Non-Adaptive Adaptive Sampling on Turnstile Streams

Sepideh Mahabadi
TTIC

Ilya Razenshtein
MSR Redmond

David Woodruff
CMU

Samson Zhou
CMU
Adaptive Sampling

An **algorithmic paradigm** for solving many data summarization tasks.
Adaptive Sampling

An **algorithmic paradigm** for solving many data summarization tasks.

Given: n vectors in \mathbb{R}^d

- **Sample** a vector w.p. proportional to its norm
- **Project** all vectors away from the selected subspace
- **Repeat** on the residuals
Adaptive Sampling Example
Data Summarization Tasks

Given:
• n by d matrix $A \in \mathbb{R}^{n \times d}$
• parameter k

Goal:
• Find a representation (of “size k”) for the data
• Optimize a predefined function

Rows correspond to n data points
e.g. feature vectors of objects in a dataset
Data Summarization Tasks

Given:
• n by d matrix $A \in \mathbb{R}^{n \times d}$
• parameter k

Goal:
• Find a representation (of “size k”) for the data
• Optimize a predefined function

Instances:
• Row/Column subset selection
• Subspace approximation
• Projective clustering
• Volume sampling/maximization

• Find a subset S of k rows minimizing the squared distance of all rows to the subspace of S

\[\|A - \text{Proj}_S(A)\|_F \]

- Best set of representatives
Data Summarization Tasks

Given:
• n by d matrix $A \in \mathbb{R}^{n \times d}$
• parameter k

Goal:
• Find a representation (of “size k”) for the data
• Optimize a predefined function

Instances:
• Row/Column subset selection
• Subspace approximation
• Projective clustering
• Volume sampling/maximization

• Find a subspace H of dimension k minimizing the squared distance of all rows to H
 $$\|A - \text{Proj}_H(A)\|_F$$
 ➢ Best approximation with a subspace
Data Summarization Tasks

Given:
• n by d matrix $A \in \mathbb{R}^{n \times d}$
• parameter k

Goal:
• Find a representation (of “size k”) for the data
• Optimize a predefined function

Instances:
• Row/Column subset selection
• Subspace approximation
• Projective clustering
• Volume sampling/maximization

• Find s subspaces H_1, \ldots, H_s each of dimension k minimizing
 \[\sum_{i=1}^{n} d(A_i, H)^2 \]

 ➢ Best approximation with several subspaces
Data Summarization Tasks

Given:

- \(n \) by \(d \) matrix \(A \in \mathbb{R}^{n \times d} \)
- parameter \(k \)

Goal:

- Find a representation (of “size \(k \)”) for the data
- Optimize a predefined function

Instances:

- Row/Column subset selection
- Subspace approximation
- Projective clustering
- Volume sampling/maximization

- Find a subset \(S \) of \(k \) rows that maximizes the volume of the parallelepiped spanned by \(S \)
 - Notion for capturing diversity
 - Maximizing diversity
Data Summarization Tasks

Given:

• n by d matrix $A \in \mathbb{R}^{n \times d}$
• parameter k

Goal:

• Find a representation (of “size k”) for the data
• Optimize a predefined function

Instances:

• Row/Column subset selection
• Subspace approximation
• Projective clustering
• Volume sampling/maximization

Adaptive sampling is used to derive algorithms for all these tasks
Adaptive Sampling

[DeshpandeVempala06, DeshpandeVaradarajan07, DeshpandeRademacherVempalaWang06]

• Sample row i w.p. proportional to distance squared $\|A_i\|^2_2$

\[\frac{\|A_i\|^2_2}{\|A\|^2_F} \]

Given: n by d matrix $A \in \mathbb{R}^{n \times d}$, parameter k

• Sample a row A_i with probability $\frac{\|A_i\|^2_2}{\|A\|^2_F}$
Adaptive Sampling

[DeshpandeVempala06, DeshpandeVaradarajan07, DeshpandeRademacherVempalaWang06]

• Sample row i w.p. proportional to distance squared $\|A_i\|_2^2$

• Given: n by d matrix $A \in \mathbb{R}^{n \times d}$, parameter k

• Sample a row A_i with probability $\frac{\|A_i\|_2^2}{\|A\|_F^2}$

Frobenius norm:

$$\|A\|_F = \sqrt{\sum_i \sum_j A_{i,j}^2}$$
Adaptive Sampling

[DeshpandeVempala06, DeshpandeVaradarajan07, DeshpandeRademacherVempalaWang06]

• Sample row i w.p. proportional to $\|A_i (I - M^+ M)\|_2^2$

• Given: n by d matrix $A \in \mathbb{R}^{n \times d}$, parameter k

 • $M \leftarrow \emptyset$

 • For k rounds,

 • Sample a row A_i with probability
 \[
 \frac{\|A_i (I - M^+ M)\|_2^2}{\|A (I - M^+ M)\|_F^2}
 \]

 • Append A_i to M

Project away from sampled subspace

M^+ : Moore-Penrose Pseudoinverse
Adaptive Sampling

[DeshpandeVempala06, DeshpandeVaradarajan07, DeshpandeRademacherVempalaWang06]

• Sample row i w.p. proportional to $\|A_i(I - M^+ M)\|_2^2$

• Given: n by d matrix $A \in \mathbb{R}^{n \times d}$, parameter k

• $M \leftarrow \emptyset$

• For k rounds,
 • Sample a row A_i with probability
 $$\frac{\|A_i(I - M^+ M)\|_2^2}{\|A(I - M^+ M)\|_F^2}$$
 • Append A_i to M

Project away from sampled subspace
M^+: Moore-Penrose Pseudoinverse

Seems inherently sequential
Question:
Can we implement Adaptive Sampling in one pass (non-adaptively)?
Streaming Algorithms

Motivation: Data is huge and cannot be stored in the main memory

Streaming algorithms: Given sequential access to the data, make one or several passes over input

• Solve the problem on the fly
• Use sub-linear storage

Parameters: Space, number of passes, approximation
Streaming Algorithms

Motivation: Data is huge and cannot be stored in the main memory

Streaming algorithms: Given sequential access to the data, make one or several passes over input
 • Solve the problem on the fly
 • Use sub-linear storage

Parameters: Space, number of passes, approximation

Models:
 • Row Arrival: rows of A arrive one by one
 • Turnstile: we receive updates to the entries of the matrix i.e., (i,j,Δ) means $A_{i,j} \leftarrow A_{i,j} + \Delta$
Streaming Algorithms

Motivation: Data is huge and cannot be stored in the main memory

Streaming algorithms: Given sequential access to the data, make one or several passes over input
- Solve the problem on the fly
- Use sub-linear storage

Parameters: Space, number of passes, approximation

Models:
- **Row Arrival:** rows of A arrive one by one
- **Turnstile:** we receive updates to the entries of the matrix i.e., (i, j, Δ) means $A_{i,j} \leftarrow A_{i,j} + \Delta$

Focus on the row arrival model for the talk
Streaming Algorithms

Motivation: Data is huge and cannot be stored in the main memory

Streaming algorithms: Given sequential access to the data, make one or several passes over input
 • Solve the problem on the fly
 • Use sub-linear storage

Parameters: Space, number of passes, approximation

Models:
 • Row Arrival: rows of A arrive one by one
 • Turnstile: we receive updates to the entries of the matrix i.e., (i, j, Δ) means $A_{i,j} \leftarrow A_{i,j} + \Delta$

