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Introduction
An outline of topics we’ll be covering, as well as other information about the course, can be found on Canvas and also

at https://math.stanford.edu/~ionel/Math215B-w23.html. Homework will be assigned weekly (due on Thursdays on

Gradescope) with lowest grade dropped, and there will be a midterm and final exam (dates announced soon). As is

normally the case, we can work with others on homework but write up the solutions separately. Lecture notes will also

be on Canvas and potentially have a bit more detail than what is covered in lecture. And office hours are posted on

the website as well.

1 January 9, 2023
Before talking about differential manifolds, we’ll make sure we’re on the same page about topological manifolds. All

of our spaces in this class will be Hausdorff, and all maps will be continuous, unless otherwise specified.

Roughly, a topological space M is a topological manifold if it looks locally like Rn, with some additional assumptions

of being Hausdorff and compact. Here’s a more precise definition (there are various ways to make definitions):

Definition 1

An n-dimensional topological manifold is a Hausdorff, paracompact topological space M such that for any

x ∈ M, there is an open neighborhood U of x in M such that U is homeomorphic to Rn (we could also say the

ball in Rn).

Recall that being Hausdorff means that any two distinct points can be separated by open sets, and being paracom-
pact means that every open cover has an open refinement (of smaller sets) which is locally finite. Paracompactness

implies the existence of a continuous partition of unity, which means that M is metrizable (that is, we have a metric

on our manifold) – this is a very useful thing for us to have.

Example 2 (Non-examples of manifolds)

The line with two origins satisfies all of these assumptions for being a manifold except being Hausdorff. To

construct this space, take two copies of R (call them R×{0} and R×{1}), and then define X = R×{0, 1}/ ∼,

where points (x, 0) and (x, 1) are identified for all x ̸= 0 (but the two origins stay distinct). We can check that

all of the other assumptions here are satisfied. On the other hand, the long line satisfies all requirements except

paracompactness – we can search up the construction ourselves, though it does require ordinals.
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Example 3 (Examples of manifolds)

Any open set U ⊆ Rn is open, any discrete set (countable or not) is a 0-dimensional manifold, and the unit sphere

in Rn+1 is an n-dimensional manifold.

Often our manifolds will be either compact or σ-compact (meaning that they are a countable union of compact

sets) – both of these imply paracompactness. So some authors imply σ-compactness in these definitions, which also

implies separability for manifolds (which means that M contains a countable dense subset) These assumptions will all

come into play later on, but we won’t assume them in general here.

Definition 4

An atlas on a manifold M is a collection of charts {(Uα, φα)} which cover M. A chart is a pair (U, φ), where

U ⊂ M is an open set and φ : U → V is a homeomorphism from U to an open set V ⊆ Rn. On the overlap of

any two charts (Uα, φα) and (Uβ, φβ) (that is, on Uα ∩ Uβ), we thus get a transition function φβα = φβ ◦ φ−1α
(appropriately restricted) mapping from φα(Uα ∩ Uβ) to φβ(Uα ∩ Uβ).

In other words, a single chart maps part of M to an open set of Rn, and an atlas puts them together to cover all

of the manifold. But if Uα and Uβ are two open sets which overlap in M, then Vα and Vβ both have a portion that

correspond to Uα ∩ Uβ, and the point of the transition function φαβ is to get us a map between subsets of Rn that

relate those different charts. If we have an atlas, we can then think of gluing charts together to form a manifold
via the transition functions, so M is homeomorphic to the space (

⊔
α Vα)/ ∼, where ∼ identifies x ∈ Vα with y ∈ Vβ

if and only if φβα(x) = y .

We will focus on smooth manifolds in this class:

Definition 5

An atlasA onM is of class Ck if all transition functions are of class Ck (meaning that they are k times differentiable

with all derivatives up to degree k continuous). An atlas is smooth if all transition functions are C∞.

(We can always complete an atlas to a maximal atlas of class Ck , which will come up later.)

Definition 6

A smooth manifold M is a Hausdorff, paracompact space endowed with a C∞ atlas.

In applications, it may seem like there is a difference betwen proving things for Ck manifolds and smooth manifolds.

But it turns out that every C1 manifold has a unique smooth structure by tossing out some charts, and thus C1 diffeo-

morphisms becomes C∞ diffeomorphisms and so on. So the only important distinction is between C0 (topological) and

C∞ (smooth). And there are indeed topological manifolds which do not admit any smooth structure (see Donaldson’s

theorem in four dimensions) and also manifolds that admit multiple such structures (for example, Milnor proved that

S7 has several).

Example 7 (Graphs and level sets)

Let f : U → Rm be a smooth function with U ⊆ Rn an open set. Then the graph of f is a smooth manifold

of dimension n with a single global chart, and if c is a regular value of f (meaning that the differential df is

surjective at all points in the inverse image), then the level set f −1(c) is a smooth manifold of dimension n −m
(by the implicit function theorem).
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Example 8

The unit sphere Sn ⊆ Rn+1 (of points satisfying |x0|2 + · · ·+ |xn|2 = 1) is a smooth manifold because it is a level

set by the previous example.

Example 9

We have the real projective space RPn and complex projective space CPn – recall for example that CPn is the

space of one-dimensional complex linear subspaces of Cn+1, given the topology induced by the quotient

CPn = (Cn+1 \ 0)/C∗

where the C∗ (that is, nonzero complex numbers) action is given by λ(z0, · · · , zn) = (λz0, · · · , λzn).

This space is Hausdorff (though it would not be Hausdorff if we didn’t remove the origin from Cn+1 – exercise).

Indeed,

(Cn+1 \ 0)/C∗ = S2n+1/S1,

where S2n+1 ⊆ Cn+1 is the unit sphere and S1 is a subset of C∗. And recall an important property of quotient spaces:

if a group G is acting on a space X and X and G are compact (and Hausdorff), so is X/G. In particular, we get

homogeneous coordinates on CPn, which we denote [z0, · · · , zn], and the way that we find charts is to observe that

in these homogeneous coordinates we have [z0, · · · , zn] = [1, z1z0 , · · · ,
zn
z0
] whenever z0 ̸= 0, so we can use the last

n coordinates as usual coordinates. (So we get (n + 1) different charts, and we just need to define the transition

functions in terms of ratios between those coordinates.) But the point is that RPn and CPn are both compact smooth

manifolds.

Example 10

Very similarly, the Grassmannian is the space of k-dimensional planes (linear subspaces) of a vector space V , and

it is also a smooth manifold. The case k = 1 is basically the previous example, and we call it the projectivization
of V and denote it P(V ).

One question to keep in mind is to ask when the quotient of a manifold is itself a manifold – we’ll address this

later.

Example 11 (Example, but cautionary)

Working on R, consider the atlas with one chart φ : R → R sending φ(t) = t3. This yields a smooth manifold,

but the chart is not C1-compatible with the standard chart (given by the identity).

Definition 12

Let M be a smooth manifold. A map f : M → R is Ck if for all charts φα, the map f ◦ φ−1α (from an open set of

Rn to R) is Ck . (In fact, we just need to check one chart at each point x ∈ M.)

We should check that that this definition is independent of our choice of charts (because change of charts are

smooth).
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Definition 13

Let M and N be two smooth manifolds. A map f : M → N is smooth if for all charts (not just for a single atlas)

(U, φ) on M and (V, φ) on N such that f (U) ⊆ V , the composition φ−1 ◦ f ◦ ψ is smooth.

In other words, f is smooth at x if f is continuous and there exists a chart (U, φ) on M at x and a chart (V, ψ) on

M at f (x) with the above composition smooth at φ(x) (and this is again well-defined). From now on, things will be

smooth, and note that smoothness implies continuity.

Definition 14

A (smooth) diffeomorphism between two smooth manifolds is a bijection f : M → N such that f and f −1 are

smooth. we will write this as M ≃ N.

Example 15

We know that RP1 is the space of lines in R2. Then RP1 is diffeomorphic to S1, and similarly CP1 is diffeomorphic

to S2.

In particular, when we said that manifolds may have several smooth structures earlier, we were looking at equiv-

alence classes up to diffeomorphism. And it turns out that R4 has infinitely many smooth structures that are not

diffeomorphic to each other (this is a result of Taubes).

Next, to define the differential of a smooth map M → N, we need the notion of a tangent bundle. Since this is a

graduate level course, we’ll first discuss bundles, which will require more notation. There are two types of bundles –

first of all, fiber bundles look “locally like a product but globally like a twist,” and a good example to keep in mind is

that the Mobius strip is a bundle over a circle.

Definition 16

A fiber bundle is a map p : E → B from a space E to a base space B with fiber F if for all x ∈ B, there is

some neighborhood U of x in B such that there is a homeomorphism ψ : p−1(U)→ U×F such that the following

diagram commutes (where π is the projection from U × F onto the U coordinate):

p−1(U) U × F

U

ψ

p
π

We call ψ a local trivialization of the bundle, since locally we just have a product. But globally we may not have

a product:

Example 17

We always have the trivial bundle B × F → B given by production, and any covering map is a fiber bundle where

the fiber is a discrete set. And finally, the Mobius band is given by M = R × [0, 1]/ ∼ with identification given

by (x, 0) ∼ (−x, 1); then the fiber is R and the base is [0, 1] with endpoints identified, which is the same as S1.

More explicitly, our fiber bundle is the map p : R× [0, 1]/ ∼ → [0, 1]/0∼1 = S1.
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2 January 12, 2023
Our first homework assignment is posted and is due next week, and lecture notes are also available on Canvas. In

general, lecture notes will have slightly more detail than we discuss in class – for example, we didn’t discuss manifolds
with boundary last time. We will talk about manifolds without boundary in this class, but we should keep manifolds

with boundaries in mind (and there’s a homework problem on it) – the basic idea is that instead of looking locally like

Rn everywhere, a manifold looks locally like Rn at interior points and like the half-plane Hn ⊆ Rn at boundary points.
We must show that this is well-defined (for example, we can’t be an interior point in one chart and a boundary point

in another because there’s no homeomorphism between them).

Proposition 18

The boundary of a manifold with boundary is a manifold without boundary.

One tricky point is that the product of two smooth manifolds without boundary is another smooth manifold without

boundary, but the product of two smooth manifolds with nonempty boundary will be a topological manifold
with boundary but not a smooth manifold with boundary (the usual example is to take the product of an interval

with itself, forming a square). What we end up with is a “manifold with boundary and corners,” but we won’t define

that.

At the end of last lecture, we also started discussing bundles, moving towards discussing tangent bundles. Specif-

ically, we defined a fiber bundle (also called locally trivial fibration) with fiber F to be a total space E mapping

(under a map p) to a base space B, such that for each point in B there is a neighborhood U where the inverse image

p−1(U) is homeomorphic to U × F in a way commuting with p and the projection pU : U × F → U. (So we have a

continuous family of fibers over the points in B.)

For any point x ∈ B, we call its preimage p−1(x) the fiber at x and denote it Ex – note that under the homeo-

morphism p−1(U)
ψ−→ U × F , we have Ex ≃ F . (We call F the abstract fiber.) We explained the Mobius strip as an

example last time, and we’ll mention another example one now:

Definition 19

We have the Hopf fibration p : S3 → S2 by thinking of S2 = S3/S1 – this is an S1 fiber bundle in which the

fibers are circles. More generally, we can project S2n+1 to S2n+1/S1 = CPn; this is also an S1 bundle.

This can be proved by hand using local coordinates and find the local trivialization ourselves, but later we’ll talk

about group actions on manifolds and see that such fibrations often arise.

Definition 20

An morphism of two fiber bundles p1 : E1 → B1 and p2 : E2 → B2 is a pair of (continuous) maps (φ, φ̃) where

φ : B1 → B2 maps between bases and φ̃ : E1 → E2 maps between the total space, such that “the square of maps

commutes” (φ ◦ p1 = p2 ◦ φ̃). An isomorphism of two fiber bundles is defined similarly but with homeomorphisms

as requirement.

In particular, the diagram commuting means that fibers are taken to fibers.
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Example 21

Recall that CPn is the space of one-dimensional complex linear subspaces of Cn+1. The tautological bundle
E → CPn is defined as follows: we define E ⊆ CPn × Cn+1 via

E = {(ℓ, v) : v ∈ ℓ},

with projection given by (ℓ, v) 7→ ℓ. In other words, we have a line over every point (subspace) in CPn which is

the subspace itself (so the fibre at ℓ is ℓ, and the abstract fiber is C).

We get such a tautological bundle for RPn and the Grassmannian as well, since they are defined similarly as spaces

of subspaces. Sometimes this bundle is also denoted τ .

Example 22

Consider the tautological bundle τ → RP1 = S1 – this is a line bundle over the circle, and in fact it is isomorphic

to the Mobius band bundle over S1. On the other hand, it is not isomorphic to the trivial bundle (we cannot make

it isomorphic to a product, because it twists).

We’ll focus now on a special case:

Definition 23

A vector bundle p : E → B is defined the same way as a fiber bundle, but now requiring that the fibers Ex are

vector spaces and that the local trivializations are fiberwise linear.

Here, B can still be any topological space, but we’re saying that if we take a map p−1(U)→ U × V and restrict to

the particular fiber at x , we get a linear map between vector spaces. And we can then define similar notions for vector

bundles being morphisms or isomorphisms – the definition are the same but we now also require fiberwise linearity for

the maps.

Just like we can think about manifolds as gluing together subsets of Rn, we can think of a bundle as gluing together
local trivializations via transition functions. In other words, suppose we have a family (Uα, ψα) of local trivializations

ψα : p
−1(Uα)→ Uα × F , we have transition functions (also called clutching functions) ψβα : ψα(p−1(Uα ∩Uβ))→

ψβ(p
−1(Uα ∩ Uβ)) defined by ψβα = ψβ ◦ ψ−1α . In other words, we have two “copies” of (Uα ∩ Uβ)× F (one from α

and one from β) and we want a way of describing how to relate the two.

The transition functions ψαβ satisfy a few properties: (1) they are continuous on their domain and in fact homeo-

morphisms, (2) ψαα is the identity for any α, and (3) on any triple overlap Uα∩Uβ ∩Uγ (or more precisely its preimage

under p), we have ψαβ ◦ ψβγ = ψαγ . But as mentioned above, since these transition functions take fibers to fibers

homeomorphically, we can equivalently use the maps ψα : p−1(Uα)→ Uα× F to think of transition functions as maps

ψβα : (Uα ∩ Uβ)× F → (Uα ∩ Uβ)× F :

(Uα ∩ Uβ)× F (Uα ∩ Uβ)× F

Uα ∩ Uβ

ψβα

If we start with a point (x, v) ∈ (Uα ∩Uβ)×F in the top left, then under ψβα, we must send x to x because fibers

are taken to fibers, and for any fixed x we get a homeomorphism F → F depending on x and depending on which

6



local trivializations we’re on. Thus we can write

ψβα(x, v) = (x, gβα(x)(v)).

In other words, gβα is a continuous map from Uα ∩ Uβ to Homeo(F ) because ψβα is continuous. Then these gβαs

also satisfy the same properties (1), (2), and (3) as before, and now we’re thinking about them as homeomorphisms

of F . And in fact given a collection of these clutching functions, we get a bundle:

Proposition 24

Let Uα be a covering of a base B, and suppose we have clutching functions gβα satisfying properites (1), (2), (3)

above. Then we get a bundle E → B by defining

E =

(⊔
α

Uα × F

)
/ ∼,

with ∼ identifying (x, v) ∈ Uα × F with (y , u) ∈ Uβ × F if x = y and gβα(x)(v), and then having the map

p : E → B induced by the projection Uα × F → Uα.

The point is that the conditions gαα = id and gαβ ◦gβγ = gαγ show us that this ∼ is in fact an equivalence relation.

And objects in this bundle are then equivalence classes, which we can denote [x, v ]. (Notice in particular that for a

vector bundle, the fiber is something like Rn, and then the transition functions are elements of GL(Rn).)
With this preparation, we’re ready to specialize to the objects that we really care about. The goal is to take a

smooth manifold M and define its tangent bundle TM → M, which is a vector bundle over M, such that if we have

two smooth manifolds M and N and a smooth map f : M → N, we get a differential map df : TM → TN which is a

vector bundle morphism.

Example 25

In the case where U ⊆ Rn is an open set, we should have TU = U ×Rn, where a point (x, v) projects to x under

the bundle map. Intuitively, the idea is that the tangent space consists of a point in the set together with a vector

pointing in some direction, which we should think of as a tangent vector at that point.

We’ll now basically take charts on our manifold and clutch these together to get the tangent bundle to the manifold.

The idea is that a map f : Rn → Rm (or similarly a map between open subsets of those spaces) has a differential df

represented by the matrix of partial derivatives.

Definition 26

Let A be an atlas on a smooth manifold M with charts (Uα, φα). Define the tangent bundle TM to be the

quotient

TM =

(⊔
α

Uα × Rn
)
/ ∼,

where ∼ identifies (x, v) ∈ Uα × Rn with (y , u) ∈ Uβ × Rn if x = y and u = (dφβα)x(v).

(Here φβα are the transition functions on the manifold – they are smooth maps between open subsets of Rn –

so in coordinates (dφβα)x is basically the linear transformation given by the Jacobian matrix at x .) The idea is that

each copy of Rn is the tangent space at a point in Uα, and we’re doing the same gluing procedure as we’ve previously

been doing. There are various other interpretations of tangent vectors / bundles that we can use too (instantaneous
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velocities along a path, derivations, germs, or coordinates), and it’s important to be able to switch between them for

different purposes – we’ll discuss this next time.

3 January 17, 2023

Last lecture, we discussed bundles (in which we glue together local trivializations) and in particular tangent bundles.

Tangent bundles TM → M to a smooth manifold M can be defined in several equivalent ways, which all boil down to

working locally in charts and patching them together. One way is to take an atlas (Uα, φα), look at the various copies

Uα×Rn, and then glue them together via the transition functions φβα, gluing (x, v) ∈ Uα×Rn to (y , w) ∈ Uβ ×Rn if

and only if x = y (on the manifold) and w = (Dφβα)v (where Dφβα is the derivative of the change of charts φβ ◦φ−1α ,

which is basically the Jacobian matrix in coordinates). So we’re thinking of v as the “tangent vector” in a particular

direction at x , and a tangent vector should be thought of as an equivalence class [(x, v)]. We then get the projection

map π : TM → M sending [x, v ] to x .

As an exercise for us, there is a more natural way to do this: define the tangent space of an open set in Rn and glue

those together using the differential of the transition functions (we’re trying to make a distinction between derivatives

and differentials for now, since differentials map from tangent spaces to tangent spaces):

Proposition 27

Using this alternate definition of the tangent space, TM → M is a vector bundle over M, and if M is a Ck manifold

(meaning transition functions are of class Ck) then TM is a Ck−1 manifold of dimension 2 dim(M).

