Learning a commonsense moral theory

Max Kleiman-Weiner *, Rebecca Saxe, Joshua B. Tenenbaum

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States

ABSTRACT

We introduce a computational framework for understanding the structure and dynamics of moral learning, with a focus on how people learn to trade off the interests and welfare of different individuals in their social groups and the larger society. We posit a minimal set of cognitive capacities that together can solve this learning problem: (1) an abstract and recursive utility calculus to quantitatively represent welfare trade-offs; (2) hierarchical Bayesian inference to understand the actions and judgments of others; and (3) meta-values for learning by value alignment both externally to the values of others and internally to make moral theories consistent with one's own attachments and feelings. Our model explains how children can build from sparse noisy observations of how a small set of individuals make moral decisions to a broad moral competence, able to support an infinite range of judgments and decisions that generalizes even to people they have never met and situations they have not been in or observed. It also provides insight into the causes and dynamics of moral change across time, including cases when moral change can be rapidly progressive, changing values significantly in just a few generations, and cases when it is likely to move more slowly.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Common sense suggests that each of us should live his own life (autonomy), give special consideration to certain others (obligation), have some significant concern for the general good (neutral values), and treat the people he deals with decently (deontology). It also suggests that these aims may produce serious inner conflict. Common sense doesn’t have the last word in ethics or anywhere else, but it has, as J. L. Austin said about ordinary language, the first word: it should be examined before it is discarded. – Thomas Nagel (1989), The View From Nowhere

Basic to any commonsense notion of human morality is a system of values for trading off the interests and welfare of different people. The complexities of social living confront us with the need to make these trade-offs every day: between our own interests and those of others, between our friends, family or group members versus the larger society, people we know who have been good to us or good to others, and people we have never met before or never will meet. Morality demands some consideration for the welfare of people we dislike, and even in some cases for our sworn enemies. Complex moral concepts such as altruism, fairness, loyalty, justice, virtue and obligation have their roots in these trade-offs, and children are sensitive to them in some form from an early age. Our goal in this paper is to provide a computational framework for understanding how people might learn to make these trade-offs in their decisions and judgments, and the implications of possible learning mechanisms for the dynamics of how a society’s collective morality might change over time.

Although some aspects of morality may be innate, and all learning depends in some form on innate structures and mechanisms, there must be a substantial role for learning from experience in how human beings come to see trade-offs among agents’ potentially conflicting interests (Mikhail, 2007, 2011). Societies in different places and eras have differed significantly in how they judge these trade-offs should be made (Blake et al., 2015; Henrich et al., 2001; House et al., 2013). For example, while some societies view preferential treatment of kin as a kind of corruption (nepotism), others view it as a moral obligation (what kind of monster hires a stranger instead of his own brother?). Similarly, some cultures emphasize equal obligations to all human beings, while others focus on special obligations to one’s own group e.g. nation, ethnic group, etc. Even within societies, different groups, different families, and different individuals may have different standards (Graham, Haidt, & Nosek, 2009). Such large differences both between and within cultures pose a key learning challenge: how to infer and acquire appropriate values, for moral trade-offs of this kind. How do we learn what we owe to each other?
Children cannot simply learn case by case from experience how to trade off the interests of specific sets of agents in specific situations. Our moral sense must invoke abstract principles for judging trade-offs among the interests of individuals we have not previously interacted with or who have not interacted with each other. These principles must be general enough to apply to situations that neither we nor anyone we know has experienced. They may also be weighted, such that some principles loom larger or take precedence over others. We will refer to a weighted set of principles for how to value others as a “moral theory,” although we recognize this is just one aspect of people’s intuitive theories in the moral domain.

The primary data that young children observe are rarely explicit instructions about these abstract principles or their weights (Wright & Bartsch, 2008). More often children observe a combination of reward and punishment tied to the moral status of their own actions, and examples of adults making analogous decisions and judgments about what they (the adults) consider morally appropriate trade-offs. The decisions and judgments children observe typically reflect adults’ own moral theories only indirectly and noisily. How do we generalize from sparse, noisy, underdetermined observations of specific instances of moral behavior and judgment to abstract theories of how to value other agents that we can then apply everywhere?

Our main contribution in this paper is to posit and formalize a minimal set of cognitive capacities that people might use to solve this learning problem. Our proposal has three components:

• **An abstract and recursive utility calculus.** Moral theories (for the purposes of trading off different agents’ interests) can be formalized as values or weights that an agent attaches to a set of abstract principles for how to factor any other agents’ utility functions into their own utility-based decision-making and judgment.

• **Hierarchical Bayesian inference.** Learners can rapidly and reliably infer the weights that other agents attach to these principles from observing their behavior through mechanisms of hierarchical Bayesian inference; enabling moral learning at the level of values on abstract moral principles rather than behavioral imitation.

• **Learning by value alignment.** Learners set their own values guided by meta-values, or principles for what kinds of values they value holding. These meta-values can seek to align learners’ moral theories externally with those of others (“We value the values of those we value”), as well as internally, to be consistent with their own attachments and feelings.

Although our focus is on the problems of moral learning and learnability, we will also explore the implications of our learning framework for the dynamics of how moral systems might change within and across generations in a society. Here the challenges are to explain how the same mechanisms that allow for the robust and stable acquisition of a moral theory can under the right circumstances support change into a rather different theory of how others interests are to be valued. Sometimes change can proceed very quickly within the span of one or a few generations; sometimes it is much slower. Often change appears to be progressive in a consistent direction towards more universal, less parochial systems – an “expanding circle” of others whose interests are to be taken into account, in addition to our own and those of the people closest to us (Pinker, 2011; Singer, 1981). What determines when moral change will proceed quickly or slowly? What factors contribute to an expanding circle, and when is that dynamic stable? These questions are much bigger than any answers we can give here, but we will illustrate a few ways in which our learning framework might begin to address them.

The remainder of this introduction presents in more detail our motivation for this framework and the phenomena we seek to explain. The body of the paper then presents one specific way of instantiating these ideas in a mathematical model, and explores its properties through simulation. As first attempts, the models we describe here, though oversimplified in some respects, still capture some interesting features of the problems of moral learning, and potential solutions. We hope these features will be sufficient to point the way forward for future work. We conclude by discussing what is left out of our framework, and ways it could be enriched or extended going forward.

The first key component of our model is the expression of moral values in terms of utility functions, and specifically recursively defined utilities that let one agent take others’ utilities as direct contributors to their own utility function. By grounding moral principles in these recursive utilities, we have gained a straightforward method for capturing aspects of moral decision-making in which agents take into account the effects of their actions on the well-being of others, in addition to (or indeed as a fundamental contributor to) their own well-being. The specifics of this welfare are relatively abstract. It could refer to pleasure and harm, but could also include other outcomes with intrinsic value such as “base goods” e.g., achievement and knowledge (Hurka, 2003) or “primary goods” e.g., liberties, opportunities, income (Rawls, 1971; Scanlon, 1975; Sen & Hawthorn, 1968) or even purity and other “moral foundations” (Haidt, 2007). This proposal thus formalizes an intuitive idea of morality as the obligation to treat others as they would wish to be treated (the ‘Golden Rule’, Popper, 2012; Wattles, 1997); but also as posing a challenge to balance one’s own values with those of others (captured in the Jewish sage Hillel’s maxim, “If I am not for myself, who will be for me? But if I am only for myself, who am I?”). Different moral principles (as suggested in the opening quote from Nagel) can come into conflict. For instance one might be forced to choose between helping the lives of many anonymous strangers versus helping a single loved one. Quantitative weighting of the various principles is a natural way to resolve these conflicts while capturing ambiguity.