Focus on the row arrival model for the talk

Our goal: Simulate k rounds of adaptive sampling in 1 pass of streaming

- Data Summarization tasks were considered in the streaming models in earlier works that used adaptive sampling [e.g. DV’06, DR’10, DRVW’06]
Outline of Results

1. Simulate adaptive sampling in 1 pass turnstile stream
 • $L_{p,2}$ sampling with post processing matrix P

2. Applications in turnstile stream
 • Row/column subset selection
 • Subspace approximation
 • Projective clustering
 • Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival
Outline of Results

1. Simulate adaptive sampling in 1 pass turnstile stream
 - $L_{p,2}$ sampling with post processing matrix P

2. Applications in turnstile stream
 - Row/column subset selection
 - Subspace approximation
 - Projective clustering
 - Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival
Results: $L_{2,2}$ Sampling with Post-Processing

Input:
- $A \in \mathbb{R}^{n \times d}$ as a (turnstile) stream
- a post-processing $P \in \mathbb{R}^{d \times d}$

Output: samples an index $i \in [n]$ w.p. $\frac{\|A_i P\|_2^2}{\|AP\|_F^2}$
Results: $L_{2,2}$ Sampling with Post-Processing

Input:
- $A \in \mathbb{R}^{n \times d}$ as a (turnstile) stream
- a post-processing $P \in \mathbb{R}^{d \times d}$

Output: samples an index $i \in [n]$ w.p. $\frac{\|A_i P\|_2^2}{\|A P\|_F^2}$

P corresponds to the projection matrix $(I - M^+ M)$
Results: $L_{2,2}$ Sampling with Post-Processing

Input:
- $A \in \mathbb{R}^{n \times d}$ as a (turnstile) stream
- a post-processing $P \in \mathbb{R}^{d \times d}$

Output: samples an index $i \in [n]$ w.p. $(1 \pm \epsilon) \frac{\|A_i P\|_2^2}{\|AP\|_F^2} + \frac{1}{\text{poly}(n)}$
 - In one pass
 - $\text{poly}(d, \epsilon^{-1}, \log n)$ space
Results: $L_{2,2}$ Sampling with Post-Processing

Input:
- $A \in \mathbb{R}^{n \times d}$ as a (turnstile) stream
- a post-processing $P \in \mathbb{R}^{d \times d}$

Output: samples an index $i \in [n]$ w.p. $(1 \pm \epsilon) \frac{||A_iP||_2^2}{||AP||_F^2} + \frac{1}{\text{poly}(n)}$

- In one pass
- $\text{poly}(d, \epsilon^{-1}, \log n)$ space

Impossible to return entire row instead of index in sublinear space
- a long stream of *small* updates $+ \text{ an arbitrarily large update}$
Results: $L_{p,2}$ Sampling with Post-Processing

Input:
• $A \in \mathbb{R}^{n \times d}$ as a (turnstile) stream, $p \in \{1, 2\}$
• a post-processing $P \in \mathbb{R}^{d \times d}$

Output: samples an index $i \in [n]$ w.p. $(1 \pm \epsilon) \frac{\|A_i P\|_2^p}{\|AP\|_p^p} + \frac{1}{poly(n)}$
 ✓ In one pass
 ✓ $poly(d, \epsilon^{-1}, \log n)$ space

Impossible to return entire row instead of index in sublinear space
 ☐ A long stream of small updates + an arbitrarily large update
Outline of Results

1. Simulate adaptive sampling in 1 pass turnstile stream
 - $L_{p,2}$ sampling with post processing matrix P

2. Applications in turnstile stream
 - Row/column subset selection
 - Subspace approximation
 - Projective clustering
 - Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival
Input: $A \in \mathbb{R}^{n \times d}$ as a (turnstile) stream

Output: Return each set $S \subseteq_k [n]$ of k indices w.p. p_S s.t.

$$\sum_S |p_S - q_S| \leq \epsilon$$

- q_S: prob. of selecting S via adaptive sampling
- w.r.t. either distance or squared distance (i.e., $p \in \{1,2\}$)
Results: Adaptive Sampling

Input: $A \in \mathbb{R}^{n \times d}$ as a (turnstile) stream

Output: Return each set $S \subseteq_k [n]$ of k indices w.p. p_S s.t.

$\sum_S |p_S - q_S| \leq \epsilon$

- q_S: prob. of selecting S via adaptive sampling
- w.r.t. either distance or squared distance (i.e., $p \in \{1,2\}$)

✓ In one pass

✓ $poly(d, k, \epsilon^{-1}, \log n)$ space
Results: Adaptive Sampling

Input: $A \in \mathbb{R}^{n \times d}$ as a (turnstile) stream

Output: Return each set $S \subset_k [n]$ of k indices w.p. p_S s.t.

$$\sum_S |p_S - q_S| \leq \epsilon$$

- q_S: prob. of selecting S via adaptive sampling
- w.r.t. either distance or squared distance (i.e., $p \in \{1,2\}$)

✓ In one pass

✓ $\text{poly}(d, k, \epsilon^{-1}, \log n)$ space

✓ Besides indices S, a noisy set of rows $r_1, ..., r_k$ are returned
 - Each r_i is close to the corresponding A_i (w.r.t. residual)
Results: Adaptive Sampling

Input: \(A \in \mathbb{R}^{n \times d} \) as a (turnstile) stream

Output: Return each set \(S \subset_k [n] \) of \(k \) indices w.p. \(p_S \) s.t.
\[
\sum_S |p_S - q_S| \leq \epsilon
\]
- \(q_S \): prob. of selecting \(S \) via **adaptive sampling**
- w.r.t. either distance or squared distance (i.e., \(p \in \{1,2\} \))

✓ In one pass

✓ \(\text{poly}(d, k, \epsilon^{-1}, \log n) \) space

✓ Besides indices \(S \), a noisy set of rows \(r_1, \ldots, r_k \) are returned
 - Each \(r_i \) is close to the corresponding \(A_i \) (w.r.t. residual)

Impossible to return the row accurately in sublinear space
- A long stream of *small* updates + an arbitrarily *large* update
Outline of Results

1. Simulate adaptive sampling in 1 pass turnstile stream
 - $L_{p,2}$ sampling with post processing matrix P

2. Applications in turnstile stream
 - Row/column subset selection
 - Subspace approximation
 - Projective clustering
 - Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival
Applications: Row Subset Selection

Input: \(A \in \mathbb{R}^{n \times d} \) and an integer \(k > 0 \)

Output: \(k \) rows of \(A \) to form \(M \) to minimize \(\| A - AM^+M \|_F \)
Applications: Row Subset Selection

Input: $A \in \mathbb{R}^{n \times d}$ and an integer $k > 0$

Output: k rows of A to form M to minimize $\|A - AM^+M\|_F$

Our Result: finds M such that,

$$\Pr[\|A - AM^+M\|_F^2 \leq 16(k + 1)! \|A - A_k\|_F^2] \geq 2/3$$

- A_k: best rank-k approximation of A
- first one pass turnstile streaming algorithm
- $\text{poly}(d, k, \log n)$ space
Applications: Row Subset Selection

Input: \(A \in \mathbb{R}^{n \times d} \) and an integer \(k > 0 \)

Output: \(k \) rows of \(A \) to form \(M \) to minimize \(\|A - AM^+M\|_F \)

