Composable Core-sets for Diversity and Coverage Maximization

Piotr Indyk (MIT)
Sepideh Mahabadi (MIT)
Mohammad Mahdian (Google)
Vahab S. Mirrokni (Google)
Core-Set Definition

• **Setup**
 – Set of n points P in d-dimensional space
 – Optimize a function f
Core-Set Definition

• **Setup**
 – Set of n points P in d-dimensional space
 – Optimize a function f

• **c-Core-set:** Small subset of points $S \subset P$ which suffices to c-approximate the optimal solution

• Maximization: $\frac{f_{opt}(P)}{c} \leq f_{opt}(S) \leq f_{opt}(P)$
Core-Set Definition

• **Setup**
 – Set of n points P in d-dimensional space
 – Optimize a function f

• **c-Core-set:** Small subset of points $S \subset P$ which suffices to c-approximate the optimal solution

 • Maximization: $\frac{f_{opt}(P)}{c} \leq f_{opt}(S) \leq f_{opt}(P)$

• **Example**
 – Optimization Function: Distance of the two farthest points
Core-Set Definition

- **Setup**
 - Set of n points P in d-dimensional space
 - Optimize a function f

- **c-Core-set:** Small subset of points $S \subset P$ which suffices to c-approximate the optimal solution

- Maximization: $\frac{f_{\text{opt}}(P)}{c} \leq f_{\text{opt}}(S) \leq f_{\text{opt}}(P)$

- **Example**
 - Optimization Function: Distance of the two farthest points
 - 1-Core-set: Points on the convex hull.
Composable Core-sets

• Setup
 – P_1, P_2, \ldots, P_m are set of points in d-dimensional space
 – Optimize a function f over their union P.
Composable Core-sets

• **Setup**
 – P_1, P_2, \ldots, P_m are set of points in d-dimensional space
 – Optimize a function f over their union P.

• **c-Composable Core-sets:** Subsets of points $S_1 \subset P_1, S_2 \subset P_2, \ldots, S_m \subset P_m$ points such that the solution of the union of the core-sets approximates the solution of the point sets.

• Maximization:
 \[
 \frac{1}{c} f_{opt}(P_1 \cup \cdots \cup P_m) \leq f_{opt}(S_1 \cup \cdots \cup S_m) \leq f_{opt}(P_1 \cup \cdots \cup P_m)
 \]
Composable Core-sets

- **Setup**
 - P_1, P_2, \ldots, P_m are set of points in d-dimensional space
 - Optimize a function f over their union P.

- **c-Composable Core-sets:** Subsets of points $S_1 \subset P_1$, $S_2 \subset P_2$, \ldots, $S_m \subset P_m$ points such that the solution of the union of the core-sets approximates the solution of the point sets.
 - Maximization:
 \[
 \frac{1}{c} f_{opt}(P_1 \cup \ldots \cup P_m) \leq f_{opt}(S_1 \cup \ldots \cup S_m) \leq f_{opt}(P_1 \cup \ldots \cup P_m)
 \]
 - **Example:** two farthest points
Composable Core-sets

• **Setup**
 – P_1, P_2, \ldots, P_m are set of points in d-dimensional space
 – Optimize a function f over their union P.

• **c-Composable Core-sets:** Subsets of points $S_1 \subset P_1, S_2 \subset P_2, \ldots, S_m \subset P_m$ points such that the solution of the union of the core-sets approximates the solution of the point sets.

 • Maximization:
 \[
 \frac{1}{c} f_{opt}(P_1 \cup \cdots \cup P_m) \leq f_{opt}(S_1 \cup \cdots \cup S_m) \leq f_{opt}(P_1 \cup \cdots \cup P_m)
 \]

• **Example:** two farthest points
Composable Core-sets

- **Setup**
 - \(P_1, P_2, \ldots, P_m \) are set of points in \(d \)-dimensional space
 - Optimize a function \(f \) over their union \(P \).

