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An algorithmic paradigm for solving many data summarization tasks.

Adaptive Sampling



An algorithmic paradigm for solving many data summarization tasks.

Adaptive Sampling

Given: 𝑛𝑛 vectors in ℝ𝒅𝒅

• Sample a vector w.p. proportional to its norm
• Project all vectors away from the selected subspace
• Repeat on the residuals
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Data Summarization Tasks
Given: 
• 𝑛𝑛 by 𝑑𝑑 matrix 𝑨𝑨 ∈ ℝ𝒏𝒏×𝒅𝒅

• parameter 𝑘𝑘
Goal: 
• Find a representation (of “size 𝑘𝑘”) for the data
• Optimize a predefined function

Rows correspond to 𝑛𝑛 data points

e.g. feature vectors of objects in a dataset



Given: 
• 𝑛𝑛 by 𝑑𝑑 matrix 𝑨𝑨 ∈ ℝ𝒏𝒏×𝒅𝒅

• parameter 𝑘𝑘
Goal: 
• Find a representation (of “size 𝑘𝑘”) for the data
• Optimize a predefined function
Instances:
• Row/Column subset selection
• Subspace approximation
• Projective clustering
• Volume sampling/maximization

Data Summarization Tasks

• Find a subset 𝑆𝑆 of 𝑘𝑘 rows 
minimizing the squared 
distance of all rows to the 
subspace of 𝑆𝑆

𝐴𝐴 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗𝑆𝑆 𝐴𝐴 𝐹𝐹

 Best set of representatives



Data Summarization Tasks
Given: 
• 𝑛𝑛 by 𝑑𝑑 matrix 𝑨𝑨 ∈ ℝ𝒏𝒏×𝒅𝒅

• parameter 𝑘𝑘
Goal: 
• Find a representation (of “size 𝑘𝑘”) for the data
• Optimize a predefined function
Instances:
• Row/Column subset selection
• Subspace approximation
• Projective clustering
• Volume sampling/maximization

• Find a subspace 𝐻𝐻 of 
dimension 𝑘𝑘 minimizing the 
squared distance of all rows to 
𝐻𝐻

𝐴𝐴 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗𝐻𝐻 𝐴𝐴 𝐹𝐹

 Best approximation with a 
subspace



Data Summarization Tasks
Given: 
• 𝑛𝑛 by 𝑑𝑑 matrix 𝑨𝑨 ∈ ℝ𝒏𝒏×𝒅𝒅

• parameter 𝑘𝑘
Goal: 
• Find a representation (of “size 𝑘𝑘”) for the data
• Optimize a predefined function
Instances:
• Row/Column subset selection
• Subspace approximation
• Projective clustering
• Volume sampling/maximization

• Find 𝑠𝑠 subspaces 𝐻𝐻1, … ,𝐻𝐻𝑠𝑠
each of dimension 𝑘𝑘
minimizing

∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐻𝐻 2

 Best approximation with 
several subspaces



Data Summarization Tasks
Given: 
• 𝑛𝑛 by 𝑑𝑑 matrix 𝑨𝑨 ∈ ℝ𝒏𝒏×𝒅𝒅

• parameter 𝑘𝑘
Goal: 
• Find a representation (of “size 𝑘𝑘”) for the data
• Optimize a predefined function
Instances:
• Row/Column subset selection
• Subspace approximation
• Projective clustering
• Volume sampling/maximization

• Find a subset 𝑆𝑆 of 𝑘𝑘 rows that 
maximizes the volume of the 
parallelepiped spanned by 𝑆𝑆

 Notion for capturing diversity
Maximizing diversity 



Given: 
• 𝑛𝑛 by 𝑑𝑑 matrix 𝑨𝑨 ∈ ℝ𝒏𝒏×𝒅𝒅

• parameter 𝑘𝑘
Goal: 
• Find a representation (of “size 𝑘𝑘”) for the data
• Optimize a predefined function
Instances:
• Row/Column subset selection
• Subspace approximation
• Projective clustering
• Volume sampling/maximization

Data Summarization Tasks

Adaptive sampling is used to derive 
algorithms for all these tasks



Adaptive Sampling
[DeshpandeVempala06, DeshpandeVaradarajan07, DeshpandeRademacherVempalaWang06]

• Sample row 𝑖𝑖 w.p. proportional to distance squared 𝐴𝐴𝑖𝑖 2
2

• Given: 𝑛𝑛 by 𝑑𝑑 matrix 𝑨𝑨 ∈ ℝ𝒏𝒏×𝒅𝒅, parameter 𝑘𝑘

• Sample  a row 𝐴𝐴𝑖𝑖 with probability    
𝐴𝐴𝑖𝑖 2

2

𝐴𝐴 𝐹𝐹
2



Adaptive Sampling
[DeshpandeVempala06, DeshpandeVaradarajan07, DeshpandeRademacherVempalaWang06]

• Sample row 𝑖𝑖 w.p. proportional to distance squared 𝐴𝐴𝑖𝑖 2
2

• Given: 𝑛𝑛 by 𝑑𝑑 matrix 𝑨𝑨 ∈ ℝ𝒏𝒏×𝒅𝒅, parameter 𝑘𝑘

• Sample  a row 𝐴𝐴𝑖𝑖 with probability    
𝐴𝐴𝑖𝑖 2

2

𝐴𝐴 𝐹𝐹
2

Frobenius norm:

𝐴𝐴 𝐹𝐹 = ∑𝑖𝑖 ∑𝑗𝑗 𝐴𝐴𝑖𝑖,𝑗𝑗2



Adaptive Sampling
[DeshpandeVempala06, DeshpandeVaradarajan07, DeshpandeRademacherVempalaWang06]

• Sample row 𝑖𝑖 w.p. proportional to 𝐴𝐴𝑖𝑖 𝐼𝐼 − 𝑀𝑀+𝑀𝑀 2
2

• Given: 𝑛𝑛 by 𝑑𝑑 matrix 𝑨𝑨 ∈ ℝ𝒏𝒏×𝒅𝒅, parameter 𝑘𝑘
• 𝑀𝑀 ← ∅
• For 𝑘𝑘 rounds,

• Sample  a row 𝐴𝐴𝑖𝑖 with probability    
𝐴𝐴𝑖𝑖 𝐼𝐼−𝑀𝑀

+𝑀𝑀 2
2

𝐴𝐴 𝐼𝐼−𝑀𝑀+𝑀𝑀 𝐹𝐹
2

• Append 𝐴𝐴𝑖𝑖 to 𝑀𝑀

Project away from sampled subspace
𝑴𝑴+ :Moore-Penrose Pseudoinverse



Adaptive Sampling
[DeshpandeVempala06, DeshpandeVaradarajan07, DeshpandeRademacherVempalaWang06]

• Sample row 𝑖𝑖 w.p. proportional to 𝐴𝐴𝑖𝑖 𝐼𝐼 − 𝑀𝑀+𝑀𝑀 2
2

• Given: 𝑛𝑛 by 𝑑𝑑 matrix 𝑨𝑨 ∈ ℝ𝒏𝒏×𝒅𝒅, parameter 𝑘𝑘
• 𝑀𝑀 ← ∅
• For 𝑘𝑘 rounds,

• Sample  a row 𝐴𝐴𝑖𝑖 with probability    
𝐴𝐴𝑖𝑖 𝐼𝐼−𝑀𝑀

+𝑀𝑀 2
2

𝐴𝐴 𝐼𝐼−𝑀𝑀+𝑀𝑀 𝐹𝐹
2

• Append 𝐴𝐴𝑖𝑖 to 𝑀𝑀

Seems inherently sequential

Project away from sampled subspace
𝑴𝑴+ :Moore-Penrose Pseudoinverse



Question: 

Can we implement Adaptive Sampling in one pass (non-adaptively)?