On this view, moral learning is the process of learning how to value (or “weight”) the utilities of different groups of people. Young children and even infants make inferences about socially positive actions and people that are consistent with inference over recursive utility functions: being helpful can be understood as one agent taking another agent’s utility function into account in their own decision (Kiley Hamlin, Ullman, Tenenbaum, Goodman, & Baker, 2013; Ullman et al., 2009). Young children also show evidence of weighting the utilities of different individuals, depending on their group membership and social behaviors, in ways that strongly suggest they are guided by abstract moral principles or an intuitive moral theory (Barragan & Dweck, 2014; Hamlin, 2013; Hamlin, Mahajan, Liberman, & Wynn, 2013; Kohlb erg, 1981; Powell & Spelke, 2013; Rhodes, 2012; Rhodes & Ch alik, 2013; Rhodes & Wellman, 2016; Shaw & Olson, 2012; Smetana, 2006). On the other hand, children do not weight and compose those principles together in a way consistent with their culture until later in development (Hook & Cook, 1979; House et al., 2013; Sigelman & Waitzman, 1991). Different cultures or subcultures might weight these principles in different ways, generating different moral theories (Graham, Meindl, Beall, Johnson, & Zhang, 2016; Schaf er, Haun, & Tomasello, 2015) and posing an inferential challenge for learners who cannot be pre-programmed with a single set of weights. But under this view, it would be part of the human universal core of morality – and not something that needs to be inferred – to have the capacity and inclination to assign non-zero weight to the welfare of others.
The second key component of our model is an approach to inferring others’ abstract moral theories from their specific moral behaviors, via hierarchical Bayesian inference. Our analysis of moral learning draws on an analogy to other problems of learning abstract knowledge from observational data, such as learning the meanings of words or the rules of grammar in natural language (Tenenbaum, Griffiths, & Kemp, 2006; Tenenbaum, Kemp, Griffiths, & Goodman, 2011). Theorists have long recognized that moral learning, like language learning, confronts children with a challenge known as the “poverty of the stimulus” (Chomsky, 1980; Mikhaił, 2006; Mikhaił, 2011): the gap between the data available to the learner (sparse and noisy observations of interactions between specific individuals) and what is learned (abstract principles that allow children to generalize, supporting moral tradeoffs in novel situations and for new individuals). More specifically in our framework for moral learning, the challenge of explaining how children learn cultural appropriate weights for different groups of people may be analogous to the challenge of explaining linguistic diversity, and may yield to similar solutions, such as the frameworks of “principles and parameters” (Baker, 2002; Chomsky, 1981) or Optimality Theory (Prince & Smolensky, 2008). In these approaches, language acquisition is either the process of setting the parameters of innate grammatical principles, or the ranking (qualitatively or quantitatively) of which innate grammatical constraints must be taken into account. Our framework suggests a parallel approach to moral learning and the cultural diversity of moral systems.

So then how do we learn so much from so little? A hierarchical Bayesian approach has had much recent success in explaining how abstract knowledge can guide learning and inference from sparse data as well as how that abstract knowledge itself can be acquired (Ayars & Nichols, 2017; Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010; Nichols, Kumar, Lopez, Ayars, & Chan, 2016; Perfors, Tenenbaum, & Regier, 2011; Tenenbaum et al., 2011; Xu & Tenenbaum, 2007), and fits naturally with the idea that learners are trying to estimate a set of weighted moral principles. By inferring the underlying weighting of principles that dictate how the utility of different agents are composed, a Bayesian learner can make generalizable predictions in new situations that involve different players, different numbers of players, different choices, etc. (Baker, Saxe, & Tenenbaum, 2009; Goodman, Tenenbaum, & Gerstenberg, 2015; Heider, 1958; Jara-Ettinger, Gweon, Schulz, & Tenenbaum, 2016; Kleiman-Weiner, Gerstenberg, Levine, & Tenenbaum, 2015; Malle, Moses, & Baldwin, 2001; Ullman et al., 2009). These hierarchical models allow for a few indeterminate observations from disparate contexts to be pooled together, boosting learning in all contexts (Kemp, Perfors, & Tenenbaum, 2007).

The third key component of our model addresses the dynamics of moral learning. That is, even once children have inferred the moral values of others, when and how are learners motivated to acquire or change their own values? A parallel question at the societal level is what might control the dynamics of moral change across generations. Again we are inspired by analogous suggestions in the computational dynamics of language learning, which has suggested a close relationship between the process of language learning and the dynamics of language change (Chater, Reali, & Christiansen, 2009; Christiansen & Kirby, 2003; Griffiths & Kalish, 2007; Kirby, Cornish, & Smith, 2008; Niyogi, 2006; Smith, Kirby, & Brighton, 2003). Children are seen as the main locus of language change, and the mechanisms of learning language within generations become the mechanisms of language change across generations. In that spirit we also consider mechanisms of moral learning that can account for the dynamics of learning both in individuals and at the societal level, for how morals change both within and across generations.

We propose that learners change their own abstract moral values in accordance with two motivations (or meta-values). The first, external alignment, expresses the idea that learners will internalize the values of the people they value, aligning their moral theory to those that they care about (Hurka, 2003; Magid & Schulz, this issue). This mechanism could be associated with a child acquiring a moral theory from a caregiver. It is in some ways analogous to previous proposals for the origins of prosocial behavior based on behavioral imitation or copying behaviors, a mechanism proposed in economics and evolutionary biology both as a primary mechanism of social learning within generations, as well as a mechanism of how prosocial behaviors (including altruism and other “proto-moral” concepts) can evolve across generations (Delton, Krasnow, Cosmides, & Tooby, 2011; Henrich & Gil-White, 2001; Nowak, 2006; Rand, Dreber, Ellingsen, Fudenberg, & Nowak, 2009; Rand & Nowak, 2013; Richerson & Boyd, 2008; Trivers, 1971). Pure behavioral imitation is not sufficient to drive learning of the abstract principles and weights that comprise our moral theories (Nook, Ong, Morelli, Mitchell, & Zaki, 2016), but the mechanism of external alignment represents a similar idea at the level of abstract principles and weights.

External alignment alone, however, is not sufficient to explain moral learning or the most compelling aspects of moral change. Across generations, external alignment tends to diffusion and averaging of individuals’ moral weights across a society. It cannot explain where new moral ideas come from in a society, or how the individuals in a group can collectively come to value people that few or none of their progenitors valued. Such moral progress is possible. For instance, over the past hundred years there has been significant moral change in racial attitudes and the rights of women in some cultures (Pinker, 2011; Singer, 1981). What can account for these shifts, or even more strikingly, for the rapid change of moral values in a few or even a single generation as seen recently in attitudes towards same-sex marriage (Baunach, 2011, 2012; Broockman & Kalla, 2016)?

One recent proposal for a cognitive mechanism that underlies moral change is moral consistency reasoning (Campbell & Kumar, 2012). Campbell and Kumar (2012) describe a dual process account of how deliberative moral judgments are adjusted under pressure from conflicting intuitive responses to analogous moral situations or dilemmas. Inspired by this account, we suggest a second meta-value, internal alignment, where learners try to reduce the inconsistency between their moral theory and their attitudes towards specific individuals. For example, if a learner with parochial values develops feelings for one out-group member, the value she places on all members of that group may shift. During internal alignment, learners adjust their weights over the moral principles to be consistent with feelings about other agents from sources (deliberative and emotional) such as: empathy (Hoffman, 2001; Pizarro, 2000), imagination and stories (Bloom, 2010), analogical reasoning (Campbell & Kumar, 2012; Keasey, 1973), love, or involved contact (even imagined or vicarious) (Allport, 1954; Crisp & Turner, 2009; Paluck & Green, 2009; Pettigrew & Tropp, 2006; Shook & Fazio, 2008; Wright, Aron, McLaughlin-Volpe, & Ropp, 1997). If a learner values a specific agent in a way that is not explained by the moral theory, she will adjust her moral theory to appropriately value that person resolving the inconsistency. Since moral theories are abstract with respect to a particular individual, that realignment may result in rapidly expanding the types of agents that the learner values.

We now present this model of moral learning in full detail. We will describe in turn how moral theories are represented, how they can be inferred from sparse data and how moral acquisition proceeds through meta-values. Finally we turn to the dynamics of moral change and investigate when moral theories will change rapidly and when such change will be slow or nonexistent.
2. Representing moral theories

The first challenge for moral learners, in our framework, is to represent moral theories for making welfare trade-offs across an infinitude of situations. We start by considering a simplified decision-making environment for this purpose. Let \(N \) be a set of agents indexed by \(i \). \(S \) be a set of states and \(A_i \) be the set of actions available in each state \(s \). The probability of reaching outcome \(s' \) upon taking action \(a \) in state \(s \) is \(P(s'|a, s) \) which describes how actions affect outcomes in the world. Let \(R_i(s) \) map outcomes to a real number that specifies the welfare agent \(i \) intrinsically experiences in state \(s \). Again, welfare can go beyond pleasure and pain but this function maps all of the “base goods” and “base evils” into a single dimensional measurement of overall welfare. Different states may be valued differently by different agents or may vary across different contexts. Thus \(R_i(s) \) allows for quantitative assessment of the moral value of a state for a particular agent. In this work, each state presents an agent with a set of choices that can affect its own welfare and the welfare of other agents. Appendix A gives the details for the decisions studied in this work.