Our Result: finds \(M \) such that,
\[
\Pr[\|A - AM^+M\|_F^2 \leq 16(k + 1)! \|A - A_k\|_F^2] \geq 2/3
\]
- \(A_k \): best rank-\(k \) approximation of \(A \)
- first one pass turnstile streaming algorithm
- \(\text{poly}(d, k, \log n) \) space

Previous works: centralized setting [e.g. DRVW06, BMD09, GS’12] and row arrival [e.g., CMM’17, GP’14, BDMMUWZ’18]
Applications: Subspace Approximation

Input: \(A \in \mathbb{R}^{n \times d} \) and an integer \(k > 0 \)

Output: \(k \)-dim subspace \(H \) to minimize \((\sum_{i=1}^{n} d(A_i, H)^p)^{1/p} \)

- \(p \in \{1, 2\} \)
- \(d(A_i, H) = \| A_i (\mathbb{1} - H^+ H) \|_2 \)
Applications: Subspace Approximation

Input: \(A \in \mathbb{R}^{n \times d} \) and an integer \(k > 0 \)

Output: \(k \)-dim subspace \(H \) to minimize \((\sum_{i=1}^{n} d(A_i, H)^p)^{1/p} \)

- \(p \in \{1, 2\} \)
- \(d(A_i, H) = \|A_i (\mathbb{I} - H^+ H)\|_2 \)

Our Result I: finds \(H \) (which is \(k \) noisy rows of \(A \)) s.t.,

\[
\Pr[(\sum_{i=1}^{n} d(A_i, H)^p)^{1/p} \leq 4(k + 1)! (\sum_{i=1}^{n} d(A_i, A_k)^p)^{1/p}] \geq \frac{2}{3}
\]

- \(A_k \): best rank-\(k \) approximation of \(A \)
- \(poly(d, k, \log n) \) space
Applications: Subspace Approximation

Input: $A \in \mathbb{R}^{n \times d}$ and an integer $k > 0$
Output: k-dim subspace H to minimize $(\sum_{i=1}^{n} d(A_i, H)^p)^{1/p}$

- $p \in \{1, 2\}$
- $d(A_i, H) = \|A_i (\mathbb{I} - H^+ H)\|_2$

Our Result I: finds H (which is k noisy rows of A) s.t.,

$$\Pr[(\sum_{i=1}^{n} d(A_i, H)^p)^{1/p} \leq 4(k + 1)! (\sum_{i=1}^{n} d(A_i, A_k)^p)^{1/p}] \geq \frac{2}{3}$$

- A_k: best rank-k approximation of A
- $\text{poly}(d, k, \log n)$ space
- First relative error on turnstile streams that returns noisy rows of A

➢ [Levin, Sevekari, Woodruff’18]
 + $(1 + \epsilon)$-approximation – larger number of rows – rows are not from A
Applications: Subspace Approximation

Input: \(A \in \mathbb{R}^{n \times d} \) and an integer \(k > 0 \)

Output: \(k \)-dim subspace \(H \) to minimize \((\sum_{i=1}^{n} d(A_i, H)^p)^{1/p}\)

- \(p \in \{1, 2\} \)
- \(d(A_i, H) = \|A_i (\mathbb{I} - H^+ H)\|_2 \)

Our Result II: finds \(H \) (which is \(\text{poly}(k, 1/\epsilon) \) noisy rows of \(A \)) s.t.,

\[
\Pr[(\sum_{i=1}^{n} d(A_i, H)^p)^{1/p} \leq (1 + \epsilon)(\sum_{i=1}^{n} d(A_i, A_k)^p)^{1/p}] \geq \frac{2}{3}
\]

- \(A_k \): best rank-\(k \) approximation of \(A \)
- \(\text{poly}(d, k, 1/\epsilon, \log n) \) space

[Levin, Sevekari, Woodruff’18] – \(\text{poly}(\log(nd), k, 1/\epsilon) \) rows – rows are not from \(A \)
Applications: Projective Clustering

Input: $A \in \mathbb{R}^{n \times d}$, target dim k and target number of subspaces s

Output: s k-dim subspaces H_1, \ldots, H_s to minimize $(\sum_{i=1}^{n} d(A_i, H)^p)^{1/p}$

- $H = H_1 \cup \cdots \cup H_s$ and $p \in \{1, 2\}$
- $d(A_i, H) = \min_{j \in [s]} \left\| A_i (\mathbb{I} - H_j^+ H_j) \right\|_2$
Applications: Projective Clustering

Input: \(A \in \mathbb{R}^{n \times d} \), target dim \(k \) and target number of subspaces \(s \)

Output: \(s k \)-dim subspaces \(H_1, \ldots, H_s \) to minimize \((\sum_{i=1}^n d(A_i, H)^p)^{1/p} \)

- \(H = H_1 \cup \cdots \cup H_s \) and \(p \in \{1,2\} \)
- \(d(A_i, H) = \min_{j \in [s]} \| A_i (I - H_j^+ H_j) \|_2 \)

Our Result: finds \(S \) (which is \(\text{poly}(k, s, 1/\epsilon) \) noisy rows of \(A \)),
which contains a union \(T \) of \(s \) \(k \)-dim subspaces s.t.,

\[
\Pr[(\sum_{i=1}^n d(A_i, T)^p)^{1/p} \leq (1 + \epsilon)(\sum_{i=1}^n d(A_i, H)^p)^{1/p}] \geq 2/3
\]

- \(H \): optimal solution to projective clustering
- first one pass turnstile streaming algorithm with sublinear space
- \(\text{poly}(d, k, \log n, s, 1/\epsilon) \) space

- [BHI’02, HM’04, Che09, FMSW’10] based on coresets, works in row arrival
- [KR’15] turnstile but linear in number of points
Applications: Volume Maximization

Input: $A \in \mathbb{R}^{n \times d}$ and an integer k
Output: k rows r_1, \ldots, r_k of A, M, with maximum volume
Applications: Volume Maximization

Input: $A \in \mathbb{R}^{n \times d}$ and an integer k
Output: k rows r_1, \ldots, r_k of A, M, with maximum volume

Volume of the parallelepiped spanned by those vectors
Applications: Volume Maximization

Input: $A \in \mathbb{R}^{n \times d}$ and an integer k
Output: k rows r_1, \ldots, r_k of A, M, with maximum volume

Our Result (Upper Bound I): for an approximation factor α, finds S (set of k noisy rows of A) s.t.,

$$\Pr[\alpha^k(k!)\text{Vol}(S) \geq \text{Vol}(M)] \geq \frac{2}{3}$$

- first one pass turnstile streaming algorithm
- $\tilde{O}(ndk^2/\alpha^2)$ space
Applications: Volume Maximization

Input: $A \in \mathbb{R}^{n \times d}$ and an integer k
Output: k rows r_1, \ldots, r_k of A, M, with maximum volume

Our Result (Upper Bound I): for an approximation factor α, finds S (set of k noisy rows of A) s.t.,

$$\Pr[\alpha^k (k!) \text{Vol}(S) \geq \text{Vol}(M)] \geq 2/3$$

- first one pass turnstile streaming algorithm
- $\tilde{O}(ndk^2/\alpha^2)$ space

[Indyk, M, Oveis Gharan, Rezaei, ‘19 ‘20] coreset based $\tilde{O}(k)^{k/\epsilon}$ approx. and $\tilde{O}(n^{\epsilon}kd)$ space for row-arrival streams
Outline of Results

1. Simulate adaptive sampling in 1 pass turnstile stream
 • $L_{p,2}$ sampling with post processing matrix P

2. Applications in turnstile stream
 • Row/column subset selection
 • Subspace approximation
 • Projective clustering
 • Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival
Volume Maximization Lower Bounds

Input: \(A \in \mathbb{R}^{n \times d} \) and an integer \(k \)
Output: \(k \) rows \(r_1, \ldots, r_k \) of \(A, M \), with maximum volume

Our Result (Lower Bound I): for \(\alpha \), any \(p \)-pass algorithm that finds \(\alpha^k \)-approximation w.p. \(\geq 63/64 \) in turnstile-arrival requires \(\Omega(n/kp\alpha^2) \) space.

