, the epistemological approaches used for each task were only loosely related: 
explaining the social system had marginal benefit for predicting behavior, and pre-
dicting behavior had marginal benefit for developing an optimal set of prescriptions. 
While fine-grained causal information mostly distracted from the largest factors 
impacting outcomes of interest, knowing the largest factors impacting outcomes of 
interest mostly distracted from the relative impact of each potential intervention and 
thus the task of formulating an optimal portfolio of interventions.

Our experience with epistemological issues during the GT project suggests three 
possible lessons learned of use to an array of stakeholders ranging from non-profit 
organizations to academic researchers to public office holders. First, understanding 
a social system is not the same as learning about a social system. It is possible to 
learn more than enough about a social system to accurately predict behavior and 
generate effective policy prescriptions without a thorough understanding of the sys-
tem as a whole. Yet this pragmatic focus, which creates a natural scope condition 
for data collection and analysis, can miss pivotal features of the system while still 
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performing well on predictive/prescriptive tasks. Our tentative conclusion is that 
the need to balance holistic understanding with pragmatic inquiry emerges precisely 
because the knowledge produced by each strategy speaks to different epistemologi-
cal goals. Alternatively, it is possible that real world social systems exhibit more 
tightly coupled relationships between these goals, as in cases of heterogeneous treat-
ment effects that imply a more complex set of causal relationships than originally 
assumed when designing an intervention.

A second lesson learned was that knowledge production in an academic set-
ting, specifically quantitative research in the social sciences, often, but not always, 
focuses on marginal improvements in our understanding. This focus means an aca-
demic mode of inquiry, which involves the demonstration of new social objects, 
forces, or relationships, will tend to be less effective at generating policy relevant 
findings. It is not that scholars lack the tools to produce such findings, but that the 
epistemological goal of social science differs from that of policymaking. However, 
pragmatic and holistic approaches to policy development and implementation are 
not antithetical to the practice of academic research insofar as scholars can demon-
strate that their marginal improvement in our understanding has a substantive effect 
on outcomes of interest. In fact, this approach is often adopted as a model for evi-
dence-based policymaking and major grantmaking organizations often demand that 
proposals explicitly identify concrete implications for policy (e.g., through requiring 
randomized clinical trials of interventions).

A final lesson learned was that, even if knowledge produced by quantitative 
academic researchers in the social sciences has identified the primary causal rela-
tionships associated with an outcome of interest, it is very difficult to uncover this 
information for reuse. To find and apply this work requires not just methodological 
competency (e.g., ability to distinguish between high quality and low quality stud-
ies) but also (a) domain knowledge of the field/sub-field and its internal debates, 
(b) willingness to identify and attempt to overcome disciplinary biases both in the 
field/sub-field and as individuals, and (c) access to diverse sources of research, 
including not just a wide range of peer-reviewed journals but also respected, if infor-
mal, repositories for research, such as the National Bureau of Economic Research 
(NBER) working papers, and high quality studies produced by non-academic insti-
tutions run by academic researchers. The amount of time and energy necessary to 
effectively search the literature is thus prohibitive even for the best trained, most 
well-read social scientist, suggesting that devolving that burden onto policymakers, 
which is often the tacit strategy of social science, is unrealistic. In fact, our expe-
rience with the GT project suggests that the inability for social scientists to move 
beyond their own disciplinary biases can lead to significant wasted time and effort 
when those biases strongly suggest a course of action inapplicable to the situation at 
hand.
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3  Methodology

With the ontological and epistemological issues above in mind, we now turn our 
focus to methodology. It was expected that methodological issues would be both 
prolific and highly productive. We found this to be true but not always in ways we 
anticipated. The variety of approaches employed reflected a diversity of perspectives 
about which methods might be most applicable in each world during each phase and 
task. While not always followed, we found the strategy of working backward from 
the goal of each task helpful for constraining the set of methods to be tested. When 
we found a particular method was useful in one world/phase/task we often attempted 
to deduce its relevance in another world/phase/task. Before discussing an example 
of each strategy, it is useful to review both the variety of methods applied and the 
immediate methodological issues they often raised.