We define moral theories in terms of recursive utility functions which build on \(R(s) \) – the welfare obtained by each agent. By defining moral theories in the same units as choice (utility) these moral theories can be easily integrated into a general decision making framework. The level-0 moral theory describes an agent who only cares about the quantity of welfare that she personally receives herself:

\[
U^0_i(s) = R_i(s)
\]

Thus agents acting consistent with a level-0 moral theory will always choose actions that maximally benefit their own welfare regardless of the effect of that action on the welfare of others. For instance, when faced with the decision to give up a small amount of welfare to provide a large benefit to someone else or doing nothing, an agent acting under a level-0 moral theory would prefer to do nothing. Furthermore, this level-0 theory also has no way of trading off the welfare of other people.

We now build on this selfish agent to account for richer social preferences. In Hurka (2003) the space of values is expanded to include virtue and vices by recursively valuing attitudes towards the “base goods” and “base evils” (e.g., the virtue benevolence as “loving good”). We borrow this idea and extend it to recursively valuing other people to explain social preferences. We define a level-1 moral theory recursively in terms of the level-0 moral theory:

\[
U^1_i(s) = (1 - \gamma_i)U^0_i(s) + \gamma_i \sum_{j \in A(i)} U^0_j(s)
\]

where \(\gamma_i \in [0, 1] \) trades off how much an agent with a level-1 moral theory values their own level-0 utility compared to the level-0 utility of others. When \(\gamma_i = 0.5 \) agents weigh their own utility equally with the utility of the other agents, when \(\gamma_i = 0 \) they only care about themselves and when \(\gamma_i > 0.5 \) they value others more than themselves. Generally speaking, \(\gamma_i \) determines the degree to which agent \(i \) is prosocial. Each \(\gamma_{ij} \in [0, 1] \) is the weight agent \(i \) places on the utility of agent \(j \). Depending on the relative value of each \(\gamma_{ij} \), an agent acting under a level-1 moral theory will value some agents more than others. If \(\gamma_{ij} > \gamma_{ik} \), then agent \(i \) cares more about the utility of agent \(j \) than the utility of agent \(k \). Since these recursive utilities eventually ground in the welfare of the individual agents, the settings of these parameters specify an entire space of moral theories where the goals and welfare of other agents are treated as ends. Moral theories of this form share similarities to the social preferences used in behavioral game theory but extend those models to consider how different agents might be differentially valued (Camerer, 2003). We consider further extensions to these representations in Appendix B.

Having specified a representation for moral theories in terms of recursive utility functions, we consider agents who act consistently with these moral theories using the standard probabilistic decision-making tools. Since our moral theories were constructed from utility functions they can easily be mapped from values into actions and judgments. Since actions can lead to different outcomes probabilistically, decision making and judgment approximately follow from the expected utility of an action:

\[
EU(a, s) = \sum_s U(s')P(s'|a, s)
\]

From expected utility, action selection is defined probabilistically under the Luce-choice decision rule which reflects utility maximization when there is uncertainty about the exact utility value (Luce, 1959):

\[
P(a|s) = \frac{\exp(\beta EU(a, s))}{\sum_{a \in A} \exp(\beta EU(a, s))}
\]

where \(\beta \to 0 \) the decision maker chooses randomly, while in the limit \(\beta \to \infty \) the decision maker will always choose the highest utility action.

Thus far we have specified the machinery for a moral agent where the \(\gamma_{ij} \) define how each agent values the others. However, each \(\gamma_{ij} \) describe how a specific person should be valued rather than how to trade-off abstract principles. Without abstract principles an agent would need to specify a new \(\gamma_{ij} \) for every possible individual. Instead, we propose that values over specific people should be determined by more abstract relationships, captured in abstract moral principles: through these principles an agent can deduce how to value anyone.

While there are many ways of specifying the structure of the moral principles in theory, in this work we consider six kinds of relationship that carry moral obligation: (a) self, (b) kin, (c) ingroup, (d) all-people, (e) direct-reciprocity, and (f) indirect-reciprocity. For instance, a kin relation might provide a moral reason for helping a loved one rather than an anonymous person. Ingroup might capture any shared group affiliation that a culture or context defines as morally relevant: gender, ethnicity, nationality, religion, and so on. Direct reciprocity here captures moral obligations to specific known and cooperative individuals (e.g., a person’s particular friends and neighbors). Indirect reciprocity captures the moral obligations to members of a broader cooperative community (friends of friends, employees of the same organization). Throughout this work we will assume that agents are not planning about the future-repercussions of their actions and that reputational or direct-reciprocal advantages and disadvantages will be captured by one of the two reciprocity principles.

Each of these principles expresses a simplified type of relationship between agents and gives a reason for the way a decision-maker might act towards a particular person. Since any given dyad may have multiple relations (e.g., a dyad where both individuals are from the same in-group but also have a direct reciprocity relationship), each principle is associated with a corresponding weight that quantitatively describes how that principle is traded-off against others. Neural evidence of these principles has been detected in cortical and limbic brain circuits (Krienen, Tu, & Buckner, 2010; Rilling et al., 2002; Watanabe et al., 2014) and there is some evidence that the relative strength of these circuits can provide motivation for certain types of altruistic behavior (Hein, Morishima, Leiberg, Sul, & Fehr, 2016).

Formally, let \(P = \{ \text{kin}, \text{ingroup}, \ldots \} \) be the set of moral principles. Then for each principle there is a function \(P_{ij} \) over pairs of agents that returns 1 if the relationship between \(i \) and \(j \) falls
under principle p and 0 otherwise. Specifically, $f^{\text{kin}}_{i,j} = 1$ if i and j are kin, $f^{\text{d-recip}}_{i,j} = 1$ if i and j are in the same in-group and $f^{\text{i-recip}}_{i,j} = 1$ for all $i \neq j$. $f^{\text{direct-recip}}_{i,j} = 1$ for all $i = j$. The $f^{\text{indirect-recip}}_{i,j} = 1$ if both i and j have a reciprocal relationship and $f^{\text{transitive}}_{i} = 1$ for all i. Note that the direct-reciprocity relationships are sparse. Since direct-reciprocity is a reciprocal relationship between two agents, it is not necessarily transitive. Just because i has a reciprocal relationship with j and j has a reciprocal relationship with k, it does not necessarily follow that i and k will also have a reciprocal relationship. In contrast, indirect-reciprocity denotes membership in a cooperative or trust-worthy group (Nowak & Sigmund, 2005). These relationships are based on group identity such that everyone in the cooperative group has an indirect-reciprocity relationship with everyone else in the cooperative group. Hence these relationships satisfy transitivity. Unlike previous formal models of reciprocity that were defined in terms of specific behaviors in specific situations, such as Tit-for-Tat in the prisoners dilemma (Axelrod, 1985; Nowak, 2006; Rand & Nowak, 2013), our principles of reciprocity are implemented in agents who can reciprocally value the utility of each other. These more abstract concepts of reciprocity (direct and indirect) lead to moral judgments and actions that generalize robustly across different situations and contexts.

These principles are then weighted so they can be quantitatively traded off. Let W_i be the weights that agent i places over the moral principles. Each $w^p_i \in W_i$ is the weight that agent i places on principle p. For self valuation, let $\gamma_i = 1 - W^\text{self}_i$. We now rewrite the α_{ij} of Eq. (1) as a function of weights over moral principles:

$$\alpha_{ij}(W_i) = \phi_{ij} + \sum_{p \neq d} W^p_i \cdot f^p(i,j)$$

(4)

Unlike ϕ_{ij} which define how each agent values, the W_i define what each agent values. Who each agent values (ϕ_{ij}) can be derived using Eq. (4) from what that agent values i.e., their weights over principles W. We introduce an additional source of valuation ϕ_{ij} which stands in for other factors outside of the moral principles that describe how i values j. Fig. 1c shows the α_{ij} derived from the weights and relations of Fig. 1.

3. Inferring moral theories

Above we described how moral theories, expressed as weights or values placed on abstract relationships and then composed in a recursive utility calculus, can be used during moral decision making and judgment. That is, we described the forward model, in which moral decision makers can use their moral theories to choose actions and judgments in any context. The second challenge for moral learners is to infer how others weight the abstract moral principles from sparse and noisy observations. In the same way that rational actors reveal information about their beliefs and desires through their behavior, moral agents reveal information about their moral theory through their behavior and judgments.

Expressing the intuitive theory in terms of principles over abstract categories helps to make learning tractable. Rather than inferring the value of each ϕ_{ij} independently, a learner only needs to determine how to weight a relatively smaller set of moral principles. It is the abstractness of the principles that enables generalization and rapid learning under the “poverty of the stimulus” (Kemp et al., 2007). If a learner observes that a particular agent weights kin highly, and a new person is introduced who is also related to that agent, the learner will already have a good idea of how this new relative will be valued. Knowledge of abstract weights can often be acquired faster than knowledge of particulars, which is sometimes called “the blessing of abstraction” or “learning to learn” (Goodman, Ullman, & Tenenbaum, 2011; Kemp et al., 2007; Kemp, Goodman, & Tenenbaum, 2010). This is the power of hierarchical modeling.