- Our previous upper bound is matches the upper bound up to a factor of \(k^3d \) in space and \(k! \) in the approximation factor.
Volume Maximization Lower Bounds

Input: $A \in \mathbb{R}^{n \times d}$ and an integer k

Output: k rows r_1, \ldots, r_k of A, M, with maximum volume

Our Result (Lower Bound II): for a fixed constant C, any one-pass algorithm that finds C^k-approximation w.p. $\geq 63/64$ in random order row-arrival requires $\Omega(n)$ space
Volume Maximization – Row Arrival

Input: $A \in \mathbb{R}^{n\times d}$ and an integer k
Output: k rows r_1, \ldots, r_k of A, M, with maximum volume

Our Result (Upper Bound II): for an approximation factor $C < (\log n)/k$, finds S (set of k rows of A) s.t.

- approximation factor $\tilde{O}(Ck)^{k/2}$ with high probability
- one pass row-arrival streaming algorithm
- $\tilde{O}(n^{O(1/C)}d)$ space
Volume Maximization – Row Arrival

Input: \(A \in \mathbb{R}^{n \times d} \) and an integer \(k \)

Output: \(k \) rows \(r_1, \ldots, r_k \) of \(A, M \), with maximum volume

Our Result (Upper Bound II): for an approximation factor \(C < (\log n)/k \), finds \(S \) (set of \(k \) rows of \(A \)) s.t.

- approximation factor \(\tilde{O}(Ck)^{k/2} \) with high probability
- one pass **row-arrival** streaming algorithm
- \(\tilde{O}(n^0(1/C)d) \) space

[Indyk, M, Oveis Gharan, Rezaei, ‘19 ‘20] coreset based \(\tilde{O}(k)^{Ck/2} \) approx. and \(\tilde{O}(n^{1/C}kd) \) space for row-arrival streams
1. Simulate adaptive sampling in 1 pass
 • $L_{p,2}$ sampling with post processing matrix P

2. Applications in turnstile stream
 • Row/column subset selection
 • Subspace approximation
 • Projective clustering
 • Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival
$L_{2,2}$ Sampler with Post-Processing Matrix

Input: matrix A as a data stream, a post-processing matrix P

Output: index i of a row of AP sampled w.p. $\sim \frac{||A_iP||_2^2}{||AP||_F^2}$
\(L_{2,2} \) Sampler with Post-Processing Matrix

Input: matrix \(A \) as a data stream, a post-processing matrix \(P \)

Output: index \(i \) of a row of \(AP \) sampled w.p. \(\sim \frac{\|A_iP\|_2^2}{\|AP\|_F^2} \)

Extension of \(L_2 \) Sampler

[Andoni et al.’10][Monemizadeh, Woodruff’10][Jowhari et al.’11][Jayaram, Woodruff’18]

Input: vector \(f \) as a data stream

Output: index \(i \) of a coordinate of \(f \) sampled w.p. \(\sim \frac{f_i^2}{\|f\|_2^2} \)
$L_{2,2}$ Sampler with Post-Processing Matrix

Input: matrix A as a data stream, a post-processing matrix P

Output: index i of a row of AP sampled w.p. $\sim \frac{\|A_iP\|_2^2}{\|AP\|_F^2}$

Extension of L_2 Sampler

[Andoni et al.’10][Monemizadeh, Woodruff’10][Jowhari et al.’11][Jayaram, Woodruff’18]

Input: vector f as a data stream

Output: index i of a coordinate of f sampled w.p. $\sim \frac{f_i^2}{\|f\|_2^2}$

What is new:
1. Generalizing vectors to matrices
2. Handling the post processing matrix P
$L_{2,2}$ Sampler

Input: matrix A as a data stream

Output: index i of a row of A sampled w.p. $\sim \frac{\|A_i\|_2^2}{\|A\|_F^2}$

Ignore P for now
$L_{2,2}$ Sampler

Step 1.

- pick $t_i \in [0,1]$ uniformly at random
Step 1.

- pick $t_i \in [0,1]$ uniformly at random
- set $B_i := \frac{1}{\sqrt{t_i}} \times A_i$
\textbf{$L_{2,2}$ Sampler}

\textbf{Step 1.}

- pick $t_i \in [0,1]$ uniformly at random
- set $B_i := \frac{1}{\sqrt{t_i}} \times A_i$

$$\Pr[\|B_i\|_2^2 \geq \|A\|_F^2] = \Pr[\frac{\|A_i\|_2^2}{\|A\|_F^2} \geq t_i] = \frac{\|A_i\|_2^2}{\|A\|_F^2}$$
$L_{2,2}$ Sampler

Step 1.
- Pick $t_i \in [0,1]$ uniformly at random.
- Set $B_i := \frac{1}{\sqrt{t_i}} \times A_i$

\[
\Pr[\|B_i\|_2^2 \geq \|A\|_F^2] = \Pr\left[\frac{\|A_i\|_2^2}{\|A\|_F^2} \geq t_i\right] = \frac{\|A_i\|_2^2}{\|A\|_F^2}
\]

Return i that satisfies $\|B_i\|_2^2 \geq \|A\|_F^2$.
Step 1.
- pick $t_i \in [0,1]$ uniformly at random
- set $B_i := \frac{1}{\sqrt{t_i}} \times A_i$

\[
\Pr[\|B_i\|_2^2 \geq \|A\|_F^2] = \Pr[\frac{\|A_i\|_2^2}{\|A\|_F^2} \geq t_i] = \frac{\|A_i\|_2^2}{\|A\|_F^2}
\]

Return i that satisfies $\|B_i\|_2^2 \geq \|A\|_F^2$

Issues:
1. Multiple rows passing the threshold
2. Don’t have access to exact values of $\|B_i\|_2^2$ and $\|A\|_F^2$
Step 1.

- pick $t_i \in [0,1]$ uniformly at random
- set $B_i \equiv \frac{1}{\sqrt{t_i}} \times A_i$

☐ Ideally, return the only i that satisfies $\|B_i\|_2^2 \geq \|A\|_F^2$

$$\Pr[\|B_i\|_2^2 \geq \gamma^2 \cdot \|A\|_F^2] = \frac{1}{\gamma^2} \times \frac{\|A_i\|_2^2}{\|A\|_F^2}$$

$\gamma^2 := \frac{C \log n}{\epsilon}$

Issue 1: Multiple rows passing the threshold

➢ Set the threshold higher
Step 1.

