Approximate Nearest Line Search in High Dimensions

Sepideh Mahabadi

Massachusetts Institute of Technology
The NLS Problem

- Given: a set of N lines L in \mathbb{R}^d
The NLS Problem

- Given: a set of N lines L in \mathbb{R}^d
- Goal: build a data structure s.t.
 - given a query q, find the closest line ℓ^* to q
The NLS Problem

• Given: a set of N lines L in \mathbb{R}^d
• Goal: build a data structure s.t.
 – given a query q, find the closest line ℓ^* to q
 – polynomial space
 – sub-linear query time
The NLS Problem

- Given: a set of N lines L in \mathbb{R}^d
- Goal: build a data structure s.t.
 - given a query q, find the closest line ℓ^* to q
 - polynomial space
 - sub-linear query time

Approximation

- Finds an approximate closest line ℓ
 \[\text{dist}(q, \ell) \leq \text{dist}(q, \ell^*)(1 + \epsilon) \]
Nearest Neighbor Problems
Motivation
Previous Work
Our result
Notation

BACKGROUND
Nearest Neighbor Problem

NN: Given a set of N points P, build a data structure s.t. given a query point q, finds the closest point p^* to q.
Nearest Neighbor Problem

NN: Given a set of N points P, build a data structure s.t. given a query point q, finds the closest point p^* to q.

- Applications: database, information retrieval, pattern recognition, computer vision
 - Features: dimensions
 - Objects: points
 - Similarity: distance between points
Nearest Neighbor Problem

NN: Given a set of \(N \) points \(P \), build a data structure s.t. given a query point \(q \), finds the closest point \(p^* \) to \(q \).

- Applications: database, information retrieval, pattern recognition, computer vision
 - Features: dimensions
 - Objects: points
 - Similarity: distance between points
- Current solutions suffer from “curse of dimensionality”:
 - Either space or query time is \text{exponential} in \(d \)
 - Little improvement over linear search
Approximate Nearest Neighbor (ANN)

- ANN: Given a set of N points P, build a data structure s.t. given a query point q, finds an approximate closest point p to q, i.e.,
 \[\text{dist}(q, p) \leq \text{dist}(q, p^*)(1 + \epsilon) \]
Approximate Nearest Neighbor (ANN)

- ANN: Given a set of N points P, build a data structure s.t. given a query point q, finds an approximate closest point p to q, i.e.,
 \[\text{dist}(q, p) \leq \text{dist}(q, p^*) (1 + \epsilon) \]

- There exist data structures with different tradeoffs. Example:
 - Space: $(dN)^O\left(\frac{1}{\epsilon^2}\right)$
 - Query time: $\left(\frac{d \log N}{\epsilon}\right)^O(1)$
Motivation for NLS

One of the simplest generalizations of ANN: data items are represented by k-flats (affine subspace) instead of points
Motivation for NLS

One of the simplest generalizations of ANN: data items are represented by k-flats (affine subspace) instead of points

- Model data under linear variations
- Unknown or unimportant parameters in database
Motivation for NLS

One of the simplest generalizations of ANN: data items are represented by k-flats (affine subspace) instead of points

- Model data under linear variations
- Unknown or unimportant parameters in database

- Example:
 - Varying light gain parameter of images
 - Each image/point becomes a line
 - Search for the closest line to the query image
Previous and Related Work

- Magen[02]: Nearest Subspace Search
 - Query time is fast: \((d + \log N + \frac{1}{\epsilon})^{O(1)} \)
 - Space is super-polynomial: \(2^{(\log N)^{O(1)}} \)
Previous and Related Work

• Magen[02]: Nearest Subspace Search
 – Query time is fast: \((d + \log N + \frac{1}{\epsilon})^{O(1)} \)
 – Space is super-polynomial: \(2^{(\log N)^{O(1)}} \)

Dual Problem: Database is a set of points, query is a \(k \)-flat

• [AIKN] for 1-flat: for any \(t > 0 \)
 – Query time: \(O(d^3 N^{0.5+t}) \)
 – Space: \(d^2 N^{O\left(\frac{1}{\epsilon^2} + \frac{1}{t^2}\right)} \)
Previous and Related Work

