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Abstract

People often use norms to coordinate behavior and
accomplish shared goal8ut how do people learn and
represent normsPlere, we formalize the process by which
collaboratingindividuals (1) reason about group plans during
interaction, and (2use task featres toabstractlyrepresent
norms In Experiment 1, we test the assumptionswfmodel

in agridworld that requires coordinati@nd contrast it with a
Obest responseO motielExperiment 2, we use our model to
test whether group membersO joint plagniglies more on
state features independent ather agents (landmarkased
features) or state features determinedhsy configuration of
agentqagentrelativefeatures).
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Introduction

From driving to running institutions like the U.S. Postal
Savice, groups need to coordinate their behaviorgo
accomplish shared goaksey tothisis that agents learand
usenorms to guide individual and collgive behaviorBut
how do people (or more generally, hoancany intelligent
agent)represenaind learmorms?

Oneapproach is to treat coordination as emerging throug
the egecentric behavior ofndividual agents For instance,
norms can emerge wheneds haveotherregarding or
alignedpreferences (Binmore, 201@ther approaches use
off-the-shelf algorithms, like Qearning, to show how under
certain reward structures, OsocHilindO  learning
mechanisms caproduce social norm&en & Airiau, 200;
Claus & Boutilier, 1998).More sophisticatedapproaches

allow agentsto model others and best respond to the

predictions of those models. Faxample agents can
recursively reason about one another ignitive
hierarchies (Camerer et al., 2004; Wundet al., 2011).
These computationapproaches geraty make two key
assumptions: First, norms are modeled asergent
behavioral byproducts rather thamtended outcomes of

agentsO learning mechanisms. Second, the space of possible

normsis generally castrained toa small setof singular
actions (e.g.cooperate or defect in Flood and DresherOs
PrisonerOs Dilemmals a result, thewepresentation of a
norm is never distinguished frorhe lowlevel actions that
instantiate th&orm.

Unfortunately,psychobgical researctand intuitionraise
doubts aboutapplying these assumptions to people. For

instance people take a group perspective when choosing
their actions in coordination games usifgeal points
(Schelling, 1960; Bardsley et al., 2010). Similarlprms
like Gurb your dogOseem torely on learned abstract
representationthat are applied flexibly to new situations.
With this in mind, we have formulated a computational
model that incorporates two novel properties:

(1) Agents reasornus if they were parbf a single agent
with joint mental states like beliefs, desirand plans.
For instance, a postal worker does not simpgson

in terms of GintentionsO (e.g. | will bring these letters
to this address), but also in terms of @wtentionsO
(e.g. I will deliver these letters sae can deliver the
mail) (Searle, 1995; Bacharach, 2006).

Norms are represented @sint planning biases that
reflect instructions to perform (or avoid) actions.
Following Biccheri(2006), agents both follow these
instructions ad expect others to as wekormally,
these are featueased reward function®r when an
agent plans actions. This provides a compact
representation for norms thettablegyeneralization.

This modelrepresents a first step towards understanding

ow norms are learned through joint reasoningand
epresented abstractlgspectsof human normearning not
captured in previoukrmulations.

To study how people learn normsve focus onmulti-
state, multiround coordination games. In our tasks, payoffs
are alwag shared and depend omulti-state planning to
reach individual goalsimultaneouslyIn two experiments,
we exanne the extent to whiclour model captures how
peopk learn norms. Experiment 1 compares peopleOs
behavior to ouNorm-Learning modebnda BestResponse
model that plans aicins optimally according to a learned
modelof its partner Experiment 2 uses the Norlrearning
model to examine how people generalize norms across
situations and the extent to which they use landrbasked
or agerdrelative features.

)

Computational Models

Norms are instructions that individuals follow and expect
others to follow. We formalize this noticemd describe how

a group of norrfollowing agentscan converge on norms in
a decentralized anner.