Learning abstract principles also clarifies the intuitive idea that people in a given culture or in-group will agree more about the relative value of abstract moral principles than about the relative value of specific people. For instance, people in a specific culture might each highly value their own siblings but not the siblings of others. Thus we want to model the way that these theories will be learned at the level of principles not at the level of individuals.

Please cite this article in press as: Kleiman-Weiner, M., et al. Learning a commonsense moral theory. Cognition (2017), http://dx.doi.org/10.1016/j.cognition.2017.03.005
Moral principles explain how moral learners can go beyond the data and infer hierarchical abstract theories from behavioral data.

Note that we assume that self, kin, in-group and all people are observable to the learner i.e., the learner knows which agents are kin and which belong to a common in-group (DeBruine, 2002; Lieberman, Tooby, & Cosmides, 2007). However, when observing interactions between third parties, relationships based on reciprocity (direct and indirect) are not directly observable by the learner and need to be inferred from behavior. Sensitivity to these principles could be innate but could also be learned from a sufficiently rich hypothesis space or grammar of abstract knowledge (Goodman et al., 2011; Tenenbaum et al., 2011).

We can now formally state the challenge of inferring a moral theory. Let T be the number of observations made by the learners. Most of the specific choices we make for the hierarchical model are not essential for our cognitive argument, but are useful to facilitate implementation and simulation. While we are committed to a hierarchical structure in general, the specific mathematical forms of the model (e.g., the choice of priors) are at most provisional commitments; they are chosen to be reasonable, but there are many possible alternatives which future work could investigate. Each observation \((a, s) \) is information about the choice \(a \) made by agent \(i \) from the choices available in state \(s \). For a learner to infer the moral theories of others, she needs to infer the weights over the moral principles conditional on these observations, \(P(W|\{a_i^1, s^1\}, \ldots, \{a_i^T, s^T\}) \). This conditional inference follows from Bayes' rule:

\[
P(W|\{a_i^1, s^1\}, \ldots, \{a_i^T, s^T\}) = \frac{\prod_{t=1}^{T} P(W_t|a_t^1, s^1, \ldots, a_t^T, s^T)P(a_t^1, \ldots, a_t^T, s^1, \ldots, s^T)}{\prod_{t=1}^{T} P(W_t|a_t^1, s^1)P(a_t^1, \ldots, a_t^T, s^1, \ldots, s^T)}
\]

where the likelihood \(P(a_t^1, \ldots, a_t^T, s^1, \ldots, s^T) \) is probabilistic rational action as shown in Eq. (3) with the \(x_{ij} \) set by the weights over moral principles as shown in Eq. (4). To complete this hierarchical account of inference, we need to specify priors over the unobserved principles direct-reciprocity and indirect-reciprocity and over the weights themselves.

Since direct-reciprocity relationships are sparse and non-transitive we put an exponential prior over each possible reciprocal relationship (Lake & Tenenbaum, 2010):

\[
P(f^{d-recip}) = \prod_{i \in N} \prod_{j \in N} \exp(x_{ij}^{d-recip})
\]

This prior generally favors a small number of direct-reciprocity relationships when observations are ambiguous. The higher the value of \(x \), the more unlikely these relationships.

Indirect-reciprocity relationships are an inference over the group rather than individual dyadic relationships. Each agent is either in the “cooperating group” or not, and only when both are in the cooperating group will they value each other under the indirect-reciprocity relationship. Here \(C \) is the “cooperating group”:

\[
P(f^{i-recip}) = \prod_{k \in C} P(1-(1-p)^{|C|})
\]

with \(p \) as the prior probability of an agent being in the “cooperating group”.

Having specified priors for the two unobserved reciprocity principles, we now describe how learning abstract knowledge about how moral theories are shared within groups allows learners to rapidly generalize their knowledge. We define a generative model over the possible ways the principles could be weighted \(P(W) \). The simplest model might treat each individual’s weights as generated independently from a common prior, reflecting a belief in some “universal human nature”. Here we consider a more structured model in which learners believe that individual’s weights are drawn from a distribution specific to their group. This represents group moral norms that themselves should be inferred in addition to the weights of individuals. Specifically we assume that the weights of each individual \(W_i \) are drawn from a Gaussian distribution parameterized by the average weighting of principles in that individual’s group \(g \):

\[
W_i \sim \text{Normal}(W_{g norm}^g, \Sigma^g)
\]

where \(W_{g norm}^g \) is the average weighting of principles in i’s group and \(\Sigma^g \) is how these weights covary in different individuals of a group. After sampling, the weights are normalized so that they are positive and sum to one. The higher the values in \(\Sigma^g \) the more variance there will be in how agents weight the principles. The correlation between the weights of the agents is visible in Fig. 1b. Importantly, a learner does not know the \(W_{g norm}^g \) for each group \(g \) in advance. The group average \(W_{g norm}^g \) must be inferred jointly with the \(W_i \) of each agent. Thus while each person has a unique set of weights over moral principles, those weights are statistically correlated with the weights of others in their group since they are drawn from the same latent distribution. In this work we consider only diagonal \(\Sigma^g \) for simplicity which do not model how principles themselves might be correlated. For instance, in some society agents that highly weight the kin principle may also highly weight the group principle highly. These correlations could be captured by allowing for covariance in \(\Sigma^g \). The full hierarchical model is shown schematically in Fig. 2.

Assuming this structure for \(P(W) \) is just one possible way to add hierarchical structure to the inference of moral theories. Instead of inferring a different \(W_{g norm}^g \) for each group, the learner could infer a single \(W_{g norm} \) for all agents which would imply that the learner assumes moral theories do not systematically vary across groups. Furthermore, the \(W_{g norm} \) themselves could vary in a systematic way according to a universal prior. For instance while one might expect all groups to value kin highly but show significant diversity in how much they care about group. We did not vary \(\Sigma^g \) in this work but one can imagine a learner inferring that some groups have more within group moral diversity than others which would be captured by joint inference over this parameter.

We now empirically investigate inference in this model via a set of simulations. One of the key reasons to use utility functions to represent moral theories is that our learner can learn from observing different kinds of decisions and judgments in different contexts: they do not need to see many examples of the same
decision, as in classic reinforcement learning and learning-in-games approaches (Fudenberg & Levine, 1998). In our simulations, observations of judgments and decisions took two forms: either the actor traded off her own welfare for that of another person or the actor traded off the welfare of one agent for the welfare of another. Within these two types, each observed decision was unique: The actors involved were unique to that interaction, and the quantities of welfare to be traded off were sampled independently from a probability distribution of characteristic gains and losses. See Appendix A for the specific details of the judgments and decisions used as observations.

Another feature of our simulations is that learners’ observations of behavior are highly biased toward their kin and in-group (Brewer & Kramer, 1985). This makes learning more difficult since most of the observed data is biased towards just a few agents but the learner needs to infer weights and principles that apply to all agents. Fig. 3 shows an example of the inference for $P(W|\{a_0, s_0\}, \ldots, \{a_T, s_T\})$ and the marginalized reciprocity relationships $P(f^{\text{d-recip}}_{i, j}(a_0, s_0), \ldots, (a_T, s_T))$. As the learner observes more data, the inferences become more and more accurate. However even with just a few observations, hierarchical Bayesian inference leverages both the abstract principles and the hierarchical prior over the weights of groups to rapidly approximate the moral theories of others.

4. Moral learning as value alignment

Having described how rich moral theories can be represented and efficiently inferred from the behavior of others, we now turn to moral learning itself. Specifically, how do moral learners set their own weights over principles? We propose that moral learners have meta-values, or preferences over moral theories themselves. Moral learning is then the process of aligning a moral theory with these meta-values. We propose two types of meta-values and study specific instantiations of them. The first, external alignment,
instantiates a form of social learning where learners try to align their weights over principles as close as possible to the weights of those that they value. The second, internal alignment, is a meta-value for a moral theory which is consistent with the learner's attachments and feelings. We formalize these meta-values for moral theory alignment and show that they can provide insights into understanding the dynamics of moral change.

4.1. External alignment: learning from others

External alignment is a form of cultural or social learning. We explicitly depart from the type of social learning commonly used in evolutionary models of game theory which depend on behavioral imitation or learning by reward reinforcement (Nowak, 2006; Rand & Nowak, 2013; Richerson & Boyd, 2008). Instead, we propose that learners acquire a moral theory by internalizing the abstract principles used by others. Since we have already described how a learner can infer the moral theories held by other agents, we now describe how a learner decides who to learn from (Frith & Frith, 2012; Henrich & Gil-White, 2001; Heyes, 2016; Rendell et al., 2010; Rendell et al., 2011; Richerson & Boyd, 2008).

