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Abstract

Many social judgments hinge on assigning responsibility to in-
dividuals for their role in a group’s success or failure. Often the
group’s success depends on every team member acting in a ra-
tional way. When someone does not conform to what others
expect of them, cooperation breaks down. We present a com-
putational model of responsibility judgments for individuals
in a cooperative setting. We test the model in two behavioral
experiments where participants were asked to evaluate agents
acting in a cooperative, one-shot game. In Experiment 1, we
show that participants’ action predictions are consistent with a
recursive reasoning model. In Experiment 2, we show that peo-
ple’s assignments of blame are influenced by both an agent’s
presumed rationality, or adherence to an expected policy, as
well as the pivotality of the agent’s actions, or how close the
situation was to one in which the action would have made a
difference to the outcome.
Keywords: responsibility attribution; theory of mind; recur-
sive reasoning; multi-agent coordination.

Introduction
Imagine that you are a fisherman living in a remote village in
the Amazonian rainforest. Your village survives by trading
fish with neighboring groups who visit each day, and then
distributing the profit amongst all villagers. One morning,
you wake up to find out that the only road into your village
is blocked by three trees that fell during an overnight storm.
Someone needs to clear the road or else your village will be
unable to trade today. You know most of the fishermen are
stronger than you, and certainly strong enough to move the
trees without your help before traders arrive. Since it is in
everyone’s best interest to clear the road, you assume that
the stronger fishermen will clear the road, and you head out
early to fish. When you come back with the day’s catch, you
discover that the road is still blocked. Everyone went fishing
and assumed that someone else would clear the trees. Who’s
to blame?

Assigning responsibility when a team’s efforts go right or
wrong is an essential element of social life. Our goal in this
paper is to propose and test a new computational model for
these responsibility judgments in a cooperative setting. Pre-
vious psychological accounts of credit and blame (Lagnado,
Gerstenberg, & Zultan, 2013; Gerstenberg, Ullman, Kleiman-
Weiner, Lagnado, & Tenenbaum, 2014; Spellman, 1997) have
identified two broad factors as important in evaluating agents
and their actions. The first are person-centric (Gerstenberg
et al., 2014), based on expectations about how people are
likely to act, or norms of how they should act in a given set-
ting. Someone is blamed more to the extent that they failed to
act the way they were expected to. This motivates a consid-
eration of rationality as capturing an agent’s ability to plan
according to an appropriate norm (Johnson & Rips, 2015).
The second are action-centric judgments (Spellman, 1997),

Figure 1: Set-up of three fishermen in a fishing village with a
road blocked by three trees.

based on retrospective evaluations of how much an action
contributed to a good or bad outcome. A specific action re-
ceives more blame to the extent that it made a negative differ-
ence to the team’s outcome.

Our work is in part inspired by Lagnado et al. (2013), who
proposed a specific model for these two factors in the con-
text of team actions with all-or-nothing reward, i.e., the team
either succeeds or fails. They captured action-centric respon-
sibility with a counterfactual measure they called “pivotal-
ity”, and person-centric responsibility with a measure they
called “criticality”. We find that in extending this approach
to cooperative action with graded potential rewards, where
the team can succeed to a greater or lesser extent, both of
these notions have to be generalized. Pivotality is relatively
straightforward; in the example above, only the strong fish-
ermen were pivotal, because only if they had chosen to clear
the road would the outcome have been different. The most
interesting new contribution of our work is in assessing the
person-centric aspect of responsibility. We find that rational-
ity, or the assumption that your teammates will do what you
expect them to do, influences people’s responsibility judg-
ments.

Intuitively, rationality is a key component of blame attribu-
tion for many everyday cooperative tasks. If you are distribut-
ing bonuses to employees at an investment firm, you may not
want to give as much money to a broker whose strange de-
cisions cost the company revenue. A coach who made a bad
call instructing the quarterback to pass the football instead of
running it up the field might be blamed more for the team’s
failure than the receiver who didn’t catch the ball. To illus-
trate the importance of rationality in our fishermen example,
imagine once again you see three trees blocking the road. In
this life, you are strong, so you could either go clear all three
trees, or collect three fish sacks. Your two friends Arnold and
Bob, however, are weaker. Bob can either clear one tree from
the road, or collect one fish sack, while Arnold can clear two
trees, or collect two fish sacks (see Figure 1). Because you
know that neither of your friends is strong enough to clear the



road themselves, you choose to go clear the trees and expect
your friends will go fishing. However, when you get to the
road you find that Arnold is also there, and it’s too late now
for him to go fishing. The road is cleared at the end of the
day, but your village ended up trading only one fish sack (that
Bob collected). Arnold’s choice didn’t cause the group to
fail, but it nevertheless turned out to have been a bad choice.
What matters here is not just the pivotality of each action in
hindsight, but also each agent’s rationality at the stage when
the actions were planned. If Arnold had reasoned similarly
to you, he would have realized that you would clear the trees,
and therefore he would have gone fishing. It was therefore
his inability to predict the actions of the other agents in the
group and plan accordingly which led to the group receiving
less than the ideal outcome.