• pick $t_i \in [0,1]$ uniformly at random
• set $B_i \equiv \frac{1}{\sqrt{t_i}} \times A_i$

✓ Ideally, return the only i that satisfies $\|B_i\|_2^2 \geq \|A\|_F^2$

\[\Pr[\|B_i\|_2^2 \geq \gamma^2 \cdot \|A\|_F^2] = \frac{1}{\gamma^2} \times \frac{\|A_i\|_2^2}{\|A\|_F^2} \quad \gamma^2 := \frac{C \log n}{\epsilon} \]

Success prob: $\Omega\left(\frac{\epsilon}{\log n}\right)$

$\Pr[\text{squared norm of at least one row exceeds } \gamma^2 \cdot \|A\|_F^2] = \Omega\left(\frac{1}{\gamma^2}\right)$

$\Pr[\text{squared norms of more than one row exceed } \gamma^2 \cdot \|A\|_F^2] = O\left(\frac{1}{\gamma^4}\right)$

Issue 1: Multiple rows passing the threshold

➢ Set the threshold higher
$L_{2,2}$ Sampler

Step 1.
- pick $t_i \in [0,1]$ uniformly at random
- set $B_i := \frac{1}{\sqrt{t_i}} \times A_i$

- Ideally, return the only i that satisfies $\|B_i\|_2^2 \geq \|A\|_F^2$

\[
\Pr[\|B_i\|_2^2 \geq \gamma^2 \cdot \|A\|_F^2] = \frac{1}{\gamma^2} \times \frac{\|A_i\|_2^2}{\|A\|_F^2}
\]

\[\gamma^2 := \frac{C \log n}{\epsilon}\]

Success prob: $\Omega\left(\frac{\epsilon}{\log n}\right)$

To succeed, repeat $\tilde{O}(1/\epsilon)$

Issue 1: Multiple rows passing the threshold
- Set the threshold higher
Step 1.

- Pick $t_i \in [0,1]$ uniformly at random.
- Set $B_i := \sqrt{t_i} \times A_i$.
- Return i that satisfies $\|B_i\|_2 \geq \gamma \cdot \|A\|_F$.

Issue 2: Don’t have access to exact values of $\|B_i\|$ and $\|A\|_F$.

- Estimate $\|B_i\|_2$ and $\|A\|_F$.

$L_{2,2}$ Sampler
Step 1.
- pick $t_i \in [0,1]$ uniformly at random
- set $B_i := \frac{1}{\sqrt{t_i}} \times A_i$

Return i that satisfies $\|B_i\|_2 \geq \gamma \cdot \|A\|_F$

Issue 2: Don’t have access to exact values of $\|B_i\|$ and $\|A\|_F$

- estimate $\|B_i\|_2$ and $\|A\|_F$

Find heaviest row using CountSketch

Estimate norm of A using AMS
Count Sketch

Estimate $\|B_i\|_2$ for rows with large norms
Given a stream of items, estimate frequency of each item (i.e., coordinates in a vector)

\begin{align*}
\text{rows} & \quad r = O(\log n) \\
\text{buckets/row} & \quad b = O\left(\frac{1}{\epsilon^2}\right)
\end{align*}

- **Hash** $h_j: [n] \to [b]$
- **Sign** $\sigma_j: [n] \to \{-1, +1\}$

\begin{align*}
\text{Update:} & \quad C[j, h_j(i)] += \sigma_j(i) \cdot f_i
\end{align*}

Count Sketch
Count Sketch

Given a stream of items, estimate frequency of each item (i.e., coordinates in a vector)

- **#rows**: \(r = O(\log n) \)
- **#buckets/row**: \(b = O(1/\varepsilon^2) \)

Hash: \(h_j: [n] \rightarrow [b] \)

Sign: \(\sigma_j: [n] \rightarrow \{-1, +1\} \)

Update: \(C[j, h_j(i)] += \sigma_j(i) \cdot f_i \)
Given a stream of items, estimate frequency of each item (i.e., coordinates in a vector)

- **#rows** $r = O(\log n)$
- **#buckets/row** $b = O\left(\frac{1}{\epsilon^2}\right)$

Count Sketch

- **Hash** $h_j : [n] \rightarrow [b]$
- **Sign** $\sigma_j : [n] \rightarrow \{-1, +1\}$

Update: $C[j, h_j(i)] += \sigma_j(i) \cdot f_i$
Given a stream of items, estimate frequency of each item (i.e., coordinates in a vector)

- **Rows** \(r = O(\log n) \)
- **Buckets/row** \(b = O(1/\epsilon^2) \)

Count Sketch

- **Hash** \(h_j : [n] \rightarrow [b] \)
- **Sign** \(\sigma_j : [n] \rightarrow \{-1, +1\} \)

Update: \(C[j, h_j(i)] += \sigma_j(i) \cdot f_i \)

Estimate \(\hat{f}_i := \text{median}_j \sigma_j C[j, h_j(i)] \)
Count Sketch

Given a stream of items, estimate frequency of each item (i.e., coordinates in a vector)

- **#rows** \(r = O(\log n) \)
- **#buckets/row** \(b = O(1/\epsilon^2) \)

Estimation guarantee

\[
|f_i - \hat{f}_i| \leq \epsilon \cdot \|f\|_2
\]

- **Update:** \(C[j, h_j(i)] += \sigma_j(i) \cdot f_i \)
- **Estimate** \(\hat{f}_i := \text{median}_j \sigma_j C[j, h_j(i)] \)
Estimate $\|B_i\|_2$ for rows with large norms

<table>
<thead>
<tr>
<th>#rows</th>
<th>$r = O(\log n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>#buckets/row</td>
<td>$b = O(1/\epsilon^2)$</td>
</tr>
</tbody>
</table>

Estimation guarantee

$$\left| \|B_i\|_2 - \|\hat{B}_i\|_2 \right| \leq \epsilon \cdot \|B\|_F$$

Space usage:

$$O \left(\log n \times \frac{1}{\epsilon^2} \right) \times d$$
Step 1.

- pick $t_i \in [0,1]$ uniformly at random
- set $B_i := \frac{1}{\sqrt{t_i}} \times A_i$

Goal: $\|B_i\|_2 \geq \gamma \cdot \|A\|_F$
Step 1.
- pick $t_i \in [0,1]$ uniformly at random
- set $B_i := \frac{1}{\sqrt{t_i}} \times A_i$

Goal: $\|B_i\|_2 \geq \gamma \cdot \|A\|_F$

Step 2.
- $\|\widehat{B}_i\|_2$ is an estimate of $\|B_i\|_2$ by modified Countsketch
- \widehat{F} is an estimate of $\|A\|_F$ by modified AMS

Test: $\|\widehat{B}_i\|_2 \geq \gamma \cdot \widehat{F}$
Step 1.
- pick $t_i \in [0,1]$ uniformly at random
- set $B_i := \frac{1}{\sqrt{t_i}} \times A_i$

Goal: $\|B_i\|_2 \geq \gamma \cdot \|A\|_F$

Step 2.
- \tilde{B}_i is an estimate of $\|B_i\|_2$ by modified Countsketch
- \hat{F} is an estimate of $\|A\|_F$ by modified AMS

Test: $\|\tilde{B}_i\|_2 \geq \gamma \cdot \hat{F}$

- The test succeeds w.p. ϵ, the estimate of largest row exceeds the threshold
Handling Post-Processing Matrix

Input: matrix A as a data stream, a post-processing matrix P

Output: index i of a row of AP sampled w.p. $\sim \frac{||A_iP||^2_2}{||AP||^2_F}$
Handling Post-Processing Matrix

Input: matrix A as a data stream, a post-processing matrix P
Output: index i of a row of AP sampled w.p. ~ $\frac{\|A_i P\|_2^2}{\|AP\|_F^2}$