During the GT project, members of our team applied a menagerie of methods 
ranging from information visualization and bespoke Google queries (e.g., number 
of webpages on which a pair of Conflict World labels appeared) to standard sta-
tistical models to machine learning approaches for agent-based models of complex 
systems to emerging artificial intelligence techniques to simple searches of the 
Internet. These included geographic information visualization, correlation, linear 
regression, logistic regression, Shapley regression, Granger causality estimation, 
auto-regression and time series analysis, sparse regression, survival models, markov 
models, clustering, Bayesian graphical models, decision trees and random forests, 
ensemble methods (e.g., boosting, bagging), support vector machines, k-nearest 
neighbors, Hawkes process analysis and simulation of spatially interdependent point 
processes with probabilistic finite-state machines, agent-based models, probabilistic 
programming models (Wood et  al. 2014), along with a wide array of deep  learn-
ing approaches from standard, feed-forward artificial neural networks (Fine 2006) 
and recurrent neural networks (Rumelhart et al. 1986), to auto-encoders (Hinton and 
Salakhutdinov 2006), sequence-to-sequence neural networks (Sriram et  al. 2017), 
graph convolutional networks (Kipf and Welling 2016), theory of mind neural net-
works (Rabinowitz et al. 2018), and world models (Ha and Schmidhuber 2018). We 
also used network analysis (Wasserman and Faust 1994) and methods for analysis 
of GIS data when applicable. Choice of method was, ideally, based on its suitabil-
ity to a particular task and/or form of data. We first review general approaches to 
method selection and their efficacy before discussing three approaches that showed 
the most promise—Granger causal networks, probabilistic programming, and neural 
networks.

Given the varied backgrounds of team members, bias towards particular hab-
its in problem solving sometimes led to (over)-reliance on a favored method. For 
example, regression analysis and clustering algorithms were commonly employed if 
only because they were familiar tools for exploring unfamiliar data. This meant that 
choice of method was not always ideal given the task/data, but the relative suitabil-
ity of a method would often quickly become apparent. One clear case of this situa-
tion was when we attempted to study a social network in Urban World with more 
than 1000 nodes using exponential random graph models (ERGMs) only to find one 



209

1 3

Does big data serve policy? Not without context. An experiment…

of the most robust packages for studying ERGMs struggled to estimate even sim-
ple properties of the network (Handcock et al. 2008). Conversely, there were times 
when clustering algorithms outperformed more refined models based on our work-
ing understanding of the social system. In this regard, pragmatism was the rule and 
deliberate planning the exception.

Related to bias in habits of problem solving, domain specific knowledge 
affected both the collection and interpretation of data. Each world tended to 
encompass an overarching set of social processes that could be described in suc-
cinct and coherent terms. For example, we came to understand the first simu-
lation as Urban World because it involved agents living in a geographic space 
and moving between points within this space to achieve a variety of goals, in 
the process entering and exiting sites where they performed actions according 
to site type. This conception arose out of our team’s intuition about the features 
within the simulation and their relationship to each other. In response, analysis of 
Urban World was primarily left to an expert in GIS methods and an urban soci-
ologist. However, the Urban World simulation team was primarily composed of 
geographers.

The result was that Urban World was aptly named, and this heuristic often helped 
us to intuit the existence of basic features, but that differences in domain expertise 
between geography and sociology led to focus on different social processes. This 
disparity was most evident in the fact that agents did not directly pursue relation-
ships with similar agents but formed relationships with similar agents by seeking out 
sites of shared interest where they could then meet and, potentially, form a friend-
ship. The former is foundational in sociological understandings of friendship forma-
tion (McPherson et al. 2001), while the latter is foundational to geographic under-
standings of travel patterns (Liu et al. 2015). To grossly exaggerate this distinction, 
we might say those who built “Urban World” viewed it as a social system where 
people often focused on the process of choosing where to go next while our team 
viewed it as a social system where people often focused on the process of choos-
ing friends. Misalignment in domain expertise, in this case, taught us an impor-
tant lesson: Similar understandings of a social system can be equally grounded in 
empirical research but methodological strategies aligned with the ground truth (i.e. 
a geographic perspective on urban social systems) may better catalyze knowledge 
production.

This illustrates and underscores the No Free Lunch theorems in machine learning 
proved by David Wolhpert and William Macready (Wolpert and Macready 1997), 
which “state that any two optimization algorithms are equivalent when their perfor-
mance is averaged across all possible problems” (Wolpert and Macready 2005)—or 
all possible worlds. If a method works well in some social world, it will work poorly 
in another. Our understanding and methodological strategies worked well when they 
aligned, and poorly when they did not.

An alternative to applying domain specific knowledge to study a social system is 
to adopt a Bayesian approach to knowledge production. Specifically, domain exper-
tise generates strong priors about the form and function of a social system, but it is 
always possible to consider semi-informative priors to tentatively adopt then test. 
A significant amount of basic analysis involved this kind of work. This often meant 
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iterative testing of relationships between features of each social system with basic 
constraints on what relationships were thought to be possible. We found that this 
could produce results where all features were related to all other features but, when 
the approach was properly specified, could also help advance our understanding of 
each world significantly.