- **\(c \)-Composable Core-sets:** Subsets of points \(S_1 \subset P_1, S_2 \subset P_2, \ldots, S_m \subset P_m \) points such that the solution of the union of the core-sets approximates the solution of the point sets.
 - Maximization:
 \[
 \frac{1}{c} f_{opt}(P_1 \cup \cdots \cup P_m) \leq f_{opt}(S_1 \cup \cdots \cup S_m) \leq f_{opt}(P_1 \cup \cdots \cup P_m)
 \]
 - **Example:** two farthest points
Applications – Streaming Computation

• Streaming Computation:
 – Processing sequence of n data elements “on the fly”
 – limited Storage
Applications – Streaming Computation

• **Streaming Computation:**
 – Processing sequence of n data elements “on the fly”
 – limited Storage

• **c-Composable Core-set of size k**
 – Chunks of size \sqrt{nk}, thus number of chunks $= \sqrt{n/k}$
Applications – Streaming Computation

- **Streaming Computation:**
 - Processing sequence of n data elements “on the fly”
 - Limited storage
- **c-Composable Core-set of size k**
 - Chunks of size \sqrt{nk}, thus number of chunks = $\sqrt{n/k}$
 - Core-set for each chunk
 - Total space: $k\sqrt{n/k} + \sqrt{nk} = O(\sqrt{nk})$
 - Approximation factor: c
Applications – Distributed Systems

• Streaming Computation

• Distributed System:
 – Each machine holds a block of data.
 – A composable core-set is computed and sent to the server
Applications – Distributed Systems

- **Streaming Computation**
- **Distributed System:**
 - Each machine holds a block of data.
 - A composable core-set is computed and sent to the server
- **Map-Reduce Model:**
 - One round of Map-Reduce
 - $\sqrt{n/k}$ mappers each getting \sqrt{nk} points
 - Mapper computes a composable core-set of size k
 - Will be passed to a single reducer
Applications – Similarity Search

- Streaming Computation
- Distributed System
- Similarity Search: Small output size
Applications – Similarity Search

- Streaming Computation
- Distributed System
- **Similarity Search**: Small output size
- Good to have result from each cluster: **relevant** and **diverse**
Applications – Similarity Search

- Streaming Computation
- Distributed System
- **Similarity Search**: Small output size
 - Good to have result from each cluster: relevant and diverse
- Diverse Near Neighbor Problem
 [Abbar, Amer-Yahia, Indyk, Mahabadi WWW’13] [Abbar, Amer-Yahia, Indyk, Mahabadi, Varadarajan, SoCG’13]
Applications – Similarity Search

- Streaming Computation
- Distributed System
- **Similarity Search**: Small output size
- Good to have result from each cluster: relevant and diverse
 - uses Locality Sensitive Hashing (LSH) and Composable Core-sets techniques.
Diversity Maximization Problem

- A set of n points P in metric space $(\Delta, dist)$
- Optimization Problem:
 - Find a subset of k points S which maximizes Diversity
Diversity Maximization Problem

• A set of n points P in metric space (Δ, dist)

• Optimization Problem:
 – Find a subset of k points S which maximizes Diversity

• Diversity:
 – Minimum pairwise distance (Remote Edge)
Diversity Maximization Problem

- A set of n points P in metric space $(\Delta, dist)$
- Optimization Problem:
 - Find a subset of k points S which maximizes Diversity
- Diversity:
 - Minimum pairwise distance (Remote Edge)
 - Sum of Pairwise distances (Remote Clique)
Diversity Maximization Problem

- A set of \(n \) points \(P \) in metric space \((\Delta, dist)\)

- Optimization Problem:
 - Find a subset of \(k \) points \(S \) which maximizes Diversity

- Diversity:
 - Minimum pairwise distance (Remote Edge)
 - Sum of Pairwise distances (Remote Clique)

- Long list of variants [Chandra and Halldorsson ‘01]

\[k=4 \]
\[n = 6 \]
Diversity Functions

<table>
<thead>
<tr>
<th>Diversity function over a set S of k points</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote-edge</td>
<td>Minimum Pairwise Distance: $\min_{{p, q \in S}} \text{dist}(p, q)$</td>
</tr>
<tr>
<td>Remote-clique</td>
<td>Sum of Pairwise Distances: $\sum_{{p, q \in S}} \text{dist}(p, q)$</td>
</tr>
<tr>
<td>Remote-tree</td>
<td>Weight of Minimum Spanning Tree (MST) of the set S</td>
</tr>
<tr>
<td>Remote-cycle</td>
<td>Weight of minimum Traveling Salesman Tour (TSP) of the set S</td>
</tr>
<tr>
<td>Remote-star</td>
<td>Weight of minimum star: $\min_{{p \in S}} \sum_{{q \in S}} \text{dist}(p, q)$</td>
</tr>
<tr>
<td>Remote-Pseudoforest</td>
<td>Sum of the distance of each point to its nearest neighbor $\sum_{{p \in S}} \min_{{q \in S}} \text{dist}(p, q)$</td>
</tr>
<tr>
<td>Remote-Matching</td>
<td>Weight of minimum perfect Matching of the set S</td>
</tr>
<tr>
<td>Max-Coverage</td>
<td>How well the points cover each coordinate $\sum_{i=1}^{d} \max_{p \in \mathcal{S}} p_i$</td>
</tr>
</tbody>
</table>
Our Results