The remainder of the paper is organized as follows. We
first develop and experimentally verify a model of how agents
in this coordinative, one-shot game should act under various
configurations of fishermens’ strengths and number of trees.
We then show that both person-centric rationality and action-
centric pivotality are important aspects of blame attribution
when the fishermen are not able to achieve their optimal out-
come. Finally we suggest follow-up experiments to test the
sensitivity of human judges to optimality, as well as investi-
gations of credit attribution and how judgments change over
time when there are repeated interactions between fishermen.

Computational Models
We use the experimental paradigm outlined in the introduc-
tion and consider three fishermen (A, B and C) living in
the village. They live far away from each other, each near
a pond in which they can fish. There is also a road en-
tering the village which is blocked by either one, two or
three fallen trees (referred to as T = 1,2,3). The fishermen
each have an associated strength (between one and three, re-
ferred to as S(A), S(B) and S(C)) which corresponds to how
many sacks of fish they can obtain from one day of fishing,
or the number of trees they can clear from the road. The
scenario from Figure 1 would therefore be represented as
T = 3,S(A) = 2,S(B) = 1,S(C) = 3. At the end of the day,
if the road has been cleared, the fishermen equally distribute
the money earned from the fish sacks they have collected. If
the road is not cleared, they receive nothing.

We first develop two possible models of rational action se-
lection for a fisherman in this paradigm. After discussing the
models of rational action, we consider two models of pivotal-
ity, and suggest that blame judgments are related to violations
of expectations as well as pivotality considerations.

Model of action
In a purely cooperative coordination game, individuals should
attempt to find an optimal strategy to maximize the expected
reward of the group (Schelling, 1980). If there is only one
way for the group to succeed, and you know all group mem-
bers are rational, you can choose your action without worry-
ing about what the others will do. However, when there is

more than one way for the group to get the optimal reward,
and these have conflicting strategies for each agent, the choice
is less clear.

Recursive reasoning with soft-max We model the uncer-
tainty in this decision making process by considering rational
agents who each try to best respond to their companions at a
level k depth of reasoning (Yoshida, Dolan, & Friston, 2008).
We can then define the probability of a fisherman i taking ac-
tion ai at a depth of reasoning k according to a soft-max on his
expected reward for action ai. This involves two steps: first
calculating the probabilities for the actions of the other agents
at a level k−1, and then choosing a response that maximizes
your own expected reward under these probabilities:

pk(ai) =
exp(βr̂k[ai])

∑
ai∈actions

exp(βr̂k[ai])
(1)

r̂k[ai] = E−ik−1 [R|ai] (2)

pk(ai) is the probability, at level k, that fisherman i should
take action ai. R is the reward table describing the number of
fish sacks sold by the fishermen under each combination of
actions. R|ai is then the subset of rewards where fisherman i
took action ai. r̂k[ai] is the expected reward at level k of ac-
tion ai, calculated using pk−1[a−i]. Finally, β is a rationality
parameter describing how likely the agent is to choose a ran-
dom action (with β = 0 being completely random, and β>> 1
corresponding to always choosing the action which gives the
maximal expected reward).

Alternative uniform choice over optimal strategies A
reasonable alternative model might be to consider agents who
choose an action uniformly from those which might lead to
an optimal reward. In the case T = 3, S(A) = S(B) = 1, and
S(C) = 2, this model would predict a 50% likelihood for fish-
erman A to clear the trees and a 100% likelihood for fisher-
man C to clear the trees. Here, there are two sets of actions
leading to optimal reward: fisherman A fishes while B and C
clear the road, or fisherman A and C clear the road while B
fishes. In both situations, fisherman C must clear the road,
and so his action is clear. However, for fisherman A, there
is one scenario in which he should fish, and one in which
he should clear the trees, so this model predicts that he will
choose either action with 50% likelihood.