Streaming Algorithms
Motivation: Data is huge and cannot be stored in the main memory 

Streaming algorithms: Given sequential access to the data, make one or several passes over input

• Solve the problem on the fly

• Use sub-linear storage

Parameters: Space, number of passes, approximation
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Streaming Algorithms
Motivation: Data is huge and cannot be stored in the main memory 

Streaming algorithms: Given sequential access to the data, make one or several passes over input

• Solve the problem on the fly

• Use sub-linear storage

Parameters: Space, number of passes, approximation

Models:

• Row Arrival: rows of 𝐴𝐴 arrive one by one

• Turnstile: we receive updates to the entries of the matrix i.e., (𝑖𝑖, 𝑗𝑗,Δ) means 𝐴𝐴𝑖𝑖,𝑗𝑗 ← 𝐴𝐴𝑖𝑖,𝑗𝑗 + Δ

Focus on the row arrival model for the talk

Our goal: Simulate 𝑘𝑘 rounds of adaptive sampling in 1 pass of streaming
 Data Summarization tasks were considered in the streaming models in earlier works that used 

adaptive sampling [e.g. DV’06, DR’10, DRVW’06]



Outline of Results

1. Simulate adaptive sampling in 1 pass turnstile stream
• 𝐿𝐿𝑝𝑝,2 sampling with post processing matrix 𝑃𝑃

2. Applications in turnstile stream
• Row/column subset selection
• Subspace approximation
• Projective clustering
• Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival



Outline of Results

1. Simulate adaptive sampling in 1 pass turnstile stream
• 𝑳𝑳𝒑𝒑,𝟐𝟐 sampling with post processing matrix 𝑷𝑷

2. Applications in turnstile stream
• Row/column subset selection
• Subspace approximation
• Projective clustering
• Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival



Results: 𝑳𝑳𝟐𝟐,𝟐𝟐 Sampling with Post-Processing

Input:
• 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 as a (turnstile) stream
• a post-processing 𝑷𝑷 ∈ ℝ𝑑𝑑×𝑑𝑑

Output: samples an index 𝑖𝑖 ∈ [𝑛𝑛] w.p. 𝑨𝑨𝒊𝒊𝑷𝑷 2
2

𝑨𝑨𝑷𝑷 𝐹𝐹
2



Results: 𝑳𝑳𝟐𝟐,𝟐𝟐 Sampling with Post-Processing

Input:
• 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 as a (turnstile) stream
• a post-processing 𝑷𝑷 ∈ ℝ𝑑𝑑×𝑑𝑑

Output: samples an index 𝑖𝑖 ∈ [𝑛𝑛] w.p. 𝑨𝑨𝒊𝒊𝑷𝑷 2
2

𝑨𝑨𝑷𝑷 𝐹𝐹
2

𝑷𝑷 corresponds to the projection 
matrix (𝐼𝐼 − 𝑀𝑀+𝑀𝑀)



Results: 𝑳𝑳𝟐𝟐,𝟐𝟐 Sampling with Post-Processing

Input:
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 𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝(𝑑𝑑, 𝜖𝜖−1, log𝑛𝑛) space



Results: 𝑳𝑳𝟐𝟐,𝟐𝟐 Sampling with Post-Processing

Impossible to return entire row instead of index in sublinear space
 A long stream of small updates  +  an arbitrarily large update
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Results: 𝑳𝑳𝒑𝒑,𝟐𝟐 Sampling with Post-Processing

Impossible to return entire row instead of index in sublinear space
 A long stream of small updates  +  an arbitrarily large update

Input:
• 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 as a (turnstile) stream, 𝒑𝒑 ∈ {𝟏𝟏,𝟐𝟐}
• a post-processing 𝑷𝑷 ∈ ℝ𝑑𝑑×𝑑𝑑

Output: samples an index 𝑖𝑖 ∈ [𝑛𝑛] w.p. 1 ± 𝜖𝜖 𝑨𝑨𝒊𝒊𝑷𝑷 2
𝒑𝒑

𝑨𝑨𝑷𝑷 𝒑𝒑,𝟐𝟐
𝒑𝒑 + 1

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑛𝑛)

 In one pass
 𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝(𝑑𝑑, 𝜖𝜖−1, log𝑛𝑛) space
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1. Simulate adaptive sampling in 1 pass turnstile stream
• 𝐿𝐿𝑝𝑝,2 sampling with post processing matrix 𝑃𝑃
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• Row/column subset selection
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• Projective clustering
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Results: Adaptive Sampling

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 as a (turnstile) stream
Output: Return each set 𝑺𝑺 ⊂𝒌𝒌 [𝒏𝒏] of 𝑘𝑘 indices w.p. 𝒑𝒑𝑺𝑺 s.t.

∑𝑆𝑆 𝒑𝒑𝑺𝑺 − 𝒒𝒒𝑺𝑺 ≤ 𝜖𝜖
• 𝒒𝒒𝑺𝑺: prob. of selecting 𝑺𝑺 via adaptive sampling
• w.r.t. either distance or squared distance (i.e., 𝑝𝑝 ∈ {1,2})
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Results: Adaptive Sampling

Impossible to return the row accurately in sublinear space
 A long stream of small updates  +  an arbitrarily large update

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 as a (turnstile) stream
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∑𝑆𝑆 𝒑𝒑𝑺𝑺 − 𝒒𝒒𝑺𝑺 ≤ 𝜖𝜖
• 𝒒𝒒𝑺𝑺: prob. of selecting 𝑺𝑺 via adaptive sampling
• w.r.t. either distance or squared distance (i.e., 𝑝𝑝 ∈ {1,2})

 In one pass

 𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝(𝑑𝑑,𝑘𝑘, 𝜖𝜖−1, log𝑛𝑛) space

 Besides indices S, a noisy set of rows 𝑃𝑃1, … , 𝑃𝑃𝑘𝑘 are returned 
• Each 𝑃𝑃𝑖𝑖 is close to the corresponding 𝐴𝐴𝑖𝑖 (w.r.t. residual)
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Applications: Row Subset Selection 

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌 > 0

Output: 𝒌𝒌 rows of 𝐴𝐴 to form 𝑴𝑴 to minimize 𝐴𝐴 − 𝐴𝐴𝑀𝑀+𝑀𝑀 𝐹𝐹



Applications: Row Subset Selection 

Our Result: finds M such that,
Pr[ 𝐴𝐴 − 𝐴𝐴𝑴𝑴+𝑴𝑴 𝐹𝐹

2 ≤ 𝟏𝟏𝟏𝟏 𝒌𝒌 + 𝟏𝟏 ! 𝐴𝐴 − 𝐴𝐴𝑘𝑘 𝐹𝐹
2 ] ≥ 2/3

• 𝐴𝐴𝑘𝑘: best rank-k approximation of 𝐴𝐴
• first one pass turnstile streaming algorithm
• 𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝(𝑑𝑑,𝑘𝑘, log𝑛𝑛) space
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Applications: Row Subset Selection 

Our Result: finds M such that,
Pr[ 𝐴𝐴 − 𝐴𝐴𝑴𝑴+𝑴𝑴 𝐹𝐹

2 ≤ 𝟏𝟏𝟏𝟏 𝒌𝒌 + 𝟏𝟏 ! 𝐴𝐴 − 𝐴𝐴𝑘𝑘 𝐹𝐹
2 ] ≥ 2/3

• 𝐴𝐴𝑘𝑘: best rank-k approximation of 𝐴𝐴
• first one pass turnstile streaming algorithm
• 𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝(𝑑𝑑,𝑘𝑘, log𝑛𝑛) space

Previous works: centralized setting [e.g. DRVW06, BMD09, GS’12] and row arrival 
[e.g., CMM’17, GP’14 , BDMMUWZ’18]

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌 > 0

Output: 𝒌𝒌 rows of 𝐴𝐴 to form 𝑴𝑴 to minimize 𝐴𝐴 − 𝐴𝐴𝑀𝑀+𝑀𝑀 𝐹𝐹



Applications: Subspace Approximation

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌 > 0
Output: 𝒌𝒌-dim subspace 𝑯𝑯 to minimize ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐻𝐻 𝑝𝑝 1/𝑝𝑝