We propose that a learner L sets their moral theory to be close to the moral theories of those whom they value. We express this meta-value as a utility function that the learner is trying to maximize with respect to their weights over principles. The utility function measures how similar the learner's weights are with the weights of the people that the learner values. Since who the learner values is determined in part by their weights, there is an implicit dependence on their current weights, \(w_L \):

\[
U_{\text{external}}(w_L | w_i) = -\sum_{i \neq L} \alpha_{L,i}(w_i) \sum_{p \in P} (w^p_L - w^p_i)^2.
\]

This utility function has two nested sums. The inner sum over principles \(p \) is the sum of squares difference between the moral weighting of the learner and of agent \(i \) for each principle \(p \). Maximum a posteriori (MAP) estimates were used for the inferred weights \(w_i \) of the other agents. The outer sum over agents \(i \) sums that squared difference weighted by how much the learner values each agent \(i \). \(\alpha_{L,i}(w_i) \) given their current weights \(w_i \). Recall that \(\alpha_{L,i}(w_i) \) is composed of two terms: a sum over the moral principles as well as an additional \(i \) term which can contain other feelings and attachments that are not characterized by the moral principles as shown in Eq. (4). We propose that a learner may have some special attachments or feelings towards certain people. Particularly in the case of theory acquisition we consider a primitive attachment towards a caregiver which results in a learner having a high \(\phi \) directed towards that person (Bandura & McDonald, 1963; Cowan, Longer, Heavenrich, & Nathanson, 1969; Govrin, n.d.; Hoffman, 1975). It is interesting to note that this utility function has a similar structural appearance to the utility function of the moral decision maker shown in Eq. (1). If we imagine that agents have a preference that others share their values, then a learner is increasing the utility of the people she values by matching her weights to their weights.

To see how the internalization of the values of others might work dynamically, consider a learner with a single primitive attachment to person \(i \) so that \(\phi_{L,i} > 0 \). By valuing person \(i \), the learner will need to bring her weighting of moral principles in line with \(i \)'s weighting to minimize \(\sum_{p \in P} (w^p_L - w^p_i)^2 \). But by bringing her values (as characterized by her weights over moral principles) inline with those of agent \(i \), she will start to value other agents as well. This process can repeat, with the updated weights \(w_i \) becoming the old weights \(w_L \). For instance, if \(L \) and \(j \) are in the same in-group and \(i \) (\(L \)'s caregiver) weights in-group highly then when \(L \) brings her values in line with \(i \), she will also start to value \(j \) since \(w^p_{L,j} > 0 \) implies \(\alpha_{L,j}(w_L) > 0 \). But since \(\alpha_{L,j}(w_L) > 0 \), the learner will also try to bring her values inline with the values of \(j \) (although to a lessor degree than \(i \)). Through this mechanism, a learner who starts off valuing only a single specific person (e.g., their caregiver) will initially internalize just that person's values. But adopting that person's values may entail valuing other agents and the learner will recursively average the weights of those agents into her own. The model makes the non-trivial claim that the \(\alpha \) parameters perform a dual role: they are both the target of inference when learning from the behavior of others, and they also drive the acquisition of the moral knowledge of others.

We empirically investigate the dynamics of external alignment in the previous society of agents (Fig. 1). Each of the 20 agents act as a caregiver (with a corresponding primitive attachment) to a single learner. Fig. 4 (top) shows the equilibrium weights of the 20 learners. The weights that each learner acquires are a combination of what they infer the weights of their caregiver to be and the inferred weights of the other agents. The extent to which the weights of other agents are ultimately mixed in with the caregivers' weights is controlled by the \(\phi \) on the learners caregiver. As Fig. 4 shows, when this \(\phi \) is high, the learner just internalizes the values of their caregiver. When \(\phi \) is low, the learner chooses weights that are somewhat in between her caregiver's weights and the weights of those that the learner ends up valuing.

Beyond this dynamic of acquisition, other ways of setting \(\phi \) can lead to different learning dynamics. For instance, if learners place a high \(\phi \) on agents they aspire to emulate in terms of success or status, the learning dynamic will emulate that of natural selection. This is analogous to the replicator dynamics used in evolutionary game theory but would operate on abstract moral principles rather than behavioral strategies.

In addition to a primitive attachment such as a relationship with a caregiver, one could also emulate moral exemplars. This kind of learning can also drive moral change for better or for worse. Moral figures like Martin Luther King Jr. and Mother Teresa have inspired people not only to copy their specific prosocial actions and behaviors (e.g., protesting for African American civil rights and helping the needy) but to internalize their values of impartial consideration for all. The bottom half of Fig. 4 shows learners update their weights under the external alignment dynamic when they have feelings for both their own caregiver and a moral exemplar with saint-like impartial values (assigning high weights to the indirect reciprocity and all-people principles). For intermediate values of \(\phi \) towards the exemplar, the learners mix the values of their caregivers with those of the exemplar. For higher values of \(\phi \) towards the exemplar the learners' weights mostly reflect the exemplar. Finally, moral exemplars need not lead to progress. A charismatic dictator or demagogue can inspire others to narrow their moral theory to place more moral weight on one's in-group at the expense of the broader principles.

4.2. Internal alignment: learning from yourself

While external alignment can account for how values are passed on over time and how new ideas from a moral exemplar can spread, it does not generate new moralities that cannot be described as a combination of moral theories that are already expressed in the society. In a society where everyone only narrowly extends moral rights to others, how can more broad or impartial theories emerge? We now turn to a second possible mechanism for learning, internal alignment, which revises moral theories to generate new values through the reduction of internal inconsistency. Our notion of internal alignment mirrors some aspects of the “reflective equilibrium” style of reasoning that moral philosophers have proposed for reconciling intuition and explicit moral principles (Campbell, 2014; Rawls, 1971). We argue that a
similar reflective process can also occur within individuals during moral learning and gives insights into how commonsense moral theories change.

We start by supposing that through the course of one’s life, one will acquire attachments for various people or even groups of people. These attachments and feelings can be represented through the ϕ vector introduced in the previous section. As mentioned in the introduction, these ϕ values could come from empathy and emotional responses, imagination and stories, morally charged analogical deliberation, love, contact, exposure etc. We do not explicitly model how these diverse mechanisms could lead to the formation or breaking of attachments. Instead we directly manipulate the values of ϕ.

These feelings which also motivate moral valuation of specific individuals (through ϕ) will not necessarily match the weight one’s moral theory places on those individuals. This could happen, for instance, when a person with a moral theory that places little weight on anyone outside of their in-group happens to fall in love with an out-group member.

These feelings might affect one’s moral theory through a desire for moral consistency: a preference to adopt a moral theory that does not conflict with one’s feelings and intuitions (Campbell &

Fig. 4. External alignment with caregivers and moral exemplars. The “Actual” columns shows the actual weights for the caregivers of each of the 20 learners and the moral exemplar. The “Inferred” columns show the weights each learner infers about the weights over principles used by their own caregiver (top) and a highly impartial moral exemplar (bottom). The “Actual” and “Inferred” columns look similar since learners infer weights of others with high fidelity. The following upper columns entitled “Caregiver” show the resulting moral theory actually adopted by each of the 20 learners as a result of the process of external alignment shown in Eq. (6). The different values of ϕ sets the strength of the feelings of the learner towards their caregiver. For low values of ϕ the learners end up valuing many agents and so adopt weights that are similar to the mean weight of their group. As ϕ increases there is less averaging and each agent is more likely to only internalize the weights of their caregiver. The lower columns entitled “Exemplar” show the resulting moral theory when learners internalize both the values of their caregivers and the moral exemplar. As the ϕ on the exemplar increases, learners move from mixing the caregiver with the exemplar to directly inheriting the values of the exemplar.
Kumar, 2012; Horne, Powell, & Hummel, 2015). Said another way, feelings inconsistent with the learner’s moral theory could generate an aversive error signal. The learner would then adjust her moral theory in order to reduce the overall magnitude of this signal, aligning her moral theory to be internally consistent with these feelings. This adjustment could be conscious as in moral consistency reasoning (Campbell & Kumar, 2012) or unconscious as in cognitive dissonance (Festinger, 1962). Based on this intuition, we propose a second meta-value for choosing a moral theory that captures this reasoning:

$$U_{\text{internal}}(w_i|w_t) = -\sum_{i \in N} \left[\alpha_i(w_i) - \sum_{p \in P} w_t^i \cdot f^p(L,i) \right]^2.$$ \hspace{1cm} (7)

This criteria takes the form of a utility function that the learner is trying to maximize with respect to their weights over principles. The utility function measures the difference between how much their moral theory tells them to value each person and how much they actually value that person when their feelings are included. The intuition behind internal alignment is that one wants to find a new moral theory (w_t) that values specific individuals (the sum over P) in a way that is consistent with the way one feels about individuals (the α_i) which includes both moral principles $\sum_{p \in P} w_t^i \cdot f^p(L,i)$ and the ϕ_j as shown in Eq. (4). In the case where there are no additional attachments (and hence $\phi_L = 0$), the two terms will be in alignment and the learner will choose $w_t = w_t$, i.e., maintain their original moral theory without change. When these are not in alignment (and hence $\phi_L \neq 0$), the weights over principles will be adjusted such that they have higher weight on principles that include agents where $\phi_L > 0$ and lower weight on principles that include agents where $\phi_L < 0$. A schematic of this process is shown in Fig. 5.