Model of blame
Now that we have a model for how agents should choose an
optimal action in a given scenario, we define the “rationality”
aspect of blame as an expectation violation. Mathematically,
this is 1 - p(ai), one minus the rational-action probability of
the action ai that the agent took (fishing, or clearing the road).
When it was perfectly clear what action an agent should have
chosen (p(a f ish) = 1 for example), then the agent should re-
ceive full blame if he cleared the road, and 0 blame if he went
fishing. However, this model completely lacks any consider-
ation of the other agents’ actions. In hindsight, perhaps one



of the fishermen made the wrong choice but it didn’t matter,
because another fisherman also made a bad choice. However,
if the other fishermen made the right choices, and only one
did not (and he cost the group a lot!) then he may be seen
as more to blame. For example, consider the case of T = 2,
S(A) = S(B) = 1 and S(C) = 3. Imagine first that fisherman
C goes fishing, and fisherman B goes to clear the trees. We
may blame fisherman A more for fishing than we would have
if fisherman B had also gone fishing. This is captured by the
pivotality measure discussed briefly in the introduction. The
pivotality of a person’s action for a specific outcome in a sit-
uation is defined as:

Pivotality =
1

N +1
(3)

where N is the minimum number of other agents whose ac-
tions need to be changed to make the reward outcome coun-
terfactually dependent on the fisherman in question. In cases
where the fisherman made the right choice, but his colleagues
failed to do so, pivotality would be 0. A fisherman’s pivotal-
ity would be 1 if he needed to act differently for the group to
receive a reward.

In our scenario, there are discrete rewards, rather than
merely binary as in Lagnado et al. (2013). We therefore
looked at two modifications to this structural pivotality mea-
sure: a distance to the closest optimal strategy, or a distance
to the closest strategy where any reward was received.

Distance to optimal Pivotality is measured as the distance
to the closest optimal strategy.

Pivotalityoptimal =
1

Noptimal +1
(4)

Consider the case where T = 3, S(A) = 2, S(B) = 1, and
S(C) = 3. This configuration has two strategies leading to
maximum reward: either both fisherman A and fisherman B
clear the trees while fisherman C fishes, or fisherman C clears
the trees while fishermen A and B both fish. Now consider the
scenario when only fisherman A went to clear the trees, while
both fishermen B and C fished. In this case, the closest opti-
mal strategy is the one in which fisherman B changes his ac-
tion to clear the trees. Therefore, the pivotality for fisherman
A is 0 (in the closest optimal world, he should have done what
he did), while the pivotality for fisherman B is 1, and for fish-
erman C is 0 (like A, his action in the closest optimal world is
the same as his actual action). If fisherman C had also chosen
to clear the trees, then the new closest optimal strategy would
be when fisherman A’s action is switched, leading to pivotal-
ity scores of 1 for fisherman A, 0 for fisherman B, and 0 for
fisherman C.

Distance to any reward In this version of pivotality, in-
stead of considering the closest optimal strategy, we consider
any strategy in which the agents would have received some
reward.

Pivotalityany =
1

Nany +1
(5)

(a) Experiment 1. Participants were asked to judge fisherman A’s
best action.

(b) Experiment 2. Example image for blame attribution. Underneath
the image is the textual representation of this scenario.

Figure 2: Example images from the two experiments.

Consider the scenarios laid out above for optimal pivotality
(for T = 3, S(A) = 2, S(B) = 1, and S(C) = 3). In the first
case where fisherman A clears the trees, fisherman A would
still have pivotality 0, but both fishermen B and C would have
pivotality 1 (because either of them could have acted to ob-
tain reward). In the second case where fishermen A and B
clear the trees, everyone would have pivotality 0 because they
received a nonzero reward (and therefore their policy was sat-
isfactory). This model effectively downweights the blame for
agents in any situation where they received reward, and heav-
ily penalizes stronger agents in cases where a weaker agent
(or combination of weaker agents) should have gone to clear
the trees (like the T = 2, S(A) = 1, S(B) = 1, S(C) = 3 case,
where fisherman C could have cleared the trees to obtain a
suboptimal reward).

We will discuss four models of blame attribution which
differ in terms of what aspects they consider: rationality
alone, optimal reward pivotality alone, any reward pivotality
alone, and a linear mixture of rationality and optimal pivotal-
ity given by a weight w.

Experiments
In the first experiment, we asked participants to judge which
action fisherman A should take on a sliding scale from “Def-
initely fish” to “Definitely clear road” (see Figure 2a). They
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(a) The soft-max recursive rea-
soning model (k = 2, β = 1.5).
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(b) Uniform action selection
from optimal strategies.