(Basically the Uα × Rns should be thought of as the local trivializations, and the fiber at x ∈ M, denoted TxM, is

Rn.) Talking more now about the tangent vectors [(x, v)], there are some intrinsic definitions that can be made that

make the objects less abstract:

• Geometrically, we can imagine drawing a path on M and letting v be the velocity vector along that path.

(We’re assuming M is a smooth manifold here, and that’s the standing assumption.)

Definition 28

Let γ : I → M be a path, where I = (−ε, ε) is an interval containing 0. Then TxM is the collection of smooth

paths γ : (−ε, ε)→ M with γ(0) = x , modulo the equivalence relation

γ1 ∼x γ2 if (f ◦ γ1)′(0) = (f ◦ γ2)′(0) ∀f : M → R smooth.

The idea is that we haven’t defined what it means to take a derivative of a map I → M, but if we compose it with

a map M → R we get a map (−ε, ε)→ R. And this is also equivalent to having an equivalence relation

γ1 ∼x γ2 if D(φα ◦ γ1)′(0) = (φα ◦ γ2)′(0)

for all charts (or just for one chart) φα on a neighborhood of x in M. The point is that φα ◦ γ is now a map from

(−ε, ε)→ Rn. (Right now, TxM doesn’t look like Rn just yet, but we’ll see soon how that comes up.)
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Definition 29

Let f : M → N be a smooth map between smooth manifolds. Then df : TM → TN is a smooth map which is

also a bundle map (meaning it’s fiberwise linear), defined in the following way: (df )x maps TxM to Tf (x)N linearly

by setting

(df )x [γ] = [f ◦ γ].

(Here we think of TxM with the “equivalence class of paths” definition.)

• Alternatively, tangent vectors tell us how to differentiate smooth functions in a particular direction. So we’re

thinking about “derivations,” which turn out to be directional derivatives of smooth functions f : M → R in this

case.

Definition 30

A derivation on M at the point x ∈ M is a linear map X : C∞(M) → R satisfying Leibniz rule X(f g) =

(Xf ) · g(x) + f (x) · (Xg). The space of derivations at x ∈ M is denoted Derx(M).

Clearly Derx(M) is a vector space (since we can add two such derivations and multiply by constants) – the point

is that we can define this to be our tangent space TxM as well, and this vector space is Rn.

Example 31

Suppose M = Rn. Then a derivation is a map X : C∞(Rn)→ R, and for any f : Rn → R and for any fixed v ∈ Rn

(this takes the role of our “direction”) we have the formula

Xf =
d

dt

∣∣∣∣
t=0

f (x + tv).

So basically we can think of f (x + tv) as a map R→ R, which is a path traveling in direction v , and X is literally

the directional derivative of f : Rn → R at x in the direction v . We do need to check that this is a derivation, but

those properties follow from ordinary calculus. And what we want to prove is that all derivations at x are obtained this

way (that is, all derivations on Rn at x are directional derivatives in some direction v ∈ Rn), and then we can move

things to general manifolds by using our charts.

The best way to prove this is to use coordinates, then pass to local coordinates: let (x1, · · · , xn) be coordinates on

Rn, and let (e1, · · · , en) be a standard basis of Rn corresponding to that choice of coordinates – define ∂
∂xi

∣∣∣
x
∈ TxRn

to be the corresponding tangent vector to Rn in the direction ei ∈ Rn, either as a derivation or as a tangent space to a

path (whichever way we want to define it). Now if M is a smooth manfiold, suppose (x1, · · · , xn) are local coordinates

on M, meaning that we’re identifying Uα with some open set Vα ∈ Rn and x1, · · · , xn are the coordinate functions

for Vα. In other words, (x1, · · · , xn) is the map φα : U → Rn. Then we can define
(
∂
∂xi

)
x
∈ TxM to be the vector

corresponding to (x, ei) ∈ TxRn under the local trivialization of the tangent bundle TM. (So we can take a path class

in Rn and look at the inverse image of the chart map.) Then a basis of TxM is given by(
∂

∂x1

∣∣∣∣
x

, · · ·
∂

∂xn

∣∣∣∣
x

)
.

(We can think of this with whichever definition of tangent vectors we’d like, and various references pick just one of

these definitions, but the point is that we need it to behave the same way under change of charts – for any smooth
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map f : M → N, we get a bundle map df : TM → TN which is fiberwise linear, meaning dfx : TxM → TxN is a linear

transformation Rn → Rn. And what’s important is that we have a chain rule: if M f−→ N
g−→ P , then

d(g ◦ f ) = dg ◦ df

(we can check this in coordinates). We thus get a functor from the category Man (in which objects are smooth

manifolds and morphisms are smooth maps) to bundles Bun (in which objects are topological bundles and morphisms

are bundle maps, meaning they are continuous and fiberwise linear).

Remark 32. One motivating question we may ask is whether TM is trivial (meaning that our manifold is parallelizable).

For example, we can have TS1 be trivial by letting S1 = R/Z, using the single coordinate t and having t → ∂
∂t be the

global fiberwise basis. But we may also ask similar questions about TSn, TRPn, TCPn, or for a Riemann surface.

Definition 33

A section of a bundle π : E → B is a (continuous) map s : B → E such that π ◦ s = idB.

We can think of taking a point x ∈ B and getting a point sx ∈ Ex in the fiber above x , such that x → sx is

continuous (meaning that the map x 7→ (x, sx) continuous in the local trivialization as a function from U to U × F ,

where U contains x and is open in B). Not all fiber bundles have sections, but vector bundles do always have a special

one:

Example 34

Let E → B be a vector bundle. Then because each Ex is a vector space, we get the zero section mapping each

x ∈ B to 0 ∈ Ex .

Definition 35

A vector field on a smooth manifold M is a section of the tangent bundle TM. In other words, for each point

x ∈ M, we associate a tangent vector vx ∈ TxM. This vector field is smooth if the association is a smooth map

in charts (as a map from a neighborhood of Rn to R2n).

Lemma 36

Suppose E → B is a trivial vector bundle. Then there is at least one nowhere vanishing section.

Indeed, since E → B is trivial, it is isomorphic to B × Rn, and we have n linearly independent vectors so we have

n linearly independent sections. So for any v ∈ Rn we get a constant section and we can use global isomorphism

E ≃ B × Rn to get a section on E. And this, along with the hairy ball theorem (which says that any smooth vector

field on S2 always has a zero), proves that the tangent space TS2 is nontrivial.

(Later on in the class, we’ll prove the Poincaré-Hopf theorem, which says that if M has a nowhere vanishing

vector field, then the Euler characteristic of M must be zero. So that’s something we should keep in mind – it’s a

generalization of the hairy ball theorem.)

We’ll finish today’s class by mentioning some operations on vector bundles – the point is that operations on vector

spaces will extend to operations on the whole bundle (which is a continuous family of vector spaces). Since bundles

are locally products, given two vector bundles E1, E2 over the same base B, we can get E1 ⊕ E2 and E1 ⊗ E2, and
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given a single bundle we can get det(E) or Λk(E). We can do this by either (1) first doing these operations on local

trivializations and showing they patch together through transition functions, or (2) using the universal properties of

the direct sum, tensor product, determinant, and so on.

To see an example of (1) in action, if we have a bundle π : E → B and a map f : B′ → B, we can define the

pullback f ∗E → B′ to be a bundle over B′, where we just pull the fibers back to the base B′. So a more explicit

definition is that

f ∗E = {(y , v) ∈ B′ × E : f (y) = π(v)},

but the point is that the fiber of f ∗E at x is just Ef (x). (And the projection f ∗E → B′ maps (y , v) to y .) So one way

to define the direct sum is to take the product space E1 × E2 and have

E1 ⊕ E2 = ∆∗(E1 × E2),

where ∆ : B → B × B is the diagonal map ∆(x) = (x, x).

4 January 19, 2023

(This class will no longer have a midterm, but we will still have a final – the weekly problem sets are basically enough

effort for us throughout the term.)

Our topic for today is immersions, submersions, and submanifolds – we’ll give some precise definitions, examples,

and counterexamples, as well as things to be aware of for differences between references. For all of this lecture, we’ll

have f : M → N denote a smooth map between smooth manifolds (without boundary – if we want, we can look

through the material again and see how much of the theory goes through with boundary), where M has dimension m

and N has dimension n. We thus get a differential df : TM → TN, where the differential dfx : TxM → Tf (x)N at a

point x ∈ M is a linear map between vector spaces, so that df is a vector bundle map.

The rank of a linear map is independent of our choice of basis or of charts, so the rank of the map dfx is well-defined.

That allows us to make the following definition:

Definition 37

We say that f is an immersion if dfx is injective for all x , and it is a submersion if dfx is surjective for all x . Also,

f is an embedding if it is an immersion and a homeomorphism onto its image, and N is a submanifold of M if

the inclusion ι : N ↪→ M is an embedding.

We should be careful that different authors mean different things when they say “embedding” or “submanifold:” for

example, others may consider “embedded submanifold” versus “immersed submanifold.” The point has to do with the

topology: being a homeomorphism onto its image says that we have the induced topology from N. And sometimes

double points (self-intersections) are allowed, so injectivity is removed as an assumption for the map f .

Example 38

Take a circle and gluing two diametrically opposite points in the plane to form a figure-8, or taking the real line

and “curving back” so that the image of the positive real line approaches 0 in the limit both yield immersions.

However, we get the wrong topology – in the first case the map is not injective, and in the second a neighborhood

of that intersection point becomes two open neighborhoods. So both of these examples are not embeddings.
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Remark 39. As a sidenote, there’s lots of linear algebra that may be useful – we can discuss subbundles, metrics,

orthogonal complements, and so on – and we should read the reference posted in lecture notes for this. The point

is always to work with charts / local trivializiations and patch those together with change of charts. Many of our

arguments can be made locally, but not all – immersion and submersion are local statements, but embedding is a global

statement.

Example 40

Fix some α ∈ R and consider the map f : R → S1 × S1 sending t 7→ (exp(i t), exp(iαt)). This map is in fact

an immersion (local coordinates in terms of t), but if α is irrational then f (t) is an injective immersion but not

an embedding – in fact its image is dense in S1 × S1, so it would have to have the trivial topology. But f is an

embedding locally (if we restrict to a small neighborhood of a point); this will turn out to be a more general fact

that we will prove.

Example 41

We can check that graphs of smooth functions are submanifolds, and open subsets of M are submanifolds.

Notice that either being an immersion or being a submersion means that dfx has maximal rank. This is an “open

condition”, so if df has maximal rank at a point, then it will have maximal rank in a neighborhood of that point, and

a sufficiently small C1 perturbation of f will also have maximal rank. But there are cases where we care about a map

having constant rank which is not maximal (and that is no longer an open condition – rank can go up under arbitarily
small deformations).

Example 42

A Lie group G is both a group and a smooth manifold, such that the group structure and manifold structure are

compatible – in other words, the group multiplication G × G → G and inverse map G → G are smooth maps.

Some examples include O(n) and other matrix groups. A Lie group homomorphism φ : G1 → G2 is then a

smooth map which is also a group homomorphism. Then Lie group homomorphisms always have constant rank

(and this is an exercise for us).

Theorem 43 (Inverse function theorem for Rn)
Suppose f : Rn → Rn is a smooth map (just for simplicity – it doesn’t have to be defined on all of Rn) with

f (0) = 0 and (df )0 : T0Rn → T0Rn (the Jacobian matrix) an isomorphism. Then we change coordinates on

the domain so that f is the identity in those coordinates (in other words, we can find a local inverse of f ); more

precisely, there are δ, ε > 0 and a locally defined smooth function g : Bδ(0) → Bε(0) such that f ◦ g = id on

Bδ(0). More generally, if f ∈ Ck , then g ∈ Ck .

We won’t prove this result in class, but it holds pretty generally – we can use the fixed point theorem, so it extends

to Banach spaces using the contraction principle. But the point is that we are just using g to change coordinates in

the domain.
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Theorem 44 (Constant rank theorem)

Let f : M → N be a smooth map between manifolds, and suppose the rank of (df )x is some constant k

for x ∈ M (this is all a local statement, so we can just say this is true on a subset). Then for any p ∈ M
there are local coordinates {x1, · · · , xm} on M at p and {y1, · · · , yn} on N at f (p), such that f (x1, · · · , xm) =
(x1, · · · , xk , 0, · · · , 0).

In particular, if f is an immersion, then f (x1, · · · , xm) = (x1, · · · , xm, 0, · · · , 0), and if it is a submersion, then

f (x1, · · · , xm) = (x1, · · · , xn). So locally, immersions are basically inclusions and submersions are basically projections.

We can read the proof on our own – the point is to prove in local charts, so that we can reduce M to an open set of

Rm and N to an open set of Rn. So we can first prove a linear algebra statement that a single rank-k matrix can be

made of the form mentioned, and then the continuous deformation can be adjusted with more change of coordinates.

With this, the fact we were alluding to in Example 40 immediately follows:

Corollary 45

Let f : M ↬ N be an immersion. Then f is a local embedding, meaning that for any p ∈ M there is some

neighborhood U of p in M such that f |U is an embedding.

(In particular, if we have self-intersections in f , we can avoid having them by taking a small enough neighborhood.)

Definition 46

Let f : M → N be a smooth map. A point x ∈ M is a regular point if dfx is surjective, and a point p ∈ N is a

regular value if the inverse image f −1(p) consists of regular points. Points that are not regular points are called

critical points.

Corollary 47 (Regular value theorem / implicit function theorem)

Suppose f : M → N is smooth, and c is a regular value of f . Then the level set P = f −1(c) is a submanifold of

M with tangent space TxP = ker(dfx).

Proof. Being a regular value implies that f is a submersion in some neighborhood of the level set f −1(c), so by the

constant rank theorem we can change coordinates so that f looks like a projection. Looking in coordinates, we can

then get an explicit description of the kernel of dfx which is exactly what we claim it to be.

Example 48

Since the unit sphere Sn ⊆ Rn+1 is a level set of f (x0, · · · , xn) = x20 + · · ·+ x2n , it is indeed a submanifold.

Example 49

Consider the height function of a torus (so imagine a donut standing up on a table and measuring the height

above the table at each point) – there are then four critical values and the remaining ones are regular values.

We’ll come back to this when we think about Morse’s theorem
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Definition 50

Suppose N ⊆ M is a submanifold (with N having dimension n and M having dimension m). The codimension
codimN is dim(M)− dim(N).

In particular, at any regular value c , the codimension codim f −1(c) is dimM − dimN.

We’ll skip the easy version of the Whitney embedding theorem for now (and return to the harder version later)

since we’re a bit short on time. Instead, we’ll discuss normal bundles – suppose P is a submanifold of M, so in

particular i : P → M is an embedding. Differentiating this yields a bundle map di : TP → TM, so that TxP ⊆ TxM is

a linear subspace for any x ∈ P – in particular, (di)x is always an injection. Thus as we let x vary, we get a tangent

space TP sitting inside TM|P = ι∗TM (that is, we have a bnudle over the whole manifold, and we restrict it to P via

pullback by inclusion). We then claim that TP is actually a subbundle (so that we have a linear subspace, and in a

local trivializion of TM|P we have Rn at each point, and TP basically is a rotating family of planes) – again, this is

something for us to read on our own.

Definition 51

Let P be a submanifold of M. The algebraic normal bundle to P in M is the quotient bundle (not manifold)

N = NP/M of TP ⊆ TM|P , in which the fiber of N at a point x is Nx = TxM/TxP for all x ∈ P . A geometric
normal bundle, also denoted N, is any complement to TP inside TM|P , meaning that it is a subbundle N of

TM|P so that TM|P = TP ⊕ N – in other words, TxM = TxP ⊕ Nx for all x .

It turns out such a complement always exists – for example, we can pick a metric on TM (coming from an inner

product which can be defined continuously, and then patching with a partition of unity), and then given F ⊆ E a

subbundle, we can put a metric on E and define F⊥ to be the orthogonal complement with respect to that metric, so

that E = F ⊕ F⊥. And the algebraic and geometric normal bundles are isomorphic because we’re quotienting in both

caess.

Lots of these constructions can be made functorial, but we won’t lean too much into that perspective – one thing

we can say is that taking the differential is an assignment (which we can make into a continuous map)

Imm(M,N) f→df−−−→ Mono(TM,TN)

(here the monomorphisms are bundle maps that are injective). So if we have two manifolds, we may ask whether an

immersion of manifolds exists (whether there are obstructions), and that’s what we’re moving towards in this class

by studying things at the linear level for bundle maps. And we may also ask whether we can homotope from one

immersion to another through immersions, or whether any immersion can be approximated by an embedding (though

we need a topology to ask this question). The answer to this last question is no – we cannot approximate the figure-8

with embeddings.

We’ll advertise two results that are beyond the scope of this class to prove, but we’ll be able to start moving

towards answering some of these questions stated. It turns out that if M is compact and strictly smaller in dimension

than N, then the map f → df is a weak homotopy equivalence, so information about topology of immersions can

be gathered from studying bundle maps. And Smale’s theorem says that there is a homotopy between the usual

embedding ι : S2 ⊆ R3 and −ι through immersions, which basically tells us that we can actually turn a sphere inside

out using only immersions in a concrete way – we can watch videos online if we want to see this in action!
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5 January 24, 2023
Some of the lecture content has been rearranged – next time we’ll discuss transversality and Sard’s theorem, and

today we’ll discuss the easy Whitney embedding theorem (the harder one coming later in the class), the tubular

neighborhood theorem, Ehresmann’s theorem, and group actions. All of this is basically discussing proper immersions

and submersions, so we’ll start by reviewing the definition there. Recall that an injective immersion is not necessarily

an embedding, since we want a homeomorphism onto the image. If we add the requirement that the immersion is also

proper, meaning that inverse images of compact sets are compact, then it becomes an embedding. (In particular, if we

have a continuous map f : M → N and M is compact, then f is proper. And if f : M → N is proper and continuous,

then it is in fact a closed map. So if it is a bijection – for example if f is an injective immersion, we have a bijection

between M and the image in N – it will be a homeomorphism since the inverse is also continuous.)

Example 52

Embedding an open interval into a plane in the usual way is not a proper map, because the inverse image of some

box containing one of the endpoints is a half-open interval. On the other hand, embedding the interval into the

diameter of an open disk would be proper. Finally, the “figure-6 embedding” that we mentioned previously is not

proper, because we can look at some closed box around the almost-intersection-point.

Theorem 53 (Easy Whitney embedding theorem)

Assume M is a smooth compact manifold without boundary (the proof does work with boundary too). Then M

can be smoothly embedded into Rn for some n.

So even though we talked about abstract manifolds, compactness allows us to think of a manifold as a submanifold

of Rn. (And then we can worry about how large or small n can be later.)