Multi-Agent Decision Making

Markov Decision Processes (MDPs) and Stochastic
Games MDPs modelsingleagent decision making and are
defined by the tupl€! 'A!! IR!: a set of states in the world,
I'; a set of actions the agent can taketransition dynamics,
P which assign a probability of transitioning to a
states' | | after an agent takes actibnl A in state! ! ! ;
and a rewardfunction ! (!'a!s’), which returns a real
valued reward when transitioning to stateafter the agent
has taken actioh in state!'. An agent in an MDP has a
policy (a mapping from states to actions)! ! . An
agentOs policy relates difgcto the value, or expected
future discounted reward, of each staté:(!,)!
Lo e, )1, where! ! [1] is a discount
factor specifying the value of immediate rewards relative t
temporally distant onesiere,! ! 1I" |

To find an optimal policyan agent needs to calculate the
optimal state (! ‘(1)) and stateaction ( '!!!l'1) value

functions Given these functions, the optimal policy can be
derived by taking the action with the highest value:

PR 1"#$19% 1 1] (Sutton & Barto, 1998).
MDPs can be extended to include multiple agents usin
game theoretic tools (Littmard994). A stochastic game iS

of agentsn the environments is the set of states; is the
set of actions for each of the agents withdenoting the
action setof agent!! I; I (I'|!,!1) defines the task
dynamicsby specifyingtransition probabilities given jaint
action, ! ! x;A!, of all agentdaken in state € ! ; and! ' is
a set of reward functions for each agemith ! '(!1111"
denoting the reward received by agéht! whenagents in
state! € S take joint action! €x;4' and the enviroment
transitions to state' ! 1.

where! ' is the transpose offaature weighting vector. This
allows the model to learn thatertain state featurege.g.
being on the rightis preferableduring joint planning

Second, w incorporate the motivational influence of
norms directly into individual agents® reward functions that
are used to calculate a rewargximizing policy. Formally,
for thei-th agent in a community, their total reward function
will combine their privateeward function and a norm bias:

RY(s) = ! ungoea(!) ! ! ras (1!

All agents in the community will have the same norm bias,
I mug , andknow other agentsvill follow it. Thus, norms are

d’oint reward function biass that agents follonand expect

other agents to follow.

Inferring Norms We implementlearning normsas group
inverse reinforcement learning (IRL). In singleagentIRL
one observes aagent behaving in an MDP and based on
those observations infers the goals or reward funcfdhe
agent (Abbeel & Ng, 20Q8Baker et al., 2009).

A Norm-Learning agent attempts to infer the norm that a
groupfollows given some history of group interaction. That
is, each agent estimatthe most likely norm given history
of interaction! 1 ((so'jo!t )t iy yujin 1))

argmax P(! pyug I U]
Vi

r ]
* norm -

Since the norm bias function is a linear weighting of
features, this corresponds tdnding the most likely
weights,l".

Here, we focus omorm learning in collaborative games.

Because multlple agents with individual reward fUnCtionSrhat is, we assume that all agents all have the same goa|

are involved, there is no direct analogue of an Ooptim
policy® in stochastic games. Rattsaiption concepts can
be posited (e.g. Nash equilibria) arlearnhg mechanism
can determindow the multiagent system converges.

Norm-Learning Model

Norms as reward function biases We assume that norms
are instructions that an agef#) follows, and (b) expest

others to follow. More formally, we firstrepresent the
instructional content of norms aavard biases that cause a

file. have the samBjyguee) but must figure out how to
work together to accomplish it. This simplifies infag the
norm bias. Other work should ivestigate how norm
learning interacts in competitive scenarios (e.g. see
Kleiman-Weiner et al. in this yearOs proceedings).

Features for Learning Norms Our representation ofonms
and implementation of normearning depends on the
featuresavailable toindividuals in the groupThe specific
features are important for several reaséiiist, to converge

group of agents to prefer certain types of actions or stateen a norm, individuals must have sufficiently similar

For example, a norm t®drive on the right@ould be
represented as a collective preferencestates that satisfy
that description This provides a natural, flexible way to
represent the content of normis simplify the problem, &
assume the norm bias based on a linear combination of
statefeatures. Assuming agents have a feature function,
that mapsstates tofeature vect®;, the norm bias is
represented as:

g (1) =1 0(1)

features available to them to determine which norm the
group uses. Second, features must be suffigiexpressive

to allow individuals to pin down the norm that they
collectively use to solve a task. Third, learning norms in
terms of features allows generalization to novel situations.
Without a concise, abstract representation of a noewple
would nd beable to apply a learned norm to a new context
and would need to learn an appropriate norm from scratch.
For the tasks in the experiments reported, we describe which
types of features are used for constructing norms.



We consider two types of featuredandmark-based
features, such as OAgent X is north of its goalO, ased:-
relative features, such as OAgent X is north of Agent YO.
These two types were chosen because the former are an (@) “
Oasocial® representation, while the latter gkpliavolve |
socialothers. Moreover, they lead to different predictions in
the tasks we use.