Consider a father who holds significant homophobic views and treat homosexuals as an out-group. If he discovers that a close friend or even his own child is homosexual, his moral theory is telling him to value that person when their feelings are included. In order to align his weights over principles to be consistent with his feelings the father may update his moral theory to place less weight on that in-group relation and more weight on the more universal values (all or indirect-reciprocity). Likewise, in the novel “The Adventures of Huckleberry Finn,” as Huck develops a bond with Jim, a black runaway slave, his feelings are no longer consistent with the parochial moral weighting he had previously held (where race is the key feature defining groups) and he updates his moral weighting to include Jim, which might also include other black people.

Internal alignment is one way to explain the phenomenon of expanding moral circles, the extension of rights and care to increasingly larger groups of people over time. In our model this corresponds to moving from the narrow values of kin and in-group to more impartial values of indirect-reciprocity and valuing everyone. We first study how this might work at the level of an individual agent. Fig. 6 shows how a learner’s weights over principles move from weighting more parochial to more impartial values in response to new attachments and internal alignment. Crucially and in contrast to external alignment, internal alignment can account for moral change that does not arise from merely copying the values of others. As learners have new experiences, emotional or deliberative, their appreciation of other people may change and the inconsistency generated by those experiences can lead to new moral theories.

Internal alignment is broader than the specific instance studied here and other forms are certainly possible. While we focus on adjusting the weights of the moral theory, the nature of the principle could also be changed. For instance, the father of the homosexual child could also reduce inconsistency by subtyping his in-group/out-group membership criterion such that his child was not excluded (Weber & Crocker, 1983). Another way to reduce inconsistency would be to allow the attachments themselves to change. The father might weaken his feelings for his child. Also note that internal alignment may lead to reducing the moral weight of whole groups. If a learner comes to develop negative feelings for an individual of a certain group (for example after...
being victimized by crime), that experience may drive them toward a more parochial weighting of principles. Fig. 7 shows how the narrowing of an impartial theory can occur within a single individual in response to negative attachments and hatred.

In sum, while external alignment leverages primitive relations to learn abstract moral principles, internal alignment modifies moral principles to make them consistent with feelings and relationships. While external alignment can remove disparities between what learners weight and what the people they value weight, internal alignment can remove disparities in whom the agent values by changing what the learner values. Perhaps the clearest way to appreciate this distinction is to consider the difference between two canonical examples of moral change where these different alignment mechanisms are operative. Consider a learner who “loves a saint” versus a learner who “loves a sinner”. Both situations can lead to moral change, but moral learning by loving a saint follows from external alignment while moral learning by loving a sinner follows from internal alignment. That is, loving the saint will lead to copying the values of the saint, for instance internalizing their weight on the indirect-reciprocator principle as we showed in Fig. 4 where learners copied from saint-like moral exemplars. But in loving a sinner, the sinner doesn’t have weights that the learner can copy since they presumably conflict with the weights of the other people she values (“love the sinner, hate the sin”). However, internal alignment is still a viable force. By highly weighting the “all people” principle, the learner can value both the sinner who she loves and the other good people the learner values (as in Fig. 6). To make these examples concrete, contrast a prejudiced white learner who is inspired to value a moral leader such as Martin Luther King Jr., and a prejudiced white learner who comes to value a specific black person who is not especially virtuous (as Huck Finn did with Jim). The former may copy the impartial values of MLK while the latter may adjust his moral weightings to include that special person in an effort to make his moral theories consistent.

4.3. Dynamics of moral change

These two learning mechanisms, external and internal alignment, also have implications for the dynamics of moral evolution – how moral values change over generations. In our experiments, for each generation, a new group of learners observe biased samples of behavior and judgment from the previous generation, infer the underlying moral theory (as in Fig. 3) and through value alignment, set the weights on their own moral theory (as in Fig. 4). This process is iterated for each generation with the learners of the previous generation becoming the actors for the next generation of learners. Using this model of generational learning we are able to formulate and answer questions about how moral learning translates into moral change.

One question, for example, is what leads moral change to persist, and even accelerate across generations. We hypothesize that through external alignment, a moral exemplar might rapidly affect moral values in even a single generation. The more people that are affected by the exemplar (a measure of that exemplar’s influence), the greater the shift. Once changed, this shift persists in future generations (Fig. 8a), but does not continue to grow (and indeed may eventually be lost). Thus, we suggest that the greatest moral change occurs when the exemplar persists across generations in retold stories and memories. As an example, consider the rituals around “saintliness” in which a moral exemplar’s good acts are relived and remembered across generations. This persistence allows the exemplar’s moral principles to continue to shift moral values long after their original influence (Fig. 8b).

Another question concerns how rapid moral change can spread through a group even without a specific exemplar (Pinker, 2011; Singer, 1981). For example, how do attachments between specific individuals create systematic change in overall moral norms, via internal alignment?

![Fig. 7. Narrowing an impartial moral theory through feelings of hatred and internal alignment. The caregiver and all other agents have impartial values (shown in the “Caregiver” row) so change cannot occur through external alignment. These moral theories were inferred by the learner as in Fig. 3. When the learner only has a primitive attachment for the caregiver, her moral theory closely reflects the impartial moral theory of the caregiver (shown in the “Caregiver attachment only” row). Each following row shows the resulting moral theory when the learner forms a negative-attachment (hatred) with $\phi = -1$ towards the hated agent. When the learner experiences hatred toward a person in their in-group internal alignment narrows their moral values to just weight kin and direct-reciprocity. When the learner experiences hatred for an out-group member who is also in the indirect-reciprocator group the weights narrow to highly weight the in-group at the expense of all people. Finally, when the learner experiences hatred towards a “sinner,” an out-group member who doesn’t belong to group of indirect-reciprocators, the inconsistency is resolved by only narrowing away from valuing everyone.](http://dx.doi.org/10.1016/j.cognition.2017.03.005)
In our simulations, agents started out with a parochial moral theory which heavily weighted the kin and in-group principles and placed very little weight on the impartial principles of indirect-reciprocity and all people (shown in Fig. 1). To measure moral change we examined the average weighting of these principles during each generation. In each simulation we varied the fraction of new feelings and attachments ($\rho > 0$) we created in each generation and the distribution of those new attachments across the agents. The proportion of agents ($\rho = 0.05, 0.15, 0.25$) who formed a new attachment towards another agent besides their caregivers varied in each experiment. We analyze the equilibrium of jointly optimizing the external and internal alignment utility functions. Since there are no “saints” in these simulations, internal alignment is necessary for systematic directional change in the average weights of the society.

In the first set of simulations, these attachments were created between agents uniformly at random. Because of uniform sampling, an agent’s new attachment is unlikely to be towards someone in their kin group and $\approx 50\%$ likely to be towards someone in their in-group. Thus half of the new attachments are likely to be towards an agent from an out-group who is not valued by morally parochial agents. Fig. 9a shows the average weight on parochial principles such as kin and in-group compared with the broader principles of all people and indirect-reciprocity. We compared the average weight as a function of the number of generations and the proportion of agents generating new attachments (ρ). When $\rho = 0.05$, there is very little cumulative moral change towards indirect-reciprocity and all people. However when $\rho = 0.15$, there is a complete shift towards these broad values but only after many generations. Finally, when $\rho = 0.25$, agents predominantly weigh the impartial principles after only three generations.

In the second set of simulations, agents formed attachments towards other agents proportional to their probability of interacting with that agent. These agents were far less likely to form a new attachment to someone outside of their in-group since they rarely interact and observe the behavior of agents outside of their in-group. Fig. 9b shows how the moral theories changed under this paradigm. Unlike previous simulations, when $\rho = 0.05$, almost no moral change was observed and after one generation the moral theory remained relatively constant. Even when $\rho = 0.25$ which led to rapid moral change in the previous set of simulations, moral change was slow and the parochial values and impartial values did not cross over until after around ten generations.