• Magen[02]: Nearest Subspace Search
 – Query time is fast: \((d + \log N + \frac{1}{\epsilon})^{O(1)} \)
 – Space is super-polynomial: \(2^{(\log N)^{O(1)}} \)

Dual Problem: Database is a set of points, query is a \(k \)-flat

• [AIKN] for 1-flat: for any \(t > 0 \)
 – Query time: \(O(d^3 N^{0.5 + t}) \)
 – Space: \(d^2 N^{O(\frac{1}{\epsilon^2} + \frac{1}{t^2})} \)

• Very recently [MNSS] extended it for \(k \)-flats
 – Query time \(O\left(\frac{k}{n^{k+1-\rho} + t}\right) \)
 – Space: \(O\left(n^{1+\frac{k}{k+1-\rho}} + n \log^{O\left(\frac{1}{t}\right)} n\right) \)
Our Result

We give a randomized algorithm that for any sufficiently small ϵ reports a $(1 + \epsilon)$-approximate solution with high probability

- Space: $(N + d)^O\left(\frac{1}{\epsilon^2}\right)$
- Time: $\left(d + \log N + \frac{1}{\epsilon}\right)^O(1)$
Our Result

We give a randomized algorithm that for any sufficiently small ϵ reports a $(1 + \epsilon)$-approximate solution with high probability

- **Space**: $(N + d)^{O\left(\frac{1}{\epsilon^2}\right)}$
- **Time**: $\left(d + \log N + \frac{1}{\epsilon}\right)^{O(1)}$
- Matches up to polynomials, the performance of best algorithm for ANN. No exponential dependence on d
Our Result

We give a randomized algorithm that for any sufficiently small ϵ reports a $(1 + \epsilon)$-approximate solution with high probability

- Space: $(N + d)^O\left(\frac{1}{\epsilon^2}\right)$
- Time: $\left(d + \log N + \frac{1}{\epsilon}\right)^O(1)$
- Matches up to polynomials, the performance of best algorithm for ANN. No exponential dependence on d
- The first algorithm with poly log query time and polynomial space for objects other than points
Our Result

We give a randomized algorithm that for any sufficiently small ϵ reports a $(1 + \epsilon)$-approximate solution with high probability

- Space: $(N + d)^{O\left(\frac{1}{\epsilon^2}\right)}$
- Time: $\left(d + \log N + \frac{1}{\epsilon}\right)^{O(1)}$
- Matches up to polynomials, the performance of best algorithm for ANN. No exponential dependence on d
- The first algorithm with poly log query time and polynomial space for objects other than points
- Only uses reductions to ANN
Notation

- L : the set of lines with size N
- q : the query point
Notation

- L : the set of lines with size N
- q : the query point
- $B(c, r)$: ball of radius r around c
Notation

- \(L \): the set of lines with size \(N \)
- \(q \): the query point
- \(B(c, r) \): ball of radius \(r \) around \(c \)
- \(\text{dist} \): the Euclidean distance between objects
Notation

- L : the set of lines with size N
- q : the query point
- $B(c, r)$: ball of radius r around c
- dist : the Euclidean distance between objects
- angle : defined between lines
Notation

- L : the set of lines with size N
- q : the query point
- $B(c, r)$: ball of radius r around c
- dist : the Euclidean distance between objects
- $angle$: defined between lines
- δ-close: two lines ℓ, ℓ' are δ-close if $\sin(angle(\ell, \ell')) \leq \delta$. Similarly we define δ-far/ strictly δ-close/ strictly δ-far
Notation

- L : the set of lines with size N
- q : the query point
- $B(c, r)$: ball of radius r around c
- dist: the Euclidean distance between objects
- angle: defined between lines
- δ-close: two lines ℓ, ℓ' are δ-close if $\sin(\text{angle}(\ell, \ell')) \leq \delta$. Similarly we define δ-far/ strictly δ-close/ strictly δ-far
- $CP_{\ell_1 \rightarrow \ell_2}$: closest point on ℓ_1 to ℓ_2
Unbounded Module
Net Module
Parallel Module

