Non-Adaptive Adaptive Sampling on Turnstile Streams

Sepideh Mahabadi TTIC

Ilya Razenshteyn MSR Redmond

David Woodruff CMU

Samson Zhou CMU

An algorithmic paradigm for solving many data summarization tasks.

An **algorithmic paradigm** for solving many data summarization tasks.

Given: *n* vectors in \mathbb{R}^d

- Sample a vector w.p. proportional to its norm
- **Project** all vectors away from the selected subspace
- **Repeat** on the residuals

Given:

- *n* by *d* matrix $A \in \mathbb{R}^{n \times d}$
- parameter *k*

Goal:

- Find a representation (of "size k") for the data
- Optimize a predefined function

Rows correspond to n data points

e.g. feature vectors of objects in a dataset

Given:

- *n* by *d* matrix $A \in \mathbb{R}^{n \times d}$
- parameter *k*

Goal:

- Find a representation (of "size k") for the data
- Optimize a predefined function –
 Instances:
- Row/Column subset selection
- Subspace approximation
- Projective clustering
- Volume sampling/maximization

• Find a subset *S* of *k* rows minimizing the squared distance of all rows to the subspace of *S*

 $\|A - Proj_S(A)\|_F$

Best set of representatives

Given:

- *n* by *d* matrix $A \in \mathbb{R}^{n \times d}$
- parameter *k*

Goal:

- Find a representation (of "size k") for the data
- Optimize a predefined function –
 Instances:
- Row/Column subset selection
- Subspace approximation
- Projective clustering
- Volume sampling/maximization

 Find a subspace H of dimension k minimizing the squared distance of all rows to H

 $\|A - Proj_H(A)\|_F$

Best approximation with a subspace

Given:

- *n* by *d* matrix $A \in \mathbb{R}^{n \times d}$
- parameter *k*

Goal:

- Find a representation (of "size k") for the data
- Optimize a predefined function —

Instances:

- Row/Column subset selection
- Subspace approximation
- Projective clustering
- Volume sampling/maximization

 Find s subspaces H₁, ..., H_s each of dimension k minimizing

 $\sum_{i=1}^n d(A_i, H)^2$

Best approximation with several subspaces

Given:

- *n* by *d* matrix $A \in \mathbb{R}^{n \times d}$
- parameter *k*

Goal:

- Find a representation (of "size k") for the data
- Optimize a predefined function —
 Instances:
- Row/Column subset selection
- Subspace approximation
- Projective clustering
- Volume sampling/maximization

 Find a subset S of k rows that maximizes the volume of the parallelepiped spanned by S

Notion for capturing diversity

Maximizing diversity

Given:

- *n* by *d* matrix $A \in \mathbb{R}^{n \times d}$
- parameter *k*

Goal:

- Find a representation (of "size k") for the data
- Optimize a predefined function

Instances:

- Row/Column subset selection
- Subspace approximation
- Projective clustering
- Volume sampling/maximization

Adaptive sampling is used to derive algorithms for all these tasks

[DeshpandeVempala06, DeshpandeVaradarajan07, DeshpandeRademacherVempalaWang06]

• Sample row *i* w.p. proportional to distance squared $||A_i||_2^2$

• Given: *n* by *d* matrix $A \in \mathbb{R}^{n \times d}$, parameter *k*

• Sample a row A_i with probability

$$\frac{\|A_i\|_2^2}{\|A\|_F^2}$$

[DeshpandeVempala06, DeshpandeVaradarajan07, DeshpandeRademacherVempalaWang06]

• Sample row *i* w.p. proportional to distance squared $||A_i||_2^2$

Project away from sampled subspace

M⁺ :Moore-Penrose Pseudoinverse

[DeshpandeVempala06, DeshpandeVaradarajan07, Desh____aeRademacherVempalaWang06]

- Sample row *i* w.p. proportional to $||A_i(I M^+M)||_2^2$
- Given: *n* by *d* matrix $A \in \mathbb{R}^{n \times d}$, parameter *k*
- $M \leftarrow \emptyset$
- For k rounds,
 - Sample a row A_i with probability

$$\frac{\|A_{i}(I-M^{+}M)\|_{2}^{2}}{\|A(I-M^{+}M)\|_{F}^{2}}$$

• Append A_i to M

Project away from sampled subspace

M⁺ :Moore-Penrose Pseudoinverse

[DeshpandeVempala06, DeshpandeVaradarajan07, Desh areRademacherVempalaWang06]

- Sample row *i* w.p. proportional to $||A_i(I M^+M)||_2^2$
- Given: *n* by *d* matrix $A \in \mathbb{R}^{n \times d}$, parameter *k*
- $M \leftarrow \emptyset$
- For k rounds,
 - Sample a row A_i with probability

$$\frac{\|A_i(I-M^+M)\|_2^2}{\|A(I-M^+M)\|_F^2}$$

• Append A_i to M

Seems inherently sequential

Question:

Can we implement Adaptive Sampling in one pass (non-adaptively)?

Motivation: Data is huge and cannot be stored in the main memory

Streaming algorithms: Given sequential access to the data, make one or several passes over input

- Solve the problem on the fly
- Use sub-linear storage

Parameters: Space, number of passes, approximation

Motivation: Data is huge and cannot be stored in the main memory

Streaming algorithms: Given sequential access to the data, make one or several passes over input

- Solve the problem on the fly
- Use sub-linear storage

Parameters: Space, number of passes, approximation

Models:

- **Row Arrival:** rows of *A* arrive one by one
- **Turnstile:** we receive updates to the entries of the matrix i.e., (i, j, Δ) means $A_{i,j} \leftarrow A_{i,j} + \Delta$

Motivation: Data is huge and cannot be stored in the main memory

Streaming algorithms: Given sequential access to the data, make one or several passes over input

- Solve the problem on the fly
- Use sub-linear storage

Parameters: Space, number of passes, approximation

Models:

Focus on the row arrival model for the talk

- **Row Arrival:** rows of *A* arrive one by one
- **Turnstile:** we receive updates to the entries of the matrix i.e., (i, j, Δ) means $A_{i,j} \leftarrow A_{i,j} + \Delta$

Motivation: Data is huge and cannot be stored in the main memory

Streaming algorithms: Given sequential access to the data, make one or several passes over input

- Solve the problem on the fly
- Use sub-linear storage

Parameters: Space, number of passes, approximation

Models:

Focus on the row arrival model for the talk

- **Row Arrival:** rows of *A* arrive one by one
- **Turnstile:** we receive updates to the entries of the matrix i.e., (i, j, Δ) means $A_{i,j} \leftarrow A_{i,j} + \Delta$

Our goal: Simulate k rounds of adaptive sampling in 1 pass of streaming

Data Summarization tasks were considered in the streaming models in earlier works that used adaptive sampling [e.g. DV'06, DR'10, DRVW'06]