While making too many assumptions could prove problematic and systematically 
testing a set of assumptions could prove useful, a third methodological strategy was 
to begin from the tabula rasa of no (or as few as possible) assumptions about each 
social system. Methods that embody this strategy were highly data driven, which 
translated into a need for high levels of technical expertise unrelated to social sci-
ence. Under the circumstances, these methods often showed the most promise for 
use in social science research precisely because they were not beholden to relation-
ships we expected to find and focused on uncovering or modeling the relationships 
we did find in the data. This strategy was especially useful given the ontological 
issues we faced.

For example, we explored whether we could construct causal predictors from 
observation sequences of variables alone. Designing an efficient causality test, that 
may be carried out in the absence of restrictive presuppositions on the underlying 
dynamical structure of the data at hand, is non-trivial. Nevertheless, ability to com-
putationally infer statistical prima facie evidence of causal dependence may yield a 
far more discriminative tool for data analysis compared to the calculation of simple 
correlations. On this line of thought, we devised a non-parametric test of Granger 
causality for quantized data streams realized from the variations of the observed var-
iables in the world simulations.

In contrast to state-of-the-art binary tests, this approach computes the degree of 
causal dependence between data streams, without making any restrictive assump-
tions, linearity or otherwise. Additionally, without any a priori imposition of spe-
cific dynamical structure, we were able to infer explicit generative models of causal 
cross-dependence, which may then be used for prediction. These explicit models 
are represented as generalized probabilistic automata, referred to crossed automata, 
and are shown to be sufficient to capture a fairly general class of causal dependence 
(Chattopadhyay 2014). The proposed algorithms are computationally efficient in the 
probably approximately correct (PAC) sense (Valiant 1984); i.e., we find good mod-
els of cross-dependence with high probability, with polynomial run-times and sam-
ple complexities. The causality network inferred from this dataset revealed non-triv-
ial relationships, and laid the groundwork for such deep data-driven interrogation of 
complex social phenomena in the future, particularly in situations where sequential 
observations on many interacting variables are available.

Another data driven approach that enabled the explicit incorporation of social 
theoretical intuition was probabilistic programming (e.g. Salvatier et al. 2016). Prob-
abilistic programming languages (PPLs) allow stochastic elements to be included in 
deterministic models by treating statistical distributions as objects on which we may 
perform basic logical/mathematical operations. This functionality further allows us 
to create a generative model of behavior within which we may embed prior informa-
tion about the social system (Goodman et al. 2012). For example, a Bernoulli ran-
dom variable, such as a coin toss turning up heads, may determine whether a person 
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in Urban World contracts a disease given exposure, and the severity of the disease 
for that person represents a second random variable, perhaps normally distributed 
such that it typically causes discomfort and the potential to infect others but not last-
ing disability. In extreme cases, however, the disease may cause death, or spread 
much more rapidly than normal, like COVID-19 at a super spreader event (Althouse 
et  al. 2020). Within a PPL framework, the coin toss determines whether the dis-
ease is passed then contraction itself has a chance  (e.g., based on a different  sta-
tistical distribution) of leading to transmission and loss of health or loss of life. If 
we wanted to understand the effect of contraction on severity and transmission, we 
would observe the distribution of these events, conditional on one another, then tune 
the probabilities of our program in order to generate the appropriate distribution of 
outcomes, which would later be available for us to determine whether or not a new 
disease had emerged from the same “world” as the last.

Within the GT project, early stages of Power World used PPL as a means to 
answer questions about patterns in the data, trying to support or disprove potential 
hypotheses about the way the world works  (e.g., “Does the team with the highest 
productivity always win conflicts?”). A sketch of the overarching structure of the 
world was built using information provided in briefings and communiques. We knew 
the general outline of the program we were modeling but only general things about 
what happened at distinct points in time. We hard-coded the things we did know and 
set a parameterized distribution over the space of programs consistent with behavior 
expected at the unknown regions. PPLs are able to search this space of programs 
(i.e., potential worlds) to find the one most consistent with observed data.

Many of the hidden processes we wanted to model, such as conflict between two 
groups, had binary outcomes. To figure out which features contributed to a given 
outcome, we mapped each state of each feature to a value and then used linear 
combinations of these values to produce the weighting of a coin, the flip of which 
stood-in for the process we were modelling. This approach of searching through the 
space of weights for factors helped guide data analysis. For example, if the inferred 
program for determining outcomes for group conflicts weighed group sizes heavily, 
then we would know to try to look at the data to see if indeed a large group size was 
reported shortly before a conflict and whether it was correlated with victory. Once 
features had been narrowed down to  those contributing most strongly to certain out-
comes, we could hand-craft competing models that only considered those features.