Proof sketch. Let (Ui , φi) be coordinate charts on M. Since M is compact, we can cover it with finitely many open

balls Bi such that Bi ⊆ Ui for all i (by picking balls around each point in M small enough to be contained in some

chart, then using compactness). Then each Bi is a subset of M and is diffeomorphic (homeomorphic if we don’t

assume smooth) to a ball in Rm.

Now for each i , choose a bump function βi whose support is contained in Ui , such that βi is identically 1 when

restricted to the ball Bi . (So basically βi is 0 outside of Ui and 1 in Bi and smoothly varies in between.) Specifically,

we can define these on Rm and then map via the charts to the manifold. If we have k charts (Ui , φi) on M, then we

can define a map φ : M → Rm×k (really Rm times itself k times) given by

φ(x) = (βi(x)φi(x))
k
i=1.

So basically we’re using the charts but multiplying them down with the bump function. We can then check that φ

is a proper injective immersion, hence an embedding. (Proper is automatic because M is compact, and for injectivity

we use that βi is 1 on the ball, so being the same means that φi must agree on the ball for both embeddings. And it

suffices to check that we have an immersion on some Bi .)

We can also drop the assumption that M is compact:
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Corollary 54 (Extension of easy Whitney embedding)

Let M be a second countable (smooth) manifold (with or without boundary). Then M can be properly (smoothly)

embedded in Rn for some n.

The idea is to use a smooth exhaustion function f : M → R, meaning that the map is proper and bounded below

(equivalently, the inverse image of (−∞, c], which is basically a “sub-level-set,” is compact for all c ∈ R). Such a

function always exists when M is second countable. Then we can find a locally finite countable cover by charts with

open balls Ui ; if ρk is a partition of unity subordinate to that cover (which we can get from the bump functions via
βk (x)∑
βk (x)

), then we can look at

f (x) =

∞∑
k=1

kρk(x).

Then again we can write down some map and show that it is a proper embedding. The point is that a connected

paracompact manifold is actually second countable, so the only difference is that paracompact manifolds can actually

have uncountably many connected components.

Theorem 55 (Tubular neighborhood theorem)

Let S be a compact submanifold of M. Then we can find a neighborhood of S so that M looks like the normal

bundle. In other words, there is some tubular neighborhood ν of S (that is, there exists a diffeomorphism N → ν,

where N is the total space of the normal bundle of S).

Proof. One proof uses the constant rank theorem. First, we’ll assume S is a submanifold of Rm, not necessarily

compact but properly embedded. Looking at the tangent space TxS at a point x ∈ S, we can consider the map

x 7→ TxS ⊆ Rm. This is called the Gauss map – we map x to the corresponding tangent subspace in the embedding

into Rm. Then taking the geometric normal bundle of S in Rm (where at each x we have Nx = (TxS)⊥), we can

define a map from the normal bundle φ : N → Rm by the formula

φ : (x, v) 7→ x + v .

(This makes sense because x ∈ S ⊆ Rm and v ∈ Nx ⊆ Rm.) Take the differential dφ restricted to the zero section

of N (in other words, differentiating φ, then restricting to the part of the map where v = 0); we claim this map is

full rank. Indeed, the restriction of this map to TS is an injection because S was properly embedded in Rm, and then

restriction to the fiber of the normal bundle Nx is also injective. (Basically we should think of this as being “block

digonal” in the x and v parts.) So we have an immersion, and since the tangent space is a direct sum of the tangent

space at S and the normal fiber. We claim this fact will be true in a neighborhood U of S in the normal bundle – that

is, if U is sufficiently small, then φ is injective. We can prove this by contradiction. If S is compact, then φ restricted

to a compact neighborhood is proper, so we do get an embedding. (It still works if S is not compact, but we have

to do a bit more work.) But this yields the tubular neighborhood by choosing a small enough neighborhood, and the

projection is (x, v) 7→ x .

So now for the general case, because S is compact, we can restrict to a small neighborhood and assume M is

second countable. Embed M in Rm, so that we have S embedded into M, embedded into Rn. Then find a tubular

neighborhood of M by our first step, defining a map φ : N → M (where N is the normal bundle of S in M) via

(x, v) 7→ π(x + v).
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Theorem 56 (Ehresmann’s theorem)

Any proper submersion is a locally trivial fibration (that is, a fiber bundle π : E → B).

Remark 57. This is false if we don’t have a proper map: for example, the map Rn − {0} → Rn given by x 7→ x is a

submersion but not locally trivial because of the hole.

Proof. The idea here basically comes from the implicit function theorem – naively, define Ex = π−1(x), though we

don’t yet know that the Exs are diffeomorphic. But because π is a submersion, by the implicit function theorem we

know that there are local coordinates at any point in Ex in which we have a product. The trouble is that it’s not clear

how to patch the local coordinates together to get a product overall of the form F × U.

So what we’re going to do is show that the normal bundle of each fiber is trivial – specifically, it’s the pullback

of the tangent bundle at a point in the base. Then we can use the tubular neighborhood theorem to get the local

trivialization we want. In more detail, since π is a submersion, each fiber Ex = π−1(x) is a submanifold. (Level sets

turn out to be proper submanifolds, since inverse images of a point are compact.) The implicit function theorem then

says that TpEx = ker(dπ)p – the tangent space is modeled by the kernel of the differential dπp : TpE → Tπ(p)(B),

where π(p) = x . If we do this at every point, we thus get a subbundle of TE which we can call Vert = ker(dπ) (it’s

called a vertical subbundle). (One thing we must check is that it patches correctly on the transition functions, but

it does.)

Now choose a complement to this subbundle at each point – the point is that we can find a complementary

subbundle, called the “horizontal bundle,” in some way (though it may not be canonical) such that TE = Vert⊕Horiz.

(In other words, TpE = ker(dπ)p ⊕Hp.) For example, we may take Hp to be the orthogonal complement of Vert with

respect to some choice of metric on TE. But now dπ is a linear map (dπ)p : TpE → Tπ(p)B, and if we restrict it

to the horizontal space (meaning that we take (dπ)p and restrict it to Hp, giving us a map Hp → Tπ(p)(B)), we get

an isomorphism because it takes the vertical space to zero and thus this map passes to the quotient; then since π is

a submersion and we have the same rank in both cases, we do get a bijection. Thus the restriction of the horizontal

space to the fiber Ex gives us an isomorphism to the fixed vector space TxB. The horizontal space is normal to the

fibers so it is trivial, and then we get the product by the tubular neighborhood theorem.

Finally, we’ll talk a bit about group actions: suppose G is a Lie group acting on a manifold M. We say the action

is smooth if the map G ×M → M is smooth. We’ll use without proof the following result:

Fact 58 (Slice theorem)

Assume that G acts smoothly on M with the action being free and proper (here free meaning that Gx = {g ∈ G :
gx = x} is just the identity for all x , and proper meaning that the map (g, x) 7→ g · x is proper). Then M/G is a

smooth manifold with π : M → M/G a submersion.

This is basically just about proving a bunch of intermediate results, using flows and the implicit function theorem.

But we should be careful – without a proper action the quotient may not be Hausdorff.

Example 59

CPn is the image of S2n+1 under a group action by S1, and similarly the Grassmannian is also a similar quotient.

We can actually upgrade this conclusion to saying that π : M → M/G is a principal G-bundle – the important

part here is the description in terms of local trivializations.:
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Definition 60

Let G be a topological Lie group. A principal G-bundle is a fiber bundle π : P → B with extra properties: (1)
the fiber is the group G, (2) the total space P has a free, fiberwise G-action G×P → P sending (g, x) 7→ gx , (3)
the induced action on the fiber π−1(x) is transitive (meaning that it has just a single orbit and is really a copy of

G), (4) there are local trivializations ψ : π−1(U)→ U×G which are equivariant, meaning that ψ(g ·x) = g(ψ(x))
for all g ∈ G and x ∈ π−1(U).

So the local trivialization respects the action of G.

Fact 61

If we look at the transition functions for such a principal G-bundle, usually we have gαβ : Uα ∩ Uβ 7→ Homeo(F ),

and in our case that maps factors through G by the last condition (fiberwise we are just multiplying by some

g ∈ G). So gαβ maps from Uα ∩ Uβ to G and sends (g, y) to gy – in other words, the action of G on M is a

group homomorphism from G to Homeo(M).

We’ll come back to use this in the future, so it’s good to read up on it if we’re not too familiar with these

descriptions.

6 January 26, 2023
Today’s topics are transversality and Sard’s theorem, both of which we may have already seen in Rn. The idea with

transversality is to reinterpret the constant rank and regular value theorems in another way:

Definition 62

Two (smooth) submanifolds S1, S2 ofM are transverse at an intersection point x , denoted S1 ⋔x S2, if the tangent

planes span the whole tangent space, meaning that TxS1+TxS2 = TxM. We say S1 and S2 are transverse if this

holds at all intersection points.

(We don’t need to have a direct sum in the sum above.)

Definition 63

Let f : P → M be a map between (smooth) manifolds, and let S ⊆ M be a smooth manifold. We say that f is

transverse to S, denoted f ⋔ S, if df (TxP ) + Tf (x)M = Tf (x)M for all x ∈ P with f (x) ∈ S.

In other words, we again look at the two tangent planes, but one of them is coming from the image of the map f .

Example 64

A map f is transverse to a point if and only if p is a regular value of f (since the tangent space of a point is trivial).

Also, S1 is transverse to S2 if and only if the inclusion inclS1 is transverse to S2, and so on, so the definitions are

consistent. Additionally, f ⋔ S if and only if the graph of f is transverse to P × S.

The regular value theorem says that the inverse image of a regular point is a submanifold, and now transversality

allows us to generalize that result:
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Proposition 65

LetM be a manifold and f : P → S be a map. If f ⋔ S, then f −1(S) is a submanifold of the domain P . We already

know the tangent bundle by the constant rank theorem, and the normal bundle is the pullback of the normal bundle

of S, with codim f −1(S) = codim(S). So in particular for any submanifolds S1 ⋔ S2, the intersection S1 ∩S2 is a

submanifold with T (S1 ∩ S2) = TS1 ∩ TS2 (with dim(S1 ∩ S2) = dim(S1) + dim(S2)− dim(M)).

The proof here is a formal manipulation – we’re basically always using tricks of the sort in the example above to

get to the implicit function theorem.

Proof sketch. The first statement is the most important, and then the statements about the normal bundle implies

everything else. Checking that f −1(S) is a submanifold is a local statement (until we check that it’s actually a

homeomorphism onto the image). Recall that the inverse image of a point is a properly embedded submanifold, and

we’ll reduce to that case.

Without loss of generality (by choosing local coordinates) we can assume M = S × N is a product of S with its

normal bundle (basically some Rn). Then S ↪→ S × N via the zero section is an embedding, and we can consider the

projection π : S×N → N. We have S = π−1(0), and we must check that the composite map π ◦ f : P → N has 0 as

a regular value since f −1(s) = (π ◦ f )−1(0). But we have the assumption that f ⋔ S, so (π ◦ f ) ⋔ 0 and d(π ◦ f ) is

onto (because the tangent directions to f go to zero under the projection so we don’t need to span those directions).

Thus, at least locally (leading us to a local trivialization), the normal direction to f −1(s) is exactly to pullback of N.

(This is what we discussed last time – the normal direction to the level sets under a submersion are exactly the pullback

of some tangent vector in the image.) The same is true for transition functions (first pull back a local trivialization,

and perform a change of trivializations). Since everything pulls back, we do have a submanifold.

Definition 66

Two maps f1, f2 into a manifold M are transverse denoted f1 ⋔ f2, if and only if f1× f2 ⋔ ∆ (where ∆ denotes the

diagonal in M ×M). The fiber product of P1 and P2 along f1, f2 is (f1 × f2)−1∆.

In other words, we’re considering the points {(x1, x2) ∈ P1 × P2 : f1(x1) = f2(x2)}. And as a direct corollary, f1
being transverse to f2 means that the fiber product is a submanifold. This is a similar definition as for pullback bundles,

and we can now calculate things like the normal bundle, the dimension of the fiber product, and so on. And we can

read the lecture notes for more detail.

We can now turn to Sard’s theorem – for Sard’s theorem, Whitney embedding, and some other theorems, we need

our manifolds to be second countable instead of just paracompact. We’ll start with the version for smooth maps

f : Rn → Rm and take it to maps on manifolds by working in charts. ’

Theorem 67 (Sard)

Suppose we have a map f : Rn → Rm of class Ck , where k > max(0, n −m). Then the set of critical values of f

is Borel measure zero in Rm.

As stated, the result extends to finite-dimensional manifolds by using that second countability yields a countable

family of charts, and the union of countably many sets of measure zero is also measure zero. But it also extends

to Fredholm maps between separable infinite-dimensional Banach manifolds (defined just like for finite-dimensional

manifolds, but instead of locally being Rn we have a separable Banach space) – then n−m is the index of df , defined

to be dim ker(df )− dim coker(df ). This goes under the name of Sard-Smale.
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Remark 68. The inequality in Sard’s theorem is indeed sharp – Whitney showed an example of a C1 map R2 → R1

in which the critical locus (the set of critical points) is one-dimensional with image containing an arc γ. So the image

contains an interval in R. The idea is that the tangent plane is always horizontal, but the image manages to “climb.”

Definition 69

In the result above, a set A ⊆ Rn has Borel measure zero if for all ε > 0, there is some cover of A by countably

many balls of total volume at most ε (under the Lebesgue measure).

We now start to see why secound countability was crucial – the countable union of Borel measure zero sets is

itself measure zero. In particular, if we have a C1 map f : Rn → Rn, then the function takes measure-zero sets to

measure-zero (since we have a bound on the “expansion size” on compact sets), and then for any f : Rn → Rm a C1

map where m > n, the image of f is indeed measure zero because we can cover Rn by a very thin slab inside Rm. (C1

is crucial here – otherwise we could use the space-filling curve.)

Definition 70

A set A ⊆ M is measure zero if A intersected with any chart is measure zero in Rn (or equivalently, for just a

single chart intersecting an arbitrary point).

(This is indeed a well-defined notion by the previous proposition and because M is second countable.)

Example 71

A closed measure-zero set is nowhere dense (since the complement is open and dense).d

Dense sets behave well set theoretically except under countable intersections, and they in fact behave nicely under

intersections too:

Theorem 72 (Baire’s second category theorem)

A countable intersection of open, dense sets in M is dense in M if either M is a complete metric space or locally

compact Hausdroff (this is where Sard-Smale comes into play). In particular, this holds in a finite-dimensional

manifold M.

We say that a set A is comeagre (sometimes also a Baire set) if it contains a countable intersection of open and

dense sets. We can then say that a point is generic in a manifold if it belongs to such a set. And taking countable

intersections of such keeps us within this class of comeagre sets.

Theorem 73 (Sard’s theorem, smooth version)

Let f : M → N be a smooth map between second countable manifolds. Then the locus of critical values of f are

measure zero, and in particular (from the proof) the set of regular values are comeagre.

The proof will be skipped here (it’s in the lecture notes), but it’s nice – the idea to first look in the domain for the

critical locus of f . Then cover that locus into pieces that are submanifolds, and use the fact that maps into a larger
dimension have image measure zero. For that, to have a critical point of a map M → R requires the differential to

be onto, but that really means that it vanishes. So if the equation cuts tranversally, we will have a submanifold, and

otherwise we have a locus where the first derivatives vanish. Then we can cover by level sets to reduce the derivative

order by 1 and repeat. Finally, for high enough order
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Fact 74

In particular, the results from before on manifolds still hold for smooth maps: for example, if we have a map

f : M → N with dim(N) > dim(M), then the image of f has measure zero.

Example 75

From algebra, we know that the generic polynomial of degree k ≥ 1 in one variable has only simple zeros – we

can now prove this using Sard’s theorem.

Let M be the space of degree-k polynomials (which is a manifold by reading off coefficients). Consider pairs (x, p)

where x ∈ Rn and p is a polynomial. The bad set is the points x that are a zero of p that are not simple, meaning that

we want P (x) = 0 but dP (x) = 0. We just need to show that we can indeed hit any values, so this map is transverse

to 0 and thus the bad locus is a submanifold of P ; look at the projection to P and apply Sard’s theorem to get the

result.

Recall that Whitney’s embedding theorem tells us that we can always embed in Rn for some n, and there’s a

strengthening of it which allows us to say some things about how big n can be:

Proposition 76

Let M ↪→ Rk be a (smooth) embedding. Then the generic projection of M onto a hyperplane Rk−1 ⊆ Rn is

immersed if k > 2 dim(M) and embedded if k > 2 dim(M) + 1.

Proof sketch. The point is to prove that the “bad equations cut transversally” – this is always the idea with how to

solve these questions. To define the projection, we must choose a hyperplane in Rk along with a normal vector v to

it. (In fact, we can fix the plane and move the vector v .) The bad locus includes the points where the projection is

not injective (meaning that x1 ̸= x2 and with the line along v containing both), as well as those where the projection

is not an immersion (meaning that the line at x is tangent to M at x). We just need to phrase this into equations and

show that they cut transversally, and we’ll talk a bit more about this next time.

7 January 31, 2023
We’ll discuss Whitney’s embedding and approximation theorems today – last time, we considered an embedding

M ↪→ Rn and fixed some hyperplane Rn−1 ⊆ Rn. Then the generic projection of M onto Rn−1 is an immersion when

n > 2 dim(M) and injective if n > 2 dim(M) + 1. Combining these (plus some properness) we get an embedding if M

is compact.

Proof. We may parameterize projections onto a fixed hyperplane by choosing some direction v in Rn not in the

hyperplane Rn−1. In other words, we are choosing some element of RPn−1 \RPn−2, but we’re going to work with the

upper half-sphere of Rn instead (that is, making sure our vector v always has last coordinate positive). Then we have

Rn = Rn−1 ⊕ Rv , and for any v we get a projection πv : Rn → Rn−1 by only preserving the first part of the direct

sum. We want to describe the “bad locus” of unit vectors v .

First of all, πV (M) is not an immersion if the line Rv is tangent to M. To write that as a zero locus, we consider

the map (TM \ 0M) → Sn−1 (since TM \ 0M all give us a well-defined direction of tangency) sending w 7→ w
|w | (so

we normalize it to some unit vector). We can check that this is a smooth map (we have to do it in coordinates, but
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clearly it is), and now if dim(TM) > n− 1 then Sard’s theorem tells us the image of this map is measure zero, so that

the generic unit vector is not in the image. But this isn’t quite good enough, since dim(TM) = 2 dim(M) and thus

we need to cut out one more dimension. The last step is to restrict to unit vectors in TM as well (this is sometimes

called the sphere bundle S(TM) = {(x, v) : v ∈ TxM, ||v || = 1}), and now we get a map S(TM) → Sn−1 wish

sends w to w . And we check that that S(TM) is a manifold because the equation cuts transversally to TM, and

dimS(TM) = 2 dim(M)− 1. So indeed the condition for Sard’s theorem is satisfied if n > 2 dim(M).