Outline of Results

- 1. Simulate adaptive sampling in 1 pass turnstile stream
 - $L_{p,2}$ sampling with post processing matrix P
- 2. Applications in turnstile stream
 - Row/column subset selection
 - Subspace approximation
 - Projective clustering
 - Volume Maximization
- 3. Volume maximization lower bounds
- 4. Volume maximization in row arrival

Outline of Results

- 1. Simulate adaptive sampling in 1 pass turnstile stream
 - $L_{p,2}$ sampling with post processing matrix P
- 2. Applications in turnstile stream
 - Row/column subset selection
 - Subspace approximation
 - Projective clustering
 - Volume Maximization
- 3. Volume maximization lower bounds
- 4. Volume maximization in row arrival

Input:

- $A \in \mathbb{R}^{n \times d}$ as a (turnstile) stream
- a post-processing $P \in \mathbb{R}^{d \times d}$

Output: samples an index $i \in [n]$ w.p. $\frac{\|A_iP\|_2^2}{\|AP\|_E^2}$

Input:

- $A \in \mathbb{R}^{n \times d}$ as a (turnstile) stream
- a post-processing $P \in \mathbb{R}^{d \times d}$

Output: samples an index $i \in [n]$ w.p. $\frac{\|A_iP\|_2^2}{\|AP\|^2}$

P corresponds to the projection matrix $(I - M^+M)$

Input:

- $A \in \mathbb{R}^{n \times d}$ as a (turnstile) stream
- a post-processing $\boldsymbol{P} \in \mathbb{R}^{d \times d}$

Output: samples an index $i \in [n]$ w.p. $(1 \pm \epsilon) \frac{\|A_i P\|_2^2}{\|AP\|_F^2} + \frac{1}{poly(n)}$

✓ In one pass ✓ $poly(d, e^{-1}, \log n)$ space

Input:

- $A \in \mathbb{R}^{n \times d}$ as a (turnstile) stream
- a post-processing $P \in \mathbb{R}^{d \times d}$

Output: samples an index $i \in [n]$ w.p. $(1 \pm \epsilon) \frac{\|A_i P\|_2^2}{\|AP\|_E^2} + \frac{1}{\frac{noly(n)}{noly(n)}}$

Impossible to return entire row instead of index in sublinear space

□ A long stream of *small* updates + an arbitrarily *large* update

Input:

- $A \in \mathbb{R}^{n \times d}$ as a (turnstile) stream, $p \in \{1, 2\}$
- a post-processing $\boldsymbol{P} \in \mathbb{R}^{d \times d}$

Output: samples an index $i \in [n]$ w.p. $(1 \pm \epsilon) \frac{\|A_iP\|_2^p}{\|AP\|_{n,2}^p} + \frac{1}{poly(n)}$

Impossible to return entire row instead of index in sublinear space

□ A long stream of *small* updates + an arbitrarily *large* update

Outline of Results

1. Simulate adaptive sampling in 1 pass turnstile stream

- $L_{p,2}$ sampling with post processing matrix P
- 2. Applications in turnstile stream
 - Row/column subset selection
 - Subspace approximation
 - Projective clustering
 - Volume Maximization
- 3. Volume maximization lower bounds
- 4. Volume maximization in row arrival
Input: $A \in \mathbb{R}^{n \times d}$ as a (turnstile) stream

Output: Return each set $S \subset_k [n]$ of k indices w.p. p_S s.t.

 $\sum_{S} |\boldsymbol{p}_{\boldsymbol{S}} - \boldsymbol{q}_{\boldsymbol{S}}| \le \epsilon$

- *q_S*: prob. of selecting *S* via adaptive sampling
- w.r.t. either distance or squared distance (i.e., $p \in \{1,2\}$)

Input: $A \in \mathbb{R}^{n \times d}$ as a (turnstile) stream

Output: Return each set $S \subset_k [n]$ of k indices w.p. p_S s.t.

 $\sum_{S} |\boldsymbol{p}_{\boldsymbol{S}} - \boldsymbol{q}_{\boldsymbol{S}}| \le \epsilon$

- *q_s*: prob. of selecting *S* via adaptive sampling
- w.r.t. either distance or squared distance (i.e., $p \in \{1,2\}$)

In one pass

```
poly(d, k, \epsilon^{-1}, \log n) space
```

Input: $A \in \mathbb{R}^{n \times d}$ as a (turnstile) stream

Output: Return each set $S \subset_k [n]$ of k indices w.p. p_S s.t.

 $\sum_{S} |\boldsymbol{p}_{S} - \boldsymbol{q}_{S}| \le \epsilon$

- *q_s*: prob. of selecting *S* via adaptive sampling
- w.r.t. either distance or squared distance (i.e., $p \in \{1,2\}$)
- In one pass
- $poly(d, k, \epsilon^{-1}, \log n)$ space
- Besides indices S, a noisy set of rows r_1, \dots, r_k are returned
 - Each r_i is close to the corresponding A_i (w.r.t. residual)

Input: $A \in \mathbb{R}^{n \times d}$ as a (turnstile) stream

Output: Return each set $S \subset_k [n]$ of k indices w.p. p_S s.t.

 $\sum_{S} |\boldsymbol{p}_{\boldsymbol{S}} - \boldsymbol{q}_{\boldsymbol{S}}| \le \epsilon$

- *q_s*: prob. of selecting *S* via adaptive sampling
- w.r.t. either distance or squared distance (i.e., $p \in \{1,2\}$)
- In one pass
- $poly(d, k, \epsilon^{-1}, \log n)$ space
- Besides indices S, a noisy set of rows r_1, \dots, r_k are returned
- Each r_i is close to the corresponding A_i (w.r.t. residual)

Impossible to return the row accurately in sublinear space A long stream of *small* updates + an arbitrarily *large* update

Outline of Results

- 1. Simulate adaptive sampling in 1 pass turnstile stream
 - $L_{p,2}$ sampling with post processing matrix P

2. Applications in turnstile stream

- Row/column subset selection
- Subspace approximation
- Projective clustering
- Volume Maximization
- 3. Volume maximization lower bounds
- 4. Volume maximization in row arrival

Applications: Row Subset Selection

Input: $A \in \mathbb{R}^{n \times d}$ and an integer k > 0

Output: *k* rows of *A* to form *M* to minimize $||A - AM^+M||_F$

Applications: Row Subset Selection

Input: $A \in \mathbb{R}^{n \times d}$ and an integer k > 0

Output: *k* rows of *A* to form *M* to minimize $||A - AM^+M||_F$

Our Result: finds M such that,

 $\Pr[\|A - AM^+M\|_F^2 \le \mathbf{16}(k+1)! \|A - A_k\|_F^2] \ge 2/3$

- A_k: best rank-k approximation of A
- first one pass turnstile streaming algorithm
- poly(d, k, log n) space

