Diverse Near Neighbor Problem

Sofiane Abbar (QCRI)
Sihem Amer-Yahia (CNRS)
Piotr Indyk (MIT)
Sepideh Mahabadi (MIT)
Kasturi R. Varadarajan (UIowa)
Near Neighbor Problem

• **Definition**
 - Set of n points P in d-dimensional space
 - Query point q
 - Report one neighbor of q if there is any

• **Neighbor**: A point within distance r of query

• **Application**
 - Major importance in databases (document, image, video), information retrieval, pattern recognition
 - Object of interest as point
 - Similarity is measured as distance.
Motivation

Search: How many answers?

• Small output size, e.g. 10
 – Reporting k Nearest Neighbors may not be informative (could be identical texts)

• Large output size
 – Time to retrieve them is high

Small output size which is

• Relevant and Diverse
• Good to have result from each cluster, i.e. should be diverse
Diverse Near Neighbor Problem

- **Definition**
 - Set of n points P in d-dimensional space
 - Query point q
 - Report the k most diverse neighbors of q

- **Neighbor:**
 - Points within distance r of query
 - We use Hamming distance

- **Diversity:**
 - $\text{div}(S) = \min_{p,q \in S} |p - q|$

- **Goal:** report Q (green points), s.t.
 - $Q \subseteq P \cap B(q, r)$
 - $|Q| = k$
 - $\text{div}(Q)$ is maximized
Approximation

- Want sublinear query time, so need to approximate
- Approximate NN:
 - $B(q,r) \rightarrow B(q,cr)$ for some value of $c > 1$
 - Result: query time of $O(dn^{\frac{1}{c}})$
- Approximate Diverse NN:
 - Bi-criterion approximation: distance and diversity
 - (c, α)-Approximate k-diverse Near Neighbor
 - Let Q^* (green points) be the optimum solution for $B(q,r)$
 - Report approximate neighbors Q (purple points)
 - $Q \subseteq B(q,cr)$
 - Diversity approximates the optimum diversity
 $$div(Q) \geq \frac{1}{\alpha} div(Q^*) , \alpha \geq 1$$
Results

<table>
<thead>
<tr>
<th></th>
<th>Algorithm A</th>
<th>Algorithm B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance Apx. Factor</td>
<td>$c > 2$</td>
<td>$c > 1$</td>
</tr>
<tr>
<td>Diversity Apx. Factor α</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Space</td>
<td>$(n \log k)^{1+1/(c-1)} + nd$</td>
<td>$\log k \cdot n^{1+1/c} + nd$</td>
</tr>
<tr>
<td>Query Time</td>
<td>$\left(k^2 + \frac{\log n}{r}\right) d \cdot (\log k)^{c/(c-1)}n^{1/(c-1)}$</td>
<td>$\left(k^2 + \frac{\log n}{r}\right) d \cdot \log k \cdot n^{1/c}$</td>
</tr>
</tbody>
</table>

- Algorithm A was earlier introduced in [Abbar, Amer-yahia, Indyk, Mahabadi, WWW’13]
Techniques
Compute k-diversity: GMM

- Have n points, compute the subset with maximum diversity.
- Exact: **NP-hard** to approximate better than 2 [Ravi et al.]
- **GMM** Algorithm [Ravi et al.] [Gonzales]
 - Choose an arbitrary point
 - Repeat k-1 times
 - Add the point whose minimum distance to the currently chosen points is maximized
- Achieves approximation factor 2
- Running time of the algorithm is $O(kn)$
Locality Sensitive Hashing (LSH)

- **LSH**
 - close points have higher probability of collision than far points
 - **Hash functions**: g_1, \ldots, g_L
 - $g_i = < h_{i,1}, \ldots, h_{i,t} >$
 - $h_{i,j} \in \mathcal{H}$ is chosen randomly
 - \mathcal{H} is a family of hash functions which is (P_1, P_2, r, cr)-sensitive:
 - If $||p - p'|| \leq r$ then $\Pr[h(p) = h(p')] \geq P_1$
 - If $||p - p'|| \geq cr$ then $\Pr[h(p) = h(p')] \leq P_2$
 - Example: Hamming distance:
 - $h(p) = p_i$, i.e., the ith bit of p
 - Is $(1 - \frac{r}{d}, 1 - \frac{rc}{d}, r, rc)$-sensitive
 - L and t are parameters of LSH
LSH-based Naïve Algorithm

- [Indyk, Motwani] Parameters L and t can be set s.t. With constant probability
 - Any neighbor of q falls into the same bucket as q in at least one hash function
 - Total number of outliers is at most $3L$
 - Outlier: point farther than cr from the query point

Algorithm

- Arrays for each hash function $A_1, ..., A_L$
- For a query q compute
 - Retrieve the possible neighbors $S = \bigcup_{i=1}^{L} A[g_i(q)]$
 - Remove the outliers $S = S \cap B(q, cr)$
 - Report the approximate k most diverse points of S, or $GMM(S)$