Figure 3: The two models of action selection for Experi-
ment 1.

were given a tutorial explaining the fishermen’s situation
(similar to the introduction of this paper), and asked to an-
swer some comprehension checking questions. We generated
different situations by considering all unique permutations of
1-3 trees and three fishermen with strengths 1-3, leading to 54
different scenarios. Participants were then shown a randomly
selected subset of 27 of these. 50 participants were recruited
through Amazon Mechanical Turk, giving 25 judgments for
each trial.

In the second experiment, we asked participants to judge
how much each fisherman was to blame for the group’s failure
to get the best possible outcome (see Figure 2b). The actions
of the fishermen were represented as arrows either towards
their pond, or towards the trees on the road. Participants were
additionally shown the number of fish sacks which the fish-
ermen actually collected, as well as the best possible number
they could have collected, next to the image. The blame for
each fisherman was assessed on a sliding scale from “Not at
all” to “Very much”. Participants were additionally required
to go through an introductory tutorial, answer comprehension
testing questions, and give optimal strategies for 7 example
scenarios (of which they needed to answer 6 correctly to con-
tinue).

Since there are many possible combinations of strengths,
trees, and choices, we selected only a subset of trials falling
into 4 distinct categories. The first category consisted of those
trials where all agents chose to go fishing. These were cho-
sen by ordering trials according to participants’ average judg-
ments from Experiment 1, and then selecting every fifth el-
ement of the resulting ordered list, leading to 10 such trials
(Figures 6a, 6d, 6e and 6j). The second category consists of
12 scenarios in which at least one fisherman went to clear the
trees, but the fishermen failed to collect any reward, and this
was due to their collective failure to clear the fallen trees (see
Figures 6f and 6h). For comparison, we also included 8 cases
where no fishermen cleared the trees.

The third category includes 15 cases in which the amount
of reward received was non-zero, but sub-optimal, and it was
not clearly one agent’s fault (because there were multiple best
responses, like in Figures 6b and 6c). Finally, the fourth cate-
gory also consisted of 18 cases with sub-optimal reward out-
comes, where the action of one agent in the group was more
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Figure 4: Four models of blame attribution across all 140 fish-
ermen scenarios
clearly incorrect. This category also included intriguing cases
such as those where everyone made the incorrect choice, but
some reward was still received (like in Figure 6k).

During the experiment, participants were shown 21 out of
the 63 total trials. We recruited 60 participants through Ama-
zon Mechanical Turk to participate in this study, leading to
20 judgments per trial.

Results
We first used the data collected in Experiment 1 to determine
which model of action selection best predicts participants’
judgments. In order to account for individual subjects in-
terpreting the slider’s values differently, we z-scored within
subjects before averaging and comparing to the model pre-
dictions.

As seen in Figure 3, both models fit the participant data
well with respect to the correlation coefficient. However,
the uniform action selection over optimal policies model has
some large outliers. These outliers correspond to situations
such as T=3, S(A)=3, S(B)=1 and S(C)=2, where there are
two optimal policies, but one of these requires less coordina-
tion by the fishermen to clear the trees. In this case, the uni-
form optimal policy model would say that fisherman A should
clear the trees only 50% of the time. However, the recursive
reasoning model suggests that he should clear the trees 93%
of the time under the fitted parameters. Participants state that
fisherman A should clear the trees 82% of the time. The dif-
ference between the predictions of these models results from
the importance of reasoning about other agents when cooper-
ation is key. Fitting the recursive rationality model to the z-
scored participant data using a least-squares regression yields
a value for k of 2 and β of 1.5.

As the main contribution of this work, we assess the impor-
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Figure 5: Four models of blame attribution across those cases
where no reward was received.

tance of rationality and pivotality for blame attribution when
the fishermen do not collect the optimal reward. There are
63 separate scenarios where all fishermen are judged by a
participant for a given trial. In total this yields 140 unique
judgments of fishermen, for which we have 20 data points
each. As in Experiment 1, we z-scored the data on the level
of individual participants before averaging their judgments.
All model fits were done using a coarse-grained search for
k, β and w where appropriate minimizing the residuals from
a linear regression between the z-scored human data and the
model predictions.