Applications: Row Subset Selection

Input: $A \in \mathbb{R}^{n \times d}$ and an integer k > 0

Output: *k* rows of *A* to form *M* to minimize $||A - AM^+M||_F$

Our Result: finds M such that,

 $\Pr[\|A - AM^+M\|_F^2 \le \mathbf{16}(k+1)! \|A - A_k\|_F^2] \ge 2/3$

- A_k : best rank-*k* approximation of A
- first one pass turnstile streaming algorithm
- *poly*(*d*, *k*, log *n*) space

Previous works: centralized setting [e.g. DRVW06, BMD09, GS'12] and row arrival [e.g., CMM'17, GP'14, BDMMUWZ'18]

Input: $A \in \mathbb{R}^{n \times d}$ and an integer k > 0

Output: *k*-dim subspace *H* to minimize $(\sum_{i=1}^{n} d(A_i, H)^p)^{1/p}$

- $p \in \{1,2\}$
- $d(A_i, H) = ||A_i(\mathbb{I} H^+H)||_2$

Input: $A \in \mathbb{R}^{n \times d}$ and an integer k > 0

Output: *k*-dim subspace *H* to minimize $(\sum_{i=1}^{n} d(A_i, H)^p)^{1/p}$

- $p \in \{1,2\}$
- $d(A_i, H) = ||A_i(\mathbb{I} H^+H)||_2$

Our Result I: finds H (which is k noisy rows of A) s.t.,

 $\Pr[(\sum_{i=1}^{n} d(A_i, H)^p)^{1/p} \le 4(k+1)! (\sum_{i=1}^{n} d(A_i, A_k)^p)^{1/p}] \ge \frac{2}{3}$

- A_k: best rank-k approximation of A
- *poly*(*d*, *k*, log *n*) space

Input: $A \in \mathbb{R}^{n \times d}$ and an integer k > 0

Output: *k*-dim subspace *H* to minimize $(\sum_{i=1}^{n} d(A_i, H)^p)^{1/p}$

- $p \in \{1,2\}$
- $d(A_i, H) = ||A_i(\mathbb{I} H^+H)||_2$

Our Result I: finds H (which is k noisy rows of A) s.t.,

 $\Pr[(\sum_{i=1}^{n} d(A_i, H)^p)^{1/p} \le 4(k+1)! (\sum_{i=1}^{n} d(A_i, A_k)^p)^{1/p}] \ge \frac{2}{3}$

- A_k: best rank-k approximation of A
- *poly*(*d*, *k*, log *n*) space
- First relative error on turnstile streams that returns noisy rows of A
- [Levin, Sevekari, Woodruff'18]

+(1 + ϵ)-approximation –larger number of rows –rows are not from A

Input: $A \in \mathbb{R}^{n \times d}$ and an integer k > 0

Output: *k*-dim subspace *H* to minimize $(\sum_{i=1}^{n} d(A_i, H)^p)^{1/p}$

- $p \in \{1,2\}$
- $d(A_i, H) = ||A_i(\mathbb{I} H^+H)||_2$

Our Result II: finds **H** (which is $poly(k, 1/\epsilon)$ noisy rows of A) s.t.,

 $\Pr[(\sum_{i=1}^{n} d(A_i, H)^p)^{1/p} \le (1 + \epsilon)(\sum_{i=1}^{n} d(A_i, A_k)^p)^{1/p}] \ge \frac{2}{3}$

- A_k: best rank-k approximation of A
- *poly(d, k, 1/ε, log n)* space
- [Levin, Sevekari, Woodruff'18]

-*poly*(log(*nd*), *k*, $1/\epsilon$) rows -rows are not from A

Applications: Projective Clustering

Input: $A \in \mathbb{R}^{n \times d}$, target dim **k** and target number of subspaces **s Output: s k**-dim subspaces $H_1, ..., H_s$ to minimize $(\sum_{i=1}^n d(A_i, H)^p)^{1/p}$

• $H = H_1 \cup \cdots \cup H_s$ and $p \in \{1,2\}$

•
$$d(A_i, H) = \min_{j \in [s]} \|A_i(\mathbb{I} - H_j^+ H_j)\|_2$$

Applications: Projective Clustering

Input: $A \in \mathbb{R}^{n \times d}$, target dim **k** and target number of subspaces **s**

Output: s k-dim subspaces $H_1, ..., H_s$ to minimize $(\sum_{i=1}^n d(A_i, H)^p)^{1/p}$

• $H = H_1 \cup \cdots \cup H_s$ and $p \in \{1,2\}$

•
$$d(A_i, H) = \min_{j \in [s]} \|A_i(\mathbb{I} - H_j^+ H_j)\|_2$$

<u>**Our Result:</u>** finds **S** (which is $poly(k, s, 1/\epsilon)$ noisy rows of A),</u>

which contains a union **T** of *s* **k**-dim subspaces s.t.,

 $\Pr[(\sum_{i=1}^{n} d(A_i, T)^p)^{1/p} \le (1 + \epsilon) (\sum_{i=1}^{n} d(A_i, H)^p)^{1/p}] \ge 2/3$

- *H*: optimal solution to projective clustering
- first one pass turnstile streaming algorithm with sublinear space
- $poly(d, k, \log n, s, 1/\epsilon)$ space
- [BHI'02, HM'04, Che09, FMSW'10] based on coresets, works in row arrival
- [KR'15] turnstile but linear in number of points

Input: $A \in \mathbb{R}^{n \times d}$ and an integer **k Output: k** rows $r_1, ..., r_k$ of A, M, with maximum volume

Volume of the parallelepiped spanned by those vectors

Input: $A \in \mathbb{R}^{n \times d}$ and an integer **k Output: k** rows $r_1, ..., r_k$ of A, M, with maximum volume

Input: $A \in \mathbb{R}^{n \times d}$ and an integer **k Output: k** rows $r_1, ..., r_k$ of A, M, with maximum volume

<u>Our Result (Upper Bound I)</u>: for an approximation factor α , finds **S** (set of *k noisy* rows of *A*) s.t.,

 $\Pr[\alpha^k(k!)\operatorname{Vol}(\mathbf{S}) \ge \operatorname{Vol}(\mathbf{M})] \ge 2/3$

- first one pass turnstile streaming algorithm
- $\tilde{O}(ndk^2/\alpha^2)$ space

Input: $A \in \mathbb{R}^{n \times d}$ and an integer **k Output: k** rows $r_1, ..., r_k$ of A, M, with maximum volume

<u>Our Result (Upper Bound I)</u>: for an approximation factor α , finds **S** (set of *k noisy* rows of *A*) s.t.,

 $\Pr[\alpha^k(k!)\operatorname{Vol}(\mathbf{S}) \ge \operatorname{Vol}(\mathbf{M})] \ge 2/3$

- first one pass turnstile streaming algorithm
- $\tilde{O}(ndk^2/\alpha^2)$ space