The second part is very similar: we’ll think about the condition of being “not injective” as not having two distinct

points x1, x2 ∈ M such that the line spanned by x1, x2 is in the direction of v . So the bad locus is the set of lines

spanned by two points in M: that is, it is the image of the map (M ×M) \∆→ Sn−1 (where ∆ denotes the diagonal,

since the points need to be distinct) sending (x1, x2) 7→ x1−x2
|x1−x2| . I(M ×M \∆ is indeed a manifold because it’s an open

subset of a manifold.) Again we must show that this is a smooth map, and then a generic point will not be in the

image by Sard’s theorem (that is, the image has measure zero) if the dimension of the domain 2 dim(M) is strictly

less than n − 1. This is exactly what we wanted to show.

The point is then that we get a strengthening of the Whitney embedding theorem:

Theorem 77 (Medium Whitney embedding theorem)

Any smooth compact n-dimensional manifold M can be embedded in R2n+1 and immersed in R2n.

Proof. This follows from the previous result and the existence of some embedding M ↪→ RN for finite N (by easy

Whitney). Specifically, by induction we can keep projecting to a hyperplane until the inequalities stop holding, and we

use the fact that the map is proper and an injective immersion.

Without compactness, this result also extends like the easy version:

Theorem 78 (Extension of medium Whitney embedding)

Any second countable smooth n-dimensional manifold M (with or without boundary) can be properly embedded

in R2n+1 and immersed in R2n.

Theorem 79 (Whitney approximation theorem)

Let M be an n-dimensional compact manifold. If k ≥ 2n + 1, then any smooth map f : M → Rk can be

approximated by an embedding in the C0 measure – that is, for all ε > 0, there is an embedding g : M → Rk such

that ||f (m)− g(m)||C0 = supx∈M |f (x)− g(x)| < ε.

Proof. Let h : M → RN be an embedding of M for some N, and now consider the map (f , h) : M → Rk+N mapping

m 7→ (f (m), h(m)). This is an embedding, because it’s an embedding in one of the factors. Again by induction, the

generic projection onto a hyperplane M → Rk+N−1 is an embedding if 2 dim(M) < k +N − 1, and then we can repeat

until we get down up until k ≥ 2n+1. (More explicitly, by induction, if M ↪→ Rk+s is an embedding, then the generic

linear projection into Rk+s−1 is an embedding if k + s > 2 dim(M)+1, and we can do this until s = 2dim(M)− k +2.
We then get a map x 7→ (f (x), stuff) where the generic projection is an embedding, and in particular for any ε > 0

we can find such an embedding so that the projection of (f (x), stuff) down to the first coordinate is within the right

distance from f .

Again, this result can be upgraded:
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Theorem 80 (Extension of Whitney approximation theorem)

Let M be a compact n-dimensional manifold. Then for any r ≥ 1, the set of embeddings Emb(M,Rk) is dense in

Cr (M,Rk) if k ≥ 2n + 1, and the set of immersions Imm(M,Rk) is dense in Cr (M,Rk) if k ≥ 2n.

Notice that nowhere in the previous proof did we actually use smoothness – the version of Sard’s theorem that we

actually needed was that a C1 map has image measure zero. And denseness in Cr means that we can approximate

any map within ε Cr distance (which is the sup of the distances across all derivatives up to order r).

Fact 81

There is in fact a strong Whitney’s embedding theorem, which is stated as follows: ifM is a compact n-dimensional

manifold for n > 0, then M can be embedded in R2n and immersed in R2n−1.

This proof requires a surgery and cannot be converted to an approximation theorem – basically the easy fact we

can prove is that we can immerse M in R2n with at most transverse double points (so we can avoid having three points

on the same line, and we can make sure that when two points are on the same line then the projection of their tangent

spaces span everything), and then we need to do a trick to remove intersections.

On the other hand, this bound is indeed optimal:

Example 82

The 2-dimensional manifold RP2 does not embed in R3 (if it were to embed, look at the unit normal vectors and

show that RP2 would need to be oriented, which is not true); alternatively, any connected hypersurface in S3 (R3

plus a point) must separate it into two pieces. And similarly, RP2 does not immerse into R2 (our homework). But

RP2 can in fact be immersed in R3 with at most double and a single triple point (Boy’s surface).

We’ll now mention a few important facts about topologies on function spaces – Hirsch’s book is a good reference

for this, and a lot of this involves using Sard-Smale on function spaces.

Definition 83

Let Ck(M,N) be the class of functions of class Ck (with all partial derivatives up to degree k continuous). We

can place various topologies on Ck(M,N), such as the topology of uniform convergence in Ck on all compact sets

(since we’re not assuming M is compact).

This is motivated by the “compact open topology” of continuous functions C0(M,N), in which the basis is indexed

by compact sets K ∈ M and open U ∈ N, where the corresponding open set indexed by K and U is the set {f ∈
C(M,N) : f (K) ⊂ U}. So if N is a metric space, a sequence of functions converging in this topology uniformly

converges on compact sets.

Example 84

For any compact M, the space Ck(M,Rp) is a Banach space under the Ck norm (it is a vector space because we

can add functions) ||f − g||Ck = maxα,|α|≤k supx∈M |∂αf − ∂αg|.

We’re next going to discuss smooth bundles and smooth sections, switching directions to vector fields and

differential forms from a top-down perspective.
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Definition 85

A bundle π : E → B is smooth if E,B are smooth manifolds and the projection is a smooth map.

For example, if π : E → B is a smooth bundle, then π is actually a submersion – the converse is true by Ehresmann’s

theorem if we have a proper map.

Definition 86

Suppose π : E → M is a smooth vector bundle. A smooth section of π : E → M is a smooth map S : M → E

such that π ◦ s = id. Then (abusing notation) let Γ(E) = Γ(M;E) be the set of smooth sections of E over M.

(The idea is that sx ∈ Ex smoothly varies in x .) Then Γ(E) is a vector space and in fact a C∞(M)-module,

since we can add two smooth sections fiberwise (the map (Γ(E) × Γ(E) → Γ(E) sends (s1, s2) to s1 + s2, sending

(s1+ s2)(x) = s1(x)+ s2(x)), and we can multiply by smooth functions (the map C∞(M)×Γ(E)→ Γ(E) sends (f , s)

to f s, with (f · s)(x) = f (x)s(x) ∈ Ex).

Example 87

If E = ε is the trivial line bundle, then Γ(E) = C∞(M) is just the ordinary set of smooth functions f : M → R.

We can again give Γ(E) various topologies – we often avoid C∞ because it’s a Frechet space instead of a Banach

space, we don’t have the inverse function theorem, and so on – but working with Ck often works well.

Vector fields are then sections of TM, and differential forms are sections of Λk(TM):

Definition 88

Let M be a smooth manifold. A (smooth) vector field on M is a smooth section V of TM, meaning that for

each x ∈ M we have some Vx ∈ TxM in a way that varies smoothly. We will let χ(M) = Γ(TM) denote the space

of smooth vector fields on M.

We can add them and multiply by smooth functions, but what is most important is to look at the “flow” of a vector

field, in which we look at integral curves (which are curves which are everywhere tangent to our vector field). In other

words, if V is a smooth vector field, we want to find γ such that dγ
dt = V (γ(t)) for all t ∈ R, and we give some initial

condition γ(0) = x for some fixed point x ∈ M. This is essentially an ODE because we can write it in coordinates, and

by the theorem of existence and uniqueness of solutions (and dependence on initial conditions) there is some maximal
interval (−ax , bx) on which we have a solution γ : (−ax , bx)→ M. We’ll assume that M is compact, so that a solution

will exist for all t by a covering argument (alternatively, we can show the maximal interval is both open and closed).

We then define the flow

γt(x) = γ(t) for the unique solution of
{
dγ

dt
= V (γ(t)), γ(0) = x

}
.

We’ll show next time that γt is in fact a diffeomorphism for all t ∈ R, basically because existence and uniqueness

implies that φt ◦ φs = φt+s for all t, s (finding a solution for time t, then going for another time s, is the same as just

running the original flow for time t + s) and φ0 is the identity map. So therefore a flow on M can be corresponded to

a path of diffeomorphisms starting at the identity, and thus we have χ(M)“ =′′ TidDiff(M). (Indeed, the derivative of

φt at t = 0 is the same as differentiating γ at time 0, but this is exactly V (x).) And finally we can view this as a map

Φ : R ×M → M sending (t, x) 7→ Φt(x), and this is in fact smooth by ODE theory.
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8 February 2, 2023
Today will cover vector fields and differential forms, discussing flows, the Lie bracket and derivative, differential

forms, and de Rham cohomology. Recall from last time that if we have a (smooth) vector field V (meaning that at

each point we have a vector in the tangent space, varying smoothly), then we get a flow by finding integral curves

of the vector field, meaning that we look for paths γ solving dγ
dt (t) = V (γ(t)) (that is, the tangent vector points in

the direction and magnitude of V ) with some initial condition γ(0) = x . Existence and uniqueness were discussed last

time, but sometimes we can only solve the equation on a small interval γ : (−ε, ε) → M, motivating the following

definition:

Definition 89

A vector field is complete (really, its flow is complete) if the differential equation above has a solution defined on

all of R for any initial conditions.

Example 90

If V is compactly supported, then it is complete (because it is zero away from a compact set, so we can always

extend it further beyond any finite interval).

From now assume V is complete, and let γx : R → M be the unique solution of our ODE with γ(0) = x . We’ll

now adjust our notation so that we can think about these flows in various ways: write φt(x) = γx(t) = Φ(t, x), and

notice that Φ : R×M → M is a smooth function (it’s smooth in t, and it’s also smooth in x by “smooth dependence

on initial conditions”). Thus φt : M → M is a smooth map, and it has the property that φt ◦φs = φt+s for all t, s ∈ R
(by uniqueness). So because φ0 = id and φ−t is the inverse of φt , we see that we have a smoothly varying family of

diffeomorphisms M → M. (We can think of this as a smooth map between manifolds if we give Diff(M) a manifold

structure, but here we’re just thinking of smoothness in the sense mentioned before). All of these different notations

are all called “flow,” but this last one φ : R→ Diff(M) is both a smooth path and group homomorphism.

We can thus look at the “derivatives” of the flow (the only issue being that we haven’t given a smooth topology

on Diff(M) yet). We claim that if we look at the infinitesimal derivative of φt when at φ0 = id at the point x , then

that’s just going to be

V (x) =
d

dt

∣∣∣∣
t=0

γx(t) =
d

dt

∣∣∣∣
t=0

φt(x) = (dΦ)(0,x)

(
∂

∂t

)
(this is just changing the notation and using the definition of our ODE – the last one is saying that we’re taking the

partial derivative in the t-direction at our initial condition).

Theorem 91

Let M be a smooth manifold. Then there is a one-to-one correspondence between complete smooth vector fields

on M and smooth group homomorphisms φ : R→ Diff(M) (also known as one-parameter subgroups of Diff(M)).

(Recall that if M is compact, then we can drop the completeness requirement.)

Proof sketch. We’ve already seen how to go from the vector field to the flow from our above definitions. And for the

other direction, if we’re given a path or group homomorphism φ : R→ Diff, we can define V from our boxed formula

above – we then check that the flow of V is exactly φ by uniqueness.
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Note that if we wanted to differentiate with respect to φt instead of φ0, we get

V (φt(x)) =
d

dt
φt(x) = (dφ)(t,x)

∂

∂t
.

And now if M is compact, we can define the space χ(M) of smooth functions f on M (that is, smooth sections of

TM), and we get a one-to one correspondence X(M)↔ TidDiff(M), since the tangent space should be instantaneous

velocity of any path. But if M is not compact and V is some vector field, there may not be any ε > 0 such that all

flows are defined on (−ε, ε) (meaning that we get no map φ : (−ε, ε)×M → M. Indeed, if M = R \ 0 and our vector

field is just X = ∂
∂t , then we must have φt(x) = x + t and thus no ε works because we will always have arbitarily close

elements to 0.

Example 92

The S1 action on M (take a point and rotate it) can also be thought of as a 1-periodic flow, specifically given by

φ(e it , x) = e itx . (And alternatively we can be thinking of this as an action S1 → Diff(M).)

Definition 93

Let V be a vector field on M, A point x ∈ M is a singular point of V if V (x) = 0.

In particular, this means φt(x) = x for all t and we have a fixed point of the flow. (We can think of “flow” as

coming from “flow of water,” so having V (x) = 0 means we do not have any flow there.) And another way to say this

is that we’re in the zero locus of V , or that we’re looking at the intersection of the “graph” of V in TM with the zero

section. And the point is that if x is a nonsingular point and V (x) ̸= 0, then we can change coordinates so that the

flow is basically a product, meaning that we can find a local slice S (a codimension−1 manifold) which is transverse

to Vx at x . We then get an embedding γy : (−ε, ε)→ M for sufficiently small ε and y sufficiently “close to- V ” (since

transversality is an open condition), so we have local coordinates (y ∈ S, t) and we in fact get an embedding in top

dimension. But if we have a singular point, then the local models can be very wild.

We’ll return to all of this when we do Poincaré-Hopf and intersection theory, but for now we’ll move on to some

different definitions.

Remark 94. Recall that a vector field (which we will call X) on M can be thought of as a derivation over C∞(M),

meaning we get a map C∞(M)→ C∞(M) sending f to Xf .

Specifically, we have Xf = df (X), meaning that for any p ∈ M, we map to (df )pXp ∈ R – that is, we consider

the map dfp : TpM → Tf (p)R ∼= R, so we’re basically differentiating in the direction of the vector field. This is a

R-linear map, and it satisfies Liebniz’s rule X(f g) = (Xf )g = Xf (Xg) for all f , g ∈ C∞(M) (this is just the product

rule rephrased). Any vector field gives us such a function, and in fact any derivation satisfying these properties comes

from a vector field. So once we believe this,

Definition 95

The Lie bracket of two vector fields X, Y is denoted [X, Y ] = XY − Y X and defined by setting [X, Y ]f =

X(Y f )− Y (Xf ) for all f ∈ C∞(M).

We must check that the right-hand side is indeed well-defined and a derivation (R-linear in both X and Y and

satisfying the Liebniz rule), but the Lie bracket of two vector fields is a vector field. The idea is that we can associate

to any Lie group a Lie algebra with a Lie bracket, and that’s what this is doing here – the point is to explain “how
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badly X and Y fail to commute.” The main properties to keep in mind are that this is indeed R-linear in both X and

Y , skew-symmetric (so that [X, Y ] = −[Y,X]), and that we satisfy the Jacobi identity

0 = [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ].

So the space of vector fields is now made into a Lie algebra, and we should keep it as a note in our mind for differential

geometry.

Remark 96. For any Lie group G, we get its Lie algebra g = TℓG, where we regard this as the space of left-invariant
vector fields on G. (Since we have a group action, we can then move the tangent space to any other point in G.)

We can thus show that any v ∈ TℓG extends uniquely to some left-invariant vector field V satisfying (dLg)(V ) = V

(where Lg : G → G is the multiplication-by-g map), and we can also show that the Lie bracket of two left-invariant

vector fields is itself left-invariant by the formula for the Lie bracket.

We also have a notion of a Lie derivative in the direction of a vector field X, denoted LX – we should think of

this as the infinitesimal change along the flow. So if we know how to differentiate functions in some direction (df

applied to X), then derivative of a vector field can be made clear using Rn, but it doesn’t change well under charts

so it’s not well-defined in general. What we actually want to say is that the Lie derivative of a vector field Y in the

direction of the vector field X is itself a vector field: since the flow φt is a diffeomorphism, we can set

LXY =
d

dt

∣∣∣∣
t=0

(φ−1t )
∗(Y )

(the −1 means we’re putting the inverse, or going negative in time, and so we have the pullback of Y regarded as a

section by the diffeomorphism φ−1t ). So basically we let our vector at Y flow along X and we look at how it changes

at time 0. But it turns out LXY = [X, Y ], so we haven’t actually done anything different here – in particular, we see

that

L[X,Y ] = [LX ,LY ] = LXLY − LY LX ,

and we have a Lie algebra homomorphism X 7→ LX . And the key thing to keep in mind is that the Lie bracket is zero

if and only if the flows of X and Y commute, which is the same as saying that Y is preserved by the flow of X.

That’s all we’ll say about vector fields for now, and we’ll very briefly start with the linear algebra of differential

forms. We’ll let V be a vector space over R or C (so that we have a manifold) and we consider the tensor algebra

T (V ) =

∞⊕
k=0

V ⊗k ,

in which an element of T (V ) is a linear combination of pure tensors
∑
x1⊗ · · · ⊗ xk . We then get an algebra with the

product (x, y) 7→ x × y , and if we look only at the skew-symmetric part, we get

Λ∗V = TV/ ∼, x ⊗ y ∼ −y ⊗ x,

where ΛkV = V ⊗k/ ∼. We then get a wedge product on the quotient which we denote x ∧ y (projecting from the

tensor product). Then the dual of ((V ⊗)n) is Hom(V ⊗R,R), and its elements are of the form ω : V × · · · × V → R
(where the product has k terms) which is multilinear and skew-symmetric. We then call this the alteranting form, and

we denote it AkV = Λk(V ∗) = (ΛkV )∗ . Next time, we’ll put this on a manifold and have it smoothly vary with V the

tangent space of the manifold.
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9 February 7, 2023
We’ll continue our discussion of differential forms and de Rham cohomology – we won’t go through all the formulas,

but we’ll go through the main properties and talk about the de Rham isomorphism between de Rham cohomology and

singular cohomology.

Recall that for a vector space V , an alternating k-form is a map α : V k → R which is multilinear and skew-

symmetric. In particular, the space of all such forms Ak(V ) can be thought of as either Λk(V ∗) or (ΛkV )∗. So now

if we let M be a smooth manifold, a differential form is a smoothly varying family x 7→ αx of alternating forms

αx : (TxM)
k → R. Here’s the precise definition – the idea is as always to understand it for an open set of Rn first

and then move it to manifolds using charts (though we can also think about TM as a bundle and wanting the map to

vary smoothly in both x and v ∈ TxM):

Definition 97

Let U ⊆ Rn be an open subset. A k-form is a smooth map α : U → Ak(Rn) (since TxU is canonically Rn at each

point).