Scatter plots of model predictions and participants’ aver-
age judgments for four versions of the model are shown in
Figure 4. The rationality model has two fitted parameters: k
and β. With k = 2 and β = 1.9, the best-fitting parameters for
this model are similar to the values found for Experiment 1,
and consistent with the rationality + optimal pivotality model
as well. Neither the optimal pivotality model nor the any re-
ward pivotality model have any fitted parameters, and fit the
data significantly worse than the mixture model. The mix-
ture model has an additional fitted parameter w which corre-
sponds to a linear weighting between rationality and pivotal-
ity (blame = w× rationality+(1−w)×pivotality). The best
fit is w=0.60 using the optimal pivotality measure, suggesting
an almost equal contribution of rationality and pivotality for
blame attribution. Replacing the “optimal pivotality” with the
“any pivotality” yields a worse fit.

In order to determine more precisely what the pivotality
and rationality models individually capture, we looked at sev-
eral representative cases in Figure 6, comparing human judg-
ments to the rationality only, and rationality mixture model
(which were the only models to give graded responses across

the scenarios). The mixture model better accounts for scenar-
ios in which at least one fishermen went to clear the road, such
as those shown in Figure 6f and Figure 6h (see Figure 5 for
fit). Additionally, in highly unusual cases where all the fish-
ermen made bad decisions (such as that shown in Figure 6j),
participants are clearly sensitive to the optimal reward out-
come rather than a suboptimal but fairly good reward. How-
ever, both of the models overpredict how much blame fish-
erman C will receive in Figure 6i. This is likely due to par-
ticipant’s sensitivity to fisherman C being responsible for any
reward being received, which is common across other similar
cases. In this instance, although the pivotality for fisherman
C is 0, the rationality model predicts that fisherman C should
have gone fishing, because he could have reasonably assumed
one of his companions would have cleared the road. There-
fore, the “right” decision for receiving reward was actually
less rational. For many of these scenarios, the “any reward”
pivotality measure is a much better indicator of human blame
judgments, although when considering all cases, it still per-
forms significantly worse than the optimal reward pivotality
measure.

Examining the cases where the fishermen received nothing
due to their inability to coordinate clearing the road yields fur-
ther insights into the importance of pivotality (Figure 5). Un-
der this set of examples, the “any reward” pivotality model’s
correlation jumps from 0.39 (when we considered all trials)
up to 0.70 across only these cases. This relatively high cor-
relation is driven by the endpoints (where fishermen received
either full or no blame). However, combined with the analy-
sis of individual scenarios, it seems that participants are more
sensitive to decisions which would change the reward out-
come to 0 or from 0 rather than some suboptimal but nonzero
outcome. In these trials, the difference between the “rational-
ity only” model and the mixture model also becomes statisti-
cally significant, demonstrating the heightened importance of
pivotality for these cases.

Discussion
Overall, participants find both person-centered aspects (in the
form of rationality based on an expected action), as well as
action-centered aspects (optimal pivotality) to be important
when assessing the blame of agents in a coordinative game.
Unlike previous experiments in responsibility attribution, this
paradigm critically incorporates an agent’s ability to plan an
appropriate action as important for assigning blame. Because
the fishermen aren’t able to communicate with each other,
their planning has to rely on their intuitive theory of how oth-
ers are going to act in the given situation. Our results suggest
that people assume the norm is for each fisherman to reason
in the same way - namely as a recursive model in which each
fisherman tries to model what actions the others will take.

These observations suggest several different directions for
future work. First, we will look at credit attribution when the
fishermen are able to split their work between tree clearing
and fishing, keeping half of the fish they catch for themselves



Figure 6: Mean blame judgments (white bars) and model predictions (gray bars) for a selection of different trials. Error bars
indicate ±1 SEM. Note: Str = Strength of each fisherman; Dec = Decision to go fishing or clear the trees; ideal = ideal reward;
actual = actual reward.

(for example). Second, we will investigate settings in which
some of the agents may have negative intentions, or responsi-
bility attribution from the perspective of an agent with differ-
ent goals from the group (like feeding a very large family).We
will incorporate the insights gained from these experiments
with work on inverse planning for determining agent’s goals
and intentions (Baker, Saxe, & Tenenbaum, 2009; Ullman et
al., 2010), to capture the “person-centric” aspect of responsi-
bility attribution.

In future experiments, we will also look at a wider range
of strengths and trees. Consider the case of T = 1, S(A) = 90,
S(B) = S(C) = 1. Here, the difference between suboptimal
and optimal reward is more extreme than any of the cases
we presented and therefore we may expect a larger range of
responses.

Finally, we will extend the current scenario to consider re-
peated interactions between the same fishermen. Repeated
interactions help to establish norms that can guide future ac-
tion selection (like where the fishermen have settled on a so-
lution with one of two similarly strong fishermen being the
tree-cutter).
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