• 𝑝𝑝 ∈ 1,2
• 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐻𝐻 = 𝐴𝐴𝑖𝑖 𝕀𝕀 − 𝐻𝐻+𝐻𝐻 2



Applications: Subspace Approximation

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌 > 0
Output: 𝒌𝒌-dim subspace 𝑯𝑯 to minimize ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐻𝐻 𝑝𝑝 1/𝑝𝑝

• 𝑝𝑝 ∈ 1,2
• 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐻𝐻 = 𝐴𝐴𝑖𝑖 𝕀𝕀 − 𝐻𝐻+𝐻𝐻 2

Our Result I: finds H (which is 𝒌𝒌 noisy rows of 𝑨𝑨) s.t.,

Pr[ ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝑯𝑯 𝑝𝑝 1/𝑝𝑝 ≤ 𝟒𝟒 𝒌𝒌 + 𝟏𝟏 ! ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑘𝑘 𝑝𝑝 1/𝑝𝑝] ≥ 2
3

• 𝐴𝐴𝑘𝑘: best rank-k approximation of A
• 𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝(𝑑𝑑,𝑘𝑘, log𝑛𝑛) space



Applications: Subspace Approximation

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌 > 0
Output: 𝒌𝒌-dim subspace 𝑯𝑯 to minimize ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐻𝐻 𝑝𝑝 1/𝑝𝑝

• 𝑝𝑝 ∈ 1,2
• 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐻𝐻 = 𝐴𝐴𝑖𝑖 𝕀𝕀 − 𝐻𝐻+𝐻𝐻 2

Our Result I: finds H (which is 𝒌𝒌 noisy rows of 𝑨𝑨) s.t.,

Pr[ ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝑯𝑯 𝑝𝑝 1/𝑝𝑝 ≤ 𝟒𝟒 𝒌𝒌 + 𝟏𝟏 ! ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑘𝑘 𝑝𝑝 1/𝑝𝑝] ≥ 2
3

• 𝐴𝐴𝑘𝑘: best rank-k approximation of A
• 𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝(𝑑𝑑,𝑘𝑘, log𝑛𝑛) space
• First relative error on turnstile streams that returns noisy rows of A
 [Levin, Sevekari, Woodruff’18] 

+(1 + 𝜖𝜖)-approximation –larger number of rows –rows are not from A



Applications: Subspace Approximation

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌 > 0
Output: 𝒌𝒌-dim subspace 𝑯𝑯 to minimize ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐻𝐻 𝑝𝑝 1/𝑝𝑝

• 𝑝𝑝 ∈ 1,2
• 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐻𝐻 = 𝐴𝐴𝑖𝑖 𝕀𝕀 − 𝐻𝐻+𝐻𝐻 2

Our Result II: finds H (which is 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒌𝒌,𝟏𝟏/𝝐𝝐) noisy rows of 𝑨𝑨) s.t.,

Pr[ ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝑯𝑯 𝑝𝑝 1/𝑝𝑝 ≤ 𝟏𝟏 + 𝝐𝝐 ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑘𝑘 𝑝𝑝 1/𝑝𝑝] ≥ 2
3

• 𝐴𝐴𝑘𝑘: best rank-k approximation of A
• 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒅𝒅,𝒌𝒌,𝟏𝟏/𝝐𝝐, 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏) space

 [Levin, Sevekari, Woodruff’18] 
–𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝(log 𝑛𝑛𝑑𝑑 ,𝑘𝑘, 1/𝜖𝜖) rows –rows are not from A



Applications: Projective Clustering

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑, target dim 𝒌𝒌 and target number of subspaces 𝒔𝒔
Output: 𝒔𝒔 𝒌𝒌-dim subspaces 𝑯𝑯𝟏𝟏, … ,𝑯𝑯𝒔𝒔 to minimize ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝑯𝑯 𝑝𝑝 1/𝑝𝑝

• 𝑯𝑯 = 𝑯𝑯𝟏𝟏 ∪⋯∪𝑯𝑯𝒔𝒔 and 𝑝𝑝 ∈ 1,2
• 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐻𝐻 = min

𝑗𝑗∈ 𝑠𝑠
𝐴𝐴𝑖𝑖 𝕀𝕀 − 𝐻𝐻𝑗𝑗+𝐻𝐻𝑗𝑗 2



Applications: Projective Clustering

Our Result: finds S (which is 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒌𝒌, 𝒔𝒔,𝟏𝟏/𝝐𝝐) noisy rows of 𝑨𝑨),
which contains a union T of 𝑠𝑠 𝒌𝒌-dim subspaces s.t.,

Pr[ ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝑻𝑻 𝑝𝑝 1/𝑝𝑝 ≤ 𝟏𝟏 + 𝝐𝝐 ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝑯𝑯 𝑝𝑝 1/𝑝𝑝] ≥ 2/3
• 𝐻𝐻: optimal solution to projective clustering
• first one pass turnstile streaming algorithm with sublinear space
• 𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝(𝑑𝑑,𝑘𝑘, log𝑛𝑛 , 𝑠𝑠, 1/𝜖𝜖) space
 [BHI’02, HM’04, Che09, FMSW’10] based on coresets, works in row arrival
 [KR’15] turnstile but linear in number of points

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑, target dim 𝒌𝒌 and target number of subspaces 𝒔𝒔
Output: 𝒔𝒔 𝒌𝒌-dim subspaces 𝑯𝑯𝟏𝟏, … ,𝑯𝑯𝒔𝒔 to minimize ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝑯𝑯 𝑝𝑝 1/𝑝𝑝

• 𝑯𝑯 = 𝑯𝑯𝟏𝟏 ∪⋯∪𝑯𝑯𝒔𝒔 and 𝑝𝑝 ∈ 1,2
• 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐻𝐻 = min

𝑗𝑗∈ 𝑠𝑠
𝐴𝐴𝑖𝑖 𝕀𝕀 − 𝐻𝐻𝑗𝑗+𝐻𝐻𝑗𝑗 2



Applications: Volume Maximization

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌
Output: 𝒌𝒌 rows 𝒓𝒓𝟏𝟏, … , 𝒓𝒓𝒌𝒌 of 𝐴𝐴, 𝑴𝑴, with maximum volume



Applications: Volume Maximization

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌
Output: 𝒌𝒌 rows 𝒓𝒓𝟏𝟏, … , 𝒓𝒓𝒌𝒌 of 𝐴𝐴, 𝑴𝑴, with maximum volume

Volume of the parallelepiped 
spanned by those vectors

𝒌𝒌 = 𝟐𝟐



Applications: Volume Maximization

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌
Output: 𝒌𝒌 rows 𝒓𝒓𝟏𝟏, … , 𝒓𝒓𝒌𝒌 of 𝐴𝐴, 𝑴𝑴, with maximum volume

Our Result (Upper Bound I): for an approximation factor 𝜶𝜶, finds S
(set of 𝒌𝒌 noisy rows of 𝑨𝑨) s.t.,

Pr[𝛼𝛼𝑘𝑘 𝑘𝑘! Vol 𝐒𝐒 ≥ Vol(𝐌𝐌)] ≥ 2/3
• first one pass turnstile streaming algorithm
• �𝑂𝑂( ⁄𝑛𝑛𝑑𝑑𝑘𝑘2 𝛼𝛼2) space



Applications: Volume Maximization

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌
Output: 𝒌𝒌 rows 𝒓𝒓𝟏𝟏, … , 𝒓𝒓𝒌𝒌 of 𝐴𝐴, 𝑴𝑴, with maximum volume

Our Result (Upper Bound I): for an approximation factor 𝜶𝜶, finds S
(set of 𝒌𝒌 noisy rows of 𝑨𝑨) s.t.,

Pr[𝛼𝛼𝑘𝑘 𝑘𝑘! Vol 𝐒𝐒 ≥ Vol(𝐌𝐌)] ≥ 2/3
• first one pass turnstile streaming algorithm
• �𝑂𝑂( ⁄𝑛𝑛𝑑𝑑𝑘𝑘2 𝛼𝛼2) space
 [Indyk, M, Oveis Gharan, Rezaei, ‘19 ‘20] coreset based �𝑂𝑂 𝑘𝑘 𝑘𝑘/𝜖𝜖 approx. and 
�𝑂𝑂(𝑛𝑛𝜖𝜖𝑘𝑘𝑑𝑑) space for row-arrival streams



Outline of Results

1. Simulate adaptive sampling in 1 pass turnstile stream
• 𝐿𝐿𝑝𝑝,2 sampling with post processing matrix 𝑃𝑃

2. Applications in turnstile stream
• Row/column subset selection
• Subspace approximation
• Projective clustering
• Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival



Volume Maximization Lower Bounds

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌
Output: 𝒌𝒌 rows 𝒓𝒓𝟏𝟏, … , 𝒓𝒓𝒌𝒌 of 𝐴𝐴, 𝑴𝑴, with maximum volume

Our Result (Lower Bound I): for 𝜶𝜶, any 𝒑𝒑-pass algorithm that finds 
𝜶𝜶𝑘𝑘-approximation w.p. ≥ ⁄63 64 in turnstile-arrival requires 
Ω( ⁄𝑛𝑛 𝑘𝑘𝒑𝒑𝜶𝜶2) space.