Run proposed algorithm on A, then multiply by P:
- CountSketch and AMS both are linear transformations

✓ A is mapped to SA
✓ $S(AP) = (SA) P$
Handling Post-Processing Matrix

Input: matrix A as a data stream, a post-processing matrix P
Output: index i of a row of AP sampled w.p. $\sim \frac{||A_i P||^2_2}{||AP||^2_F}$

Run proposed algorithm on A, then \textit{multiply by P}:
• CountSketch and AMS both are linear transformations
 ✓ A is mapped to SA
 ✓ $S(\text{AP}) = (SA) P$

Total space for sampler: $O\left(\frac{d}{\epsilon^2} \log^2 n\right)$ bits
\textbf{\(L_{2,2}\) sampling with post processing}

\textbf{Input:}

\begin{itemize}
 \item \(A \in \mathbb{R}^{n \times d}\) as a (turnstile) stream
 \item a post-processing \(P \in \mathbb{R}^{d \times d}\)
\end{itemize}

\textbf{Output:} samples an index \(i \in [n]\) w.p. \((1 \pm \epsilon)\frac{\|A_i P\|_2^2}{\|AP\|_F^2} + \frac{1}{\text{poly}(n)}\)

- In one pass
- \(\text{poly}(d, \epsilon^{-1}, \log n)\) space
Adaptive Sampler

1. Simulate adaptive sampling in 1 pass
 • $L_{p,2}$ sampling with post processing matrix P

2. Applications in turnstile stream
 • Row/column subset selection
 • Subspace approximation
 • Projective clustering
 • Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival
Algorithm Using $L_{2,2}$ Sampler

Maintain k instances of $L_{2,2}$ sampler with post processing: S_1, \ldots, S_k

$M \leftarrow \emptyset$

For round $i = 1$ to k,

- Set $P \leftarrow (I - M^+ M)$
- Use S_i to sample a noisy row r_j of A with post processing matrix P
- Append r_j to M
Algorithm Using $L_{2,2}$ Sampler

Maintain k instances of $L_{2,2}$ sampler with post processing: S_1, \ldots, S_k

$M \leftarrow \emptyset$

For round $i = 1$ to k,

- Set $P \leftarrow (I - M^+ M)$
- Use S_i to sample a noisy row r_j of A with post processing matrix P
- Append r_j to M

Issues:

- Noisy perturbation of rows (unavoidable)
 - Sample j,
 - $r_j = A_j P + v$ where v has small norm $\|v\| < \epsilon \|A_j P\|$ thus $\|r_j\| \approx \|A_j P\|$
Algorithm Using $L_{2,2}$ Sampler

Maintain k instances of $L_{2,2}$ sampler with post processing: $S_1, ..., S_k$

$M \leftarrow \emptyset$

For round $i = 1$ to k,

- Set $P \leftarrow (I - M^+ M)$
- Use S_i to sample a noisy row r_j of A with post processing matrix P
- Append r_j to M

Issues:

- Noisy perturbation of rows (unavoidable)
 - Sample j,
 - $r_j = A_j P + v$ where v has small norm $\|v\| < \epsilon \|A_j P\|$ thus $\|r_j\| \approx \|A_j P\|$

- This can drastically change the probabilities: may zero out probabilities of some rows
Bad Example

\[A_2 = (0, 1) \]

\[A_1 = (M, 0) \]
Bad Example
Bad Example
Bad Example

Noisy row sampling: $\|A_1(I - M^+M)\| \geq \|A_2(I - M^+M)\|$

$A_2(I - M^+M) \quad r_1 \quad A_1(I - M^+M)$
Bad Example

Noisy row sampling: \[\| A_1 (I - M^+ M) \| \geq \| A_2 (I - M^+ M) \| \]

Sample one row again and again
Bad Example

Noisy row sampling: \[\|A_1(I - M^+M)\| \geq \|A_2(I - M^+M)\| \]

True row sampling: \[\|A_1(I - M^+M)\| = 0 \]
Bad Example

× We cannot hope for a multiplicative bound on probabilities.
Bad Example

We cannot hope for a multiplicative bound on probabilities.

Lemma: Not only the norm of \(\nu \) is small in compare to \(A_j \) but also its norm projected away from \(A_j \) is small.
We cannot hope for a multiplicative bound on probabilities.

Lemma: Not only the norm of \(v \) is small in compare to \(A_j \) but also its norm projected away from \(A_j \) is small:

- \(r_j = A_j P + v \)
- where \(\|vQ\| \leq \epsilon \|A_j P\| \cdot \frac{\|APQ\|_F}{\|AP\|_F} \) for any projection matrix \(Q \)
We cannot hope for a multiplicative bound on probabilities.

Lemma: Not only the norm of \(v \) is small in compare to \(A_j \) but also its norm projected away from \(A_j \) is small:

- \(r_j = A_jP + v \)
- where \(\|vQ\| \leq \epsilon \|A_jP\| \cdot \frac{\|APQ\|_F}{\|AP\|_F} \) for any projection matrix \(Q \)
We cannot hope for a multiplicative bound on probabilities.

Lemma: Not only the norm of ν is small in compare to A_j but also its norm projected away from A_j is small:

- $r_j = A_j P + \nu$
- where $\|\nu Q\| \leq \epsilon \|A_j P\| \cdot \frac{\|APQ\|_F}{\|AP\|_F}$ for any projection matrix Q

✓ Bound the additive error of sampling probabilities in subsequent rounds
Overview of How to Bound the Error

Suppose indices reported by our algorithm are \(j_1, \ldots, j_k \)

Consider two bases \(U \) and \(W \)

- \(U \) follows True rows: \(U = \{u_1, \ldots, u_d\} \) s.t. \(\{u_1, \ldots, u_i\} \) spans \(\{A_{j_1}, \ldots, A_{j_i}\} \)
- \(W \) follows Noisy rows: \(W = \{w_1, \ldots, w_d\} \) s.t. \(\{w_1, \ldots, w_i\} \) spans \(\{r_{j_1}, \ldots, r_{j_i}\} \)
Overview of How to Bound the Error

Suppose indices reported by our algorithm are \(j_1, \ldots, j_k \)

Consider two bases \(U \) and \(W \)

- \(U \) follows True rows: \(U = \{u_1, \ldots, u_d\} \) s.t. \(\{u_1, \ldots, u_i\} \) spans \(\{A_{j_1}, \ldots, A_{j_i}\} \)
- \(W \) follows Noisy rows: \(W = \{w_1, \ldots, w_d\} \) s.t. \(\{w_1, \ldots, w_i\} \) spans \(\{r_{j_1}, \ldots, r_{j_i}\} \)

For row \(A_x \):
- \(A_x = \sum_{i=1}^{d} \lambda_{x,i} u_i \)
- \(A_x = \sum_{i=1}^{d} \xi_{x,i} w_i \)
Overview of How to Bound the Error

Suppose indices reported by our algorithm are \(j_1, \ldots, j_k \)

Consider two bases \(U \) and \(W \)

- \(U \) follows True rows: \(U = \{ u_1, \ldots, u_d \} \) s.t. \(\{ u_1, \ldots, u_i \} \) spans \(\{ A_{j_1}, \ldots, A_{j_i} \} \)
- \(W \) follows Noisy rows: \(W = \{ w_1, \ldots, w_d \} \) s.t. \(\{ w_1, \ldots, w_i \} \) spans \(\{ r_{j_1}, \ldots, r_{j_i} \} \)