<table>
<thead>
<tr>
<th>Diversity function</th>
<th>Offline ApproxFactor</th>
<th>Composable Coreset Approx factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote-edge Minimum Pairwise Distance</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Remote-clique Sum of Pairwise Distances</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Remote-tree Weight of MST</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Remote-cycle Weight of minimum TSP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Remote-star Weight of minimum star</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Remote-Pseudoforest Sum of the distance of each point to its nearest neighbor</td>
<td>$O(\log k)$</td>
<td>$O(\log k)$</td>
</tr>
<tr>
<td>Remote-Matching Weight of minimum perfect Matching</td>
<td>$O(\log k)$</td>
<td>$O(\log k)$</td>
</tr>
<tr>
<td>Max-Coverage How well the points cover each coordinate</td>
<td>$O(1)$</td>
<td>No Composable Coreset of Poly size in k with app. factor $\sqrt{k}/\log k$</td>
</tr>
</tbody>
</table>

- $O(\log k)$: Time complexity
- $O(1)$: Constant time complexity
Review of Offline Algorithms

• We have a set of n point P
• Goal: find a subset S of size k which maximizes the diversity
The Greedy Algorithm

- Used for minimum-pairwise distance
The Greedy Algorithm

- Used for minimum-pairwise distance
- Greedy Algorithm [Ravi, Rosenkrantz, Tayi] [Gonzales]
 - Choose an arbitrary point
 - Repeat k-1 times
 - Add the point whose minimum distance to the currently chosen points is maximized
The Greedy Algorithm

- Used for minimum-pairwise distance
- Greedy Algorithm [Ravi, Rosenkrantz, Tayi] [Gonzales]
 - Choose an arbitrary point
 - Repeat \(k-1 \) times
 - Add the point whose minimum distance to the currently chosen points is maximized

- Remote-edge: computes a 2-approximate set
Local Search Algorithm

- Used for sum of pairwise distances
Local Search Algorithm

- Used for sum of pairwise distances
- Algorithm [Abbasi, Mirrokni, Thakur]
 - Initialize S with an arbitrary set of k points which contains the two farthest points
Local Search Algorithm

- Used for sum of pairwise distances
- Algorithm [Abbasi, Mirrokni, Thakur]
 - Initialize S with an arbitrary set of k points which contains the two farthest points
 - While there exists a swap that improves diversity by a factor of $\left(1 + \frac{\epsilon}{n}\right)$
Local Search Algorithm

- Used for sum of pairwise distances
- Algorithm [Abbasi, Mirrokni, Thakur]
 - Initialize S with an arbitrary set of k points which contains the two farthest points
 - While there exists a swap that improves diversity by a factor of $\left(1 + \frac{\epsilon}{n}\right)$
 » Perform the swap
Local Search Algorithm

- Used for sum of pairwise distances
- Algorithm [Abbasi, Mirrokni, Thakur]
 - Initialize S with an arbitrary set of k points which contains the two farthest points
 - While there exists a swap that improves diversity by a factor of $\left(1 + \frac{\varepsilon}{n}\right)$
 » Perform the swap
Local Search Algorithm

- Used for sum of pairwise distances
- Algorithm [Abbasi, Mirrokni, Thakur]
 - Initialize S with an arbitrary set of k points which contains the two farthest points
 - While there exists a swap that improves diversity by a factor of $\left(1 + \frac{\epsilon}{n}\right)$
 » Perform the swap
- For Remote-Clique
 - Number of rounds: $\log_{\left(1 + \frac{\epsilon}{n}\right)} k^2 = O\left(\frac{n}{\epsilon} \log k\right)$
 - Approximation factor is constant.
Composable Core-sets