• Our previous upper bound is matches the upper bound up to a 
factor of 𝒌𝒌𝟑𝟑𝒅𝒅 in space and 𝒌𝒌! in the approximation factor.



Volume Maximization Lower Bounds

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌
Output: 𝒌𝒌 rows 𝒓𝒓𝟏𝟏, … , 𝒓𝒓𝒌𝒌 of 𝐴𝐴, 𝑴𝑴, with maximum volume

Our Result (Lower Bound II): for a fixed constant 𝑪𝑪, any one-pass 
algorithm that finds 𝑪𝑪𝒌𝒌-approximation w.p. ≥ ⁄63 64 in random 
order row-arrival requires Ω(𝑛𝑛) space



Volume Maximization – Row Arrival 

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌
Output: 𝒌𝒌 rows 𝒓𝒓𝟏𝟏, … , 𝒓𝒓𝒌𝒌 of 𝐴𝐴, 𝑴𝑴, with maximum volume

Our Result (Upper Bound II): for an approximation factor 𝑪𝑪 < ⁄(log 𝑛𝑛) 𝑘𝑘, 
finds S (set of 𝒌𝒌 rows of 𝑨𝑨) s.t.
• approximation factor �𝑂𝑂 𝑪𝑪𝑘𝑘 𝑘𝑘/2 with high probability
• one pass row-arrival streaming algorithm
• �𝑂𝑂(𝑛𝑛𝑂𝑂(1/𝑪𝑪)𝑑𝑑) space



Volume Maximization – Row Arrival 

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌
Output: 𝒌𝒌 rows 𝒓𝒓𝟏𝟏, … , 𝒓𝒓𝒌𝒌 of 𝐴𝐴, 𝑴𝑴, with maximum volume

Our Result (Upper Bound II): for an approximation factor 𝑪𝑪 < ⁄(log 𝑛𝑛) 𝑘𝑘, 
finds S (set of 𝒌𝒌 rows of 𝑨𝑨) s.t.
• approximation factor �𝑂𝑂 𝑪𝑪𝑘𝑘 𝑘𝑘/2 with high probability
• one pass row-arrival streaming algorithm
• �𝑂𝑂(𝑛𝑛𝑂𝑂(1/𝑪𝑪)𝑑𝑑) space

 [Indyk, M, Oveis Gharan, Rezaei, ‘19 ‘20] coreset based �𝑂𝑂 𝑘𝑘 𝑪𝑪𝒌𝒌/𝟐𝟐 approx. and �𝑂𝑂(𝑛𝑛𝟏𝟏/𝑪𝑪𝑘𝑘𝑑𝑑)
space for row-arrival streams



𝑳𝑳𝒑𝒑,𝟐𝟐 Sampler
1. Simulate adaptive sampling in 1 pass

• 𝐿𝐿𝑝𝑝,2 sampling with post processing matrix 𝑃𝑃

2. Applications in turnstile stream
• Row/column subset selection
• Subspace approximation
• Projective clustering
• Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival



𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler with Post-Processing Matrix

Input: matrix A as a data stream, a post-processing matrix P

Output: index 𝑖𝑖 of a row of AP sampled w.p. ~ 𝐴𝐴𝑖𝑖𝑃𝑃 2
2

𝐴𝐴𝑃𝑃 𝐹𝐹
2



𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler with Post-Processing Matrix

Extension of 𝑳𝑳𝟐𝟐 Sampler 
[Andoni et al.’10][Monemizadeh, Woodruff’10][Jowhari et al.’11][Jayaram, Woodruff’18]

Input: matrix A as a data stream, a post-processing matrix P

Output: index 𝑖𝑖 of a row of AP sampled w.p. ~ 𝐴𝐴𝑖𝑖𝑃𝑃 2
2

𝐴𝐴𝑃𝑃 𝐹𝐹
2

Input: vector f as a data stream

Output: index 𝑖𝑖 of a coordinate of f sampled w.p. ~ 𝑓𝑓𝑖𝑖
2

𝐟𝐟 2
2



𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler with Post-Processing Matrix

Extension of 𝑳𝑳𝟐𝟐 Sampler 
[Andoni et al.’10][Monemizadeh, Woodruff’10][Jowhari et al.’11][Jayaram, Woodruff’18]

Input: matrix A as a data stream, a post-processing matrix P

Output: index 𝑖𝑖 of a row of AP sampled w.p. ~ 𝐴𝐴𝑖𝑖𝑃𝑃 2
2

𝐴𝐴𝑃𝑃 𝐹𝐹
2

Input: vector f as a data stream

Output: index 𝑖𝑖 of a coordinate of f sampled w.p. ~ 𝑓𝑓𝑖𝑖
2

𝐟𝐟 2
2

What is new:
1. Generalizing vectors to matrices 
2. Handling the post processing matrix 𝑃𝑃



𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler
Input: matrix A as a data stream

Output: index 𝑖𝑖 of a row of A sampled w.p. ~ 𝐴𝐴𝑖𝑖 2
2

𝐀𝐀 𝐹𝐹
2

Ignore 𝑃𝑃 for now



Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random

𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler



Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖

𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler



Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖
Pr[ 𝐵𝐵𝑖𝑖 2

2 ≥ 𝐴𝐴 𝐹𝐹
2 ] = Pr[ 𝐴𝐴𝑖𝑖 2

2

𝐴𝐴 𝐹𝐹
2 ≥ 𝑡𝑡𝑖𝑖] = 𝑨𝑨𝒊𝒊 𝟐𝟐

𝟐𝟐

𝑨𝑨 𝑭𝑭
𝟐𝟐

𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler



Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖

 Return 𝑖𝑖 that satisfies  𝑩𝑩𝒊𝒊 𝟐𝟐
𝟐𝟐 ≥ 𝑨𝑨 𝑭𝑭

𝟐𝟐

Pr[ 𝐵𝐵𝑖𝑖 2
2 ≥ 𝐴𝐴 𝐹𝐹

2 ] = Pr[ 𝐴𝐴𝑖𝑖 2
2

𝐴𝐴 𝐹𝐹
2 ≥ 𝑡𝑡𝑖𝑖] = 𝑨𝑨𝒊𝒊 𝟐𝟐

𝟐𝟐

𝑨𝑨 𝑭𝑭
𝟐𝟐

𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler



Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖

 Return 𝑖𝑖 that satisfies  𝑩𝑩𝒊𝒊 𝟐𝟐
𝟐𝟐 ≥ 𝑨𝑨 𝑭𝑭

𝟐𝟐

Pr[ 𝐵𝐵𝑖𝑖 2
2 ≥ 𝐴𝐴 𝐹𝐹

2 ] = Pr[ 𝐴𝐴𝑖𝑖 2
2

𝐴𝐴 𝐹𝐹
2 ≥ 𝑡𝑡𝑖𝑖] = 𝑨𝑨𝒊𝒊 𝟐𝟐

𝟐𝟐

𝑨𝑨 𝑭𝑭
𝟐𝟐

𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler

Issues:
1. Multiple rows passing the threshold 

2. Don’t have access to exact values of 𝑩𝑩𝒊𝒊 𝟐𝟐
𝟐𝟐 and 𝑨𝑨 𝑭𝑭

𝟐𝟐



𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler

Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖
 Ideally, return the only 𝒊𝒊 that satisfies 𝑩𝑩𝒊𝒊 𝟐𝟐