In particular, a 0-form means that at each x we map from the zero vector space to R, so we just have a function

f : U → R. Then df is a 1-form – normally we think of it as a map between the tangent bundles, but we can think of

it instead as a map x 7→ dfx , where dfx : TxU → Tf (x)R is regarded as a linear map TxU → R. So if (x1, · · · , xn) are

coordinates on Rn, then we have the 1-forms dx1, · · · , dxn. In these coordinates, a k-form can then be written as a

sum over multi-indices

α =
∑
I

aIdxI =⇒ α(x) =
∑
I

aI(x)dxI ,

where each I = (i1, · · · , ik) is a multi-index 1 ≤ i1 < · · · < ik ≤ n, each aI : U → R is a (smooth – still everything

is smooth) function, and where dxI = dxi1 ∧ · · · ∧ dxin (we often drop the wedges). So this extends to manifolds via

charts, meaning that any k-form on M looks like
∑

I aIdxI in local coordinates (x1, · · · , xn) on M. Then a 0-form on

a manifold is still a smooth function f : M → R, and df is still a 1-form.

Definition 98

Let M be an n-dimensional manifold. A volume form on M is an n-form ω such that in local coordinates, we

have ω(x) = a(x)dx1 · · · dxn with the function a(x) ̸= 0 for all x . Let ΩkM denote the space of smooth k-forms

on M.

The idea is that a volume form is a nowhere-vanishing top-dimensional form, since skew-symmetry means everything

vanishes once we get past n-forms (in fact dimΛkV =
(
n
k

)
for a vector space V ). We may think of ΩkM as the space

of sections of Λk(TM)∗ or as Λk(T ∗M) (here T ∗M is also called the cotangent bundle).

Definition 99

The differential d is a map d : Ωk(M)→ Ωk+1(M) defined in coordinates via

d

(∑
I

aIdxI

)
=
∑
I

daI ∧ dxI .

In particular, daI is a 1-form and dxI is a k-form, so this does yield a (k+1)-form. It’s also well-defined independent

of choices, and for a 0-form the map d : Ω0(M) → Ω1(M) takes in a function f and yields the usual df . By this
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definition, the map is R-linear, and importantly d2 = 0, since for any function f : M → R we have d2f = 0 because

second derivatives commute. Thus we get a de Rham complex

0→ Ω0(M) d−→ Ω1(M)→ · · · d−→ Ωk(M) d−→ Ωk+1(M) d−→ · · ·

which is a chain complex (meaning d2 = 0), and thus we can take its homology, called its de Rham cohomology
(because the index goes up)

HkdR(M) = ker
(
Ωk(M)

d−→ Ωk+1(M)
)
/ im

(
Ωk−1(M)

d−→ Ωk(M)
)
.

Here, we say that we are taking the set of closed k-forms, modding out by the exact k-forms:

Definition 100

A k-form α is closed if dα = 0 and exact if α = dβ for some β.

We’ll now talk about the pullback (which will turn out to be a natural functor) – given a smooth manifold we get

a space of differential forms, and now given a smooth map f : M → N between smooth manifolds we get a pullback

map f ∗ : Ωk(N)→ Ωk(M) given by

(f ∗α)x(v1, · · · , vk) = αf (x)(dfx(v1), · · · , dfx(vk))

for any x ∈ M and v1, · · · , vk ∈ TxM. We can then check that d ◦ f ∗ = f ∗ ◦ d , meaning that d(f ∗α) = f ∗(dα) – in

fact the formula for d was cooked up so that this holds – and thus f ∗ is actually a chain map, thus descending to the

homology of the complex. In other words, f ∗ is also a map on kth de Rham cohomology. Additionally, if we have a

composition of maps M f−→ N
g−→ P , then (g ◦ f )∗ = f ∗ ◦ g∗. In other words, the map M → Ω•(M) or M → H•dR(M)

sending f to f ∗ is a contravariant functor from the category of manifolds Man with smooth maps to the category of

chain complexes with chain maps, and also a functor to the category of vector spaces (HkdR(M) is a vector space)

with the corresponding morphisms.

We’re now ready to discuss the de Rham isomorphism, which will be defined on the chain complex level. Suppose

· · · ∂−→ Ck(M)
∂−→ Ck−1(M)

∂−→ · · · be the singular chain complex, where Ck(M) is the space of k-dimensional singular

chains (linear combinations of simplices) on M and ∂ is the boundary map. The idea is that we will now define

an integration map I : Ωk(M) → Ck(M;R) = Hom(Ck(M);R) by defining the image of the morphism for each

(generator) simplex σ:

I(α)(σ) =

∫
σ

α

for all α ∈ Ωk(M) and each σ : ∆k → M. (Here the integral
∫
σ α is defined via pullback: we have

∫
σ α =

∫
∆k σ

∗α,

where ∆k is the standard simplex in Rk+1, so integration does make sense.) Then by Stokes’ theorem on Rn, we see

that I is a chain map – that is, replacing α with dα means we’re just integrating on the boundary of the corresponding

simplex, and notationally this means I ◦ δ = d ◦ I. Thus integration induces a map I∗ : HkdR(M) → Hk(M,R) in

cohomology.

Theorem 101 (de Rham isomorphism)

The chain complex map I : Ω•(M)→ C•(M;R) (basically Ωk(M)→ Ck(M;R) and then letting k vary) is a chain

homotopy, and thus it induces a canonical (in fact natural in the sense of functors) isomorphism between de Rham

cohomology HkdR(M) and singular cohomology with R-coefficients Hk(M,R).

(It’ll turn out to preserve the ring structure at the cohomology level, but that’s for us to discuss next time.)
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Main idea of proof. We’ll focus on just the isomorphism part – we wish to show that both de Rham cohomology

and singular cohomology have the same properties and that those properties uniquely determine them: (1) homotopy

invariance, (2) the Poincaré lemma, a special case of homotopy invariance but also for special M in fact an explicit

calculation for the isomorphism, and (3) the preservation of the Mayer-Vietoris sequence. Restating (1), we wish to

show that smoothly homotopic maps f0, f1 : M → N induce chain homotopic maps f ∗i in the de Rham complex Ω•

and thus induce equal maps in the homology H•dR. And one way to state (2) is as follows: let U ⊆ Rn be an open ball

(or an open convex subset). Then any closed k-form (for k > 0) is exact, and specifically HkdR(U) = 0 for all k > 0

and H0dR(U) = R.

For a sketch of the proof of homotopy invariance (which yields (2) as a special case), we claim that by naturality it

suffices to prove the result for the sections si : M → M × R (for i = 0, 1) defined via si(x) = (x, i) (which are clearly

homotopic). Indeed, if fi are homotopic, then we have a map F : M× I → N and then fi = F ◦ si . But then if s∗0 = s
∗
1 ,

then by naturality we have (F ◦ s0)∗ = (F ◦ s1)∗. And s∗0 and s∗1 are equal in de Rham, because both of them are

inverses of the projection π : M×R→ M. To show that π∗ and s∗ are then inverses in de Rham, take s = s0. Since s

is a map M → M ×R, s∗ is a map HkdR(M ×R)→ Hk(M) and π∗ maps backwards between those groups. We know

that π◦s = id, so s∗ ◦π∗ is exactly the identity by naturality. But for the other direction, π∗ ◦s∗ is chain homotopic to

the identity by construction: we will construct K : Ωk(M×R)→ Ωk−1(M×R) so that id−π∗ ◦ s∗ = ±(K ◦d+d ◦K)
with signs appropriately chosen. Specifically, we want to integrate dt: if we take (x, t) ∈ M × R, we will map

aIdxI
K−→→ 0, aIdtdxJ

K−→
∫ t

0

aI(x, t)dtdxI

where I is a (k − 1)-multi-index in the second expression. Then we can check that the chain homotopy property does

hold.

For Mayer-Vietoris, suppose U, V are open in M – we have a short exact sequence 0 → Ωk(U ∪ V ) → Ωk(U) ⊕
Ωk(V ) → Ωk(U ∩ V ) → 0, where the first map sends α to (α|U , α|V ) (in other words, the pullback of the inclusion

map) and the second map sends (α1, α2) to (α1−α2)|U∩V , and thus that induces a long exact sequence in (de Rham

co)homology · · · → Hk(U ∪V )→ Hk(U)⊕Hk(V )→ Hk(U ∩V ) δ−→ Hk+1(U ∪V )→ · · · . Then the map I will turn out

to complete the corresponding diagram between the two Mayer-Vietoris sequences (it maps the corresponding terms

and makes the diagram commute). The point now is the following:

Proposition 102

Assume we have a statement P (U) about open sets U of manifolds M, such that P (U) is true if U is diffeomorphic

to some convex open set in Rn (Poincaré lemma). Furthermore, suppose that if P (U), P (V ), P (U ∩ V ) are true,

then P (U ∪ V ) is true (Mayer-Vietoris), and suppose that if {Uα} are disjoint and P (Uα) is true for each α, then

P (
⊔
α Uα) is true. Then P (M) will hold for all manifolds M (remember open sets of manifolds are themselves

manifolds).

So in this case P (U) is the statement of de Rham’s theorem itself (that I gives us an isomorphim and a chain

map). To understand why this proposition holds, note that if M is compact then we just need (a) and (b) (cover

by finitely many open sets), and otherwise use an exhaustion function (a proper smooth map into R) and break into

bands based on preimages, then applying Mayer-Vietoris to the “odd” and “even” bands that slightly overlap.

As a remark, there’s also another step where we need to show, using Whitney approximation, that cohomology

defined using continuous simplices is equivalent to cohomology defined using smooth simplices.
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10 February 9, 2023
We’ll discuss de Rham theory and Poincaré duality today – specifically, we’ll need to discuss compactly supported de

Rham cohomology and then see how Poincaré duality shows up. We’ll then talk about the cup and wedge product and

Poincaré duality for a submanifold, and perhaps talk about orientation, integrating forms on manifolds, and Stokes’

theorem on manifolds (it’s really just that change-of-charts is orientation-preserving, and we can integrate using a

partition of unity and do it on Rn).
Reviewing from MATH 215A, recall that if M is an oriented closed (without boundary) topological manifold, then

M has a fundamental class [M] ∈ Hn(M;Z) in the usual singular homology of M, such that the map PD : Hk(M;Z)→
Hn−k(M;Z) given by α 7→ α ∩ [M] is an isomorphism. And we can pass this result to R-coefficients and dualize, and

in particular this gives us a nondegenerate pairing

PD : Hk(M;R)×Hn−k(M;R)→ Hn(M;R)→ R

given by (α, β) 7→ α ∪ β 7→ ⟨α ∪ β, [M]⟩ (which makes the cap product ∩ the dual of the cup product ∪). We now

want to understand how this all looks under the de Rham isomorphism, since we’ve shown that the cohomology groups

are isomorphic – we should expect that we then get a pairing HkdR(M) × H
n−k
dR (M) → HndR(M) → R which sends

(α, β)→ α∧ β →
∫
M α∧ β. (So cup goes to wedge product, and cap is essentially integrating against the manifold.)

The version we’ll prove for de Rham cohomology allows us to work with not-necessarily-closed manifolds, but we’ll

need compactly supported de Rham cohomology for that.

Definition 103

Let M be a smooth manifold, not necessarily compact. The set of compactly supported differential k-forms is

denoted Ωkc (M), and these also form a chain complex · · · → Ωkc (M)
d−→ Ωk+1c (M)→ · · · (since the differential of

zero is zero) with homology denoted Hkc (M).

(For a compact manifold, Ωkc is the same as the ordinary Ωk .) It turns out that this homology theory may behave

quite differently from the usual one, but it’s useful because we can define it for open subsets (and thus work with

charts). In particular, for an open subset U ⊆ M, extending forms by 0 defines a map ι : Ωkc (U)→ Ωkc (M) (which we

can’t do with usual de Rham). Obviously ι is a chain map, since we can extend by zero before or after differentiating,

and thus we induce a map ιU : Hkc (U) → Hkc (M). (So we can kind of regard this as a homology on M “rel. ends,”

since we’re ignoring the parts at infinity.) And Mayer-Vietoris thus goes in the opposite direction – we have an exact

sequence

0→ Ωkc (U ∩ V )→ Ωkc (U)⊕Ωkc (V )→ Ωkc (U ∪ V )→ 0,

with the maps α 7→ (ιUα,−ιV α) and (α, β) → ιU∪V α + ιU∪V β, thus inducing a short exact sequence in homology.

And now if we have a map f : M → N and we want a pullback map f ∗ : Ωkc (N) → Ωkc (M), we need f to be both

smooth and proper (since we obviously want inverse images of compact sets to be compact), but then we get a map

f ∗ : Hkc (N) → Hkc (M). In other words, we get functors Ω•c(·), H•c(·), where we go from a category of manifolds with

morphisms given by proper maps to the category of chain complexes / vector spaces.

Example 104

We have Hnc (Rn) = Hn(Sn) = R (and Hkc (Rn) = 0 for all other k , including zero, since the only compactly sup-

ported constant function is zero). On the other hand, the usual de Rham cohomology isHndR(Rn) = HndR(point) = 0

for all n > 0 (by the homotopy axiom).
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(Really, what’s happening here is that we’re doing cohomology on the one-point compactification, except reduced

homology for dimension zero.)

Theorem 105 (Poincaré duality for de Rham cohomology)

For all smooth oriented n-dimensional manifolds M (without boundary, but not necessarily compact), the pairing

PD : HkdR(M)→ Hn−kc (M)∗, where PD(α) is the linear functional given by

(PD)(α)(β) =

∫
M

α ∧ β

is an isomorphism.

If α ∈ HkdR(M) and β ∈ Hn−kc (M), then wedging their representatives gives us something compactly supported

and thus we can integrate it on M. And if we assume that this map is well-defined, we can prove that we do

have an isomorphism with the same proof as that of the de Rham isomorphism. Indeed consider the statement

P (U) = {PD is true for U} for any open set U in M. We know that Mayer-Vietoris holds, that Hn behaves correctly

on points, and this behaves well under disjoint union as well, so we can apply Proposition 102. But to check well-

definedness, we need to make sure
∫
M α ∧ β makes sense and that this descends to cohomology by showing that we

have a chain map. That’ll use Stokes’ theorem, so we’ll defer all of this to the end of class if we have time.

Remark 106. Taking the dual of the statement of Poincaré duality for de Rham cohomology, we find that we also have

an isomorphism Hkc (M)
∼= Hn−k(M)∗∗, where the double dual may not be the same as the original space in general

because Hn−k may be infinite-dimensional (because the dual of an infinite product is the direct sum), for instance

if M is an infinite union of points. But if M is compact or the total space of some vector bundle E → M over a

compact manifold, then the de Rham cohomology will be finite-dimensional, and we have Hn−k(M)∗ ∼= Hkc (M) and

Hn+r−k(E)∗ ∼= Hkc (E), where r is the rank of the bundle E. But now looking at ordinary de Rham cohomology, in

which the homotopy axiom H∗dR(E)
∼= H∗dR(M), we can then use Poincaré duality to get H∗+rc (E)

∼= H∗c(M) and we

don’t get homotopy invariance.

There’s a few useful notions that we may want to use when working with these objects:

• A good cover of a manifold is a cover by charts so that all intersections are homeomorphic to Rn. It turns out

that smooth manifolds always have good covers (the proof uses a metric and considers the exponential map in

differential geometry) and compact manifolds have finite good covers. So with this, we can get Kunneth for

finitely supported de Rham.

• Smooth manifolds can be triangulated – that is, they are homeomorphic to a simplicial complex, so in particular

we can calculate de Rham using simplicial calculations. But we should be careful that not all topological
manifolds can be triangulated.

We’ll now turn to cup and wedge and the Poincaré dual of a submanifold – we’ve seen that usual simplicial

cohomology yields a functor from manifolds into chain complexes, and we can restrict that to de Rham. Specifically, if

f : M → N is a smooth map between manifolds, then the pullback f ∗ : Ωk(N)→ Ωk(M) yields a map f ∗ : HkdR(N)→
HkdR(M) which commands with the natural transformation I given by the de Rham isomorphism. But now Ωk(M) has

a wedge product satisfying

d(α ∧ β) = dα ∧ β = (−1)pα ∧ dβ

where α is a p-form, and thus it descends to some element Λ in de Rham cohomology. We then have

Λ : HkdR(M)×H
p
dR(M)→ Hk+pdR (M),
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and we want to know what this corresponds to under the de Rham isomorphism, which recall is a map I : Ωk(M) →
Ck(M) given by I(ω)(σ) =

∫
σ ω for any k-form σ and any k-simplex σ.

Theorem 107

Let M be a closed manifold. Then the de Rham isomorphism I is a map HkdR(M) → Hk(M;R) taking Λ to U,

and in cohomology we thus get a map I(α ∧ β) = I(α) ∪ I(β).

These facts are false on the chain level – it’s not true that I takes the wedge product to the cup product there.

And in fact the proof is quite involved, and we’ll skip it here – there is a standard textbook reference (Bott-Tu) proof

using spectral sequences and Cech cohomology. We must use diagonal approximation, showing that if ω, η, p, q are

cochains and σp is a “front face” and σq is a “back face”, then∫
∆

(ω ∧ η) =
∫
σp

ω

∫
σq

η.

We can now think about Poincaré duality on a submanifold – there are two different statements:

Proposition 108 (Poincaré duality of a submanifold)

Let M be a smooth oriented manifold, not necessaily compact, with dimM = n, and let S be a properly embedded

oriented submanifold with dimS = s. Then we may look at integration IS : Ωsc(M)→ R along S (integrating the

top-dimensional form) given by Is(α) =
∫
S α. By Poincaré duality, we may think of Is ∈ Hsc(M)∗ ∼= Hn−s(M) by

Poincaré duality. Thus (under this isomorphism) there is a class [ηs ] ∈ Hn−sdR (M) of codimension s characterized

by
∫
S ω =

∫
M ηs ∧ ω for all ω ∈ Hkc (M).

We thus have a cohomology class ηs (dropping brackets) with the property that integrating on any compactly

supported k-form on S, that’s the same as integrating η ∧ ω on the whole manifold.

Alternatively there is another Poincaré dual class defined as follows: let ι : S ↪→ M be a closed submanifold, compact

without boundary. Then we can associate to such a submanifold S a compactly supported element τS ∈ Hc(M)
characterized instead by ∫

S

ω =

∫
M

τS ∧ ω ∀ω ∈ Hk(M)

where ω now no longer needs to be compactly supported. So these constructions are very similar, but we’re dual to

different things in the two cases. The point is that because we’re now working with a compactly supported submanifold,

by the tubular neighborhood theorem we can take a neighborhood U of S in M. Then using Poincaré duality on U,

we can choose τs to be compactly supported within U and extend it by 0 to τS on M. So what we basically have is a

“delta function” on S, as close as possible to being supported on our submanifold.

This will be relevant for intersection theory later on – for example, we can compute the Poincaré dual of a point

in Rn, and any β(x)dx (where β is a bump function and dx = dx1 · · · dxn) will work there. And we can also compute

the Poincaré dual of R2 \ {0} and find something similar.