Findyk, M, Oveis Gharan, Rezaei, '19 '20] coreset based $\tilde{O}(k)^{k/\epsilon}$ approx. and $\tilde{O}(n^{\epsilon}kd)$ space for row-arrival streams

Outline of Results

- 1. Simulate adaptive sampling in 1 pass turnstile stream
 - $L_{p,2}$ sampling with post processing matrix P
- 2. Applications in turnstile stream
 - Row/column subset selection
 - Subspace approximation
 - Projective clustering
 - Volume Maximization
- 3. Volume maximization lower bounds
- 4. Volume maximization in row arrival

Volume Maximization Lower Bounds

Input: $A \in \mathbb{R}^{n \times d}$ and an integer **k Output: k** rows $r_1, ..., r_k$ of A, M, with maximum volume

<u>**Our Result (Lower Bound I):</u></u> for \alpha, any p-pass algorithm that finds \alpha^k-approximation w.p. \geq 63/64 in turnstile-arrival requires \Omega(n/kp\alpha^2) space.</u>**

• Our previous upper bound is matches the upper bound up to a factor of $k^3 d$ in space and k! in the approximation factor.

Volume Maximization Lower Bounds

Input: $A \in \mathbb{R}^{n \times d}$ and an integer **k Output: k** rows $r_1, ..., r_k$ of A, M, with maximum volume

<u>**Our Result (Lower Bound II):</u></u> for a fixed constant C, any one-pass algorithm that finds C^k-approximation w.p. \geq 63/64 in random order row-arrival requires \Omega(n) space</u>**

Volume Maximization – Row Arrival

Input: $A \in \mathbb{R}^{n \times d}$ and an integer **k Output: k** rows $r_1, ..., r_k$ of A, M, with maximum volume

<u>Our Result (Upper Bound II)</u>: for an approximation factor $C < (\log n)/k$, finds **S** (set of k rows of A) s.t.

- approximation factor $\tilde{O}(\mathbf{C}k)^{k/2}$ with high probability
- one pass **row-arrival** streaming algorithm
- $\tilde{O}(n^{O(1/C)}d)$ space

Volume Maximization – Row Arrival

Input: $A \in \mathbb{R}^{n \times d}$ and an integer **k Output: k** rows $r_1, ..., r_k$ of A, M, with maximum volume

<u>Our Result (Upper Bound II)</u>: for an approximation factor $C < (\log n)/k$, finds **S** (set of k rows of A) s.t.

- approximation factor $\tilde{O}(\mathbf{C}k)^{k/2}$ with high probability
- one pass **row-arrival** streaming algorithm
- $\tilde{O}(n^{O(1/\mathcal{C})}d)$ space

> [Indyk, M, Oveis Gharan, Rezaei, '19 '20] coreset based $\tilde{O}(k)^{Ck/2}$ approx. and $\tilde{O}(n^{1/C}kd)$ space for row-arrival streams

L_{p,2} Sampler

- 1. Simulate adaptive sampling in 1 pass
 - L_{p,2} sampling with post processing matrix P
- 2. Applications in turnstile stream
 - Row/column subset selection
 - Subspace approximation
 - Projective clustering
 - Volume Maximization
- 3. Volume maximization lower bounds
- 4. Volume maximization in row arrival

L_{2,2} Sampler with Post-Processing Matrix

Input: matrix **A** as a data stream, a post-processing matrix **P Output:** index *i* of a row of **AP** sampled w.p. $\sim \frac{\|A_iP\|_2^2}{\|AP\|_F^2}$

$L_{2,2}$ Sampler with Post-Processing Matrix

Input: matrix **A** as a data stream, a post-processing matrix **P Output:** index *i* of a row of **AP** sampled w.p. $\sim \frac{\|A_i P\|_2^2}{\|AP\|_F^2}$

Extension of *L*₂ Sampler

[Andoni et al.'10][Monemizadeh, Woodruff'10][Jowhari et al.'11][Jayaram, Woodruff'18]

Input: vector **f** as a data stream

Output: index *i* of a coordinate of **f** sampled w.p. $\sim \frac{f_i^2}{\|\mathbf{f}\|_2^2}$

$L_{2,2}$ Sampler with Post-Processing Matrix

Input: matrix **A** as a data stream, a post-processing matrix **P Output:** index *i* of a row of **AP** sampled w.p. $\sim \frac{\|A_i P\|_2^2}{\|AP\|_F^2}$

What is new:

Extension of L₂ Sampler

[Andoni et al.'10][Monemizadeh, Wood

1. Generalizing vectors to matrices

. Handling the post processing matrix P

druff'18]

Input: vector f as a data stream

Output: index *i* of a coordinate of **f** sampled w.p. $\sim \frac{f_i^2}{\|\mathbf{f}\|_2^2}$

Input: matrix A as a data stream

Output: index *i* of a row of **A** sampled w.p. $\sim \frac{\|A_i\|_2^2}{\|A\|_F^2}$

Ignore *P* for now

L_{2,2} Sampler

• pick $t_i \in [0,1]$ uniformly at random

L_{2,2} Sampler

- pick $t_i \in [0,1]$ uniformly at random set $B_i \coloneqq \frac{1}{\sqrt{t_i}} \times A_i$

L_{2,2} Sampler

- pick $t_i \in [0,1]$ uniformly at random
- set $B_i \coloneqq \frac{1}{\sqrt{t_i}} \times A_i$

$$\mathbf{Pr}[\|B_i\|_2^2 \ge \|A\|_F^2] = \mathbf{Pr}[\frac{\|A_i\|_2^2}{\|A\|_F^2} \ge t_i] = \frac{\|A_i\|_2^2}{\|A\|_F^2}$$

L_{2,2} Sampler

• pick $t_i \in [0,1]$ uniformly at random

• set $B_i \coloneqq \frac{1}{\sqrt{t_i}} \times A_i$

$$\Pr[\|B_i\|_2^2 \ge \|A\|_F^2] = \Pr[\frac{\|A_i\|_2^2}{\|A\|_F^2} \ge t_i] = \frac{\|A_i\|_2^2}{\|A\|_F^2}$$

 $\Box \text{ Return } i \text{ that satisfies } \|B_i\|_2^2 \ge \|A\|_F^2$

L_{2,2} Sampler

• pick $t_i \in [0,1]$ uniformly at random

• set $B_i \coloneqq \frac{1}{\sqrt{t_i}} \times A_i$

$$\Pr[\|B_i\|_2^2 \ge \|A\|_F^2] = \Pr[\frac{\|A_i\|_2^2}{\|A\|_F^2} \ge t_i] = \frac{\|A_i\|_2^2}{\|A\|_F^2}$$

 \Box Return *i* that satisfies $||B_i||_2^2 \ge ||A||_F^2$

Issues:

- 1. Multiple rows passing the threshold
- 2. Don't have access to exact values of $\|B_i\|_2^2$ and $\|A\|_F^2$

L_{2.2} Sampler

Issue 1: Multiple rows passing the threshold

> Set the threshold higher

Step 1.