PPLs iterate over a “program trace” (Cusumano-Towner et al. 2019) or snapshot 
of various states during the execution of a probabilistic program. However, our pro-
gram was written such that it could also provide us with a likelihood of actually 
observing a particular trace. Given that we know that at a particular time the target 
system was in a particular state, we could force our program to make those same 
choices and change any other unconstrained choices in our program such that it 
maximized the likelihood of the observed data. One such choice might be the weight 
given to a particular feature.

The challenge arises when trying to propose a new value for a particular choice, 
especially when choices are tightly coupled. If a change we proposed to a variable 
made the trace less likely we were cautious about accepting it. One simple but com-
mon problem occurred when variable A only takes on a particular state when the 
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states of variables B and C agree (i.e., correlate). It is possible to detect such cases 
and handle them appropriately with PPLs, but it currently requires explicit knowl-
edge of the underlying system as well as expert-level understanding of the MCMC 
algorithms employed. Furthermore, under certain conditions, probabilistic programs 
are guaranteed to converge, but they are not guaranteed to converge quickly. Rea-
sonable convergence time comes down to well-designed model spaces informed by 
knowledge of the target system. In this regard, PPLs may be well-suited to doing 
social science in domains where experts are readily available, well-informed, and 
forthcoming about plausible and implausible mechanisms of behavior.

A final promising methodological approach we found for studying agent behavior 
was deep learning in general, and graph convolutional networks (GCNs) in particu-
lar (Kipf and Welling 2016). GCNs are a subset of graph neural network (GNN) 
models that characterize nodes by including features of neighboring nodes (Wu 
et  al. 2020). We also tested the efficacy of attention-based approaches, weighting 
neighboring nodes according to their “importance” for ego nodes. To capture the 
time-varying nature of the networks involved we explored the use of long short-term 
memory (LSTM) propagation for constructing successive GCNs over time (Hochre-
iter and Schmidhuber 1997), one of many ways GNNs can be constructed to suit 
specific use cases (Zhou et  al. 2018). Finally, we tested an approach to dynamic 
graphs (EvolveGCN) designed to reduce computational complexity by focusing 
on temporal dynamics over node representations (Pareja et al. 2020) and the use of 
hyperbolic GCNs that preserve scale-free or hierarchical graph structures (Chami 
et al. 2019). The most salient use case for these approaches was Urban World, where 
all three phases/simulations included multiple dynamic social networks in the form 
of friendships, work relationships, and site co-location.

In essence, GNN methods assign latent states to graph nodes by embedding these 
nodes in a geometric space. GCNs assign latent states based on the states of a node’s 
neighbours (identified from an adjacency matrix) and can be propagated using an 
LSTM-like mechanism. Indeed the aforementioned methods seem to adequately 
capture the structure of social science problems in question: Agents can be repre-
sented by nodes, their associations by edges, and time evolution corresponds to the 
evolution of agents’ states. These approaches seemed a natural fit during, for exam-
ple, Phase 3 of Urban World where tasks focused on understanding, predicting, and 
intervening in disease transmission networks. For instance, we expected that the 
embedding of agent features using latent states would prevent human bias in feature 
selection while still retaining maximal information.

However, these methods only partially solved the problem of disease evolution 
because almost all focus either on node state prediction or link prediction separately. 
Only the EvolveGCN framework purported the ability to do both simultaneously, 
but this feature was novel and its implementation brittle. In the case of these syn-
thetic worlds, many types/levels of associations existed: node states had discrete 
properties, and we had to predict the evolution of the whole system, not just the 
state of nodes, for example. All of these are complications we believe had yet to be 
addressed by methods at the time but represent ready targets for the future.

Perhaps the most notable aspect of applying GCNs in the GT project was their 
persistent inability to reproduce macrosocial properties of social systems based on 
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microdata. That is, disease transmission is a fundamentally network-based process 
and so we expected GCNs to perform well when modeling the variety of factors 
influencing this process. However, we were never able to reproduce the accuracy 
obtained from applying simple compartmental models of disease evolution, such 
as the susceptible, infected, and recovered (SIR) model. These models consist of 
basic differential equations whose parameters determine the overall distribution of 
disease states within the population at an aggregate level. We expected that GCNs 
would at least be able to reproduce (if not improve on) compartmental models but, 
despite significant effort, we found that they could not. Given the structural similar-
ity between the GCN architecture and network-based mechanisms of disease trans-
mission we are forced to conclude that either (a) our implementation of GCN was 
conceptually flawed, or (b) the use of GCN fails to capture a fundamental property 
of network evolution. We discovered later that disease spread in Urban World was 
modeled with SIR-like models and so our models may have been too precise for 
the coarse-grained spread of disease in data. In either case, GNNs (and especially 
GCNs) appear to be a promising new method for network analysis in the social sci-
ences but may require further development before scholars can realize their full 
potential in complex social settings.