We’ll finish by discussing orientation briefly:

Definition 109

A vector bundle E → B is orientable if its determinant line bundle detE is trivial.

(The determinant is the top-dimensional exterior product, with clutching function given by determinants.) Note

that M is orientable if and only if its tangent bundle is orientable, and we need to check that this agrees with the

33



algebraic topology notion of orientable so that we still have the same Poincaré duality. For example, if L→ B is a line

bundle, then L is orientable if and only if its determinant is trivial, which is the same as saying that L is trivial, which

is equivalent to having a nowhere vanishing section. Indeed, use a metric and notice that this is equivalent to the unit

sphere bundle S(L) being trivial, but S(L) is an S0 bundle, meaning we have {±1} = Z2 over each point in B. So

trivial means trivial as a cover or as a bundle or in whichever other way we want, and for a bundle this is equivalent to

finding trivializations such that transition / clutching functions all have positive determinant.

11 February 14, 2023
Today’s class will talk some more about orientations, particularly integrating forms on manifolds, and then discuss

connections and curvature. Recall from last time that a vector bundle E → M is orientable if the determinant line

bundle is orientable, which is the same as being trivial. (This is also the same as saying that the sphere bundle, which

is a two-fold cover, is disconnected, and also for a general vector bundle that there is a collection of local trivializations

of E such that the clutching functions are orientation-preserving. And this is because the clutching functions of detE

come from looking at the original clutching functions Uα ∩ Uβ → GL(Rk) and taking the determinant of those linear

transformations.)

Definition 110

A manifold M is orientable if the tangent bundle TM is orientable.

Since detE is the same as Λtop(E), we are asking for ΛtopTM to be orientable, which is the same as having a

volume form ω on M (which is a top-dimensional form which is nowhere vanishing, so basically a nonzero section of

ΛtopT ∗M). The determinant is nice because it works well with sums (we get the tensor product bundle) and duals,

so sums and duals of orientable bundles are also orientable. In MATH 215A, recall that an orientation n-dimensional

topological manifold is a consistent choice of generators of the relative homology Hn(M,M \ x ;Z) as x varies, and

similarly an orientation of a rank k bundle is a consistent choice of Hk(Ex , Ex \ 0;Z). (By excision this is the same as

just having Hn of the ball, but that’s not a canonical relationship.)

Example 111

Rn is canonically oriented by the volume form dx = dx1∧· · ·∧dxn coming from the standard coordinates. Similarly,

the hyperplane Hn where x1 ≥ 0 is also oriented by dx1 ∧ · · · ∧ dxn, and at the boundary ∂H where x1 = 0 we

have coordinates (x2, · · · , xn) and thus there is a standard volume form dx2 ∧ · · · ∧ dxn. We then have oriented

∂H so that the normal vector ∂
∂x1

is the first vector in our basis and points “inside” the manifold.

So this type of reasoning also extends to manifolds with boundary using the same convention (using charts): an

orientation onM determines and orientation on ∂M such that the normal vector points inside. With that, we can define

integration of forms on manifolds in a straightforward way: for any open set U ⊆ Rn and any compactly supported

top-dimensional form ω(x) = f (x)dx1 · · · dxn, then
∫
U ω =

∫
U f (x)dx can be integrated in the ordinary way. So then

we can use a partition of unity for a general oriented manifold M: let {Uα} be a cover by charts (φα, Uα) with

positive change of charts, and suppose 1 =
∑

α ρα is a partition of unity where each ρα is supported on Uα. Then we

want to define our integral on Rn, so the formula would be∫
M

ω =
∑
α

∫
M

ρα · ω =
∑
α

∫
φα(Uα)

(ρα ◦ φ−1α )(φ−1α )∗ω =
∑
α

∫
(φ−1α )

∗(ραω),
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since we need to move each integral by pulling back the form and then integrating on the corresponding open set. We

must check that this is well-defined independent of choices – in particular, we can only define this if ω ∈ Ωnc(M) so

that the sum can be made finite. But then it has all of the expected properties including change of variables, and it

also satisfies Stokes’ theorem:

Theorem 112 (Stokes’ theorem on manifolds)

Suppose M is an n-dimensional oriented manifold with boundary ∂M, such that the boundary s oriented with the

normal vector pointing inside. Then
∫
M dω =

∫
∂M ω for all compactly supported n-forms ω on M.

(This follows directly from the usual Stokes’ theorem by using partition of unity to move from Rn to M.)

Now if we want to integrate lower-dimensional forms, we have to integrate on submanifolds. Suppose S is a

k-dimensional submanifold of M, such that we have an inclusion ι : Sk ↪→ M. Then for all ω ∈ Ωkc (M) we basically

integrate
∫
S ω =

∫
S ι
∗ω (so this is really just an abuse of notation and we’re restricting ω to the submanifold).

Hopefully a lot of this is familiar to us, and it is mostly setup to help us with the missing parts of the de Rham

theorem.

We’ll now turn to differential geometry concepts and consider connections and curvature. The idea is to try to

figure out a natural notion of “directional derivative” of a section of a vector bundle E → B (that is, how the section

changes as we move in some direction v on M).

Definition 113

Let E → M be a vector bundle of rank k . A differential form on M with values in E are sections of

Hom(ΛkM,E) = E ⊗ Λk(TM)∗. The set of such forms is denoted Ωk(M;E) or just Ωk(E).

Writing down what this is in coordinates, remember that such a k-form on M with values in E is an assignment

at each point ωx : TxM × · · · × TxM → Ex (that is, we take in k tangent vectors to M and give some element of the

fiber), and we do this in a way which varies smoothly as x varies in M. So then 0-forms with values in E are sections

(so Ω0(M,E) = Γ(E)), and 1-forms with values in E are maps from TxM → Ex .

In differential geometry there are various definitions of connections that are useful to switch between, but we’ll

only think about two of them:

Definition 114

A connection (also covariant derivative) on E is an R-linear transformation∇ : Ω0(M;E)→ Ω1(M;E) satisfying

Liebniz’s rule ∇(f · s) = df ⊗ s + f∇s for any s ∈ Ω0(E) and any f ∈ C∞(M).

In other words, we have a map Γ(E) → Ω1(M,E) which we can think of as assigning a map TxM → Ex to each

section. (Indeed, we can check that all of the terms in the Liebniz rule actually live in the right space.) For any x ∈ M,

v ∈ TxM, we can then define ∇v to satisfy

(∇v s)x = (∇s)x(v) ∈ Ex ,

and we call this the “covariant derivative of s in the direction v .” Then if we let v vary, we’ll get a similar formula for

vector fields, but we won’t do that just yet.
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Lemma 115

The difference of two connections is a 1-form on M with values in End(E) (which we can think of as E ⊗ E∗).
In other words, we have ∇1 − ∇2 = A ∈ Ω1(M,End(E)). Conversely, if ∇ is a connection on E and A ∈
Ω1(M,End(E)) is a 1-form, then ∇+ A is a connection on E.

In other words, the space of connections is an affine space on the vector space Ω1(M;End(E)).

Proof. Let A = ∇1 −∇2; this is R-linear because both terms on the right-hand side are, and

A(f s) = (df ⊗ s + f∇1s)− (df ⊗ s + f∇2s) = f (∇1s −∇2s) = f (As),

so A can be regarded as a 1-form in Ω1(M;End(E)). Indeed, since A takes 0-forms on M with values in E to 1-forms

of M with values in E, as before we may let Av s = (As)xv for all v ∈ TxM, x ∈ M, and s ∈ Γ(E). Since A is linear

in s and As is a 1-form, it is also linear in v . So Av takes in a section in Γ(E) and returns something in Ex , and we

want to show that Av depends only on the value sx at s, not on any derivatives (this is called being tensorial). If we

can prove this then we’re done, because then the map Av : Γ(E)→ Ex descends to an R-linear map Ex → Ex , which

is just an endomorphism in End(Ex). And now if we look at the map v 7→ Av (that is, a map TxM → End(TxM)),

it is R-linear because it is R-linear in v , and we just need to check that Av depends on the value at a point. (This is

sort of like thinking of a two-parameter function as a function in one of the two variables – the point is that we have

s and v , and in this case we’re freezing v and letting s vary, then letting v vary.)

So to prove that Av is indeed only dependent on the value, we must use that Av (f s) = f (As). Since we’re defining

Av (f s) = f (x)Av s, by linearity it’s enough to show that if s(x) = 0 then Av s = 0. This is best checked in local

trivializations π−1(U) ∼= U × Rk – we can choose a basis {e1, · · · , ek} in Rk and bring it by trivialization to π−1(U),

yielding a basis in each fiber Ex for x ∈ U (here x is now varying). So then a section S over U can be written as

s(x) =
∑k

i=1 s
i(x)ei , where the sis are functions on U. But now if we fix some point x0 ∈ U, then s(x0) = 0 implies

that si(x0) = 0 for all i , so if we calculate

Av (s) = Av

(
k∑
i=1

sie
i

)
=

k∑
i=1

Av (sie
i) =

k∑
i=1

si(x0)Av (e
i) = 0.

Note that this proof isn’t quite correct – it’s fine if s is supported on U, because then the coefficients si are

supported on U by extending by zero. And otherwise we can use a partition of unity on M subordinated to a cover by

local trivializations (which is always helpful when we have something linear): write 1 =
∑
ρα, so that s =

∑
α ραs.

And now Av s =
∑

α Av (ραs), so if s(x0) = 0 then (ραs)(x0) = 0 as well so Av s = 0.

Lemma 116

Connections exist on any vector bundle E → M and pull back under smooth maps (to f ∗∇ on f ∗E). In other

words, a way of taking derivatives and a map f into E gives a way of taking derivatives on f ∗E.

We can take directional derivatives of functions if things are not curved, but in general we need formulas in local

trivializations.

Proof. Let gαβ be the clutching functions gαβ : Uα ∩ Uβ → GL(Rk). A section s of E can then be thought of as

a bunch of functions s : Uα → Rk , patched together via sα = gαβsβ. So a connection ∇ on E (restricted to Uα)

36



is ∇|Uα = d + Aα, where Aα is a 1-form Ω1(Uα;End(Rk)). These Aαs are called connection 1-forms – they don’t

actually patch together correctly in the usual way, and the formula is

Aβ = g
−1
αβdgαβ + g

−1
αβAαgαβ

on the overlap Uα ∩ Uβ. (Basically take ∇ of sα = gαβsβ and use Liebniz’s rule. Since these are endomorphisms, if

they patched together we’d just have the second term, so the first one is a correction term.) And conversely, any such

collection of 1-forms Aαs on Uα with values in Rk satisfying that condition will yield a connection on E, since we can

do the usual writing of a partition of unity and letting Aα =
∑

γ ργg
−1
γαdgγα – we just need to check that we do satisfy

the formula above, but it’s a direct calculation.

12 February 16, 2023

We’ll talk today about two different topics, (1) connections and curvature (a differential geometry topic) and (2)

classification of bundles (an algebraic topology one), both of which will both be useful for next lecture when we

discuss characteristic classes. Recall from last lecture that in a smooth vector bundle E → M, a connection is a map

Ω0(M;E)→ Ω1(M;E) which is R-linear and satisfies Leibniz’s rule (meaning that for any smooth function f and any

section s ∈ Ω0(M;E), we have ∇(f s) = (df )⊗ s + f∇s. In particular, ∇ = d +Aα on a local trivialization Uα, where

Aα is a connection 1-form; in other words, because our section now becomes a function s : Uα → Rk , ∇s becomes

(∇s)α = dsα + Aαsα, where Aα is a linear trnasformation from the fiber to itself (since we want to take the point sα
in the fiber and map it to some other point in the fiber linearly|).

Example 117

Consider the unit sphere Sn ⊆ Rn+1, and consider the vector bundle E = TSn over Sn. Then sections of E are

vector fields, and for any such section s ∈ Γ(TSn) = χ(Sn) and any direction v ∈ TxSn we have

∇v s = projTSn(ds).

In other words, we want a way to take the derivative along a vector field, and we do this by taking the derivative

in Rn+1 and projecting. It’s left for us to show that this actually satisfies Leibniz’s rule.

Let ∇ be a connection on a vector bundle E → M. We may extend such a map to ∇ (also denoted d∇ :

Ωk(M,E)→ Ωk+1(M,E)) from k-forms with values in E to (k+1)-forms with values in E by R-linearity and Liebniz’s

rule: on any k-form η on M and section s, we have

∇(η · s) = (dη)s + (−1)kη · ∇s

(Notice that this is kind of like defining the differential of a form) – we did it first for functions and then did it on

generators based on that using Leibniz’s rule. So we have a way to differentiate k-forms.

Definition 118

The curvature of ∇ is F∇ = d∇ ◦ d∇ = ∇ · ∇.

In other words, for any s we have (F∇s) = ∇(∇s), and we may expect that this well involve two derivatives of s.

But it turns out it doesn’t: if we calculate what it looks like at a point x using Leibniz’s rule, it turns out (F∇s)x only

depends on sx and not derivatives of s. So in fact F∇ is a section in a bundle, specifically a 2-form on M with values in
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End(E) (this is kind of like the proof from last time where we subtracted to make Leibniz’s rule). For a more explicit

formula, we have (taking in two elements X, Y ∈ TM)

F∇(x, y)s = ∇x∇y s −∇y∇xs −∇[x,y ]s.

Note that in general F∇ is nonzero, and in fact (from the equation we’ve just described) this encodes the failure of

second derivatives of a section to commute. (If the bundles were trivial then everything is functions, but otherwise

the second derivatives are very unlikely to commute.) If the curvature is zero, then we say that the connection ∇ is

flat, and then · · · → Ωk(M,E) d∇−→ Ωk+1(M,E)→ · · · becomes a chain complex because d∇ ◦ d∇ = 0. So in such a

flat bundle, we actually get the de Rham cohomology of M with values in Ec .

There’s a few different geometric interpretations we can have for connections (we won’t need these for what comes

next, but it’ll still be useful for intuition):

• Given a connection γ in M, we can parallel transport our vector by ensuring that the derivative ∇ dγ
dt
s is zero

(since we want the section to be “constant” or “parallel”). But because we have a formula ∇ = d + A in local

coordinates, we really have a first-order ODE but only along the path γ (so only in terms of t), with initial

condition I(S(γ(0))) = s0 ∈ Eγ(0). So this is similar to the situation with flow but with fibers, and transport

determines an isomorphism

PTt : Eγ(0) ≃ Eγ(t)

(the same thing happens as with flows, because running for time s and then running for an additional time t is

the same as running for s + t time). This then allows us to define an isomorphism of fibers of E along the path

γ, and we can recover ∇s via

∇v s =
d

dt

∣∣∣∣
t=0

(The idea is that without the PT−1t , we’d just have the ordinary derivative, but we need to first pull back the

fiber at γ(t) to the fiber at γ(0) so that the spaces on which they exist are identified.) And finally, really the

parallel transport depends on the path γ we take, so we should really be writing PTt = PTγ0,t .

• For a more geometric viewpoint, notice that for a general smooth fiber bundle pi : E → B, we can always define

the Ehresmann connection (for fiber bundles the previous definition doesn’t work but it does not here), which

is a choice of horizontal spaces in a splitting of the following short exact sequence: we know that there is a

well-defined vertical space, where the fibers are the kernel of the map dπ (by the implicit function theorem).

Then if we write 0 → ker(dπ)x → TxE
dπ−→ T → Tπ(x)B → 0, a choice of horizontal space Hx is the map

Tπ(x)B → T which demonstrates the splitting. We then have TxE = Vx ⊕Hx at each x .

This then extends to G-bundles, and our splitting must be G-equivariant (for vector fields we comparably want

compatibility with the linear structure).

Remark 119. The pullback of ∇ is the pullback of F∇: in other words,

f ∗F∇ = Ff ∗∇.

So if we have maps f between two manifolds, then we can pull back bundles and connections and the curvatures pull

back as well.

We’ll now talk about classification of bundles, and we would see it done in more detail in a class after 215A. Here,

we’ll just mention some useful statements but do very few proofs – principal G-bundles are the easiest for which to

classify, so we’ll briefly mention those first.
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Theorem 120

There is a 1-to-1 correspondence between vector bundles up to isomorphism and principal G-bundles up to iso-

morphism.

In other words, for real vector bundles (though the same holds for complex ones), we have a one-to-one corre-

spondence between (for example) real vector bundles E → X and PrincGL(Rk )(X). We won’t talk about the proof

during lecture, but the idea is that given a vector bundle, we can send it to the frame bundle of E by taking

(x ∈ X, basis of Ex). And this is a principal bundle because change-of-basis indeed comes from GL(Rk). And for the

other direction, if we have some action G = GL(Rk) on V = Ri , we see that if P → X is a principal G-bundle and

V a vector space with a G-action, we can consider (P ∗G V ) = (P × V )/G. So we just need to check that these are

well-defined and inverses.

If we now want to classify vector bundles up to isomorphism, which is equivalent to principal GL-bundles up to

isomorphism, here is the motivation (coming from Whitney’s embedding theorem): given E → X where X is compact

(and where we can assume X is a manifold, though this is not needed), there is an embedding of E ↪→ εN for some

sufficiently large N (we don’t use charts, but we do use local trivializations). Then E → X is the pullback of the

tautological bundle over the Grassimannian T → Gk . Now if we view each fiber Ex as including into RN (that is, as an

inclusion into the corresponding trivial bundle for the embedding), the map E → X is the pullback of the tautological

bundle τ → Gk(RN). (We proved this on our homework: we have f : X → Gk(RN), so we indeed have E = f ∗τ .)

Taking N →∞, we then get a map f : X → GkR∞ – thus by fixing any embedding, we will get such a map f .

Theorem 121 (Steenrod classification theorem, special case)

The map f is a classifying map. In other words, the pullback of f is the tautological bundle of the Grassmannian,

and if two pullbacks are equivalent then the two bundles are isomorphic:

VectkR(X)
∼=−→ [X,Gk(R∞)],

and we also have the analogous statement for C. (Here recall that [X, Y ] denotes the set of maps X → Y up to

homotopy.)

The way to think about this is that any E → X gives rise to some map f : X → Gk(Rn), so any bundle over X is

the pullback of the tautological bundle by f , unique up to homotopy.

Remark 122. In general the Steenrod classification theorem holds for principal G-bundles where the base X is compact.

So if we want to classify G-bundles up to isomorphism, we have a classifying space BG, over which lies a universal

bundle EG, and any principal G-bundle P → X we get a unique map X → BG.

We’ll now look at some of the consequences of these facts for classifying line bundles: recall that the space of lines

in Sn is RPn, so G1(R∞) = RP∞, and similarly G1(C∞) = CP∞ with the tautological bundle.