- Greedy Algorithm Computes a 3-composable core-set for minimum pairwise distance
- Local Search Algorithm Computes a constant factor composable core-set for sum of pairwise distances.
Proof Idea

Let P_1, \ldots, P_m be the set of points, $P = \bigcup P_i$
Proof Idea

Let P_1, \ldots, P_m be the set of points, $P = \bigcup P_i$

S_1, \ldots, S_m be their core-sets, $S = \bigcup S_i$

Goal: $div_k(S) \geq div_k(P) / c$
Proof Idea

Let P_1, \ldots, P_m be the set of points, $P = \bigcup P_i$

S_1, \ldots, S_m be their core-sets, $S = \bigcup S_i$

Goal: $div_k(S) \geq div_k(P) / c$
Proof Idea

Let \(P_1, \ldots, P_m \) be the set of points, \(P = \bigcup P_i \)
\(S_1, \ldots, S_m \) be their core-sets, \(S = \bigcup S_i \)
Let \(OPT = \{o_1, \ldots, o_k\} \) be the optimal solution

Goal: \(div_k(S) \geq \frac{div_k(P)}{c} \)

Goal: \(div_k(S) \geq \frac{div(OPT)}{c} \)
Proof Idea

Let \(P_1, \ldots, P_m \) be the set of points, \(P = \bigcup P_i \)
\(S_1, \ldots, S_m \) be their core-sets, \(S = \bigcup S_i \)
Let \(OPT = \{o_1, \ldots, o_k\} \) be the optimal solution

Goal: \(\text{div}_k(S) \geq \text{div}_k(P) / c \)
Goal: \(\text{div}_k(S) \geq \text{div(OPT)} / c \)
Proof Idea

Let P_1, \cdots, P_m be the set of points, $P = \bigcup P_i$

S_1, \cdots, S_m be their core-sets, $S = \bigcup S_i$

Let $OPT = \{o_1, \cdots, o_k\}$ be the optimal solution

Let r be their maximum diversity, $r = \max_i \text{div}(S_i)$

Goal: $\text{div}_k(S) \geq \text{div}_k(P) / c$

Goal: $\text{div}_k(S) \geq \text{div}(OPT) / c$

Note: $\text{div}_k(S) \geq r$
Proof Idea

Let P_1, \ldots, P_m be the set of points, $P = \bigcup P_i$

S_1, \ldots, S_m be their core-sets, $S = \bigcup S_i$

Let $OPT = \{o_1, \ldots, o_k\}$ be the optimal solution

Let r be their maximum diversity, $r = \max_i \text{div}(S_i)$,

Case 1: one of S_i has diversity as good as the optimum: $r \geq O(\text{div}(OPT))$
Proof Idea

Let P_1, \cdots, P_m be the set of points, $P = \cup P_i$
S_1, \cdots, S_m be their core-sets, $S = \cup S_i$
Let $OPT = \{o_1, \cdots, o_k\}$ be the optimal solution
Let r be their maximum diversity, $r = \max_i \text{div}(S_i)$

Goal: $\text{div}_k(S) \geq \text{div}_k(P)/c$
Goal: $\text{div}_k(S) \geq \text{div}(OPT)/c$
Note: $\text{div}_k(S) \geq r$

Case 1: one of S_i has diversity as good as the optimum: $r \geq O(\text{div}(OPT))$
Case 2: $r \leq O(\text{div}(OPT))$
Proof Idea

Let \(P_1, \ldots, P_m \) be the set of points, \(P = \bigcup P_i \)
\(S_1, \ldots, S_m \) be their core-sets, \(S = \bigcup S_i \)
Let \(OPT = \{o_1, \ldots, o_k\} \) be the optimal solution
Let \(r \) be their maximum diversity, \(r = \max_i \text{div}(S_i) \),

\textbf{Goal:} \(\text{div}_k(S) \geq \text{div}_k(P) / c \)
\textbf{Goal:} \(\text{div}_k(S) \geq \text{div}(OPT) / c \)
\textbf{Note:} \(\text{div}_k(S) \geq r \)

\textbf{Case 1:} one of \(S_i \) has diversity as good as the optimum: \(r \geq O(\text{div}(OPT)) \)
\textbf{Case 2:} \(r \leq O(\text{div}(OPT)) \)