MODULES
Unbounded Module - Intuition

• All lines in L pass through the origin O
Unbounded Module - Intuition

• All lines in L pass through the origin o

• Data structure:
 – Project all lines onto any sphere $S(o, r)$ to get point set P
 – Build ANN data structure $ANN(P, \varepsilon)$
Unbounded Module - Intuition

• All lines in L pass through the origin o

• Data structure:
 – Project all lines onto any sphere $S(o,r)$ to get point set P
 – Build ANN data structure $ANN(P, \epsilon)$

• Query Algorithm:
 – Project the query on $S(o,r)$ to get q'
 – Find the approximate closest point to q', i.e., $p = ANN_{P}(q')$
 – Return the corresponding line of p
Unbounded Module

• All lines in L pass through a small ball $B(o, r)$
• Query is far enough, outside of $B(o, R)$
• Use the same data structure and query algorithm
Unbounded Module

- All lines in L pass through a small ball $B(o, r)$
- Query is far enough, outside of $B(o, R)$
- Use the same data structure and query algorithm

Lemma: if $R \geq \frac{r}{\varepsilon \delta}$, the returned line ℓ_p is
- Either an approximate closest line
- Or is δ-close to the closest line ℓ^*
Unbounded Module

- All lines in L pass through a small ball $B(o, r)$
- Query is far enough, outside of $B(o, R)$
- Use the same data structure and query algorithm

Lemma: if $R \geq \frac{r}{\epsilon \delta}$, the returned line ℓ_p is
- Either an approximate closest line
- Or is δ-close to the closest line ℓ^*

This helps us further restrict our search to almost parallel lines to ℓ_p
Net Module

• Intuition: sampling points from each line finely enough to get a set of points P, and building an $ANN(P, \epsilon)$ should suffice to find the approximate closest line.
Net Module

• Intuition: sampling points from each line finely enough to get a set of points P, and building an $ANN(P, \epsilon)$ should suffice to find the approximate closest line.

Lemma:
• Let x be the separation parameter: distance between two adjacent samples on a line
• Then
 – Either the returned line ℓ_p is an approximate closest line
 – Or $\text{dist}(q, \ell_p) \leq x/\epsilon$
Parallel Module - Intuition

• All lines in L are parallel
Parallel Module - Intuition

• All lines in L are parallel
• Data structure:
 – Project all lines onto any hyper-plane g which is perpendicular to all the lines to get point set P
 – Build ANN data structure $ANN(P, \epsilon)$
Parallel Module - Intuition

• All lines in L are parallel
• Data structure:
 – Project all lines onto any hyper-plane g which is perpendicular to all the lines to get point set P
 – Build ANN data structure $ANN(P, \epsilon)$
• Query algorithm:
 – Project the query on g to get q'
 – Find the approximate closest point to q', i.e., $p = ANN_P(q')$
 – Return the corresponding line to p
Parallel Module

- All lines in L are δ-close to a base line ℓ_b
- Project the lines onto a hyper-plane g which is perpendicular to ℓ_b
- Query is close enough to g
- Use the same data structure and query algorithm
Parallel Module

- All lines in L are δ-close to a base line ℓ_b
- Project the lines onto a hyper-plane g which is perpendicular to ℓ_b
- Query is close enough to g
- Use the same data structure and query algorithm

Lemma: if $\text{dist}(q, g) \leq \frac{D\varepsilon}{\delta}$, then
- Either the returned line ℓ_p is an approximate closest line
- Or $\text{dist}(q, \ell_p) \leq D$
Parallel Module

- All lines in L are δ-close to a base line ℓ_b
- Project the lines onto a hyper-plane g which is perpendicular to ℓ_b
- Query is close enough to g
- Use the same data structure and query algorithm

Lemma: if $\text{dist}(q, g) \leq \frac{D\epsilon}{\delta}$, then
 - Either the returned line ℓ_p is an approximate closest line
 - Or $\text{dist}(q, \ell_p) \leq D$

Thus, for a set of almost parallel lines, we can use a set of parallel modules to cover a bounded region.
General Case
 • Input lines can have any configuration
 • Divergent Case
 • Input lines are $O(\epsilon)$-far from each other
 • Almost Parallel Case
 • Input lines are all $O(\epsilon)$-close to each other