- pick $t_i \in [0,1]$ uniformly at random
- set $B_i \coloneqq \frac{1}{\sqrt{t_i}} \times A_i$

 \Box Ideally, return the only *i* that satisfies $||B_i||_2^2 \ge ||A||_F^2$

$$\Pr[\|B_i\|_2^2 \ge \gamma^2 \cdot \|A\|_F^2] = \frac{1}{\gamma^2} \times \frac{\|A_i\|_2^2}{\|A\|_F^2} \qquad \gamma^2 := \frac{C \log n}{\epsilon}$$

L_{2.2} Sampler

Issue 1: Multiple rows passing the threshold

> Set the threshold higher

Step 1.

- pick $t_i \in [0,1]$ uniformly at random
- set $B_i \coloneqq \frac{1}{\sqrt{t_i}} \times A_i$

 \Box Ideally, return the only *i* that satisfies $||B_i||_2^2 \ge ||A||_F^2$

$$\Pr[\|B_i\|_2^2 \ge \gamma^2 \cdot \|A\|_F^2] = \frac{1}{\gamma^2} \times \frac{\|A_i\|_2^2}{\|A\|_F^2} \qquad \gamma^2 := \frac{C \log n}{\epsilon}$$

Success prob:
$$\Omega(\frac{\epsilon}{\log n})$$

Pr[squared norm of at least one row exceeds $\gamma^2 \cdot ||A||_F^2 = \Omega(\frac{1}{\gamma^2})$ **Pr**[squared norms of more than one row exceed $\gamma^2 \cdot ||A||_F^2 = O(\frac{1}{\gamma^4})$

L_{2.2} Sampler

Issue 1: Multiple rows passing the threshold

> Set the threshold higher

Step 1.

- pick $t_i \in [0,1]$ uniformly at random
- set $B_i \coloneqq \frac{1}{\sqrt{t_i}} \times A_i$

 \Box Ideally, return the only *i* that satisfies $||B_i||_2^2 \ge ||A||_F^2$

$$\Pr[\|B_i\|_2^2 \ge \gamma^2 \cdot \|A\|_F^2] = \frac{1}{\gamma^2} \times \frac{\|A_i\|_2^2}{\|A\|_F^2}$$

$$\gamma^2 := \frac{C \log n}{\epsilon}$$

Success prob:
$$\Omega(\frac{\epsilon}{\log n})$$

To succeed, repeat $\tilde{0}(1/\epsilon)$
L_{2,2} Sampler

Issue 2: Don't have access to exact values of $||B_i||$ and $||A||_F$

 \succ estimate $||B_i||_2$ and $||A||_F$

Step 1.

- pick $t_i \in [0,1]$ uniformly at random
- set $B_i \coloneqq \frac{1}{\sqrt{t_i}} \times A_i$
- $\square \text{ Return } i \text{ that satisfies } \|B_i\|_2 \geq \gamma \cdot \|A\|_F$

Count Sketch

Estimate $\|B_i\|_2$ for rows with large norms

#rows $r = O(\log n)$ **#buckets**/row $b = O(1/\epsilon^2)$ • Hash $h_j: [n] \rightarrow [b]$

• Sign
$$\sigma_j: [n] \to \{-1, +1\}$$

• Update: $C[j, h_j(i)] += \sigma_j(i) \cdot f_i$

•

#rows $r = O(\log n)$ **#buckets**/row $b = O(1/\epsilon^2)$ • Hash $h_j: [n] \rightarrow [b]$

• Sign
$$\sigma_j: [n] \to \{-1, +1\}$$

• Update: $C[j, h_j(i)] += \sigma_j(i) \cdot f_i$

•

#rows $r = O(\log n)$ **#buckets**/row $b = O(1/\epsilon^2)$ • Hash $h_j: [n] \rightarrow [b]$

• Sign
$$\sigma_j: [n] \to \{-1, +1\}$$

• Update: $C[j, h_j(i)] += \sigma_j(i) \cdot f_i$

•

#rows $r = O(\log n)$ **#buckets**/row $b = O(1/\epsilon^2)$ • Hash $h_j: [n] \rightarrow [b]$

• Sign
$$\sigma_j \colon [n] \to \{-1, +1\}$$

- Update: $C[j, h_j(i)] += \sigma_j(i) \cdot f_i$
- **Estimate** $\hat{f}_i \coloneqq median_j \sigma_j C[j, h_j(i)]$

Count Sketch

Given a stream of items, estimate frequency of each item (i.e., coordinates in a vector)

#rows $r = O(\log n)$ **#buckets**/row $b = O(1/\epsilon^2)$ **Estimation guarantee**

$$\left|f_{i} - \hat{f}_{i}\right| \leq \epsilon \cdot \|\mathbf{f}\|_{2}$$

- Update: $C[j, h_j(i)] += \sigma_j(i) \cdot f_i$
- **Estimate** $\hat{f}_i \coloneqq median_j \sigma_j C[j, h_j(i)]$

Estimate $||B_i||_2$ for rows with large norms

#rows $r = O(\log n)$ **#buckets**/row $b = O(1/\epsilon^2)$ **Estimation guarantee** $\left\| \|B_i\|_2 - \|\widehat{B}_i\|_2 \right\| \le \epsilon \cdot \|B\|_F$

Space usage: $O\left(\log n \times \frac{1}{\epsilon^2}\right) \times d$

L_{2,2} Sampler

Step 1.

- pick $t_i \in [0,1]$ uniformly at random set $B_i \coloneqq \frac{1}{\sqrt{t_i}} \times A_i$

Goal: $||B_i||_2 \ge \mathbf{\gamma} \cdot ||A||_F$

L_{2.2} Sampler

Step 1.

- pick $t_i \in [0,1]$ uniformly at random
- set $B_i \coloneqq \frac{1}{\sqrt{t_i}} \times A_i$

Goal:
$$||B_i||_2 \ge \mathbf{\gamma} \cdot ||A||_F$$

Step 2.

- $\|\widehat{B_i}\|_2$ is an estimate of $\|B_i\|_2$ by modified Countsketch
- \widehat{F} is an estimate of $||A||_F$ by modified AMS

Test:
$$\left\|\widehat{B}_{i}\right\|_{2} \geq \boldsymbol{\gamma} \cdot \widehat{F}$$

L_{2.2} Sampler

Step 1.

- pick $t_i \in [0,1]$ uniformly at random
- set $B_i \coloneqq \frac{1}{\sqrt{t_i}} \times A_i$

Goal:
$$||B_i||_2 \ge \mathbf{\gamma} \cdot ||A||_F$$

Step 2.