To test whether the previous results depended on the internal alignment mechanism, we ran the same simulations as above but without internal alignment active during learning (Fig. 10). No matter the amount of attachments formed (ρ), there was little to no change in the moral theories demonstrating that moral change based on attachments critically requires internal alignment.

This result could also correspond to being aware of the inconsistency but lacking the meta-value to reduce the conflict, choosing to live with that inconsistency rather than revise one’s moral theory (Bennett, 1974). Another possibility is that agents are simply unaware of the inconsistency – people often feel strong attachments for their spouses and neighbors but remain inconsistent. Instead, they must construe the attachments and feelings for their loved ones as incompatible with their moral position. A recent study by Hein, Engelmann, Vollberg, and Tobler (2016) showed that unexpected prosocial behavior from an out-group member elicited a neural signal consistent with a prediction error. These signals could also act as a cue to initiate the process of updating one’s moral theory. Furthermore, unequal deserving of moral concern is not always or obviously seen as incompatible with feeling love for specific individuals. Others may be seen as appropriately and rightly occupying different positions in the moral arrangement, and therefore having different rights without necessarily generating any internal alignment. Agents may also be motivated
by personal image or other selfish motivations to ignore the inconsistency (Monin, 2007; Monin, Sawyer, & Marquez, 2008).

Can this explain why attitudes about some groups change quickly (e.g., women and homosexuals) but change slowly or not at all for others (e.g., races, religions and nationalities) even once those inconsistencies are pointed out? One possibility is that internal alignment does not operate automatically. Instead, inconsistency may need to be experienced and lived repeatedly to generate moral change through internal alignment. This lack of continued and interactive contact may underlie the cases where moral change is resistant. An intriguing possibility along these lines is the role of literature in spurring moral change (e.g., Uncle Tom’s Cabin) by activating internal alignment. Literature can humanize a person in morally relevant ways, forcing a reader to experience their inconsistency over and over again. A particularly effective way to generate moral change may be to combine external and internal alignment. A moral exemplar describes and relates their own process of noticing inconsistency and resolving it through internal alignment, simultaneously walking others through their own moral change and encouraging them to do the same.

While we have demonstrated that attachments can in some cases lead to rapid moral change from a parochial moral theory to an impartial one, we now investigate whether attachments selectively generated towards one’s in-group towards can change agents that have impartial moral theories into having more parochial moral theories – narrowing the moral circle. Fig. 11 shows simulations with a society that starts with an impartial moral theory and in each generation agents form attachments with other agents specifically within their in-group. No regression towards parochial values was observed. From these simulations we hypothesize a “moral ratchet effect,” since impartial moral theories that value all agents already include valuing those in-group members, no inconsistency arises from those attachments. Thus moral change towards more impartial theories is robust to new positive attachments towards one’s in-group and is not expected to lead to moral regression.

The dynamics of these results suggest there may be a critical point for enabling long lasting moral change. When agents were more likely to be exposed to and develop attachments to agents outside of their in-group they quickly revised their moral theories to be consistent with these attachments and developed impartial moral theories. When agents were limited in their out-group interaction, their parochial moral theories persisted for far longer. This work suggests that moral learning is a double edged sword: while it is possible to rapidly and reliably acquire a set of abstract principles from limited and sparse data, the values acquired might reflect group biases. Under the right circumstances moral progress can appear rapidly but in other circumstances it fails to cross group boundaries.

5. Discussion

We have argued that three principles should be central in a computational framework for understanding moral learning and moral change. First, the commonsense moral knowledge used to make trade-offs between the welfare of different people including oneself can be represented as a recursive utility calculus. This utility calculus weights abstract moral principles and places value on people enabling the evaluation of right and wrong in an infinitude of situations: choosing when to act altruistic or reciprocal, favoring...
one person or group of people over another, or even making judgments about hypothetical out-of-control trolleys, etc. This abstract representation contrasts with previous formal models of moral learning where the knowledge that supports moral judgment consists of simple behaviors or responses to behavioral reinforcement (Cushman, 2013; Nowak, 2006; Rand & Nowak, 2013). Moral knowledge grounded in behaviors rather than abstract principles of valuation cannot generalize flexibly to novel situations.

Second, for moral theories to be culturally learned, learners must be able to infer the moral theories of others, and we showed that hierarchical Bayesian inference provides a powerful mechanism for doing so. Rational inference is needed to figure out which moral principles and reasons drove agents to act in a world where moral behavior and judgments are sparsely observed, noisy and often ambiguous – a “poverty of the stimulus”. What a person does in one context gives information about what they will do in other contexts, and learners exploit these regularities to go beyond the data to infer the abstract principles that drive a person to act. The hierarchical Bayesian model exploits regularities in how moral theories are shared between group members to generalize rapidly to new people the agent may have never seen before. In addition to inferring the moral theories of other agents, our model also infers reciprocity relationships which cannot be directly observed. Without the ability to infer abstract theories, learning would be limited to behaviorist models which only care about the observable behavior of others, not their character or reasons for acting.

Finally, having inferred the moral theories of others, learners must choose how to set their own moral theory. We argue that moral learning is guided by meta-values which determine the kinds of moral theories that the learner values holding. Under this model, moral learning is the process of aligning one’s moral theories with these meta-values. A meta-value for external alignment, tries to match the learner’s moral theory as closely as possible to the inferred moral theories of the people that the learner values. External alignment accounts for the reliability of moral learning from others across generations and gives an account of how agents mix together the moral theories of the many agents they may end up caring about. The richness of this form of cultural learning critically requires both the ability to represent abstract moral theories and infer the moral theories of others. A second meta-value, internal alignment, revises moral theories to make them consistent with attachments and feelings generated from emotional (empathy, love, contact) and deliberative sources (analogies, argumentation, stories) (Allport, 1954; Bloom, 2010; Campbell & Kumar, 2012). Our model makes testable predictions about how the different patterns of attachments could affect the dynamics of moral change.

Our core argument is that a full account of moral learning should include at least these three computational principles: moral theories represented in terms of abstract principles grounded in a recursive utility calculus, hierarchical Bayesian inference for rapidly inferring the moral theories of others, and learning by value alignment both externally to the values of others and internally through reducing inconsistency. Our main results take the form of a series of simulations based on a particular implementation of these principles, but we stress that our specific implementation is unlikely to be fully correct and is certainty not complete. Many of the specific quantitative modeling choices we made (for instance, the choice of squared-error as opposed to absolute difference for the learner’s cost function on weights, or the choice of a normal distribution as the prior over weights) do not affect the main results and we are not committed to them specifically. Instead, we want to argue for and explain the value of several computational principles more broadly in moral learning, and we hope that their instantiation in a specific computational model can complement more qualitative accounts of moral learning and moral change (Mikhail, 2011; Pinker, 2011; Pizarro, Detweiler-Bedell, & Bloom, 2006; Singer, 1981). Ultimately, we hope that understanding the mechanisms of moral change at this level can ultimately be valuable in implementing the changes we would like to see in our societies – or in understanding when moral progress is likely to be slower than we would like.

Given that this is a first attempt at using these quantitative tools in the moral domain there are still many possible extensions we hope to address in future work. In this work learners received data in the form of moral judgments and behaviors, however external alignment is sufficiently general to learn from other types of data such as explicit declarations of values. For example, a value statement such as “Family comes first!” could be encoded as a qualitative constraint on the ordering of weights for different moral principles, i.e., the weight on kin should be higher than on other principles. It can also be used to learn from punishment and praise. Consider the difference about what is learned when punished by an anonymous person versus someone you love. In part, the decision to punish gives information about the punisher’s own moral theory. If the punisher is someone who the learner cares about it can lead to moral updating through external alignment rather than behavioral reinforcement.

Other extensions could integrate our model with recent work which has shown how deontological principles (of the form “do not X” or “do not intend X” regardless of the consequences) could be learned (Ayars & Nichols, 2017; Nichols et al., 2016) or emerge from choice algorithms (Crockett, 2013; Cushman, 2013). Learners are also expected to learn how different “base” moral goods and evils contribute to the welfare of individuals or even what counts as moral. Differences in what counts as moral is already known to vary across cultures and individuals (Graham et al., 2009; Graham et al., 2016). In our model this would correspond to learning the form and weight of different components in the R(s) function. In this work we treated all moral goods as having a shared currency (“utility”) but people may act as if there are multiple sets of value, different currencies that cannot be directly interchanged (Baron & Spranca, 1997; Baron & Leshner, 2000; Tetlock, Kristel, Elson, Green, & Lerner, 2000). Finally, these source of moral value may also compete with mundane and non-moral values (Tetlock, 2003). We leave these challenges for future work.