𝟐𝟐 ≥ 𝑨𝑨 𝑭𝑭
𝟐𝟐

𝜸𝜸𝟐𝟐: = 𝑪𝑪 𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏
𝝐𝝐

Pr[ 𝐵𝐵𝑖𝑖 2
2 ≥ 𝜸𝜸𝟐𝟐 ⋅ 𝐴𝐴 𝐹𝐹

2 ] = 𝟏𝟏
𝜸𝜸𝟐𝟐

× 𝑨𝑨𝒊𝒊 𝟐𝟐
𝟐𝟐

𝑨𝑨 𝑭𝑭
𝟐𝟐

Issue 1: Multiple rows passing the threshold 
 Set the threshold higher



𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler

Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖
 Ideally, return the only 𝒊𝒊 that satisfies 𝑩𝑩𝒊𝒊 𝟐𝟐

𝟐𝟐 ≥ 𝑨𝑨 𝑭𝑭
𝟐𝟐

𝜸𝜸𝟐𝟐: = 𝑪𝑪 𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏
𝝐𝝐

Pr[squared norm of at least one row exceeds 𝜸𝜸𝟐𝟐 ⋅ 𝐴𝐴 𝐹𝐹
2 ] = Ω( 1

𝛾𝛾2
)

Pr[squared norms of more than one row exceed 𝜸𝜸𝟐𝟐 ⋅ 𝐴𝐴 𝐹𝐹
2 ] = O( 1

𝛾𝛾4
)

Pr[ 𝐵𝐵𝑖𝑖 2
2 ≥ 𝜸𝜸𝟐𝟐 ⋅ 𝐴𝐴 𝐹𝐹

2 ] = 𝟏𝟏
𝜸𝜸𝟐𝟐

× 𝑨𝑨𝒊𝒊 𝟐𝟐
𝟐𝟐

𝑨𝑨 𝑭𝑭
𝟐𝟐

Success prob: Ω( 𝜖𝜖
log 𝑛𝑛

)

Issue 1: Multiple rows passing the threshold 
 Set the threshold higher



𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler

Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖
 Ideally, return the only 𝒊𝒊 that satisfies 𝑩𝑩𝒊𝒊 𝟐𝟐

𝟐𝟐 ≥ 𝑨𝑨 𝑭𝑭
𝟐𝟐

𝜸𝜸𝟐𝟐: = 𝑪𝑪 𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏
𝝐𝝐

To succeed, repeat �𝑶𝑶(𝟏𝟏/𝝐𝝐)

Pr[ 𝐵𝐵𝑖𝑖 2
2 ≥ 𝜸𝜸𝟐𝟐 ⋅ 𝐴𝐴 𝐹𝐹

2 ] = 𝟏𝟏
𝜸𝜸𝟐𝟐

× 𝑨𝑨𝒊𝒊 𝟐𝟐
𝟐𝟐

𝑨𝑨 𝑭𝑭
𝟐𝟐

Success prob: Ω( 𝜖𝜖
log 𝑛𝑛

)

Issue 1: Multiple rows passing the threshold 
 Set the threshold higher



𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler

Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖
 Return 𝒊𝒊 that satisfies 𝑩𝑩𝒊𝒊 𝟐𝟐 ≥ 𝜸𝜸 ⋅ 𝑨𝑨 𝑭𝑭

Issue 2: Don’t have access to exact values of 𝑩𝑩𝒊𝒊 and 𝑨𝑨 F

 estimate 𝑩𝑩𝒊𝒊 𝟐𝟐 and 𝑨𝑨 𝑭𝑭



𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler

Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖
 Return 𝒊𝒊 that satisfies 𝑩𝑩𝒊𝒊 𝟐𝟐 ≥ 𝜸𝜸 ⋅ 𝑨𝑨 𝑭𝑭

Issue 2: Don’t have access to exact values of 𝑩𝑩𝒊𝒊 and 𝑨𝑨 F

 estimate 𝑩𝑩𝒊𝒊 𝟐𝟐 and 𝑨𝑨 𝑭𝑭

Estimate norm 
of A using AMS

Find heaviest row 
using CountSketch



Estimate 𝑩𝑩𝒊𝒊 𝟐𝟐 for rows with large norms

Count Sketch



Given a stream of items, estimate frequency of each item (i.e., coordinates 
in a vector)

#rows r  =𝑂𝑂(log𝑛𝑛)
#buckets/row   b = 𝑂𝑂(1/𝜖𝜖2)

Count Sketch

𝑓𝑓𝑖𝑖

+𝑓𝑓𝑖𝑖ℎ1(𝑖𝑖)

• Hash ℎ𝑗𝑗: 𝑛𝑛 → [𝑏𝑏]
• Sign 𝜎𝜎𝑗𝑗: 𝑛𝑛 → {−1, +1}

• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += 𝜎𝜎𝑗𝑗(𝑖𝑖) ⋅ 𝑓𝑓𝑖𝑖

•



Given a stream of items, estimate frequency of each item (i.e., coordinates 
in a vector)

#rows r  =𝑂𝑂(log𝑛𝑛)
#buckets/row   b = 𝑂𝑂(1/𝜖𝜖2)

Count Sketch

𝑓𝑓𝑖𝑖

+𝑓𝑓𝑖𝑖

• Hash ℎ𝑗𝑗: 𝑛𝑛 → [𝑏𝑏]
• Sign 𝜎𝜎𝑗𝑗: 𝑛𝑛 → {−1, +1}

• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += 𝜎𝜎𝑗𝑗(𝑖𝑖) ⋅ 𝑓𝑓𝑖𝑖

•
−𝑓𝑓𝑖𝑖ℎ2(𝑖𝑖)



Given a stream of items, estimate frequency of each item (i.e., coordinates 
in a vector)

#rows r  =𝑂𝑂(log𝑛𝑛)
#buckets/row   b = 𝑂𝑂(1/𝜖𝜖2)

Count Sketch

𝑓𝑓𝑖𝑖

+𝑓𝑓𝑖𝑖

• Hash ℎ𝑗𝑗: 𝑛𝑛 → [𝑏𝑏]
• Sign 𝜎𝜎𝑗𝑗: 𝑛𝑛 → {−1, +1}

−𝑓𝑓𝑖𝑖
+𝑓𝑓𝑖𝑖ℎ3(𝑖𝑖)

• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += 𝜎𝜎𝑗𝑗(𝑖𝑖) ⋅ 𝑓𝑓𝑖𝑖

•



Given a stream of items, estimate frequency of each item (i.e., coordinates 
in a vector)

#rows r  =𝑂𝑂(log𝑛𝑛)
#buckets/row   b = 𝑂𝑂(1/𝜖𝜖2)

Count Sketch

𝑓𝑓𝑖𝑖

+𝑓𝑓𝑖𝑖

• Hash ℎ𝑗𝑗: 𝑛𝑛 → [𝑏𝑏]
• Sign 𝜎𝜎𝑗𝑗: 𝑛𝑛 → {−1, +1}

• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += 𝜎𝜎𝑗𝑗(𝑖𝑖) ⋅ 𝑓𝑓𝑖𝑖

• Estimate 𝑓𝑓𝑖𝑖 ≔ 𝑚𝑚𝑚𝑚𝑑𝑑𝑖𝑖𝑚𝑚𝑛𝑛𝑗𝑗 𝜎𝜎𝑗𝑗𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)]
−𝑓𝑓𝑖𝑖