- $\|\widehat{B_i}\|_2$ is an estimate of $\|B_i\|_2$ by modified Countsketch
- \widehat{F} is an estimate of $||A||_F$ by modified AMS

Test:
$$\left\|\widehat{B}_{i}\right\|_{2} \geq \boldsymbol{\gamma} \cdot \widehat{F}$$

 \succ The test succeeds w.p. ϵ , the estimate of largest row exceeds the threshold

Handling Post-Processing Matrix

Input: matrix **A** as a data stream, a post-processing matrix **P Output:** index *i* of a row of **AP** sampled w.p. $\sim \frac{\|A_i P\|_2^2}{\|AP\|_F^2}$

Handling Post-Processing Matrix

Input: matrix **A** as a data stream, a post-processing matrix **P Output:** index *i* of a row of **AP** sampled w.p. $\sim \frac{\|A_i P\|_2^2}{\|AP\|_F^2}$

Run proposed algorithm on A, then *multiply by P*:

• CountSketch and AMS both are linear transformations

✓ A is mapped to SA
✓ S (AP) = (SA) P

Handling Post-Processing Matrix

Input: matrix **A** as a data stream, a post-processing matrix **P Output:** index *i* of a row of **AP** sampled w.p. $\sim \frac{\|A_i P\|_2^2}{\|AP\|_F^2}$

Run proposed algorithm on A, then *multiply by P*:

CountSketch and AMS both are linear transformations

✓ A is mapped to SA
✓ S (AP) = (SA) P

Total space for sampler: $O(\frac{d}{\epsilon^2}\log^2 n)$ bits

L_{2,2} sampling with post processing Input:

- $A \in \mathbb{R}^{n \times d}$ as a (turnstile) stream
- a post-processing $\boldsymbol{P} \in \mathbb{R}^{d \times d}$

Output: samples an index $i \in [n]$ w.p. $(1 \pm \epsilon) \frac{\|A_i P\|_2^2}{\|AP\|_F^2} + \frac{1}{poly(n)}$

In one pass
$$\checkmark$$
 nolv(d $e^{-1} \log n$) s

$$poly(d, \epsilon^{-1}, \log n)$$
 space

Adaptive Sampler

- 1. Simulate adaptive sampling in 1 pass
 - $L_{p,2}$ sampling with post processing matrix P
- 2. Applications in turnstile stream
 - Row/column subset selection
 - Subspace approximation
 - Projective clustering
 - Volume Maximization
- 3. Volume maximization lower bounds
- 4. Volume maximization in row arrival

Algorithm Using $L_{2,2}$ Sampler

Maintain k instances of $L_{2,2}$ sampler with post processing: S_1, \dots, S_k $M \leftarrow \emptyset$

For round i = 1 to k,

- Set $P \leftarrow (I M^+M)$
- Use S_i to sample a noisy row r_j of A with post processing matrix P
- Append r_i to M

Algorithm Using $L_{2,2}$ Sampler

Maintain k instances of $L_{2,2}$ sampler with post processing: S_1, \dots, S_k $M \leftarrow \emptyset$

For round i = 1 to k,

- Set $P \leftarrow (I M^+M)$
- Use S_i to sample a noisy row r_j of A with post processing matrix P
- Append r_i to M

Issues:

X Noisy perturbation of rows (unavoidable)

✓ Sample *j*,

 $\checkmark r_j = A_j P + v$ where v has small norm $||v|| < \epsilon ||A_j P||$ thus $||r_j|| \approx ||A_j P||$

Algorithm Using $L_{2,2}$ Sampler

Maintain k instances of $L_{2,2}$ sampler with post processing: S_1, \dots, S_k $M \leftarrow \emptyset$

For round i = 1 to k,

- Set $P \leftarrow (I M^+M)$
- Use S_i to sample a noisy row r_j of A with post processing matrix P
- Append r_i to M

Issues:

X Noisy perturbation of rows (unavoidable)

✓ Sample *j*,

 $\checkmark r_j = A_j P + v$ where v has small norm $||v|| < \epsilon ||A_j P||$ thus $||r_j|| \approx ||A_j P||$

X This can drastically change the probabilities: may zero out probabilities of some rows

$$A_2 = (0, 1)$$

 $A_1 = (M, 0)$

Noisy row sampling: $||A_1(I - M^+M)|| \ge ||A_2(I - M^+M)||$

True row sampling: $||A_1(I - M^+M)|| = 0$

Lemma: Not only the norm of v is small in compare to A_j but also its norm projected away from A_j is small

Lemma: Not only the norm of v is small in compare to A_j but also its norm projected away from A_j is small:

- $r_j = A_j P + v$
- where $\|\boldsymbol{v}\boldsymbol{Q}\| \leq \epsilon \|A_jP\| \cdot \frac{\|AP\boldsymbol{Q}\|_F}{\|AP\|_F}$ for any projection matrix \boldsymbol{Q}

Lemma: Not only the norm of v is small in compare to A_j but also its norm projected away from A_j is small:

• $r_j = A_j P + v$ • where $\|\boldsymbol{v}\boldsymbol{Q}\| \le \epsilon \|A_j P\| \left(\frac{\|AP\boldsymbol{Q}\|_F}{\|AP\|_F} \right)$ for any projection matrix \boldsymbol{Q}

Lemma: Not only the norm of v is small in compare to A_j but also its norm projected away from A_j is small:

- $r_j = A_j P + v$ • where $\|\boldsymbol{v}\boldsymbol{Q}\| \le \epsilon \|A_j P\| \left(\frac{\|AP\boldsymbol{Q}\|_F}{\|AP\|_F} \right)$ for any projection matrix \boldsymbol{Q}
- Bound the additive error of sampling probabilities in subsequent rounds

Suppose indices reported by our algorithm are $j_1, ..., j_k$

Consider two bases U and W

- **U** follows True rows: $U = \{u_1, \dots, u_d\}$ s.t. $\{u_1, \dots, u_i\}$ spans $\{A_{j_1}, \dots, A_{j_i}\}$
- W follows Noisy rows: $W = \{w_1, \dots, w_d\}$ s.t. $\{w_1, \dots, w_i\}$ spans $\{r_{j_1}, \dots, r_{j_i}\}$

Suppose indices reported by our algorithm are $j_1, ..., j_k$

Consider two bases U and W

• **U** follows True rows: $U = \{u_1, ..., u_d\}$ s.t. $\{u_1, ..., u_i\}$ spans $\{A_{j_1}, ..., A_{j_i}\}$

• *W* follows Noisy rows: $W = \{w_1, ..., w_d\}$ s.t. $\{w_1, ..., w_i\}$ spans $\{r_{j_1}, ..., r_{j_i}\}$

For row A_{χ} : • $A_{\chi} = \sum_{i=1}^{d} \lambda_{\chi,i} u_i$ • $A_{\chi} = \sum_{i=1}^{d} \xi_{\chi,i} w_i$