Sampling probs in terms of \(U \) and \(W \) in \(t \)-th round

- The correct probability:
 \[
 \frac{\sum_{i=t}^{d} \lambda_{x,i}^2}{\sum_{y=1}^{n} \sum_{i=t}^{d} \lambda_{y,i}^2}
 \]
- What we sample from:
 \[
 \frac{\sum_{i=t}^{d} \xi_{x,i}^2}{\sum_{y=1}^{n} \sum_{i=t}^{d} \xi_{y,i}^2}
 \]

For row \(A_x \):
- \(A_x = \sum_{i=1}^{d} \lambda_{x,i} u_i \)
- \(A_x = \sum_{i=1}^{d} \xi_{x,i} w_i \)
Overview of How to Bound the Error

Suppose indices reported by our algorithm are $j_1, ..., j_k$

Consider two bases U and W

- U follows True rows: $U = \{u_1, ..., u_d\}$ s.t. $\{u_1, ..., u_i\}$ spans $\{A_j_1, ..., A_j_i\}$
- W follows Noisy rows: $W = \{w_1, ..., w_d\}$ s.t. $\{w_1, ..., w_i\}$ spans $\{r_j_1, ..., r_j_i\}$

For row A_x:
- $A_x = \sum_{i=1}^{d} \lambda_{x,i} u_i$
- $A_x = \sum_{i=1}^{d} \xi_{x,i} w_i$

Sampling probs in terms of U and W in t-th round

- The correct probability: $\frac{\sum_{i=t}^{d} \lambda_{x,i}^2}{\sum_{y=1}^{n} \sum_{i=t}^{d} \lambda_{y,i}^2}$
- What we sample from: $\frac{\sum_{i=t}^{d} \xi_{x,i}^2}{\sum_{y=1}^{n} \sum_{i=t}^{d} \xi_{y,i}^2}$

- Difference between the correct prob and our algorithm sampling prob over all rows is ϵ for one round
 - Change of basis matrix \approx Identity matrix
 - Bound total variation distance by ϵ

- Error in each round gets propagated k times
- Total error is $O(k^2 \epsilon)$
Theorem:
Our algorithm reports a set of k indices such that with high probability

- the total variation distance between the probability distribution output by the algorithm and the probability distribution of adaptive sampling is at most $O(\epsilon)$
- The algorithm uses space $\text{poly}(k, \frac{1}{\epsilon}, d, \log n)$
Applications

1. Simulate adaptive sampling in 1 pass
 • $L_{p.2}$ sampling with post processing matrix P

2. Applications in turnstile stream
 • Row/column subset selection
 • Subspace approximation
 • Projective clustering
 • **Volume Maximization**

3. Volume maximization lower bounds

4. Volume maximization in row arrival
Applications

Main Challenge: it suffices to get a noisy perturbation of the rows
Applications: Row Subset Selection

Input: $A \in \mathbb{R}^{n \times d}$ and an integer $k > 0$

Output: k rows of A to form M to minimize $\|A - AM^+M\|_F$
Applications: Row Subset Selection

Adaptive Sampling provides a $(k + 1)!$ approximation for subset selection

- **[DRVW'06]**: Volume Sampling provides a $(k + 1)$ factor approximation to row subset selection with constant probability.
- **[DV’06]**: Sampling probabilities for any k-set S produced by Adaptive Sampling is at most $k!$ of its sampling probability with respect to volume sampling.
Applications: Row Subset Selection

Adaptive Sampling provides a \((k + 1)!\) approximation for subset selection

- [DRVW’06]: Volume Sampling provides a \((k + 1)\) factor approximation to row subset selection with constant probability.

- [DV’06]: Sampling probabilities for any \(k\)-set \(S\) produced by Adaptive Sampling is at most \(k!\) of its sampling probability with respect to volume sampling.

Non-adaptive Adaptive Sampling provides a good approximation to Adaptive Sampling
Applications: Row Subset Selection

Adaptive Sampling provides a \((k + 1)!\) approximation for subset selection

- [DRVW’06]: Volume Sampling provides a \((k + 1)\) factor approximation to row subset selection with constant probability.
- [DV’06]: Sampling probabilities for any \(k\)-set \(S\) produced by Adaptive Sampling is at most \(k!\) of its sampling probability with respect to volume sampling.

Non-adaptive Adaptive Sampling provides a good approximation to Adaptive Sampling

1. For a set of indices \(J\) output by our algorithm, \(\|A(I - R^+R)\|_F \leq (1 + \epsilon)\|A(I - M^+M)\|_F\), w.h.p.
 - \(R\): the set of noisy rows corresponding to \(J\)
 - \(M\): the set of true rows corresponding to \(J\)
Applications: Row Subset Selection

Adaptive Sampling provides a \((k + 1)!\) approximation for subset selection

- \([DRVW’06]\): Volume Sampling provides a \((k + 1)\) factor approximation to row subset selection with constant probability.

- \([DV’06]\): Sampling probabilities for any \(k\)-set \(S\) produced by Adaptive Sampling is at most \(k!\) of its sampling probability with respect to volume sampling.

Non-adaptive Adaptive Sampling provides a good approximation to Adaptive Sampling

1. For a set of indices \(J\) output by our algorithm, \(\|A(I - R^+R)\|_F \leq (1 + \epsilon)\|A(I - M^+M)\|_F\), w.h.p.
 - \(R\): the set of noisy rows corresponding to \(J\)
 - \(M\): the set of true rows corresponding to \(J\)

2. For most \(k\)-sets \(J\), its prob. by adaptive sampling is within \(O(1)\) factor of Non-adaptive Sampling.
Applications: Row Subset Selection

Input: $A \in \mathbb{R}^{n \times d}$ and an integer $k > 0$

Output: k rows of A to form M to minimize $\|A - AM^+M\|_F$

Our Result: finds M such that,

$$\Pr[\|A - AM^+M\|_F^2 \leq 16(k + 1)! \|A - A_k\|_F^2] \geq 2/3$$

- A_k: best rank-k approximation of A
- first one pass turnstile streaming algorithm
- $poly(d, k, \log n)$ space
Applications: Volume Maximization

Input: $A \in \mathbb{R}^{n \times d}$ and an integer k
Output: k rows r_1, \ldots, r_k of A, M, with maximum volume
Applications: Volume Maximization

Input: $A \in \mathbb{R}^{n \times d}$ and an integer k

Output: k rows r_1, \ldots, r_k of A, M, with maximum volume
Applications: Volume Maximization

[Civril, Magdon’09] Greedy Algorithm Provides a $k!$ approximation to Volume Maximization

Greedy

- For k rounds, pick the vector that is farthest away from the current subspace.

$k = 2$
Applications: Volume Maximization

[Civril, Magdon’09] Greedy Algorithm Provides a $k!$ approximation to Volume Maximization

Greedy

- For k rounds, pick the vector that is farthest away from the current subspace.
Applications: Volume Maximization

[Civril, Magdon’09] Greedy Algorithm Provides a $k!$ approximation to Volume Maximization

Greedy
- For k rounds, pick the vector that is farthest away from the current subspace.

$k = 2$
Applications: Volume Maximization

[Civril, Magdon’09] Greedy Algorithm Provides a $k!$ approximation to Volume Maximization

Greedy

- For k rounds, pick the vector that is farthest away from the current subspace.