+𝑓𝑓𝑖𝑖



Given a stream of items, estimate frequency of each item (i.e., coordinates 
in a vector)

#rows r  =𝑂𝑂(log𝑛𝑛)
#buckets/row   b = 𝑂𝑂(1/𝜖𝜖2)

Count Sketch

𝑓𝑓𝑖𝑖

+𝑓𝑓𝑖𝑖
−𝑓𝑓𝑖𝑖

+𝑓𝑓𝑖𝑖

Estimation guarantee
𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 ≤ 𝜖𝜖 ⋅ 𝐟𝐟 2

• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += 𝜎𝜎𝑗𝑗(𝑖𝑖) ⋅ 𝑓𝑓𝑖𝑖

• Estimate 𝑓𝑓𝑖𝑖 ≔ 𝑚𝑚𝑚𝑚𝑑𝑑𝑖𝑖𝑚𝑚𝑛𝑛𝑗𝑗 𝜎𝜎𝑗𝑗𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)]



Estimate 𝑩𝑩𝒊𝒊 𝟐𝟐 for rows with large norms

#rows r  =𝑂𝑂(log𝑛𝑛)
#buckets/row   b = 𝑂𝑂(1/𝜖𝜖2)

Count Sketch

𝐵𝐵𝑖𝑖

+𝐵𝐵𝑖𝑖
−𝐵𝐵𝑖𝑖

+𝐵𝐵𝑖𝑖

Estimation guarantee

𝐵𝐵𝑖𝑖 2 − �𝐵𝐵𝑖𝑖 2 ≤ 𝜖𝜖 ⋅ 𝐵𝐵 𝐹𝐹

Space usage:

𝑂𝑂 log𝑛𝑛 ×
1
𝜖𝜖2

× 𝑑𝑑



Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖

𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler

Goal: 𝐵𝐵𝑖𝑖 2 ≥ 𝜸𝜸 ⋅ 𝐴𝐴 𝐹𝐹



Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖

Step 2. 
• �𝑩𝑩𝒊𝒊 𝟐𝟐is an estimate of 𝑩𝑩𝒊𝒊 𝟐𝟐 by modified Countsketch
• �𝑭𝑭 is an estimate of 𝑨𝑨 𝑭𝑭 by modified AMS

𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler

Goal: 𝐵𝐵𝑖𝑖 2 ≥ 𝜸𝜸 ⋅ 𝐴𝐴 𝐹𝐹

Test: �𝐵𝐵𝑖𝑖 2 ≥ 𝜸𝜸 ⋅ �𝐹𝐹



Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖

Step 2. 
• �𝑩𝑩𝒊𝒊 𝟐𝟐is an estimate of 𝑩𝑩𝒊𝒊 𝟐𝟐 by modified Countsketch
• �𝑭𝑭 is an estimate of 𝑨𝑨 𝑭𝑭 by modified AMS

 The test succeeds w.p. 𝜖𝜖, the estimate of largest row exceeds the threshold

𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler

Goal: 𝐵𝐵𝑖𝑖 2 ≥ 𝜸𝜸 ⋅ 𝐴𝐴 𝐹𝐹

Test: �𝐵𝐵𝑖𝑖 2 ≥ 𝜸𝜸 ⋅ �𝐹𝐹



Handling Post-Processing Matrix

Input: matrix A as a data stream, a post-processing matrix P

Output: index 𝑖𝑖 of a row of AP sampled w.p. ~ 𝐴𝐴𝑖𝑖𝑃𝑃 2
2

𝐴𝐴𝑃𝑃 𝐹𝐹
2



Handling Post-Processing Matrix

Run proposed algorithm on A, then multiply by P:
• CountSketch and AMS both are linear transformations

 A is mapped to SA
 S (AP) = (SA) P

Input: matrix A as a data stream, a post-processing matrix P

Output: index 𝑖𝑖 of a row of AP sampled w.p. ~ 𝐴𝐴𝑖𝑖𝑃𝑃 2
2

𝐴𝐴𝑃𝑃 𝐹𝐹
2



Handling Post-Processing Matrix

Run proposed algorithm on A, then multiply by P:
• CountSketch and AMS both are linear transformations

 A is mapped to SA
 S (AP) = (SA) P

Total space for sampler: 𝑂𝑂( 𝑑𝑑
𝜖𝜖2

log2 𝑛𝑛) bits

Input: matrix A as a data stream, a post-processing matrix P

Output: index 𝑖𝑖 of a row of AP sampled w.p. ~ 𝐴𝐴𝑖𝑖𝑃𝑃 2
2

𝐴𝐴𝑃𝑃 𝐹𝐹
2



𝑳𝑳𝟐𝟐,𝟐𝟐 sampling with post processing
Input:
• 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 as a (turnstile) stream
• a post-processing 𝑷𝑷 ∈ ℝ𝑑𝑑×𝑑𝑑

Output: samples an index 𝑖𝑖 ∈ [𝑛𝑛] w.p. 1 ± 𝜖𝜖 𝑨𝑨𝒊𝒊𝑷𝑷 2
2

𝑨𝑨𝑷𝑷 𝐹𝐹
2 + 1

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑛𝑛)
 In one pass
 𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝(𝑑𝑑, 𝜖𝜖−1, log𝑛𝑛) space



Adaptive Sampler
1. Simulate adaptive sampling in 1 pass

• 𝐿𝐿𝑝𝑝,2 sampling with post processing matrix 𝑃𝑃

2. Applications in turnstile stream
• Row/column subset selection
• Subspace approximation
• Projective clustering
• Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival



Algorithm Using 𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler
Maintain 𝑘𝑘 instances of 𝐿𝐿2,2 sampler with post processing: 𝑺𝑺𝟏𝟏, … ,𝑺𝑺𝒌𝒌
𝑀𝑀 ← ∅
For round 𝑖𝑖 = 1 to 𝑘𝑘,

• Set 𝑃𝑃 ← 𝐼𝐼 −𝑀𝑀+𝑀𝑀
• Use 𝑺𝑺𝒊𝒊 to sample a noisy row 𝑃𝑃𝑗𝑗 of 𝐴𝐴 with post processing matrix 𝑃𝑃
• Append 𝑃𝑃𝑗𝑗 to 𝑀𝑀



Algorithm Using 𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler
Maintain 𝑘𝑘 instances of 𝐿𝐿2,2 sampler with post processing: 𝑺𝑺𝟏𝟏, … ,𝑺𝑺𝒌𝒌
𝑀𝑀 ← ∅
For round 𝑖𝑖 = 1 to 𝑘𝑘,

• Set 𝑃𝑃 ← 𝐼𝐼 −𝑀𝑀+𝑀𝑀
• Use 𝑺𝑺𝒊𝒊 to sample a noisy row 𝑃𝑃𝑗𝑗 of 𝐴𝐴 with post processing matrix 𝑃𝑃
• Append 𝑃𝑃𝑗𝑗 to 𝑀𝑀

Issues:
X Noisy perturbation of rows (unavoidable)
 Sample 𝑗𝑗, 
 𝑃𝑃𝑗𝑗 = A𝑗𝑗𝑃𝑃 + v where v has small norm v < 𝜖𝜖 𝐴𝐴𝑗𝑗𝑃𝑃 thus 𝑃𝑃𝑗𝑗 ≈ 𝐴𝐴𝑗𝑗𝑃𝑃



Algorithm Using 𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler
Maintain 𝑘𝑘 instances of 𝐿𝐿2,2 sampler with post processing: 𝑺𝑺𝟏𝟏, … ,𝑺𝑺𝒌𝒌
𝑀𝑀 ← ∅
For round 𝑖𝑖 = 1 to 𝑘𝑘,

• Set 𝑃𝑃 ← 𝐼𝐼 −𝑀𝑀+𝑀𝑀
• Use 𝑺𝑺𝒊𝒊 to sample a noisy row 𝑃𝑃𝑗𝑗 of 𝐴𝐴 with post processing matrix 𝑃𝑃
• Append 𝑃𝑃𝑗𝑗 to 𝑀𝑀