- find a \textbf{one-to-one} mapping \(\mu \) from \(OPT = \{o_1, \ldots, o_k\} \) to \(S = S_1 \cup \cdots \cup S_m \) s.t. \(\text{dist}(o_i, \mu(o_i)) \leq O(r) \)
Proof Idea

Let P_1, \cdots, P_m be the set of points, $P = \bigcup P_i$

S_1, \cdots, S_m be their core-sets,

$S = \bigcup S_i$

Let $OPT = \{o_1, \cdots, o_k\}$ be the optimal solution

Let r be their maximum diversity, $r = \max_i \text{div}(S_i)$,

Goal: $\text{div}_k(S) \geq \text{div}_k(P) / c$

Goal: $\text{div}_k(S) \geq \text{div}(OPT) / c$

Note: $\text{div}_k(S) \geq r$

Case 1: one of S_i has diversity as good as the optimum: $r \geq O(\text{div}(OPT))$

Case 2: $r \leq O(\text{div}(OPT))$

- find a **one-to-one** mapping μ from $OPT = \{o_1, \cdots, o_k\}$ to $S = S_1 \cup \cdots \cup S_m$ s.t.

 $\text{dist}(o_i, \mu(o_i)) \leq O(r)$

- Replacing o_i with $\mu(o_i)$ has still large diversity
- $\text{div}(\{\mu(o_i)\})$ is approximately as good as $\text{div}(\{o_i\})$
Proof Idea

Let P_1, \ldots, P_m be the set of points, $P = \bigcup P_i$

Let S_1, \ldots, S_m be their core-sets, $S = \bigcup S_i$

Let $OPT = \{o_1, \ldots, o_k\}$ be the optimal solution

Let r be their maximum diversity, $r = \max_i \text{div}(S_i)$, $\text{Goal: } \text{div}_k(S) \geq \text{div}_k(P) / c$

$\text{Goal: } \text{div}_k(S) \geq \text{div}(OPT) / c$

Note: $\text{div}_k(S) \geq r$

Case 1: one of S_i has diversity as good as the optimum: $r \geq O(\text{div}(OPT))$

Case 2: $r \leq O(\text{div}(OPT))$

- find a **one-to-one** mapping μ from $OPT = \{o_1, \ldots, o_k\}$ to $S = S_1 \cup \ldots \cup S_m$ s.t.

 $\text{dist}(o_i, \mu(o_i)) \leq O(r)$

- Replacing o_i with $\mu(o_i)$ has still large diversity
- $\text{div}(\{\mu(o_i)\})$ is approximately as good as $\text{div}(\{o_i\})$
- The actual mapping μ depends on the specific diversity measure we are considering.
Maximum k-Coverage

- A set of n points P in d-dimensional space
- Each dimension corresponds to a feature.
- Goal: choose a set of k points S in P which maximizes the total coverage:

 $\text{cov}(S) = \sum_{i=1}^{d} \max_{s \in S} s_i$
Maximum k-Coverage

• A set of n points P in d-dimensional space
• Each dimension corresponds to a feature.
• Goal: choose a set of k points S in P which maximizes the total coverage:
 \[
 \text{cov}(S) = \sum_{\{i=1\} \atop \{s \in S\}}^d \max s_i
 \]

• **Special Case hamming space:**
• A collection of n sets P
• Over the universe $U = \{1, \ldots, d\}$
• Goal: choose k sets $S = \{S_1, \ldots, S_k\}$ in P whose union is maximized.
Maximum k-Coverage

• A set of \(n \) points \(P \) in \(d \)-dimensional space
• Each dimension corresponds to a feature.
• Goal: choose a set of \(k \) points \(S \) in \(P \) which maximizes the total coverage:
 \[
 \text{cov}(S) = \sum_{\{i=1\}}^{d} \max_{\{s \in S\}} s_i
 \]

• Special Case hamming space:
 • A collection of \(n \) sets \(P \)
 • Over the universe \(U = \{1, \ldots, d\} \)
 • Goal: choose \(k \) sets \(S = \{S_1, \ldots, S_k\} \) in \(P \) whose union is maximized.