- Achieves $(c,2)$-approximation

- Running time may be linear in n 😞
 - Should prune the buckets before collecting them
Core-sets

- **Core-sets** [Agarwal, Har-Peled, Varadarajan]: subset of a point set S that represents it.
 - Approximately determines the solution to an optimization problem
 - Composes: A union of coresets is a coreset of the union
- β–core-set: Approximates the cost up-to a factor of β

Our Optimization problem:
- Finding the k-diversity of S.
- Instead we consider finding **K-Center Cost** of S
 - $KC(S, S') = \max_{p \in S} \min_{p' \in S'} |p - p'|$
 - $KC_k(S) = \min_{S' \subseteq S, |S'| = k} KC(S, S')$
- **KC cost 2-approximates diversity**
 - $KC_{k-1}(S) \leq div_k(S) \leq 2. KC_{k-1}(S)$

- **GMM** computes a $1/3$-Coreset for KC-cost
Algorithms
Algorithm A

• Parameters L and t can be set s.t. with constant probability
 – Any neighbor of q falls into the same bucket as q in at least one hash function
 – There is no outlier

• No need to keep all the points in each bucket,
 just keep a coreset!
 – $A'_i[j] = GMM(A_i[j])$
 – Keep a 1/3 coreset of $A_i[j]$

• Given query q
 – Retrieve the coresets from buckets $S = \bigcup_{i=1}^{L} A'[g_i(q)]$
 – Run GMM(S)
 – Report the result
Analysis

• Achieves \((c,6)\)-Approx
 – Union of 1/3 coresets is a 1/3 coreset for the union
 – The last GMM call, adds a 2 approximation factor

• **Only works** if we set \(L\) and \(t\) s.t. there is **no outlier** in \(S\) with constant probability
 – Space: \(O(nL) = O((n \log k)^{1+1/(c-1)} + nd)\)
 – Time: \(O(Lk^2) = O((k^2 + \frac{\log n}{r}) d (\log k)^c/(c-1)n^{1/(c-1)})\)
 – Only makes sense for \(c > 2\)

• Not optimal:
 – ANN query time is \(O(dn^{\frac{1}{c}})\)
 – So if we want to improve over these we should be able to deal with outliers.
Robust Core-sets

- S' is an l-robust β-coreset for S if
 - for any set O of outliers of size at most l
 - $(S' \setminus O)$ is a β-coreset for S

- Peeling Algorithm [Agarwal, Har-peled, Yu,’06][Varadarajan, Xiao, ‘12]:
 - Repeat $(l + 1)$ times
 - Compute a β-coreset for S
 - Add them to the coreset S'
 - Remove them from the set S

Note: if we order the points in S' as we find them, then the first $(l' + 1)k$ points also form an l'-robust β-coreset.

2 robust coreset: $S' = \{3, 5; 2, 9; 1, 6\}$

1 robust coreset
Algorithm B

• Parameters L and t can be set s.t. With constant probability
 – Any neighbor of q falls into the same bucket as q in at least one hash function
 – Total number of outliers is at most $3L$

• For each bucket $A_i[j]$ keep an $3L$-robust $1/3$-coreset in $A'_i[j]$ which has size $(3L + 1)k$

• For query q
 – For each bucket $A'[g_i(q)]$
 • Find smallest l s.t. the first (kl) points contains less than l outliers
 • Add those kl points to S
 – Remove outliers from S
 – Return $GMM(S)$
Example and Analysis

- Total # outliers $\leq 3L$, $|S| < O(Lk)$
- Time: $O(Lk^2) = O\left(\left(k^2 + \frac{\log n}{r}\right)d \times \log k \times n^{\frac{1}{c}}\right)$
- Space: $O(nL) = O\left(\log k \times n^{1+1/c} + nd\right)$
- Achieves $(c,6)$-Approx for the same reason
Conclusion

<table>
<thead>
<tr>
<th></th>
<th>Algorithm A</th>
<th>Algorithm B</th>
<th>ANN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance Apx. Factor</td>
<td>c > 2</td>
<td>c > 1</td>
<td>c > 1</td>
</tr>
<tr>
<td>Diversity Apx. Factor</td>
<td>6</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>Space</td>
<td>$\sim n^{1+\frac{1}{c-1}}$</td>
<td>$\sim n^{1+\frac{1}{c}}$</td>
<td>$n^{1+\frac{1}{c}}$</td>
</tr>
<tr>
<td>Query Time</td>
<td>$\sim d \frac{1}{nc-1}$</td>
<td>$\sim d \frac{1}{nc}$</td>
<td>$d \frac{1}{nc}$</td>
</tr>
</tbody>
</table>

Further Work
- Improve diversity factor α
- Consider other definitions of diversity, e.g., sum of distances
Thank You!