Issues:
X Noisy perturbation of rows (unavoidable)
 Sample 𝑗𝑗, 
 𝑃𝑃𝑗𝑗 = A𝑗𝑗𝑃𝑃 + v where v has small norm v < 𝜖𝜖 𝐴𝐴𝑗𝑗𝑃𝑃 thus 𝑃𝑃𝑗𝑗 ≈ 𝐴𝐴𝑗𝑗𝑃𝑃

X This can drastically change the probabilities: may zero out probabilities of some rows



Bad Example

𝑨𝑨𝟏𝟏 = (𝑴𝑴,𝟎𝟎)

𝑨𝑨𝟐𝟐 = (𝟎𝟎,𝟏𝟏)



Bad Example

𝑨𝑨𝟏𝟏

𝑨𝑨𝟐𝟐 𝒓𝒓𝟏𝟏



Bad Example

𝒓𝒓𝟏𝟏



Bad Example

𝑨𝑨𝟏𝟏(𝑰𝑰 −𝑴𝑴+𝑴𝑴)

𝑨𝑨𝟐𝟐(𝑰𝑰 −𝑴𝑴+𝑴𝑴) 𝒓𝒓𝟏𝟏
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 Bound the additive error of sampling probabilities in subsequent rounds
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Suppose indices reported by our algorithm are 𝑗𝑗1, … , 𝑗𝑗𝑘𝑘
Consider two bases 𝑼𝑼 and 𝑾𝑾
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Difference between the correct prob and our algorithm 
sampling prob over all rows is 𝜖𝜖 for one round

• Change of basis matrix ≈ Identity matrix
• Bound total variation distance by 𝜖𝜖

Error in each round gets propagated 𝑘𝑘 times

Total error is O(𝑘𝑘2𝜖𝜖)



Theorem:
Our algorithm reports a set of 𝑘𝑘 indices such that with high probability 
• the total variation distance between the probability distribution output by the 

algorithm and the probability distribution of adaptive sampling is at most 𝑂𝑂(𝜖𝜖)

• The algorithm uses space 𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝(𝑘𝑘, 1
𝜖𝜖

,𝑑𝑑, log𝑛𝑛)



Applications
1. Simulate adaptive sampling in 1 pass

• 𝐿𝐿𝑝𝑝,2 sampling with post processing matrix 𝑃𝑃

2. Applications in turnstile stream
• Row/column subset selection
• Subspace approximation
• Projective clustering
• Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival



Applications
Main Challenge: it suffices to get a noisy perturbation of the rows



Applications: Row Subset Selection 

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌 > 0

Output: 𝒌𝒌 rows of 𝐴𝐴 to form 𝑴𝑴 to minimize 𝐴𝐴 − 𝐴𝐴𝑀𝑀+𝑀𝑀 𝐹𝐹



Applications: Row Subset Selection
Adaptive Sampling provides a 𝒌𝒌 + 𝟏𝟏 ! approximation for subset selection

 [DRVW’06]: Volume Sampling  provides a 𝑘𝑘 + 1 factor approximation to row subset selection 
with constant probability.

 [DV’06]: Sampling probabilities for any 𝑘𝑘-set 𝑆𝑆 produced by Adaptive Sampling is at most 𝑘𝑘! of its 
sampling probability with respect to volume sampling.



Applications: Row Subset Selection
Adaptive Sampling provides a 𝒌𝒌 + 𝟏𝟏 ! approximation for subset selection

 [DRVW’06]: Volume Sampling  provides a 𝑘𝑘 + 1 factor approximation to row subset selection 
with constant probability.

 [DV’06]: Sampling probabilities for any 𝑘𝑘-set 𝑆𝑆 produced by Adaptive Sampling is at most 𝑘𝑘! of its 
sampling probability with respect to volume sampling.

Non-adaptive Adaptive Sampling provides a good approximation to Adaptive Sampling



Applications: Row Subset Selection
Adaptive Sampling provides a 𝒌𝒌 + 𝟏𝟏 ! approximation for subset selection

 [DRVW’06]: Volume Sampling  provides a 𝑘𝑘 + 1 factor approximation to row subset selection 
with constant probability.

 [DV’06]: Sampling probabilities for any 𝑘𝑘-set 𝑆𝑆 produced by Adaptive Sampling is at most 𝑘𝑘! of its 
sampling probability with respect to volume sampling.

Non-adaptive Adaptive Sampling provides a good approximation to Adaptive Sampling

1. For a set of indices 𝑱𝑱 output by our algorithm, 𝐴𝐴 𝐼𝐼 − 𝑅𝑅+𝑅𝑅 F ≤ (1 + 𝜖𝜖) 𝐴𝐴 𝐼𝐼 −𝑀𝑀+𝑀𝑀 F, w.h.p.

• 𝑅𝑅: the set of noisy rows corresponding to 𝑱𝑱
• 𝑀𝑀: the set of true rows corresponding to 𝑱𝑱



Applications: Row Subset Selection
Adaptive Sampling provides a 𝒌𝒌 + 𝟏𝟏 ! approximation for subset selection

 [DRVW’06]: Volume Sampling  provides a 𝑘𝑘 + 1 factor approximation to row subset selection 
with constant probability.

 [DV’06]: Sampling probabilities for any 𝑘𝑘-set 𝑆𝑆 produced by Adaptive Sampling is at most 𝑘𝑘! of its 
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• 𝑅𝑅: the set of noisy rows corresponding to 𝑱𝑱
• 𝑀𝑀: the set of true rows corresponding to 𝑱𝑱

2. For most 𝑘𝑘-sets 𝑱𝑱, its prob. by adaptive sampling is within 𝑂𝑂(1) factor of Non-adaptive Sampling. 



Applications: Row Subset Selection 

Our Result: finds M such that,
Pr[ 𝐴𝐴 − 𝐴𝐴𝑴𝑴+𝑴𝑴 𝐹𝐹

2 ≤ 16 𝑘𝑘 + 1 ! 𝐴𝐴 − 𝐴𝐴𝑘𝑘 𝐹𝐹
2 ] ≥ 2/3

• 𝐴𝐴𝑘𝑘: best rank-k approximation of 𝐴𝐴
• first one pass turnstile streaming algorithm
• 𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝(𝑑𝑑,𝑘𝑘, log𝑛𝑛) space

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌 > 0

Output: 𝒌𝒌 rows of 𝐴𝐴 to form 𝑴𝑴 to minimize 𝐴𝐴 − 𝐴𝐴𝑀𝑀+𝑀𝑀 𝐹𝐹
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Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌
Output: 𝒌𝒌 rows 𝒓𝒓𝟏𝟏, … , 𝒓𝒓𝒌𝒌 of 𝐴𝐴, 𝑴𝑴, with maximum volume
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Volume of the parallelepiped 
spanned by those vectors

𝒌𝒌 = 𝟐𝟐



Applications: Volume Maximization
[Civril, Magdon’09] Greedy Algorithm Provides a 𝒌𝒌! approximation to Volume Maximization

Greedy

• For 𝑘𝑘 rounds, pick the vector that is farthest away from the current 
subspace.
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Applications: Volume Maximization
[Civril, Magdon’09] Greedy Algorithm Provides a 𝒌𝒌! approximation to Volume Maximization

 If the largest row exceeds the threshold, then it is correctly found by CountSketch w.h.p.

 Otherwise, there are enough large rows and sampler chooses one of them w.h.p. 