Suppose indices reported by our algorithm are $j_1, ..., j_k$

Consider two bases U and W

- **U** follows True rows: $U = \{u_1, \dots, u_d\}$ s.t. $\{u_1, \dots, u_i\}$ spans $\{A_{j_1}, \dots, A_{j_i}\}$
- *W* follows Noisy rows: $W = \{w_1, ..., w_d\}$ s.t. $\{w_1, ..., w_i\}$ spans $\{r_{j_1}, ..., r_{j_i}\}$

For row A_x : • $A_x = \sum_{i=1}^d \lambda_{x,i} u_i$ • $A_x = \sum_{i=1}^d \xi_{x,i} w_i$

Sampling probs in terms of U and W in t-th round

• The correct probability:
$$\frac{\sum_{i=t}^{a} \lambda_{x,i}^{2}}{\sum_{y=1}^{n} \sum_{i=t}^{d} \lambda_{y,i}^{2}}$$

• What we sample from:
$$\frac{\sum_{i=t}^{d} \xi_{x,i}^2}{\sum_{y=1}^{n} \sum_{i=t}^{d} \xi_{y,i}^2}$$

Suppose indices reported by our algorithm are $j_1, ..., j_k$

Consider two bases U and W

- **U** follows True rows: $U = \{u_1, \dots, u_d\}$ s.t. $\{u_1, \dots, u_i\}$ spans $\{A_{j_1}, \dots, A_{j_i}\}$
- *W* follows Noisy rows: $W = \{w_1, ..., w_d\}$ s.t. $\{w_1, ..., w_i\}$ spans $\{r_{j_1}, ..., r_{j_i}\}$

For row
$$A_x$$
:
• $A_x = \sum_{i=1}^d \lambda_{x,i} u_i$
• $A_x = \sum_{i=1}^d \xi_{x,i} w_i$

Sampling probs in terms of U and W in t-th round

• The correct probability:
$$\frac{\sum_{i=t}^{d} \lambda_{x,i}^2}{\sum_{\nu=1}^{n} \sum_{i=t}^{d} \lambda_{\nu,i}^2}$$

• What we sample from:
$$\frac{\sum_{i=t}^{d} \xi_{x,i}^2}{\sum_{y=1}^{n} \sum_{i=t}^{d} \xi_{y,i}^2}$$

Difference between the correct prob and our algorithm sampling prob over all rows is e for one round

- Change of basis matrix \approx Identity matrix
- Bound total variation distance by ϵ
- Error in each round gets propagated k times Total error is $O(k^2 \epsilon)$

Theorem:

Our algorithm reports a set of k indices such that with high probability

• the total variation distance between the probability distribution output by the algorithm and the probability distribution of adaptive sampling is at most $O(\epsilon)$

• The algorithm uses space $poly(k, \frac{1}{\epsilon}, d, \log n)$
Applications

- 1. Simulate adaptive sampling in 1 pass
 - $L_{p,2}$ sampling with post processing matrix P
- 2. Applications in turnstile stream
 - Row/column subset selection
 - Subspace approximation
 - Projective clustering
 - Volume Maximization
- 3. Volume maximization lower bounds
- 4. Volume maximization in row arrival

Main Challenge: it suffices to get a noisy perturbation of the rows

Input: $A \in \mathbb{R}^{n \times d}$ and an integer k > 0

Output: *k* rows of *A* to form *M* to minimize $||A - AM^+M||_F$

Adaptive Sampling provides a (k + 1)! approximation for subset selection

- > [DRVW'06]: Volume Sampling provides a (k + 1) factor approximation to row subset selection with constant probability.
- [DV'06]: Sampling probabilities for any k-set S produced by Adaptive Sampling is at most k! of its sampling probability with respect to volume sampling.

Adaptive Sampling provides a (k + 1)! approximation for subset selection

- > [DRVW'06]: Volume Sampling provides a (k + 1) factor approximation to row subset selection with constant probability.
- [DV'06]: Sampling probabilities for any k-set S produced by Adaptive Sampling is at most k! of its sampling probability with respect to volume sampling.

Non-adaptive Adaptive Sampling provides a good approximation to Adaptive Sampling

Adaptive Sampling provides a (k + 1)! approximation for subset selection

- > [DRVW'06]: Volume Sampling provides a (k + 1) factor approximation to row subset selection with constant probability.
- [DV'06]: Sampling probabilities for any k-set S produced by Adaptive Sampling is at most k! of its sampling probability with respect to volume sampling.

Non-adaptive Adaptive Sampling provides a good approximation to Adaptive Sampling

- 1. For a set of indices \mathbf{J} output by our algorithm, $\|A(I R^+R)\|_F \le (1 + \epsilon) \|A(I M^+M)\|_F$, w.h.p.
 - *R*: the set of noisy rows corresponding to *J*
 - *M*: the set of true rows corresponding to *J*

Adaptive Sampling provides a (k + 1)! approximation for subset selection

- > [DRVW'06]: Volume Sampling provides a (k + 1) factor approximation to row subset selection with constant probability.
- [DV'06]: Sampling probabilities for any k-set S produced by Adaptive Sampling is at most k! of its sampling probability with respect to volume sampling.

Non-adaptive Adaptive Sampling provides a good approximation to Adaptive Sampling

- 1. For a set of indices \mathbf{J} output by our algorithm, $\|A(I R^+R)\|_F \le (1 + \epsilon) \|A(I M^+M)\|_F$, w.h.p.
 - *R*: the set of noisy rows corresponding to **J**
 - *M*: the set of true rows corresponding to **J**
- 2. For most k-sets J, its prob. by adaptive sampling is within O(1) factor of Non-adaptive Sampling.

Input: $A \in \mathbb{R}^{n \times d}$ and an integer k > 0

Output: *k* rows of *A* to form *M* to minimize $||A - AM^+M||_F$

Our Result: finds M such that,

 $\Pr[\|A - AM^+M\|_F^2 \le 16(k+1)! \|A - A_k\|_F^2] \ge 2/3$

- A_k : best rank-*k* approximation of A
- first one pass turnstile streaming algorithm
- poly(d, k, log n) space

Input: $A \in \mathbb{R}^{n \times d}$ and an integer **k Output: k** rows $r_1, ..., r_k$ of A, M, with maximum volume

Volume of the parallelepiped spanned by those vectors

Input: $A \in \mathbb{R}^{n \times d}$ and an integer **k Output: k** rows $r_1, ..., r_k$ of A, M, with maximum volume

[Civril, Magdon'09] Greedy Algorithm Provides a k! approximation to Volume Maximization

Greedy

[Civril, Magdon'09] Greedy Algorithm Provides a k! approximation to Volume Maximization

Greedy

[Civril, Magdon'09] Greedy Algorithm Provides a k! approximation to Volume Maximization

Greedy

[Civril, Magdon'09] Greedy Algorithm Provides a k! approximation to Volume Maximization

Greedy

[Civril, Magdon'09] Greedy Algorithm Provides a k! approximation to Volume Maximization

Greedy

[Civril, Magdon'09] Greedy Algorithm Provides a k! approximation to Volume Maximization

Simulate Greedy

• Maintain k instances of CountSketch, AMS and L_{2,2} Sampler

[Civril, Magdon'09] Greedy Algorithm Provides a k! approximation to Volume Maximization

Simulate Greedy

- Maintain k instances of CountSketch, AMS and L_{2,2} Sampler
- For k rounds,
 - Let **r** be the row of AP with largest norm //by CountSketch

> If the largest row exceeds the threshold, then it is correctly found by CountSketch w.h.p.