ALGORITHMS
Outline of the Algorithms

• **Input**: a set of n lines S
Outline of the Algorithms

• **Input**: a set of n lines S
• Randomly choose a subset of $n/2$ lines T
Outline of the Algorithms

- **Input**: a set of n lines S
- Randomly choose a subset of $n/2$ lines T
- Solve the problem over T to get a line ℓ_p
Outline of the Algorithms

- **Input**: a set of n lines S
- Randomly choose a subset of $n/2$ lines T
- Solve the problem over T to get a line ℓ_p
- For $\log n$ iterations
 - Use ℓ_p to find a much closer line ℓ_p'
 - Update ℓ_p with ℓ_p'

Improvement step
Outline of the Algorithms

- **Input**: a set of n lines S
- Randomly choose a subset of $n/2$ lines T
- Solve the problem over T to get a line ℓ_p
- For $\log n$ iterations
 - Use ℓ_p to find a much closer line ℓ_p'
 - Update ℓ_p with ℓ_p'

Improvement step
Outline of the Algorithms

- **Input:** a set of n lines S
- Randomly choose a subset of $n/2$ lines T
- Solve the problem over T to get a line ℓ_p
- For $\log n$ iterations
 - Use ℓ_p to find a much closer line ℓ_p'
 - Update ℓ_p with ℓ_p'

Why?
Outline of the Algorithms

- **Input**: a set of n lines S
- Randomly choose a subset of $n/2$ lines T
- Solve the problem over T to get a line ℓ_p
- For $\log n$ iterations
 - Use ℓ_p to find a much closer line ℓ'_p
 - Update ℓ_p with ℓ'_p

Let $\ell_1, \ldots, \ell_{\log n}$ be the $\log n$ closest lines to q in the set S
Outline of the Algorithms

- **Input**: a set of n lines S
- Randomly choose a subset of $n/2$ lines T
- Solve the problem over T to get a line ℓ_p
- For $\log n$ iterations
 - Use ℓ_p to find a much closer line ℓ_p'
 - Update ℓ_p with ℓ_p'

Let $\ell_1, \ldots, \ell_{\log n}$ be the $\log n$ closest lines to q in the set S

With high probability at least one of $\{\ell_1, \ldots, \ell_{\log n}\}$ are sampled in T

- $\text{dist}(q, \ell_p) \leq \text{dist}(q, \ell_{\log n})(1 + \epsilon)$
- $\log n$ improvement steps suffices to find an approximate closest line
Improvement Step

Given a line \(\ell \), how to improve it, i.e., find a closer line?
Improvement Step

Given a line ℓ, how to improve it, i.e., find a closer line?

- Data structure
- Query Processing Algorithm
General Case

• Search among all lines that are ϵ-far from current line using Divergent Case
General Case

• Search among all lines that are ϵ-far from current line using Divergent Case

• Search among the lines that are almost parallel to line found in previous step using Almost Parallel Case
Divergent Case

Assume any two lines are ϵ-far; they diverge quickly.
Divergent Case

Assume any two lines are ϵ-far; they diverge quickly.

- Let ℓ be the current line, and ℓ^* be the closest line to q
- Let $x = \text{dist}(q, \ell)$
- $\text{dist}(q, \ell^*) \leq x$
Divergent Case

Assume any two lines are ϵ-far; they diverge quickly.

- Let ℓ be the current line, and ℓ^* be the closest line to q
- Let $x = \text{dist}(q, \ell)$
- $\text{dist}(q, \ell^*) \leq x$
 - All potential ℓ^* intersect $B(q, x)$
Divergent Case

Assume any two lines are ε-far; they diverge quickly.

- Let ℓ be the current line, and ℓ^* be the closest line to q
- Let $x = \text{dist}(q, \ell)$
- $\text{dist}(q, \ell^*) \leq x$
 - All potential ℓ^* intersect $B(q, x)$
 - Good news: we can build a net module inside $B(q, x)$ with separation parameter $x\varepsilon^2$ to improve over ℓ
Divergent Case

Assume any two lines are ϵ-far; they diverge quickly.