$k = 2$
Applications: Volume Maximization

[Civril, Magdon’09] Greedy Algorithm Provides a $k!$ approximation to Volume Maximization

Greedy

- For k rounds, pick the vector that is farthest away from the current subspace.
Applications: Volume Maximization

[Civril, Magdon’09] Greedy Algorithm Provides a $k!$ approximation to Volume Maximization

Simulate Greedy

• Maintain k instances of CountSketch, AMS and $L_{2,2}$ Sampler
Applications: Volume Maximization

[Civil, Magdon’09] Greedy Algorithm Provides a $k!$ approximation to Volume Maximization

Simulate Greedy

• Maintain k instances of CountSketch, AMS and $L_{2,2}$ Sampler
• For k rounds,
 • Let r be the row of AP with largest norm //by CountSketch

➢ If the largest row exceeds the threshold, then it is correctly found by CountSketch w.h.p.
Applications: Volume Maximization

[Civril, Magdon’09] Greedy Algorithm Provides a $k!$ approximation to Volume Maximization

Simulate Greedy

- Maintain k instances of CountSketch, AMS and $L_{2,2}$ Sampler
- For k rounds,
 - Let r be the row of AP with largest norm //by CountSketch
 - If $\|r\|^2 < \frac{\alpha^2}{4nk} \|AP\|^2_F$, instead sample row r according to norms of rows

- If the largest row exceeds the threshold, then it is correctly found by CountSketch w.h.p.
- Otherwise, there are enough large rows and sampler chooses one of them w.h.p.
Applications: Volume Maximization

[Civril, Magdon’09] Greedy Algorithm Provides a $k!$ approximation to Volume Maximization

Simulate Greedy

- Maintain k instances of CountSketch, AMS and $L_{2,2}$ Sampler
- For k rounds,
 - Let r be the row of AP with largest norm //by CountSketch
 - If $\|r\|^2 < \frac{\alpha^2}{4nk} \|AP\|_F^2$, instead sample row r according to norms of rows
 - Add r to the solution, and update the postprocessing matrix P

- If the largest row exceeds the threshold, then it is correctly found by CountSketch w.h.p.
- Otherwise, there are enough large rows and sampler chooses one of them w.h.p.
Applications: Volume Maximization

Input: \(A \in \mathbb{R}^{n \times d} \) and an integer \(k \)

Output: \(k \) rows \(r_1, \ldots, r_k \) of \(A, M \), with maximum volume

Our Result: for an approximation factor \(\alpha \), finds \(S \) (set of \(k \) noisy rows of \(A \)) s.t.,

\[
\Pr[\alpha^k (k!) \text{Vol}(S) \geq \text{Vol}(M)] \geq 2/3
\]

- first one pass turnstile streaming algorithm
- \(\tilde{O}(ndk^2/\alpha^2) \) space
<table>
<thead>
<tr>
<th>Problem</th>
<th>Model</th>
<th>Approximation/error</th>
<th>space</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{p,2}$ Sampler</td>
<td>turnstile</td>
<td>$(1 + \epsilon)$ relative + $\frac{1}{\text{poly}(n)}$</td>
<td>$\text{poly}(d, \epsilon^{-1}, \log n)$</td>
<td></td>
</tr>
<tr>
<td>Adaptive Sampling</td>
<td></td>
<td>$O(\epsilon)$ total variation distance</td>
<td>$\text{poly}(d, k, \epsilon^{-1}, \log n)$</td>
<td></td>
</tr>
<tr>
<td>Row Subset Selection</td>
<td></td>
<td>$O((k + 1)!)$</td>
<td>$\text{poly}(d, k, \log n)$</td>
<td></td>
</tr>
<tr>
<td>Subspace Approximation</td>
<td></td>
<td>$O((k + 1)!)$</td>
<td>$\text{poly}(d, k, \log n, 1/\epsilon)$</td>
<td>$\text{poly}(k, 1/\epsilon)$ rows</td>
</tr>
<tr>
<td>Projective Clustering</td>
<td></td>
<td>$(1 + \epsilon)$</td>
<td>$\text{poly}(d, k, \log n, s, 1/\epsilon)$</td>
<td>$\text{poly}(k, s, 1/\epsilon)$ rows</td>
</tr>
<tr>
<td>Volume Maximization</td>
<td></td>
<td>$\alpha^k(k!)$</td>
<td>$\tilde{O}(ndk^2/\alpha^2)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>α^k</td>
<td>$\Omega(n/k\alpha^2)$</td>
<td>p pass</td>
</tr>
<tr>
<td>Row Arrival</td>
<td></td>
<td>C^k</td>
<td>$\Omega(n)$</td>
<td>Random Order</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\tilde{O}(Ck)^{k/2}$</td>
<td>$\tilde{O}(n^{0(1/C)}d)$</td>
<td>$C < (\log n)/k$</td>
</tr>
</tbody>
</table>
Open problems

- Get tight dependence on the parameters
- Further applications of non-adaptive adaptive sampling
- Result on Volume Maximization in row arrival model is not tight, i.e., can we get $O(k)^k$ approximation without dependence on n?
<table>
<thead>
<tr>
<th>Problem</th>
<th>Model</th>
<th>Approximation/error</th>
<th>space</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{p,2}$ Sampler</td>
<td></td>
<td>$(1 + \varepsilon)$ relative + $\frac{1}{\text{poly}(n)}$</td>
<td>$\text{poly}(d, \varepsilon^{-1}, \log n)$</td>
<td></td>
</tr>
<tr>
<td>Adaptive Sampling</td>
<td>$O(\varepsilon)$ total variation distance</td>
<td>$\text{poly}(d, k, \varepsilon^{-1}, \log n)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Row Subset Selection</td>
<td>turnstile</td>
<td>$O((k + 1)!)$</td>
<td>$\text{poly}(d, k, \log n)$</td>
<td></td>
</tr>
<tr>
<td>Subspace Approximation</td>
<td></td>
<td>$(1 + \varepsilon)$</td>
<td>$\text{poly}(d, k, \log n, 1/\varepsilon)$</td>
<td>$\text{poly}(k, 1/\varepsilon)$ rows</td>
</tr>
<tr>
<td>Projective Clustering</td>
<td></td>
<td>$(1 + \varepsilon)$</td>
<td>$\text{poly}(d, k, \log n, s, 1/\varepsilon)$</td>
<td>$\text{poly}(k, s, 1/\varepsilon)$ rows</td>
</tr>
<tr>
<td>Volume Maximization</td>
<td>$\alpha^k (k!)$</td>
<td>$\tilde{O}(ndk^2/\alpha^2)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>α^k</td>
<td>$\Omega(n/kp\alpha^2)$</td>
<td></td>
<td>p pass</td>
</tr>
<tr>
<td></td>
<td>C^k</td>
<td>$\Omega(n)$</td>
<td></td>
<td>Random Order</td>
</tr>
<tr>
<td></td>
<td>$\tilde{O}(Ck)^{k/2}$</td>
<td>$\tilde{O}(n^{0(1/C)}d)$</td>
<td></td>
<td>$C < (\log n)/k$</td>
</tr>
</tbody>
</table>

Open problems

- Get tight dependence on the parameters
- Further applications of non-adaptive adaptive sampling
- Result on Volume Maximization in row arrival model is not tight, i.e., can we get $O(k)^k$ approximation without dependence on n?

Thank You!