[Civril, Magdon'09] Greedy Algorithm Provides a k! approximation to Volume Maximization

Simulate Greedy

- Maintain k instances of CountSketch, AMS and L_{2,2} Sampler
- For k rounds,
 - Let **r** be the row of AP with largest norm //by CountSketch

• If $||r||^2 < \frac{\alpha^2}{4nk} ||AP||_F^2$, instead sample row r according to norms of rows

- > If the largest row exceeds the threshold, then it is correctly found by CountSketch w.h.p.
- > Otherwise, there are enough large rows and sampler chooses one of them w.h.p.

[Civril, Magdon'09] Greedy Algorithm Provides a k! approximation to Volume Maximization

Simulate Greedy

- Maintain k instances of CountSketch, AMS and L_{2,2} Sampler
- For k rounds,
 - Let **r** be the row of AP with largest norm //by CountSketch
 - If $||r||^2 < \frac{\alpha^2}{4nk} ||AP||_F^2$, instead sample row r according to norms of rows
 - Add r to the solution, and update the postprocessing matrix P

- > If the largest row exceeds the threshold, then it is correctly found by CountSketch w.h.p.
- > Otherwise, there are enough large rows and sampler chooses one of them w.h.p.

Input: $A \in \mathbb{R}^{n \times d}$ and an integer **k Output: k** rows $r_1, ..., r_k$ of A, M, with maximum volume

<u>**Our Result:</u></u> for an approximation factor \alpha, finds S** (set of *k noisy* rows of *A*) s.t.,</u>

 $\Pr[\alpha^k(k!)\operatorname{Vol}(\mathbf{S}) \ge \operatorname{Vol}(\mathbf{M})] \ge 2/3$

- first one pass turnstile streaming algorithm
- $\tilde{O}(ndk^2/\alpha^2)$ space

Problem	Model	Approximation/error	space	Comments
$L_{p,2}$ Sampler	turnstile	$(1 + \epsilon)$ relative + $\frac{1}{poly(n)}$	$poly(d, \epsilon^{-1}, \log n)$	
Adaptive Sampling		$oldsymbol{ heta}(\epsilon)$ total variation distance	$poly(d, k, \epsilon^{-1}, \log n)$	
Row Subset Selection		O((k+1)!)	$poly(d, k, \log n)$	
Subspace		O((k+1)!)	$poly(d, k, \log n)$	
Approximation		$(1 + \epsilon)$	$poly(d,k,\log n$, $1/\epsilon)$	$poly(k, 1/\epsilon)$ rows
Projective Clustering		$(1 + \epsilon)$	$poly(d,k,\log n$, $s,1/\epsilon)$	$poly(k,s,1/\epsilon)$ rows
Volume Maximization		$\alpha^{k}(k!)$	$\widetilde{O}(ndk^2/\alpha^2)$	
		α^k	$\Omega(n/kp\alpha^2)$	$m{p}$ pass
	Row Arrival	C ^k	$\Omega(n)$	Random Order
		$\widetilde{O}(Ck)^{k/2}$	$\widetilde{O}(n^{O(1/C)}d)$	$C < (\log n)/k$

Problem	Model	Approximation/error	space	Comments
$L_{p,2}$ Sampler	turnstile	$(1+\epsilon)$ relative + $rac{1}{poly(n)}$	$poly(d, \epsilon^{-1}, \log n)$	
Adaptive Sampling		$oldsymbol{ heta}(\epsilon)$ total variation distance	$poly(d, k, \epsilon^{-1}, \log n)$	
Row Subset Selection		O((k+1)!)	$poly(d, k, \log n)$	
Subspace Approximation		O((k+1)!)	$poly(d, k, \log n)$	
		$(1 + \epsilon)$	$poly(d,k,\log n$, $1/\epsilon)$	$poly(k, 1/\epsilon)$ rows
Projective Clustering		$(1 + \epsilon)$	$poly(d,k,\log n$, $s,1/\epsilon)$	$poly(k,s,1/\epsilon)$ rows
Volume Maximization		$\alpha^k(k!)$	$\widetilde{O}(ndk^2/\alpha^2)$	
		α^k	$\Omega(n/kp\alpha^2)$	$m{p}$ pass
	Row Arrival	C ^k	$\Omega(n)$	Random Order
		$\widetilde{O}(Ck)^{k/2}$	$\widetilde{O}(n^{O(1/C)}d)$	$C < (\log n)/k$

Open problems

- Get tight dependence on the parameters
- Further applications of non-adaptive adaptive sampling
- Result on Volume Maximization in row arrival model is not tight, i.e., can we get $O(k)^k$ approximation without dependence on n?

Problem	Model	Approximation/error	space	Comments
$L_{p,2}$ Sampler	turnstile	$(1+\epsilon)$ relative + $rac{1}{poly(n)}$	$poly(d, \epsilon^{-1}, \log n)$	
Adaptive Sampling		$oldsymbol{ heta}(\epsilon)$ total variation distance	$poly(d, k, \epsilon^{-1}, \log n)$	
Row Subset Selection		O((k+1)!)	$poly(d, k, \log n)$	
Subspace		O((k+1)!)	$poly(d, k, \log n)$	
Approximation		$(1 + \epsilon)$	$poly(d,k,\log n$, $1/\epsilon)$	$poly(k, 1/\epsilon)$ rows
Projective Clustering		$(1 + \epsilon)$	$poly(d,k,\log n$, $s,1/\epsilon)$	$poly(k, s, 1/\epsilon)$ rows
Volume Maximization		$\alpha^{k}(k!)$	$\widetilde{O}(ndk^2/\alpha^2)$	
		α^k	$\Omega(n/kp\alpha^2)$	$m{p}$ pass
	Row Arrival	C ^k	$\Omega(n)$	Random Order
		$\widetilde{O}(Ck)^{k/2}$	$\widetilde{O}(n^{O(1/C)}d)$	$C < (\log n)/k$

Open problems

- Get tight dependence on the parameters
- Further applications of non-adaptive adaptive sampling
- Result on Volume Maximization in row arrival model is not tight, i.e., can we get $O(k)^k$ approximation without dependence on n?

THANK YOU!