- Let ℓ be the current line, and ℓ^* be the closest line to q
- Let $x = \text{dist}(q, \ell)$
- $\text{dist}(q, \ell^*) \leq x$
 - All potential ℓ^* intersect $B(q, x)$
 - Good news: we can build a net module inside $B(q, x)$ with separation parameter $x\epsilon^2$ to improve over ℓ
 - Bad news: we don’t know this ball in advance
Divergent Case contd.

What we know:

• $\text{dist}(\ell, \ell^*) \leq 2x$
• Let q' be the projection of q on ℓ
Divergent Case contd.

What we know:

• \(\text{dist}(\ell, \ell^*) \leq 2x \)
• Let \(q' \) be the projection of \(q \) on \(\ell \)
Divergent Case contd.

What we know:

• $\text{dist}(\ell, \ell^*) \leq 2x$

• Let q' be the projection of q on ℓ

 – $CP_{\ell \to \ell^*}$ is not farther than $\frac{x}{\epsilon}$ from q'
 since they are ϵ-far
Divergent Case contd.

What we know:

- $\text{dist}(\ell, \ell^*) \leq 2x$
- Let q' be the projection of q on ℓ
 - $CP_{\ell \rightarrow \ell^*}$ is not farther than $\frac{x}{\epsilon}$ from q' since they are ϵ-far
 - $B(q', O\left(\frac{x}{\epsilon}\right))$ touches all such lines
Data Structure

For each $\ell \in S$

- Sort all lines ℓ' according to their distance from ℓ
Data Structure

For each $\ell \in S$

• Sort all lines ℓ' according to their distance from ℓ
• For all $1 \leq i \leq n$, let S_i be the i^{th} closest lines
Data Structure

For each \(\ell \in S \)
- Sort all lines \(\ell' \) according to their distance from \(\ell \)
- For all \(1 \leq i \leq n \), let \(S_i \) be the \(i^{th} \) closest lines
 - Sort all lines in \(S_i \) such as \(\ell' \) according to the position of \(CP_{\ell \rightarrow \ell'} \)
Data Structure

For each $\ell \in S$

- Sort all lines ℓ' according to their distance from ℓ
- For all $1 \leq i \leq n$, let S_i be the i^{th} closest lines
 - Sort all lines in S_i such as ℓ' according to the position of $CP_{\ell \rightarrow \ell'}$
 - For each interval of lines A in sorted S_i
Data Structure

For each $\ell \in S$

- Sort all lines ℓ' according to their distance from ℓ
- For all $1 \leq i \leq n$, let S_i be the i^{th} closest lines
 - Sort all lines in S_i such as ℓ' according to the position of $CP_{\ell \rightarrow \ell'}$
 - For each interval of lines A in sorted S_i
 - Find smallest ball $B_A(o_A, r_A)$ with its center on ℓ which intersects all lines in A
 $\Rightarrow (r_A \leq O(\frac{\chi}{\epsilon}))$
Data Structure

For each $\ell \in S$

- Sort all lines ℓ' according to their distance from ℓ
- For all $1 \leq i \leq n$, let S_i be the i^{th} closest lines
 - Sort all lines in S_i such as ℓ' according to the position of $CP_{\ell \rightarrow \ell'}$
 - For each interval of lines A in sorted S_i
 - Find smallest ball $B_A(o_A, r_A)$ with its center on ℓ which intersects all lines in A
 $\rightarrow (r_A \leq O(\frac{\epsilon}{\epsilon}))$
 - Construct a net module inside of the ball of $B(o_A, r_A/\epsilon^2)$ with separation $r_A \epsilon^3$
 ($\# \text{samples} = O(n \frac{r_A}{(\epsilon^2 r_A \epsilon^3)}) = O(n/\epsilon^5)$)
Data Structure