Best-Response Model |

Bestresponse agents individually plan using a model of (b) O ’
other agents. This means that instead of reasoning about a
joint-policy directly, an agent uses a predtive model of
another agent’s policy, I';, to predict whay will do in a
certain state. That is, an agenwill construct a transition  Figure 1. Hallway Task examples where (a) agents pas
function that includes predictions about the behavior of thetop and bottom row;, and (b) they pass on middle and t
other agentl;!! 111 1 1 | (S!|! !(! ArQ ))) rows. Smaller circles indicate the agent waited a step.

Here,we use a level cognitive hierarchy planner as our and pass one another. Critically, at least one of the two
BestResponse modellt modek its partnerOs behavior agents has to deviate from the center row of the grid and
directly by countingts partnerOactionsand decayingpast  return to the center for the two successfully complete the
counts by a parametet. Additionally, to accelerate task.The other agent will either have to do the same, but on
learning, the model assigns a pseudocountp joint states a different row, or waitwo time-steps for the other agent.
in which the partnerOs location on the grid is the saméFigurel displays two joint plans that successfully complete
Although we could have modeled higher level of the task inthe minimal numbewof steps(6). Note though
reasoning (e.g. best responding to a ldvelanner) we did that there are many other possible joint actions that the two
not for two reasons. Firsprevious experimental work has agents can take to pass one another
shown thatpeopledo not typically reason beyond one or In a given round, we casbnsider the row that each player
two levels (Camerer et al., 2004). Second, in -nonis on when the two pass. Each player can be either on the
competitive contexts, strategies often converge at highepp, bottom, or center row when attempting to move closer
levelsin the cognitive hierarchyand even level reasoniy  to their own goal. Clearly, successful passing requires that
provides a good estimate of this converged behaviorthe two agents be on different rows while attempting to

(Bardsley et al., 2010). pass. Figure 2 visualizes this as an outcome matrix.
Executing a successful joint policy, defined as both agents
Experiment 1: Hallway Task reaching their goal ithe minimal number of stepgequires
. L. Player 20s
Task Description Passing Row
To test whether peoplbest respondr learn norms we Top Center Bottom
designed the-person Hallway task shown in FigureTwo Player 10s  Top Fail  Success Success
agents(circles) sart at opposite ends of a 5x3 grid aonl Passing Center| Success  Fail — Success
each turrsimultaneously move up, down, left, right, or wait. Row Bottom | Success Success  Fail

The two agentsannot entethe sane state or immediately that both agents select differerstssing rows.

switch positionsbif they attempt this, then thegollide and ) ) ) )

remainin the sameocation asin the previous timestep. Figure 2: Matrix representing passing success a
Each agent has its own goal tile, indicated by a matchindunction of each playerOs row in the gridworld. Note f
color, and the two agents start the task on one another@$uccessO means the game was solved optimally.
goals. Wheneveeither agent enters its own goal state, the

round endsHowever, to succeed in a round (and i th Model Simulations

human case win a bonus), the agents msustiitaneously

enter their respective goals. This necessitates collaborationBest-Response Suppose two BstResponse agents succeed
At the beginning of a round, eaelgent is exactly 4 tiles Whereplayer 1 passs through the centand player 2 pass

away from its goalBut they cannot both take a direct route &l0ng the top({center, top, success}). Having observed

to their goalswithout colliding Rather, they must choose a Player 20s behavior, player 10s peethet player2 will

series of actions that enables thentliceak the symmetg ~ @gainchooserop. From player Ds perspectivé is equally
optimal tochoosecenter asit is to choosebottom. However,

if player 2reasons similarlyabout player 1, theplayer 2

! For example, if the agent is at (1,1) and the partner is at (0,0yvill treat zop or bortom as equally optimallf the players
then the partner®s behavior will be generalized to other joint stateéBoosetheir respective pairs of equally optimal actions at
where it is at (0,0). In this papert 11,1 1 115,
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Figure 3: Human (experimental), Norbrearning(simulatior), and BestResponsgsimulation) results for (a) number o
rounds (out of 20) in which both agents scored, (b) number of rounds in which agents collided at least once
proportion of rounds inhich agents switched their strategy from the previous round (averaged over both agents)
results suggest that human collaboration relies on jointly learned norms rather thasspastiing to oneOs partner.