Theorem 123

There is a one-to-one correspondence between line bundles Vect1R overX and homotopy classes of maps [X;RP∞] =
H1(X;Z2). In parallel, we have Vect1C1 = [X,CP∞] = H2(X;Z) (note the difference in coefficients).

The first equality comes from a natural map: over R, we want to show that a bundle E → X corresponds

to a homotopy class of maps f : X → RP∞ such that f ∗τ = E. But such a map corresponds to f ∗ω1, where
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ω1 ∈ H1(RP∞;Z2) ∼= Z2 is the generator. And over C, we instead have correspondence to f ∗c1, where c1 ∈ H2(CP∞Z)
(These two corresponding objects are the first Stiefel-Whitney class and Chern class), respectively, where recall that

we have H∗(RPk ;Z2) = Z2⟨µ⟩/µk+1 = 0 (a class in H1 but Poincaré dual (in Z-2 coefficients) to the line RP1 sitting

inside RPk .

Corollary 124

Over RPn, we only have two line bundles (the trivial one and the tautological one). And when X = Sn and n ≥ 2,
we only have the trivial bundle because the line bundles are classified by H1(Sn;Z2) = 0.

We do need homotopy invariance to show that everything descends to cohomology, so the following result was

used implicitly to show that things were well-defined:

Theorem 125 (Homotopy invariance)

Let E → B be any fiber bundle (in particular a vector bundle), and let f0, f1 : X → B be two homotopic maps.

Then f ∗0 E ∼= f ∗1 E.

In particular, we see that if B is just a single point then the bundle is trivial.

Corollary 126

Up to isomorphism, principal G-bundles (in particular vector bundles) over Sn are classified by πn−1(G).

The idea is that we can write Sn = Dn+ ∪Sn−1 Dn− (two balls glued over the equator), and now if we have any map

E → Sn restricting to the upper or lower hemisphere gives us a trivial bundle, so we have two local trivializations

and just need to clutch them together. Then for a principal G-bundle, the clutching functions take values in G (for

a vector bundle we’d do linear transformations instead), and now (modding out by homotopy) that gives us a map

g12 : S
n−1 → G, which means we’re getting an element of πn−1(G). So this classifying theorem is very powerful and

we’ll use its consequences!

13 February 21, 2023
We’ll discuss characteristic classes today, which will provide a criterion to tell us when two bundles are not isomorphic.

We stated a result that vector bundles up to isomorphism are in one-to-one correspondence with homotopy classes of

maps from the base X to an infinite Grassmannian, and in particular for line bundles that’s RP∞ or CP∞. But it’s

not realistic to go into that Grassmannian. So we’ll associate bundles up to isomorphism with cohomology classes

(and different classes means we don’t have isomorphic bundles). Specifically, we’ll consider Chern classes for complex

vector bundles, Stiefel-Whitney classes for real vector bundles, and Euler classes for real (sometimes oriented) bundle,

which come from the Thom class. We’ll mostly state properties as black boxes (since we would see the full proofs in

a further algebraic topology class):
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Definition 127

The total Chern class of a complex vector bundle E → X is a mixed cohomology class

c(E) = 1 + c1(E) + c2(E) + · · · ,

where ci(E) ∈ H2i(X,Z) is called the ith Chern class of E and is uniquely characterized by the following axioms:

(1) isomorphic bundles have the same total Chern class, (2) [naturality] c(f ∗E) = f ∗c(E), (3) [multiplicativity]
c(E ⊕ F ) = c(E) ∪ c(F ), (4) [rank] c0(E) = 1 and ck(E) = 0 for all k > rank(E), and (5) [normalization]
the tautological bundle τ → CPn has c1(τ) = −h, where h ∈ h2(CPn;Z) is the hyperplane class, which is the

positive generator of H2(CPn;Z) ∼= Z) Poincare dual to a complex line in H2(CPn).

For the tautological bundle we can only have c0 and c1, and the reason we have it is that otherwise just having 1

would satisfy all of the properties. And the idea is that in a complex vector bundle viewed as a real bundle, we have a

canonical orientation (because when we do change of complex trivializations, the real determinant of a complex-valued

matrix is always positive – the form would be dx ∧ dy in coordinates if z = x + iy).

We get a parallel story for real vector bundles as well, leading us to Stiefel-Whitney classes w(E) = 1+w1(E)+· · · ,
but now with wi(E) ∈ Hi(X,Z2) (so Hi instead of H2i , and Z2 instead of Z). The axioms are the same, except that

in Z2 we only have one generator so we don’t have to worry about sign, and we then have w1(τ) = h, where h is again

Poincaré dual to a line.

We won’t prove existence or uniqueness of these classes, but we can read a book by Milnor and Stasheff (“Char-

acteristic Classes”) if we want to see a construction. For now, we can take it as a black box and do some examples:

Example 128

We know that TSn ⊕ ε ∼= ε2n+1 (where ε is the normal bundle), and thus we can show wi(TS
n) = 0 for all i > 0.

Indeed, wi of the trivial bundle is zero for all i > 0 by naturality (since the trivial bundle is a pullback by a constant

map, and the cohomology of a point is nothing in higher degrees), and then we can use multiplicativity to see that the

total Chern class is w(TSn) = 1.

Example 129

In a previous homework, we computed the tangent space of RPn and showed that TRPn ⊕ ε ∼= τ∗ ⊗ εn+1 (on the

right-hand side this is the same thing as saying (n + 1) copies of the dual of the tautological bundle). So again

because w(ε) = 1, this means w(TRPn) = (1 + h)n+1 ∈ H2(RPn;Z2), and we get a similar answer for CPn –

here we’re using a fact about duals which is stated later in this lecture.

In particular, this proves that TCPn is nontrivial because we have nontrivial. And this also shows that TRPn is

nontrivial unless n = 2k − 1 for some integer k , since (by some properties of the binomial coefficients, for example

(1 + h)2
ℓ

= 1 + h2
ℓ

mod 2) one of those coefficients will be odd. (Here remember that H2(RPn;Z2) ∼= Z2[h]/hn+1.)
A further result by Adams actually shows that RP1,RP3, and RP7 are the only ones that are parallelizable.

The idea is that the top Stiefel-Whitney / Chern classes are obstructions to the existence of a nowhere-zero-

section:
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Proposition 130

Let E be a complex (resp. real) bundle. If ctop(E) ̸= 0 (resp. wtop(E) ̸= 0), where top is the rank of the bundle,

then E does not have a nowhere vanishing section.

Proof. If s were a nowhere vanishing section, it would span a line subbundle that splits off, and we can write E = ℓ⊕F
(where F = ℓ⊥ is of rank one less than the original bundle). Thus c(E) = 1 · c(F ) and c(F ) vanishes at top rank of

E, so ctop(E) must be zero (or w in the corresponding spots for a real bundle).

Proposition 131

If n = 2k , then RPn cannot be immersed into R2n−2. (In particular, the strong Whitney theorem is sharp.)

Proof. If we could have such an immersion, then TRPn could be embedded into the trivial bundle ε2n−2, and the

complement Q would have rank n − 2. Then w(TRPn)w(Q) = 1, and looking at mod 2 binomial coefficients again

gives us a contradiction (specifically we find we must have wn−1(Q), which is impossible).

It turns out that line bundles are in fact classified by their classes w1 or c1, and we in fact have a stronger general

result:

Theorem 132

Let L be a line bundle. The assignment L→ w1(L) or L→ c1(L) give one-to-one correspondences PicR(X) (line

bundles up to isomorphism) with H1(X;Z2) or PicC(X) with H2(X;Z). Furthermore these correspondences are

group homomorphisms; in other words, w1(L1 ⊗ L2) = w1(L1) + w1(L2) (or the equivalent statement for c1).

This result does not hold for higher-rank bundles – there are rank-2 bundles with the same characteristic classes but

are not isomorphic. (Though to prove that, we need to show that some maps into higher-dimensional Grassmannians

are not homotopic, which we don’t have the tools for right now.) And there are other useful properties as well: for

example, we can show that

ck(E
∗) = (−1)kck(E), c1(detE) = c1(E).

The best way to prove these is using the splitting principle, which explains that if E were a direct sum of line bundles

these results follow immediately. (Since the inverse of a line bundle is exactly the dual, thus this is true for direct sums

of line bundles. Not every bundle splits as a direct sum of line bundles, but we can pull back to a space in which it splits

– this uses a more recent fact on our homework that pulling back over the projectivization splits off a line bundle, so

continuing that repeatedly will do the job. So we get a splitting manifold f : X ′ → X with f ∗E = L1 ⊕ · · · ⊕ Lk , and

since the map H∗(X)→ H∗(X ′) is injective in cohomology, any result that holds for H∗(X ′) also holds for H∗(X).)

The focus of our lecture here is really the Thom class and Thom isomorphism. Throughout this section, we’ll

let E → X be a real rank n vector bundle.

Definition 133

Let E+ = E ∪∞ be the one-point compactification of E (in which the topology is that the open neighborhoods

of ∞ are Y \ K for compact sets K). For example, the one-point compactification of RPn is Sn. The Thom
space of E is T (E) = E+.
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One way to construct this is to let T (E) = D(E)/S(E), where D(E) is the unit disk bundle and S(E) is the

sphere bundle. Then the boundary indeed becomes a single point (the point at infinity) and the interior of D(E) is

homeomorphic to E.

We’ll assume E is oriented and work with Z coefficients – since the fiber at E at x is Ex ∼= Rn, we have the

generator ux ∈ Hn(Ex , Ex \ 0;Z). Then recall that being orientable means that we have a consistent choice of ux .

Theorem 134

Suppose E → X is an oriented rank-n vector bundle. Then there is a unique class u ∈ Hn(T (E);Z), called the

Thom class, which restricts to each fiber via ι∗xu = ux for all x ∈ X, where ιx : E+x → E+ = T (E) is the inclusion

map. Furthermore (this is a version of Poincaré duality) the cup product with u

∪ω : Hk(X;Z)→ Hk+n(T (E),Z)

is an isomorphism.

We get a similar result with Z2 coefficents, in which E no longer needs to be orientable. The idea is that first

we can show this result for a trivial bundle (meaning it’s true in local trivializations) and that we can extend it by

Mayer-Vietoris to glue them together and using compactness.

There are a few other properties: the Thom class is multiplicative, meaning that

T (E × F ) = T (E)× T (F )/ ∼,

where T (E) has fiber Sn and T (F ) has fiber Sm so we need to identify the points at infinity and quotient to get the

compactification of Sm+n. And we check uniqueness by seeing that it restricts to each fiber. Indeed, E is a vector

bundle over X so deformation retracts to X, so H∗(E) ∼= H∗(X) (in particular, a section s : X → E and the projection

map π : E → X induce inverse maps in cohomology).

Definition 135

Let E → X be an oriented real bundle of rank n. Then the Euler class of E → X is χ(E) = s∗u(E), the pullback

of the Thom class by a section s of E (such as the zero section).

More explicitly, we have χ(E) ∈ Hn(X;Z), though there is also a version living in Z2 coefficients where we do not

need orientability. Since E includes into the pair (E,E \ 0), we get a reverse map in cohomology Hn(E,E \ 0) →
Hn(E)

s∗−→ Hn(X), and then u ∈ Hn(E,E \ 0) maps into s∗u under this composite map – that’s the Euler class.

Fact 136

Both the Thom class and Euler class are isomorphism invariant and natural under pullbacks, the Euler class of a

sum satisfies χ(E ⊕ F ) = χ(E) ∪ χ(F ) (this follows from the property for the Thom class) – more generally we

actually have χ(E × F ) = χ(E)⊗ χ(F ). Finally, if E has a nowhere vanishing section then χ(E) = 0.

We’ll see some more connections between all of these objects next time!

14 February 23, 2023
We’ll start intersection theory today, but first we’ll mention a few important concepts related to last lecture which

give some geometric interpretations. We’ll expand more on some of this in a few lectures if time permits:
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• The top Chern / Stiefel-Whitney class is the Euler class of the bundle, which is Poincaré dual to the zero locus

of a generic section. We’ll move towards proving this with today’s material.

• The image of the total Chern class as a class in de Rham H∗dR(M) (ignoring the Z coefficient, working with R
instead) is represented by a universal polynomial in the curvature F∇ of a connection on E (this is called Chern-

Weil theory). Recall that dF∇ = 0 (the Bianchi identity). This polynomial is kind of like the characteristic

polynomial: we have

c(E) =

[
det

(
I −

1

2πi
F∇

)]
∈ H∗dR(M),

so in particular c1(E) = i
2π [F∇] ∈ H

2
dR(M). And this is useful in differential geometry or later on in differential

topology.

Last time, we discussed the Thom isomorphism: for an oriented vector bundle E → X of rank r , we can define the

Thom space T (E) = E+ to be the one-point compactification of E (or when X is compact, take the disk bundle and

collapse the boundary to a point). The Thom class is then an element of Hr (T (E);Z) such that it restricts to the

generator Ux of Hr (E+x , E
+
x \0,Z) for any fiber E+x . Furthermore, taking the cup product with u yields an isomorphism

Hk(X) ∼= Hr+k(T (E)).

Remark 137. We’ll elaborate a bit more about how we actually get such a cup product: for example, we can look at

the relative cup product ∪ : Hk(Y )×Hm(Y, A)→ Hm+k(Y, A). (In terms of de Rham, Hm(Y, A) is forms on Y which

vanish on A, so cupping with any other form will make something else that vanishes on A. But really we should just

think of it as a quotient of chain complexes.) So if we now apply this to the space where Y = D(E) is the disk bundle

and A = S(E) is the sphere bundle, we do get a cup product Hk(D(E)) × Hr (D(E), S(E)) → Hr+k(D(E), S(E)).

But now by the homotopy axiom the first term is Hk(X), and since r > 0 by the long exact sequence of the pair

Hr (D(E), S(E)) is the same as Hr (D(E)/S(E)) = Hr (T (E)), and same for the other term.

We’ll use this isomorphism now to get a version of intersection theory. The plan is as follows: we’ll first define an

intersection product in homology and show that it is Poincaré dual to the cup product in cohomology. Then we will

show that the Euler class of E is indeed dual to the zero locus of a generic section of E (that is, s−1(0) for a section

s transverse to the zero section as a submanifold).

Everything will be restricted to smooth, closed (compact without boundary) manifolds here, and they’ll be oriented

as well (otherwise we must use Z2 coefficients instead of Z). For any such manifold M of dimension m, suppose P,Q

are submanifolds of M of dimension p, q, also of that same form. If P and Q are transverse, the P ∩Q is a submanifold

of codimension codim(P ∩ Q) = codim(P ) + codim(Q), so P ∩ Q has dimension p + q − m. We wish to define the

intersection product such that the fundamental classes satisfy [P ] · [Q] = [P ∩Q] in H∗(M,Z).

Theorem 138 (Informal statement)

Let S ⊂ M be an embedding of smooth oriented closed manifolds. Then the Poincaré dual of [S] is the Thom

class uS of the normal bundle of S in M.

Given this, if we know that PD[S] = uS under Poincaré duality, then the statement [P ] · [Q] = [P ∩Q] (we want to

show) corresponds to PD[P ]∪PD[Q] = PD[P ∩Q], which is the same as saying that the Thom classes of P,Q, P ∩Q
satisfy uP ∩ uQ = uP∩Q. And this makes sense since NP∩Q is basically NP ⊕ NQ (except the restriction maps), and

the Thom class is multiplicative. The only problem is that we need to figure out how all of these equalities make

sense. (It’s not true that every homology class can be represented as the fundamental class of a smooth oriented

submanifold, but it is true for Q-coefficients. So up to multiplication by an integer this is true.)
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So we’ll now get started making all of this more rigorous: let S ⊂ M again be an embedding of smooth oriented

closed manifolds, and denote the normal bundle by Ns so that TM|S = TS⊕NS. Since tangent bundles are oriented,

this induces an orientation on NS. By the tubular neighborhood theorem, we have a neighborhood νs of S in M, which

is diffeomorphic to some neighborhood of the zero section of S.

Theorem 139 (Slightly less informal statement)

Take the same notation as above. Since Poincaré duality is given by taking the cap product with the fundamental

class [M], we are saying (essentially, see the proof below for more specifics) that uS ∩ [M] = [S] (where this

is holding in the homology H∗(M;Z), though there’s also a version where we get this to hold in H∗(S;Z)).
Furthermore, the Poincaré dual ηS ∈ HdR(M) of S is represented by the Thom class uS, where this holds in

H∗dR(M).

Proof. To work towards a proof of this result, we first want to collapse the complement of the tubular neighborhood

to a point via the Thom collapse map τ : M → ν+s = N
+
s = T (Ns). (To be more specific there is a diffeomorphism

that identifies it, which we won’t write down.) Since the Thom class lives in T (Ns), we can look at the pullback map

τ∗ : H∗(Ns)) → H∗(M) (where the normal bundle has rank r), and this map sends uS ∈ Hr (TNs) to τ∗uS in M.

Since the Thom isomorphism (for the bundle NS over S) goes from H∗(S)
∪uS−−→ H∗+r (T (NS)), and then composing

this with the τ∗ pullback map yields a map to H∗+r (M). So now τ∗uS lives in cohomology of M, and now to turn [S]

into something in M we push using the inclusion map, and the real statement we want to prove is that

τ∗uS ∩ [M] = ι∗[S].

(For intuition, in terms of de Rham the Thom class is compactly supported in an ε-neighborhood of S and then

extended by zero, and that’s what τ∗ is doing.) But now we have two Poincaré dual maps, one for M and one for S:

we have

∩[M] : Hk(M,Z)
∼=−→ Hm−k(M,Z),

where the codimension of S is the rank of the normal bundle Ns , which is r = m − s (this is the dimension in which

the Thom class lives), and we also have a similar isomorphism

∩[S] : Hk(S,Z)
∼=−→ Hs−k(S,Z).

We’ll now write down a commutative diagram first at a level of groups – everything is with Z-coefficients, and recall

that m = r + s:

H0(S) Hm−s(M)

Hs(S) Hs(M)

∩[S]

∪τ∗uS

∩[M]

ι

The idea is to show that this diagram commutes, since if we start with 1 in the top-left side: going along the top

path, we get 1 7→ τ∗uS 7→ τ∗uS ∩ [M], and along the bottom path we get 1 7→ [S] 7→ [S]. The idea is to factor

through the Thom collapse map, so that we instead have the following diagram:

H0(S) Hm−s(ν+S ) Hm−s(M)

Hs(S) Hs(νS) Hs(M)

∩[S]

∪τ∗uS τ∗

∩[M]
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The point is to restrict to the square on the left here – by the properties of the Thom collapse map, the right

square does commute, and the dashed map we’ll describe later. But the maps from H0(S) in the top left corner are

isomorphism by the Thom isomorphism and Poincaré duality, and the bottom map Hs(S)→ Hs(νS) is an isomorphism

by the homotopy axiom. So we also get an isomorphism induced for the dashed line, but then we would have to look

at the commutativity on the right square more carefully, so we won’t do that.