For each $\ell \in S$
- Sort all lines ℓ' according to their distance from ℓ
- For all $1 \leq i \leq n$, let S_i be the i^{th} closest lines
 - Sort all lines in S_i such as ℓ' according to the position of $CP_{\ell \rightarrow \ell'}$
 - For each interval of lines A in sorted S_i
 - Find smallest ball $B_A(o_A, r_A)$ with its center on ℓ which intersects all lines in A
 $\Rightarrow (r_A \leq O(\frac{x}{\epsilon}))$
 - Construct a net module inside of the ball of $B(o_A, r_A/\epsilon^2)$ with separation $r_A\epsilon^3$
 (**samples** = $O(n \cdot r_A/(\epsilon^2 r_A \epsilon^3)) = O(n/\epsilon^5))$
 - Construct an unbounded module outside of $B_A\left(o_A, \frac{1}{\epsilon^2} r_A\right)$
Query Processing Algorithm

Given query point q
Query Processing Algorithm

Given query point q

- Project q on ℓ to get q'
- Use binary search to find the set A of all lines ℓ' that are within distance $2x$ of ℓ, and that $CP_{\ell \rightarrow \ell'}$ is within distance $2x/\epsilon$ of q'
Query Processing Algorithm

Given query point q

- Project q on ℓ to get q'
- Use binary search to find the set A of all lines ℓ' that are within distance $2x$ of ℓ, and that $CP_{\ell \rightarrow \ell'}$ is within distance $2x/\varepsilon$ of q'
Given query point q

- Project q on ℓ to get q'
- Use binary search to find the set A of all lines ℓ' that are within distance $2x$ of ℓ, and that $CP_{\ell \rightarrow \ell'}$ is within distance $2x/\epsilon$ of q'
- Let $B_A(o_A, r_A)$ be the corresponding ball
Query Processing Algorithm

Given query point q

- Project q on ℓ to get q'
- Use binary search to find the set A of all lines ℓ' that are within distance $2x$ of ℓ, and that $CP_{\ell \rightarrow \ell'}$ is within distance $2x/\epsilon$ of q'
- Let $B_A(o_A, r_A)$ be the corresponding ball
- If $x \in B_A(o_A, \frac{r_A}{\epsilon^2})$ use net module:
 - Find approximate closest line -> done!
 - Or find a line with distance at most $r_A \epsilon^2 \leq x \epsilon$ ($r_A \leq x/\epsilon$) -> we improved
Query Processing Algorithm

Given query point q

- Project q on ℓ to get q'
- Use binary search to find the set A of all lines ℓ' that are within distance $2x$ of ℓ, and that $CP_{\ell \rightarrow \ell'}$ is within distance $2x/\varepsilon$ of q'
- Let $B_A(o_A, r_A)$ be the corresponding ball
- If $x \in B_A(o_A, \frac{r_A}{\varepsilon^2})$ use net module:
 - Find approximate closest line -> done!
 - Or find a line with distance at most $r_A \varepsilon^2 \leq x \varepsilon$ ($r_A \leq x/\varepsilon$) -> we improved
- Otherwise use unbounded module to find the approximate closest line -> done!
Almost Parallel

All lines are 2ε-close to each other.

For each line ℓ

• Partition the space into slabs using perpendicular hyperplanes to ℓ s.t. for any pair of lines ℓ_1, ℓ_2:
All lines are 2ε-close to each other.

For each line ℓ

- Partition the space into slabs using perpendicular hyperplanes to ℓ s.t. for any pair of lines ℓ_1, ℓ_2:
 - In each slab the relative order of $\text{dist}_{H(\ell, o)}(\ell, \ell_1)$ and $\text{dist}_{H(\ell, o)}(\ell, \ell_2)$ on the hyper-plane remains the same as we move o on ℓ in the slab

There is a unique ordering of the lines
Almost Parallel

All lines are 2ϵ-close to each other.

For each line ℓ

- Partition the space into slabs using perpendicular hyperplanes to ℓ s.t. for any pair of lines ℓ_1, ℓ_2:
 - In each slab the relative order of $\text{dist}_{H(\ell, o)}(\ell, \ell_1)$ and $\text{dist}_{H(\ell, o)}(\ell, \ell_2)$ on the hyper-plane remains the same as we move o on ℓ in the slab.

There is a unique ordering of the lines

- $\text{dist}_{H(\ell, o)}(\ell_1, \ell_2)$ on the hyper-plane is monotone
Almost Parallel

All lines are 2ε-close to each other.