random (i.e. 0.5 each), then they will stay a¢nfer, top, demo tasksthat familiarzed themwith the grid game
success} with .25 probability, switch to thebpttom, top, interface andtask dynamics.They received a $2.00 base
success} or {center, bottom, success} cells with 0.5 payment and an additional $0.10 bonughen they
probability, or switch to §ottom, bottom, fail} with .25  simultaneously reached their gaalg\fterwards each
probability. In our implementation, the probabilities differ participant completed a pettsk survey that included
from this ideal due to the decaying memory. Nonetisele questions abouthe task and demographidSne dyad was
this illustrates the central prediction of bestsponse excluded from analysis due to missing data.

decision making in this collaborative game: thatr¢hwill For the simulations, agent dyads played 20 rounds and
be high rowpassing switching as well as a moderteount only learned athe end of each round. THestResponse
of collisions from agentsimultaneouslswitching. modelupdated its model of its partner based on the play the

Note also that the memoryless, mix&dategy Nash previous round, while the Norshearning modelpdated its
equilibrium is itself a type of besesponse solution distribution over possible norm biased.o simplify
concept. In this particular ocordination game it is inference, we considered the space of feature weights to be
(!/3,1/1 11 /1), which leads to an even higher proportion! | {1 11nn},
of collisionsb! /! Bas well as switchin@ ! /! .

Results and Discussion Participants reported the task being
Norm-Learning In the NormLearning model, two agents relatively eag wherel = Very Difficult to 7 = VeryEasy
observe the same history of interaction, and use thiseo inf (Mean = 5.67 SE = .19). Additionally, participants reported
the most likely norm that a hypothetical collective agent ighatthey were skilled at the task on a scale from 1 = Very
using. By using their shared observations and reasoningad to 7 = Very Good (Mean = 5.64; SE = .18).
processes to deduce the most likely norm that they as aThe dyads were successful at collaboratimgtioe task
group have, they converge on and stay with a particulagind winnirg the bonus. For our analysiwe focused on
norm. For the Hallway taskve use a set @indmark-based ~ dyadsthat scored more than half of the rounds @324
features to define the space of norm reward biasesdyads). These dyads, on average, jointly scored 17.5 out of
Specifically, for each of the two agents, we represent whicR0 rounds (SE = 0.50) and jointly scored in the minimum
row they are on relative to the row that their goal is onnumber of stepsgssible (6) 15.22 out of 20 rounds (SE =
above (top), on (center), or below their goalOs(bmttom).  0.85). Human rounds scored did not differ from the Norm
This gives us a total of 6 binagpalbasedeatures. Learning model 35.307) = 1.82p = 0.07) but did differ

Unlike the BestResponse model, the dim-Learning from the BesiResponse modgl(38.0) = 4.98p < .001)
model predictdhat peoplewill stick with a combination of (Figure 3a). However, direct comparison by sogriis
rows when performing the task. That is dyads that difficult since the simulations updatenly oncea round
collaborate successfullyarticipants will not change which completes. This leads theBestResponse modelto
row they pass on and there will be few, if any, collisions. potentially collide indefinitely andeverreach its goal.

Overall, theexperimentatesults resemble the predictions
Experiment of the NormLearning model over the BeRtesponse model.

Design and Procedure We recruited 50M Turk participants 10 compare human behavior in the collaborative Hallway

(25 dyads) Theysigned a consent form and then completed@sk to the models, we focused on two measutes:
number of rounds in which the agents collided at least,once



and the proportion of rounds in which agents switched theientrances In Indirect Courtyard, agents must first move
strategy fom the previous round upwards towards entrancde cross But both versions
Figure 3b plots the number of rounds in which at least oneequire agentsot devise a way to pask our simulations
collision occurredor a dyad Human collisions fiédirectly  and experiment agents firstplay 10 rounds of Direct
in between the Norrhearning model and Befesponse Courtyard, followed by 10 rounds of Indirect Courtyard.
model and significantly differed from the numbers in both If the agnts have no means of generalizing learjoat
models (BesResponse: t(34.7) =2.67, p = 0.01; Norm  plans, then they will have to find a new one when moving
Learning: t(33.2) = 2.49, p = 0.p2While this fails to  from Direct to Indirect Courtyard. On the other hand, if they
distinguish between the two idealized models presented, it isarned a norm as a feattvased reward bias, then they can
consistent with a noisy or imperfect norm learning process. useit to guide their stragy choice onndirect Courtyard.
To determine what stragy human and simulated agents
used in a given round, we used the following heuristic: théModels