Much more can also be said about the structure of moral principles in our framework. Group membership is often combinatorially complex where each agent may be a member of multiple groups some observable and others not. Some groups are defined top-down by external factors such as race, religion, gender, or location while others are defined bottom-up such as based on a similarity of values (moral and non-moral). While in this work, we showed how the priors on the values of group members can speed up the inference of the values of individuals, it can also speed up an inference of who is in what group by exploiting knowledge of their values. Groups are themselves dynamic and future work should integrate models of group formation with the dynamics of moral theory learning (Gray et al., 2014).

Furthermore, in the simulations we studied, there were only two groups which were of equal size and which shared similar values. We could ask, for example, whether a learner with a caregiver who holds a minority moral theory is as likely to spread that theory as one with a caregiver who holds a theory held by the majority? When are minority values likely to be assimilated into the majority after a few generations, and when do they become stable? Or consider the effects of ambiguous moral inference on moral change. A person in one group may show a few cooperative interactions with members of another group, which could reflect a low in-group bias and high impartiality. But these actions could also come about from a high in-group bias together with some specific valuation of a small number of out-group members, either through highly
weighted direct reciprocity links or intuitive feelings. Others may not know how to interpret their actions, and indeed the individual may themselves be confused or self-deceptive, as exemplified by the classic excuse, “I’m not racist! Some of my best friends are black!”. How might these ambiguities speed or slow the rate of change towards impartial indirect-reciprocity in the expanding-circle scenarios we discussed above?

While in this work we mainly explored how the moral principles are abstract with respect to individuals and groups, we observe that such principles are also abstract to situational context (Fiske, 1992). In some contexts one might be justified in acting mostly in one’s own interests or the interest of one’s loved ones while in another context selfless behavior may be obligated. For example, it may be acceptable to give higher weight to one’s own child under most circumstances, but when acting as a school chaperone this duty is extended equally to all the children. Furthermore, there are exchanges of welfare based on merit, effort or punishment which require a notion of proportionality that our representation does not capture (Rai & Fiske, 2011).

We hope in future work to be able to say more about where these moral principles cognitively originate. Some have argued that children might have an innate understanding of even the more sophisticated reciprocity based moral principles (Hamlin, 2013). Another possibility is that these principles come from an even more abstract generative model of moral and social behavior, either embedded in the roots of societies through something like an “initial position” bargain (Binmore, 1998; Rawls, 1971) or implemented in a more online fashion in individuals’ “virtual bargaining” with each other (De Cote & Littman, 2008; Kleiman-Weiner, Ho, Austenweil, Littman, & Tenenbaum, 2016; Miyak, Melkonyan, Zeitoun, & Chater, 2014). Evolutionary mechanisms (cultural or biological) which favored groups that followed these principles, because of how they promote cooperation and the advantage cooperation bestows to groups and their members, are also likely contributors (Greene, 2014; Rand & Nowak, 2013). Our work here is complementary to all these proposals, and we would like to explore further how it could integrate with each of them.

Finally, if we are going to build artificial agents that can act with us, act on our behalf and make sense of our actions, they will need to understand our moral values (Bostrom, 2014; Wiener, 1960). Our model suggests one route for achieving that understanding: We could build machines that learn values as we propose humans do, by starting with a broad set of abstract moral principles and learning to weight those principles based on meta-values which depend in part on the values of the humans that the machine interacts with or observes. This proposal fits well with mechanisms of value alignment via cooperative inverse reinforcement learning (Hadfield-Menell, Russell, Abbeel, & Dragan, 2016) that have been proposed for building beneficial, human-centric AI systems. We can choose how much of morality should be built into these machines and how much should be learned from observation and experience. With too little abstraction built in (such as trying to learn the x directly), the machine will learn too slowly and will not robustly generalize to new people and situations. With too much structure and constraints, the restricted theory may be unable to capture the diversity and richness of the true moral theories used by people. The model presented here is just one point on this spectrum which trades off complexity and learnability. The prospect of building machines that learn morality from people hints at the possibility of “active” moral learning. Can a learner, child or machine ask questions about ambiguous cases (perhaps similar to those pondered by philosophers) to speed up the process of moral learning?

In conclusion, learning a commonsense moral theory, like learning a language, turns out to require a surprisingly sophisticated computational toolkit. This is true if we seek to understand how moral knowledge is acquired, particularly the type of moral knowledge that generalizes flexibly to an unbounded range of situations, and that involves interactions with others we barely know or have never met. Understanding moral learning in computational terms illuminates the cognitive richness of our moral minds, and helps us to understand how our societies might have come to the moral values we hold — and where we might be going.

Acknowledgements

We thank Fiery Cushman, Tobias Gerstenberg, Victor Kumar, Sydney Levine, Rachel Magid, Adam Morris, Peter Raitlon, Laura Schulz, and Tomer Ullman for discussions and ideas. MKW was supported by a Hertz Foundation Fellowship and NSF-GRFP. JBT was funded by NSF STC award CCF-1231216 and by an ONR grant N00014-13-1-0333. MKW, RS and JBT were supported by the Center for Brains, Minds and Machines (CBMM).

Appendix A. Simulation details

In this work we consider two types of decision contexts: one where the actor traded off her own welfare for that of another person, and one where the actor traded off the welfare of one agent for the welfare of another. For the first type of decision context, an actor chose between an allocation of welfare of 0 to herself and 0 to the other agent or an allocation of −A to herself and A + B to the other agent where A and B were independently resampled from an exponential distribution with mean 10 for each decision. Thus in these decisions an agent chooses between doing nothing, or paying a cost (−A) to give a larger benefit to another agent (A + B). The larger the ratio of the samples (B/A) the greater the joint utility of choosing the prosocial option.

For the second type of decision context, the actor chose between A welfare for one agent and A + B welfare for another agent with no impact on the actors own welfare. In this context, the actor is choosing which person should be given the allocation and the agent not chosen gets nothing. A was resampled from an exponential distribution with mean 10 and B was independently sampled from the same distribution as A with probability 0.5 and set to 0 with probability 0.5. Although there are only two decision contexts, since the actual welfare trade off is newly sampled for each choice, no decision is exactly like any other.

To generate observations for learning, we first sampled an actor and affected agents from the previous generation of agents and a decision context with values for A and B. Then a choice or judgment was generated by sampling from the distribution shown in equation (3) with δ = 5. Each learner observed a unique set of decisions and judgments from different actors. We assumed that the observed agents have already reached an equilibrium in learning i.e., the agents which generate observations are not themselves learning. Due to this assumption each observation of a decision is independent.

Maximum a posteriori probability (MAP) inference for the conditional on the observations (P(W/(a_i, s_i), . . . , (a_T, s_T))) was estimated using an EM-like inference algorithm that iterated between optimizing the weights W, of each agent i, the group average weightings W_{\text{avg}} and samples from the two reciprocity relationships (P(f^\text{ recip}, f^\text{ recip}) | H_i). In all simulations we used \lambda = 1 for P(f^\text{ recip}, p = 0.5 for P(f^\text{ recip}) and \Sigma^g = I for all g.

Appendix B. Extending the utility calculus

Here we explore possible extensions to the representations of moral theories which demonstrate the richness of the utility calculus. While we considered recursive utility calculus where prosocial
moral theories the level-1 theory is composed from self-valuing level-0 moral theories. We can iteratively apply recursive valuation to generate utility functions that allow for higher-order preferences. The level-k utility function is:

\[
U_k^i(s, a) = R(s) - \delta D_i(a)
\]

where \(D_i(a)\) is a function that returns the degree to which an action violates a deontological rule that agent \(i\) cares about. Since intuitions can be inferred from actions (Kleinman-Weiner et al., 2015; Mikhal, 2007), these constraints could include restrictions on intention such as the doctrine of double effect or other specific forbidden actions (Haidt, 2007; Tetlock et al., 2000). Importantly, these norms are limited to those that only depend on the action (and what can be inferred from the action), without reference to the consequence. These deontological norms are integrated with the rest of the moral theory with \(\delta\) controlling the relative degree that agent \(i\) takes into account deontological rules compared to outcomes (Kleinman-Weiner et al., 2015; Nichols & Mallon, 2006). Recent research has made progress on learning this function from experience (Ayars & Nichols, 2017; Cushman, 2013; Nichols et al., 2016). Once this new base utility function \(U_0^i\) enters the level-k recursion, if agent \(i\) values the utility of agent \(j\) through \(\delta x_k\), then \(i\) will also care about the deontological prohibitions that agent \(j\) cares about. To use these utility functions which depend on actions as well as states requires simply substituting \(U(s')\) in Eq. (2) for \(U(s, a)\).

References