For each line ℓ

• Partition the space into slabs using perpendicular hyperplanes to ℓ s.t. for any pair of lines ℓ_1, ℓ_2:
 – In each slab the relative order of $\text{dist}_H(\ell, o)(\ell, \ell_1)$ and $\text{dist}_H(\ell, o)(\ell, \ell_2)$ on the hyper-plane remains the same as we move o on ℓ in the slab

There is a unique ordering of the lines

– $\text{dist}_H(\ell, o)(\ell_1, \ell_2)$ on the hyper-plane is monotone

The minimum ball intersecting any prefix of lines have its center on the boundary of slab
Almost Parallel

All lines are 2ε-close to each other.

For each line ℓ

- Partition the space into slabs using perpendicular hyperplanes to ℓ s.t. for any pair of lines ℓ_1, ℓ_2:
 - In each slab the relative order of $\text{dist}_{H(\ell,o)}(\ell, \ell_1)$ and $\text{dist}_{H(\ell,o)}(\ell, \ell_2)$ on the hyper-plane remains the same as we move o on ℓ in the slab

There is a unique ordering of the lines

- $\text{dist}_{H(\ell,o)}(\ell_1, \ell_2)$ on the hyper-plane is monotone

The minimum ball intersecting any prefix of lines have its center on the boundary of slab.

- $O(n^2)$ slabs suffices
Data Structure in Each Slab

- For each i, let $B(o, r)$ be the smallest ball touching the closest i^{th} lines s.t. $o \in \ell$. We know o would be on the boundary of slab.
Data Structure in Each Slab

- For each i, let $B(o, r)$ be the smallest ball touching the closest i^{th} lines s.t. $o \in \ell$. We know o would be on the boundary of slab.
Data Structure in Each Slab

- For each i, let $B(o, r)$ be the smallest ball touching the closest i^{th} lines s.t. $o \in \ell$. We know o would be on the boundary of slab.
Data Structure in Each Slab

- For each i, let $B(o, r)$ be the smallest ball touching the closest i^{th} lines s.t. $o \in \ell$. We know o would be on the boundary of slab.
- Let $\delta_0 > \cdots > \delta_t$ be all pairwise angles
- Let $R_0 = \frac{r}{\epsilon \delta_0}, \ldots, R_t = \frac{r}{\epsilon \delta_t}$
- Consider the balls $B(o, R_0), \ldots, B(o, R_t)$
Data Structure in Each Slab

- For each \(i \), let \(B(o, r) \) be the smallest ball touching the closest \(i^{th} \) lines s.t. \(o \in \ell \). We know \(o \) would be on the boundary of slab.

- Let \(\delta_0 > \cdots > \) be all pairwise angles.

- Let \(R_0 = \frac{r}{\varepsilon \delta_0}, \ldots, R_t = \frac{r}{\varepsilon \delta_t} \)

- Consider the balls \(B(o, R_0), \ldots, B(o, R_t) \)

- Build net module inside \(B(o, R_0) \)
Data Structure in Each Slab

- For each \(i \), let \(B(o, r) \) be the smallest ball touching the closest \(i^{th} \) lines s.t. \(o \in \ell \). We know \(o \) would be on the boundary of slab.
- Let \(\delta_0 > \cdots > \delta_t \) be all pairwise angles
- Let \(R_0 = \frac{r}{\epsilon \delta_0}, \ldots, R_t = \frac{r}{\epsilon \delta_t} \)
- Consider the balls \(B(o, R_0), \ldots, B(o, R_t) \)
- Build net module inside \(B(o, R_0) \)
Data Structure in Each Slab

- For each i, let $B(o, r)$ be the smallest ball touching the closest i^{th} lines s.t. $o \in \ell$. We know o would be on the boundary of slab.
- Let $\delta_0 > \cdots > \delta_t$ be all pairwise angles
- Let $R_0 = \frac{r}{\epsilon \delta_0}, \ldots, R_t = \frac{r}{\epsilon \delta_t}$
- Consider the balls $B(o, R_0), \ldots, B(o, R_t)$
- Build net module inside $B(o, R_0)$
- For each ball $B(o, R_i)$
 - Build unbounded module on it
Data Structure in Each Slab