The methodological issues we faced during the GT project suggested three basic 
lessons learned. First, the level of analysis and type of social process involved are 
critical for selecting the appropriate method. This lesson is almost remedial in 
nature given that it amounts to a reminder to select the right tool for the right job. 
However, the second lesson was methods that may seem intuitively applicable can 
fail spectacularly (e.g. GCNs), but that openness to alternative approaches can allow 
for a process of self-correction. Sometimes the latest and greatest method seems like 
it should work but does not, and that failure to perform as expected can be use-
ful for thinking about less complex but similarly applicable methods with a proven 
track record and which still embed unarticulated understandings about the world in 
question. Finally, we learned that imperfect knowledge about a social system can be 
good enough to find effective methods. Beginning from a tabula rasa typically does 
not imply beginning from a state of total ignorance. Rather, acknowledging some 
level of ignorance can help guide the use of methods that have few if any assump-
tions and may thus “enlighten” our thinking about a problem.

4  Discussion

The ambitious DARPA Ground Truth project led to the simulation of four social 
worlds in which social science could be evaluated in silico. Because these worlds 
were based on simulations, simulation teams knew the causal ground truth—they 
had designed the programs themselves—but the research teams did not. Our experi-
ence attempting to crack puzzles of these worlds reinforced what AI pioneer Allen 
Newell stated about research: “You can’t play 20 questions with nature and win” 
(Newell et al. 1972). And we couldn’t play 20 questions about in silico social worlds 
and win consistently. Stochastic elements of the simulations resulted in a Bayes 
error rate or irreducible error far greater than 0, and natural limitations on certain 
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forms of data gathering like ethnography and other qualitative methods in the in 
silico setting were awkward and limited the context research teams were able to 
achieve. Nevertheless, we and the other research teams were able to do better than 
random change on most tasks in most phases, and we improved over time and with 
additional data. Moreover, by confronting tasks with distinct ontological, epistemic 
and methodological requirements, we gained deep insight into the limits of quantita-
tive social science, especially with respect to informing social policy.

Faced with unfamiliar simulated worlds, we struggled to identify their underly-
ing ontology. This highlighted the crucial role of grounded, qualitative insight from 
insider views of any social system, which cannot not be substituted with quantitative 
censuses or digital trace data. Why? Because data labels did not provide enough 
context. They became boundary objects, passed from simulators to researchers 
through T&E without a shared certainty of reference. This was not a flawed prop-
erty of the GT program but reflects the limits of ungrounded quantitative social sci-
ence—data science—where variable names disseminate with interpretations that 
shift with context.

Without a tighter sense of not only the ontology of GT worlds, but what was sali-
ent, we struggled to construct experiments despite their availability as a sanctioned 
data gathering approach because, until the end, we did not know which critical fac-
tors to vary, holding others constant. This underscored the challenges of problem 
solving under conditions of extreme existential uncertainty that contribute to many 
complex societal challenges. The policy relevance of quantitative social science is 
also conspired against by the current epistemic  standard for publication. Demon-
stration of novel entities and causes is expected in science, but this narrow exhibi-
tion can work against the ability to make meaningful interventions on problems and 
propose robust policies—from above or below.

Finally, we attempted to use a vast menagerie of methods. Some of the most 
promising emerging methods included detailed bespoke descriptive data analysis, 
probabilistic programming, deep neural networks of many flavors, and systems of 
predictive probabilistic finite state machines, which we developed alongside robust 
statistical and machine learning approaches to supervised and unsupervised learn-
ing. Through this exploration, we learned that imperfect knowledge about the most 
important factors can be sufficient to generate robust predictions and policies. More-
over, applying competing approaches via distinct subteams, including at one point 
the vast  TopCoder.com global community of program solvers, enabled us to dis-
cover relevant structure underlying worlds that singular investigators and methods 
could not.

Collectively, these lessons suggest how different a policy-oriented quantitative 
social science would be than the quantitative social science and data science most 
commonly practiced to date. Data science and quantitative social science that serves 
policy will need to endure more failure, sustain more diversity, tolerate more uncer-
tainty, and allow for more complexity than current institutions are well-positioned to 
support.
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