first time a dyad collided in a round, the respective rows ofye tested three sets of bigaieaturebased reward biases:
the agents were coded as their strategies (note that agejfalrelative featuresd is agent XOs current row above,
locations after a collision remain the saaee before). If a pelow, or the same as the goal row? £ 2 agents x 3
dyad never collided in a round we looked at the first step ifieatures =6 total features)d, entrancerelative feature®is
which they were in the same column or switched colusmns agent XOs current row above, below, or the same as the
i.e. the step at which they passed one another. Theintrances?/( = 6) B and agentelative feature®is agent

respective rowsfier passing were coded as their strategy. X above, below, or on the same row as agent/y2 8). 40
The anount of triatto-trial strategyswitching provides a sjmulations of each modelererun.

critical contrast between the Notbearning model and
BestResponse model. Individuals in the human dyadfixperiment

switched their strategies rarely (14% of rounds) (Figure 3c)P .-
. N X rocedure 90 MTurkers (45 dyads)participated 3 dyads
This closely matches the predicati® of the NorrrLearning were excluded due to (techr?lical )Fc)error.pTherqceﬁure

model (¢(38.8) = 0.66,p = .51) and deviates significantly . .-
from the BesResponsenodel (¢(40.9) =-6.14.p < .001). A matchedExperiment 1 except participants playzdgames.

related measure of joint strategy diversity tells us aboukesults
global rather than local variability. To measure this
calculated the entropy of the frequency distributions of join
strategies. Although the joint strategy entropy for humang
significantly differed from both models (Nortrearning:
1(36.6) = 2.81, p < .001; BeResponse: t(36.2) 5.55, p <
.001), humarentropy was closer to Norrearner entropy

and Discussion To determine whether and how
articipants generalized from Direct to InditeCourtyard,
e analyzedindividual strategies within dominant joint
trategiesEachround, we identified the strategy useith
the same heuristic as in ExperimentFbr each dyad, we
then identified the most frequent strategies in the Direct
A ” ) S Courtyardand Indirect Courtyard phases. We then identified
(SHEUTaOnbg/_I éezsgé;)smlfsg' ?\Alg i\lgzﬂesaém:n% Ohg)_ g\'/?::é” each ager® individual strategy in the two phases. Figure 5a
then p.eo;ole displayed. behavi.or ,more cénsiétent wit shovys individual strate_gy com_m_ts the two phases. Note
Iearr;ing a jointly understood norm rather thévest IE'hat if people were formingaw joint plans from scratclhe
. ; e . strategies in the two phases would be uncorreldteid was
responding to their partnerOs behavior. not the casex?!! ! = 27.45 < .001)
. . To explain the systematicity in how joint plans were
Experiment 2: Fea?ure--Based Norm generalized to the Indirect Courtyard, we compared this
Generalization distribution to thesimulation results of our three models
In our model, featurbased norms allow agents to converge(Figure 5b, 5c¢, and 5dA visual analysis of these tables
on a joint strategyjuickly, but they also enable individuals suggested that the participant results reflect a mixture of
to generalize norms to new contextere, we present the goatrelative ad entranceelative featuresWe confirmed
predictions of two sets of landmablased features and one
set of agentelative features. Wahow that human norm @ (b) l I
learning better resembles landmdksed featuseassuming
people learn norms like the Norbearning model. | |

Task Description

We designedhe Courtyard tasks shown in Figurg¢odtest -
norm generalization In Direct Courtyard, agents can ‘ .
immediately move towards their resgctive goals through I

2 We assumehat best responders do not default to the previous Figure 4: (a) Direct and (b) IndirectoGrtyard Tasks
choice if indifferent between options. Future studies will need to with example optimal joint plans. The bold lines a

rule this out in people. walls that agents cannot pass through.
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Figure 5: Individual agents® most frequent strategies (counBijemt and Indirect Courtyard phases for (a) experimel
participants, (b) our Norrhearning agent with AgerRelative features, (c) Go&8lased features, and (d) EntrarBased
features. The distribution indicates which row an agent is likely to takeeitntlirect Courtyard grid given what row we
taken in the Direct Courtyard. Human results are best explained as a mixture of the two ldvaBadrieature sets (Geal
based and Entrandmsed; see text). Grayed out rows in the gridworlds indicate thefragsent individual strategy.
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