- For each i, let $B(o, r)$ be the smallest ball touching the closest i^{th} lines s.t. $o \in \ell$. We know o would be on the boundary of slab.
- Let $\delta_0 > \cdots > \delta_t$ be all pairwise angles.
- Let $R_0 = \frac{r}{\epsilon \delta_0}, \ldots, R_t = \frac{r}{\epsilon \delta_t}$
- Consider the balls $B(o, R_0), \ldots, B(o, R_t)$
- Build net module inside $B(o, R_0)$
- For each ball $B(o, R_i)$
 - Build unbounded module on it
 - For each line ℓ_b
 - Build a set of parallel modules with ℓ_b as their base line for all the lines that are δ_i-close to ℓ_b, so that they cover the space between $B(o, R_i)$ and $B(o, R_{i+1})$ with separation $R_{i+1} \epsilon$
Query Processing Algorithm

• Given q, find the right slab, and retrieve all candidate lines
• Using binary search find r
Query Processing Algorithm

• Given q, find the right slab, and retrieve all candidate lines
• Using binary search find r
• Find largest i such that $q \notin B(o, R_i)$
Query Processing Algorithm

- Given \(q \), find the right slab, and retrieve all candidate lines
- Using binary search find \(r \)
- Find largest \(i \) such that \(q \notin B(o, R_i) \)
- Use the unbounded module of \(B(o, R_i) \) to find a line \(\ell' \), we know
 - Either \(\ell' \) is an approximate closest line -> done
 - It is \(\delta_{i+1} \)-close to \(\ell^* \)
Query Processing Algorithm

- Given \(q \), find the right slab, and retrieve all candidate lines.
- Using binary search find \(r \).
- Find largest \(i \) such that \(q \not\in B(o, R_i) \).
- Use the unbounded module of \(B(o, R_i) \) to find a line \(\ell' \), we know
 - Either \(\ell' \) is an approximate closest line -> done
 - It is \(\delta_{i+1} \)-close to \(\ell^* \)
- Use the parallel modules of \(\ell' \) to find an approximate closest line. -> done.
Query Processing Algorithm

- Given \(q \), find the right slab, and retrieve all candidate lines
- Using binary search find \(r \)
- Find largest \(i \) such that \(q \notin B(o, R_i) \)
- Use the unbounded module of \(B(o, R_i) \) to find a line \(\ell' \), we know
 - Either \(\ell' \) is an approximate closest line -> done
 - It is \(\delta_{i+1} \)-close to \(\ell^* \)
- Use the parallel modules of \(\ell' \) to find an approximate closest line. -> done
Summary

- Nearest Line Search Problem
Summary

• Nearest Line Search Problem
• Modules: unbounded, net, parallel
Summary

• Nearest Line Search Problem
• Modules: unbounded, net, parallel
• Use of random sampling
Summary

• Nearest Line Search Problem
• Modules: unbounded, net, parallel
• Use of random sampling
• How to improve given a line
Summary

• Nearest Line Search Problem
• Modules: unbounded, net, parallel
• Use of random sampling
• How to improve given a line
• Bounds of our algorithm
 – Polynomial Space:
 \[
 \left(\frac{dN}{\epsilon} \right)^{O(1)} \times S \left(\left(\frac{N}{\epsilon} \right)^{O(1)}, \epsilon \right) = O(N + d)^{O\left(\frac{1}{\epsilon^2}\right)}
 \]
 – Poly-logarithmic query time:
 \[
 (d \log N)^{O(1)} \times T \left(\left(\frac{N}{\epsilon} \right)^{O(1)}, \epsilon \right) = \left(d + \log N + \frac{1}{\epsilon} \right)^{O(1)}
 \]
Future Work

• The current result is not good in practice
 – Large exponents
 – Algorithm is complicated
Can we get a simpler algorithms?
Future Work

• The current result is not good in practice
 – Large exponents
 – Algorithm is complicated
 Can we get a simpler algorithms?

• Generalization to higher dimensional flats
Future Work

• The current result is not good in practice
 – Large exponents
 – Algorithm is complicated
 Can we get a simpler algorithms?

• Generalization to higher dimensional flats

• Generalization to other objects, e.g. balls
THANK YOU!