• Theorem: for any \(\alpha < \frac{\sqrt{k}}{\log k} \) and any constant \(\beta > 1 \), there is no \(\alpha \)-composable core-set of size \(k^\beta \)
Proof Idea

Build a set of instances $P_1, \cdots, P_{O(k)}$
let $U = \{1, \cdots, O(k^4)\}$
Proof Idea

Build a set of instances $P_1, \ldots, P_{O(k)}$
let $U = \{1, \ldots, O(k^4)\}$
• Let V_i be subset of size k of U
Proof Idea

Build a set of instances $P_1, \ldots, P_{O(k)}$
let $U = \{1, \ldots, O(k^4)\}$

• Let V_i be subset of size k of U
• P_i is a collection of subsets of size \sqrt{k} from V_i
Proof Idea

Build a set of instances $P_1, \cdots, P_{O(k)}$

Let $U = \{1, \cdots, O(k^4)\}$

- Let V_i be subset of size k of U
- P_i is a collection of subsets of size \sqrt{k} from V_i
- P_i has cardinality $\binom{k}{\sqrt{k}}$
Proof Idea

Build a set of instances $P_1, \ldots, P_{O(k)}$

let $U = \{1, \ldots, O(k^4)\}$

• Let V_i be subset of size k of U
• P_i is a collection of subsets of size \sqrt{k} from V_i
• P_i has cardinality $\binom{k}{\sqrt{k}}$

We show there exists $V_1, \ldots, V_{O(k)}$ such that

– $V_i \setminus V_1$ has size \sqrt{k}
– $V_i \setminus V_1$ and $V_j \setminus V_1$ are disjoint for $i \neq j$
Proof Idea

Build a set of instances $P_1, \ldots, P_{O(k)}$
let $U = \{1, \ldots, O(k^4)\}$
• Let V_i be subset of size k of U
• P_i is a collection of subsets of size \sqrt{k} from V_i
• P_i has cardinality $\binom{k}{\sqrt{k}}$

We show there exists $V_1, \ldots, V_{O(k)}$ such that
– $V_i \setminus V_1$ has size \sqrt{k}
– $V_i \setminus V_1$ and $V_j \setminus V_1$ are disjoint for $i \neq j$

• Using k sets everything in $\cup V_i$ can be covered, that is $O(k^{3/2})$ elements.
Proof Idea

Build a set of instances \(P_1, \ldots, P_{O(k)} \)

let \(U = \{1, \ldots, O(k^4)\} \)

- Let \(V_i \) be subset of size \(k \) of \(U \)
- \(P_i \) is a collection of subsets of size \(\sqrt{k} \) from \(V_i \)
- \(P_i \) has cardinality \(\binom{k}{\sqrt{k}} \)

We show there exists \(V_1, \ldots, V_{O(k)} \) such that

- \(V_i \setminus V_1 \) has size \(\sqrt{k} \)
- \(V_i \setminus V_1 \) and \(V_j \setminus V_1 \) are disjoint for \(i \neq j \)

- Using \(k \) sets everything in \(\cup V_i \) can be covered, that is \(O(k^{3/2}) \) elements.
- Using core-sets only \(|V_1| + k \log k = O(k \log k) \) can be covered
Conclusion

• Applications of composable core-sets
Conclusion

• Applications of composable core-sets
• We showed construction of composable core-sets for a wide range of diversity measures
Applications of composable core-sets
We showed construction of composable core-sets for a wide range of diversity measures
We showed non existence of core-sets of polynomial size in k for maximum coverage
Conclusion

• Applications of composable core-sets
• We showed construction of composable core-sets for a wide range of diversity measures
• We showed non existence of core-sets of polynomial size in k for maximum coverage

• Open Problems
 – Are there any other applications of composable core-sets?
Conclusion

• Applications of composable core-sets
• We showed construction of composable core-sets for a wide range of diversity measures
• We showed non existence of core-sets of polynomial size in k for maximum coverage

• Open Problems
 – Are there any other applications of composable core-sets?
 – Is there a general characterization of measures for which composable core-sets exist?
Conclusion

- Applications of composable core-sets
- We showed construction of composable core-sets for a wide range of diversity measures
- We showed non existence of core-sets of polynomial size in k for maximum coverage

- **Open Problems**
 - Are there any other applications of composable core-sets?
 - Is there a general characterization of measures for which composable core-sets exist?
 - Better approximation factors?
Thank You!

Questions?