Simulate Greedy

• Maintain 𝑘𝑘 instances of CountSketch, AMS and 𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler

• For 𝑘𝑘 rounds,
• Let 𝒓𝒓 be the row of 𝐴𝐴𝑃𝑃 with largest norm   //by CountSketch

• If 𝒓𝒓 𝟐𝟐 < 𝛼𝛼2

4𝑛𝑛𝑘𝑘
𝑨𝑨𝑷𝑷 𝑭𝑭

𝟐𝟐, instead sample row 𝒓𝒓 according to norms of rows

• Add 𝑃𝑃 to the solution, and update the postprocessing matrix 𝑃𝑃



Applications: Volume Maximization

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌
Output: 𝒌𝒌 rows 𝒓𝒓𝟏𝟏, … , 𝒓𝒓𝒌𝒌 of 𝐴𝐴, 𝑴𝑴, with maximum volume

Our Result: for an approximation factor 𝜶𝜶, finds S (set of 𝒌𝒌 noisy rows of 𝑨𝑨) 
s.t.,

Pr[𝛼𝛼𝑘𝑘 𝑘𝑘! Vol 𝐒𝐒 ≥ Vol(𝐌𝐌)] ≥ 2/3
• first one pass turnstile streaming algorithm
• �𝑂𝑂( ⁄𝑛𝑛𝑑𝑑𝑘𝑘2 𝛼𝛼2) space



Problem Model Approximation/error space Comments

𝑳𝑳𝒑𝒑,𝟐𝟐 Sampler

turnstile

(𝟏𝟏 + 𝝐𝝐) relative + 𝟏𝟏
𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒏𝒏 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒅𝒅, 𝝐𝝐−𝟏𝟏, 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏)

Adaptive Sampling 𝑶𝑶(𝝐𝝐) total variation distance 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒅𝒅,𝒌𝒌, 𝝐𝝐−𝟏𝟏, 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏)
Row Subset Selection 𝑶𝑶( 𝒌𝒌 + 𝟏𝟏 !) 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒅𝒅,𝒌𝒌, 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏)

Subspace 
Approximation

𝑶𝑶( 𝒌𝒌 + 𝟏𝟏 !) 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒅𝒅,𝒌𝒌, 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏)
(𝟏𝟏 + 𝝐𝝐) 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒅𝒅,𝒌𝒌, 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏 ,𝟏𝟏/𝝐𝝐) 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒌𝒌,𝟏𝟏/𝝐𝝐) rows

Projective Clustering (𝟏𝟏 + 𝝐𝝐) 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒅𝒅,𝒌𝒌, 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏 , 𝒔𝒔,𝟏𝟏/𝝐𝝐) 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒌𝒌, 𝒔𝒔,𝟏𝟏/𝝐𝝐) rows

Volume Maximization

𝜶𝜶𝒌𝒌 𝒌𝒌! �𝑶𝑶( ⁄𝒏𝒏𝒅𝒅𝒌𝒌𝟐𝟐 𝜶𝜶𝟐𝟐)
𝜶𝜶𝒌𝒌 𝛀𝛀( ⁄𝒏𝒏 𝒌𝒌𝒑𝒑𝜶𝜶𝟐𝟐) 𝒑𝒑 pass

Row 
Arrival

𝑪𝑪𝒌𝒌 𝛀𝛀(𝒏𝒏) Random Order
�𝑶𝑶 𝑪𝑪𝒌𝒌 𝒌𝒌/𝟐𝟐 �𝑶𝑶(𝒏𝒏𝑶𝑶(𝟏𝟏/𝑪𝑪)𝒅𝒅) 𝑪𝑪 < ⁄(𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏) 𝒌𝒌



Open problems

• Get tight dependence on the parameters
• Further applications of non-adaptive adaptive sampling

• Result on Volume Maximization in row arrival model is not tight, i.e., can we get 𝑂𝑂(𝑘𝑘)𝑘𝑘 approximation without 
dependence on 𝑛𝑛?
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(𝟏𝟏 + 𝝐𝝐) relative + 𝟏𝟏
𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒏𝒏 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒅𝒅, 𝝐𝝐−𝟏𝟏, 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏)

Adaptive Sampling 𝑶𝑶(𝝐𝝐) total variation distance 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒅𝒅,𝒌𝒌, 𝝐𝝐−𝟏𝟏, 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏)
Row Subset Selection 𝑶𝑶( 𝒌𝒌 + 𝟏𝟏 !) 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒅𝒅,𝒌𝒌, 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏)

Subspace 
Approximation

𝑶𝑶( 𝒌𝒌 + 𝟏𝟏 !) 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒅𝒅,𝒌𝒌, 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏)
(𝟏𝟏 + 𝝐𝝐) 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒅𝒅,𝒌𝒌, 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏 ,𝟏𝟏/𝝐𝝐) 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒌𝒌,𝟏𝟏/𝝐𝝐) rows

Projective Clustering (𝟏𝟏 + 𝝐𝝐) 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒅𝒅,𝒌𝒌, 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏 , 𝒔𝒔,𝟏𝟏/𝝐𝝐) 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒌𝒌, 𝒔𝒔,𝟏𝟏/𝝐𝝐) rows

Volume Maximization

𝜶𝜶𝒌𝒌 𝒌𝒌! �𝑶𝑶( ⁄𝒏𝒏𝒅𝒅𝒌𝒌𝟐𝟐 𝜶𝜶𝟐𝟐)
𝜶𝜶𝒌𝒌 𝛀𝛀( ⁄𝒏𝒏 𝒌𝒌𝒑𝒑𝜶𝜶𝟐𝟐) 𝒑𝒑 pass

Row 
Arrival

𝑪𝑪𝒌𝒌 𝛀𝛀(𝒏𝒏) Random Order
�𝑶𝑶 𝑪𝑪𝒌𝒌 𝒌𝒌/𝟐𝟐 �𝑶𝑶(𝒏𝒏𝑶𝑶(𝟏𝟏/𝑪𝑪)𝒅𝒅) 𝑪𝑪 < ⁄(𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏) 𝒌𝒌



Problem Model Approximation/error space Comments

𝑳𝑳𝒑𝒑,𝟐𝟐 Sampler

turnstile

(𝟏𝟏 + 𝝐𝝐) relative + 𝟏𝟏
𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒏𝒏 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒅𝒅, 𝝐𝝐−𝟏𝟏, 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏)

Adaptive Sampling 𝑶𝑶(𝝐𝝐) total variation distance 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒅𝒅,𝒌𝒌, 𝝐𝝐−𝟏𝟏, 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏)
Row Subset Selection 𝑶𝑶( 𝒌𝒌 + 𝟏𝟏 !) 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒅𝒅,𝒌𝒌, 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏)

Subspace 
Approximation

𝑶𝑶( 𝒌𝒌 + 𝟏𝟏 !) 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒅𝒅,𝒌𝒌, 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏)
(𝟏𝟏 + 𝝐𝝐) 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒅𝒅,𝒌𝒌, 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏 ,𝟏𝟏/𝝐𝝐) 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒌𝒌,𝟏𝟏/𝝐𝝐) rows

Projective Clustering (𝟏𝟏 + 𝝐𝝐) 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒅𝒅,𝒌𝒌, 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏 , 𝒔𝒔,𝟏𝟏/𝝐𝝐) 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒌𝒌, 𝒔𝒔,𝟏𝟏/𝝐𝝐) rows

Volume Maximization

𝜶𝜶𝒌𝒌 𝒌𝒌! �𝑶𝑶( ⁄𝒏𝒏𝒅𝒅𝒌𝒌𝟐𝟐 𝜶𝜶𝟐𝟐)
𝜶𝜶𝒌𝒌 𝛀𝛀( ⁄𝒏𝒏 𝒌𝒌𝒑𝒑𝜶𝜶𝟐𝟐) 𝒑𝒑 pass

Row 
Arrival

𝑪𝑪𝒌𝒌 𝛀𝛀(𝒏𝒏) Random Order
�𝑶𝑶 𝑪𝑪𝒌𝒌 𝒌𝒌/𝟐𝟐 �𝑶𝑶(𝒏𝒏𝑶𝑶(𝟏𝟏/𝑪𝑪)𝒅𝒅) 𝑪𝑪 < ⁄(𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏) 𝒌𝒌

Open problems

• Get tight dependence on the parameters
• Further applications of non-adaptive adaptive sampling

• Result on Volume Maximization in row arrival model is not tight, i.e., can we get 𝑂𝑂(𝑘𝑘)𝑘𝑘 approximation without 
dependence on 𝑛𝑛?

Thank You!
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