Instead, we’ll claim that the naturality of this construction, the Thom class, and Thom isomorphism allow us to

reduce the problem to the case where M is a fiberwise one-point compactification of the normal bundle NS (so each

fiber is now a sphere instead of a real space). Let’s first look at that case – then let E = NS and let S∞, S be the

infinity and zero section (the infinity section is the fiberwise point that the sphere bundle collapsed to). The Thom

space of E, T (E), is then M except with the entire S∞ collapsed. So now we can look at our diagram again (we’ll

just write u instead of uS):

H0(S) Hm−s(M/S∞) Hm−s(M)

Hs(S) Hs(M \ S∞) Hs(M)

∩[S]

∪τ∗uS τ∗

∩[M] ∩[M]

The point is that this special case of M is a smooth, closed, oriented manifold– we have local trivializations,

and instead of Rns we have products of spheres. Then changes of charts are diffeomorphisms of spheres, which

can be thought of just coming from linear transformations Rn → Rn (since ∞ will be taken to ∞ under any such

isomorphism). So we have a smooth manifold with boundary, and orientation follows because the tangent space comes

from the tangent space plus the normal space, each of which is oriented. So the map on the right ∩[M] still works

– it’s the usual Poincaré duality – and we want to show that the middle dashed map is now the cap product with

M, upon which the square on the right will commute. In other words, we must show that we have an isomorphism

∩[M] : Hm−s(M/S∞) → Hs(M \ S∞). For this we must use Poincaré-Lefschetz duality (which we should read in

Hatcher or Bredon, along with Alexander duality), since M \ S∞ is an open manifold. The result is basically that for

locally compact spaces (and in particular our manifolds are locally compact because everything is finite-dimensional),

we have an isomorphism

∩[M \ S∞] : H∗compact(M \ S∞)→ H∗(M \ S∞),

where the compactly supported cohomology H∗cpt(X) is the direct limit lim−→K⊆X H
∗(X,X \K) – this corresponds to

the compactly supported de Rham we discussed earlier on, since vanishing on X \K means the form is supported on K.

So the red dashed map does come from Poincaré-Lefschetz and then naturality (of Poincaré-Lefschetz on the right,

and from uniqueness of the Thom class on the left) shows us that both diagrams commute, hence the whole thing

commutes and we get the desired boxed equality.

15 February 28, 2023
We’ll continue intersection theory and Poincaré duality today, but there’s one important convention to be aware of

for those of us who took 215A. There are various conventions for the order of the cap product ∩: for example,

in Hatcher we take [M] ∩ · (so homology capped with cohomology), while in Bredon we take · ∩ [M] (cohomology

capped with homology). We’ll use the latter convention, and the point is that for α, β ∈ H∗ and a ∈ H∗, we have the

convention

⟨α ∪ β, a⟩ = ⟨α, β ∩ a⟩

46



while in Hatcher’s version we’d have the αmove over instead. But the point is that this implies (α ∪ β) ∩ a = α ∩ (β ∩ a)
(just by manipulating the identity above, since evaluating this cohomology class on a homology class yields the same

answer in both cases), and we will make use of this formula.

Throughout today, saying that S ⊆ M is a submanifold means that both S and M are closed, oriented, and smooth.

Recall that last time, we proved that whenever we have S ⊆ M, the Thom class uS of the normal bundle of S is

Poincaré dual to the fundamental class [S] (in other words, uS ∩ [M] = [S]). And in fact, we get something more

general if we use the boxed identity, namely that

(α ∪ uS) ∩ [M] = α ∩ [S] ∀α ∈ H∗(M).

So now we can define intersection theory by hand and show it yields an invariant, or (our approach) we’ll define it in

homology to be the Poincaré dual of ∪, and then we’ll find its geometric interpretation in terms of actual intersections

of manifolds. An intersection product in homology is then of the form

H∗(M)×H∗(M)
·−→ H∗(M)

sending (a, b) to a · b (Latin letters will denote homology, and greek letters will denote cohomology), where we define

the dashed arrow in the following way (and note that the vertical arrows are all isomorphisms, so we can in fact traverse

them in reverse):

H∗(M) H∗(M) H∗(M)

H∗(M) H∗(M) H∗(M)

× ·

×

∩[M]

∪

∩[M] ∩[M]

In other words, we will define (so that we are Poincaré dual to the cup product)

a · b = D−1(Da ∪Db) = Da ∩ b,

where D : H∗(M)→ H∗(M) is the inverse of the Poincaré dual map. Furthermore, since α∪β = (−1)dim(α) dim(β)β∪α
(dimension k meaning that we live in Hk(M)), and Poincaré duality takes dimension to codimension, we see that in

homology we have

a · b = (−1)codim(a)codim(b)b · a ∀a, b ∈ H∗(M).

Remembering that when we said uS ∩ [M] = [S] last time, we really meant that we push forward [S] into homology

and use the Thom collapse map τ∗ to modify the Thom class, so the real statement is that τ∗uS ∩ [M] = ι∗[S] .

Theorem 140

Suppose P,Q are submanifolds of M (again, all closed, oriented, and smooth), and assume that P is transverse

to Q. Then P ∩Q is a smooth manifold (also closed) with a natural orientation, and [P ∩Q] = [P ] · [Q].

In particular, if we think about all of these fundamental classes going to the Thom classes of normal bundles under

Poincaré duality, we must have

uP∩Q = uP ∪ uQ;

really we need to restrict these classes to P ∩Q and collapse, but the morally correct fact is that we get Thom classes

via cup product. And furthermore, even if P and Q are not transverse, we can perturb them slightly (via flows) so

that they are.
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Proof. The main idea is as follows: we proved that the normal bundle of P ∩Q is the sum of the normal bundles of P

and Q (after restriction to the intersection). And we’ll prove that the Thom class of a direct sum is the cup product

of the Thom classes on our current homework, so that all fits together.

First, we should note that P being transverse to Q implies (by the implicit function theorem) that P ∩Q is a closed

smooth manifold, and we have a description of its normal bundle. Looking at the orientations, we know that P,Q,M are

oriented, so TP, TQ, TM are oriented bundles, and in particular TP ⊕NP = TM|P , so NP is also oriented canonically

(and so is NQ) in a way so that the direct sum is orientation-preserving. But then restricting TQ ⊕ NQ = TM|Q to

the intersection P ∩ Q, which is a submanifold of Q, the normal bundle in Q will be the restriction of NP to P ∩ Q.

We then have

TxQ = Tx(P ∩Q)⊕ (NP )x

fiberwise at any point x ∈ P ∩Q, meaning that

TxM = Tx(P ∩Q)⊕ NP,x ⊕ NQ,x .

And this is how we induce the orientation on P ∩ Q: every term here has a canonical orientation except the one for

P ∩ Q, so we also induce an orientation on the intersection. And as we said before, the normal bundle NP∩Q,M is

the restriction (so pullback by inclusion) ι∗NP,M direct summed with the ι∗NQ,M , where the two ιs are the inclusions

P ∩Q→ P and P ∩Q→ Q. So now by multiplicativity of the Thom class we see that uP∩Q,M = ι∗uP,M ∪ ι∗uQ,M .

Then by Poincaré duality this then gives us the result (since another way to write uS ∩ [M] = [S] is that the Poincaré

dual in M, D[S] = uS, is the Thom class of the normal bundle of S in M), because we now have by definition of the

intersection product

[P ] · [Q] = D−1(D[P ] ∪D[Q]) = D−1(uP,M ∪ uQ,M) = D−1uP∩Q = [P ∩Q],

as desired.

And notice also that we can rewrite this last relation as [P ] · [Q] = uP ∩ [Q].

Remark 141. If manifolds are not necessarily oriented, then we have a Z2 version of this statement – the problem is

that de Rham doesn’t see torsion, so we do want orientations, but if just care about homology we can do Z2.

The idea now is that if P and Q are of complementary dimension and intersect transversally, then we get a

intersection number (also denoted ·)

P ·Q = ε∗([P ] · [Q]) ∈ H0(M) ∼= Z,

basically summing up the orientations at the individual points, where ε is the augmentation map sending H0(M)→ Z
(since 0-dimensional homology can be thought of as constants, and we can just take the value; equivalently think of

this as the induced map in homology sending M to a single point).

Thus if M is m-dimensional, we get a nondegenerate pairing Hk(M) × Hm−k(M) → Z sending (a, b) to ε(a · b),
which is Poincaré dual to the corresponding pairing Hm−k(M)× Hk(M)→ Z sending (α, β) to ⟨α ∪ β, [M]⟩ (so here

the augmentation map corresponds to pairing with [M]). More explicitly, we can think of this as a two-step process

Hm−k(M)×Hk(M)→ Hm(M)→ Z sending (α, β) to α ∪ β to ⟨α ∪ β, [M]⟩.
Remembering that as a set (but also as oriented manifolds, up to a sign) P ∩Q is the same as intersecting P ×Q

with the diagonal ∆ (and this relates cross product to cup product). So the statement is then that

[P ] · [Q] = (−1)m[P ×Q] · [∆M ],
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where m = dim(M). More concretely, we can think in terms of de Rham: let uP be the Thom class in Hk(ν+P )

(where νp is the tubular neighborhood we’ve been talking about, k is the codimension of P in M, and then we

one-point-compactify), and for locally compact spaces we have whenever k > 0 that

Hk(ν+P ) = H
k
compact(νP )

(and we get the reduced homology for k = 0). So in our case, the image of the Thom class of the normal bundle NP
in M under de Rham is the class ηP ∈ H∗compact(M) (the Poincaré dual of P ) which we defined a few lectures ago

(the Thom collapse map of uP in Hkcompact(νP ,R) = Hk(ν+P ,R), which pulls back to Hk(M,R)). Remember that ηP
can be thought of as compactly supported almost as a delta function in a small neighborhood of P in M. And then

we find that

[P ][Q] = [P ∩Q] =
∫
M

ηP ∧ ηQ

(since in de Rham, the cap becomes a wedge), which is the same as
∫
P ηQ = uQ ∩ [P ].

We can now talk about inverse images and degree: for a continuous map f : M → N (we can work in topology

or in smooth topology) between closed, oriented topological manifolds, we can define (using Poincaré duality) “wrong

way maps” (also called shriek maps) where homology goes backward and cohomology goes forward. The idea is to

pull back in homology by pulling back in cohomology and using Poincaré duality:

Hk(N) Hm−n+k(M)

Hn−k(N) Hn−k(M)

f!

D D

f ∗

Following the diagram, we then get a map

f! : Hk(N)→ Hm−n+k(M), f!(a) = D
−1f ∗(Da).

Geometrically, if f : M → N is a smooth map between smooth (oriented, closed) manifolds, then by Sard’s theorem a

generic point p ∈ N is regular, so f −1(p) is smooth. The pushforward in homology is then

f![pt] = [f −1(pt)],

and more generally if f is transverse to some manifold Q, then f![Q] = [f −1Q]. Since we have Poincaré duality on

both M and N, in cohomology we then get

f !α =

∫
f −1(pt)

α,

where we are integrating α on a generic fiber.

Definition 142

If M,N are two manifolds of the same dimension, and N is connected, then the degree of the map f : M → N,

an element of Z, is well-defined as

f∗[M] = (deg f )[N].

We can interpret this geometrically as follows:
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Corollary 143

If f : M → N is a map between smooth manifolds, we then have

deg f = [M][f −1(p)] =
∑

x∈f −1(p)

sign(x).

The picture is that if we pick a generic point p ∈ N, the inverse image in M is a 0-dimensional manifold with a

canonical orientation, meaning we have a bunch of points each with a + or − sign. Then the degree is then the sum

of the ±1s.
We can then think about the geometric interpretation of the Euler class and self-intersection as follows: if S ↪→ M

is a smooth, closed, oriented submanifold, we can define the self-intersection of S as follows: we can push S off of

itself (by homework) to some perturbation St , which will be transverse to S generically, and define

S · S = [S ∩ St ] ∈ H2s−m(S),

and thus we can include it into H2s−m(M) if we want. And in particular if m = 2s this then gives us something we can

identify as a number:

Theorem 144

Let S ⊆ M be a submanifold (we assume smooth, closed, oriented, but we don’t need smoothness, just enough

to have a normal bundle). Then the self intersection of S is Poincaré dual to the Euler class of its normal bundle,

meaning that S · S = χ(NS) in H∗(S;Z) (which we can include into H∗(M;Z)). In particular, the Euler class of

an oriented vector bundle E → S is Poincaré dual to the zero locus s−1(0) of a generic section s of E (that is, a

section transverse to zero).

We’ll prove this next time!

16 March 2, 2023
Today will focus on the Euler class, Poincaré duality, and applications – remember that all manifolds today are closed,

oriented, and smooth (and all bundles are oriented, or else we need Z2 coefficients), and we have (when S ⊂ M is a

submanifold) that [S] is Poincaré dual to the Thom class uS of the normal bundle, meaning that uS ∩ [M] = [S] or
equivalently (α ∪ uS) ∩ [M] = α ∩ [S] for any α. Here we should think of the cohomology class α ∈ H∗(M) as a form

in de Rham, and then the right-hand side is like
∫
S α. Then α ∪ uS corresponds to the intersection product of the

Poincaré dual of α and the Poincaré dual of uS (which is just S). So in words, the intersection of S with a cohomology

class’s Poincaré dual is the same as integrating α on that surface, and that’s why we think of the Poincaré dual of S

as a delta function supported normal to S.

We thus get a geometric interpretation of the Euler class of a vector bundle via self-intersections, which is Theo-

rem 144 – basically if we take a generic section s of E (which will be transverse to the zero section) and look at the

zero locus, then χ(E) (which is a cohomology class) satisfies χ(E) ∩ [S] = [s−1(0)] (these are homology classes in

H∗(S), which is the same as the homology of H∗(E)). Simultaneously, we can prove the following corollary: if S ⊂ M
is a submanifold, then the self-intersection S ·S = χ(NS)∩ [S] is also this same homology class. (And this is the same

as the previous statement by the tubular neighborhood theorem, since self-intersection can be made to happen in just

a neighborhood of S.)
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Proof of Theorem 144. Taking a tubular neighborhood of S, we can reduce to proving this result where M is the

fiberwise one-point compactification of E (this is the same strategy as when we proved that uS ∩ [M] = [S] – it yields

a sphere bundle over S). So we have the same diagram, where S ⊂ E is the zero section: pushing s off of itself to

get st transverse to s, or equivalently using a section s to the normal bundle of S, which is E,

S · S = [S ∩ St ] ∈ H∗(S)

and we want to prove that [S ∩ St ] = χ(E) ∩ [S]. We know S · S is Poincaré dual to uS ∪ uS, which comes from the

cross product:

u × u u ∪ u u

S × S S · S u ∩ [S]

∪

PD(M)∼= PD(M)∼=

∪u

PD(S)∼=

·

So in other words, the following diagram commutes, where νS is the tubular neighborhood of S and ν+S is where

we identify the entire infinity section to a point):

Hr (ν+s ) Hr (ν+s ) H2r (ν+S ) Hr (S)

Hm−r (S) Hm−r (S) Hm−2r (νS) Hm−2r (S)

∩[M]

×

∩[M]

∪

∩[M]

∪u

∩[S]

× ·
∼=

The blue arrow here comes from the Thom isomorphism theorem, the red one from the homotopy axiom (specifi-

cally, this is coming from the pushforward of the section), and here recall that m − r = dim(S). So the right square

commutes (this is just the statement (α∪ uS)∩ [M] = α∩ [S]), and the left square commutes by the definition of the

intersection product. So going back to the first diagram, we see that self-intersection S · S = [St · S] = [s−1(0)] by
definition, but then looking at the diagram this is the same as s∗u ∩ [S], and pulling back the Thom class yields the

Euler class χ(E) ∩ [S].

Example 145

Consider M = CP2 and let S be a complex line L (which we can think of as CP1 sitting inside CP2), which is

really a sphere. In homogeneous coordinates [z0, z1, z2], we can let L be the set of points [z0, z1, 0]. (Recall that

CP2 is like compactifying a point at infinity in each direction for C2.)

We then claim that L · L is a single point (since we can just solve for a nearby equation like z2 = εz1); since these

are complex lines we have a canonical orientation corresponding to taking v , iv , and intersecting two complex things

gives us a positive orientation. Furthermore, because complex things are even-dimensional, we don’t have to worry

about signs of intersections.

Corollary 146

For the tautological line bundle τ over real or complex projective spaces RPn,CPn, its Euler class is −h, where h

is the hyperplane class Poincaré dual to a complex line L.

So for τ → CPn, we have c1(τ) = χ(τ) for a line bundle, which is Poincaré dual to the zero locus of a generic

section, which is −h ∈ H2(CPn,Z).
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Remark 147. The negative sign here comes from the orientation of the tangent bundle – χ(τ) ∈ H2(CPn;Z) ∼= Z,

and h generates the cohomology because intersection product with a line gives 1. So χ(τ) = −h, and testing it

against a line by integrating on a two-dimensional class yields χ(τ) ∩ L = χ(τ |L) by naturality, and thus this reduces

to calculating the Euler class of the tautological bundle over a sphere CP1. Then we can use the section z 7→ z = |z |2
z ,

and that has degree −1.

And for τ → RPn, we have w1(τ) = χ(τ) = h ∈ H1(RPn,Z2) (where the Euler class is now in Z2). Here we’re

using the following fact:

Proposition 148

The top Chern class of a complex vector bundle E is the Euler class, meaning that ctop(E) = χ(E) is Poincaré

dual to the zero locus of a transverse (generic) section. And the top Stiefel-Whitney class of a real vector bundle

is similarly wtop(E) = χ2(E), Poincaré dual mod 2 to the zero locus of a transverse section.

So we have an interpretation of not just the Euler class but also the top classes of a bundle. We won’t go into the

proof in detail during lecture, but the point is to take an axiomatic approach, showing that that χ(E) also satisfies

the same axioms (normalization, naturality, and so on).

Theorem 149

The Euler characteristic of a (smooth, closed, oriented) manifold is the same as the Euler class of its tangent

bundle. In other words (we’re evaluating the Euler class on the fundamental class so that we actually get a

number)

χ(TM)[M] = χ(M) =

m∑
i=0

(−1)i rank(Hi(M)).

Proof outline. This is mostly a straightforward application of the previous theorem, but we do intersection with the

diagonal P × Q ∩ ∆M and then split the diagonal in homology (that is, split the Thom class of the diagonal in

cohomology). More specifically, let ∆M be the diagonal of M in M × M. We then claim that the self-intersection

∆M · ∆M is both the left and right-hand side of what we want. Indeed, the tangent space to the diagonal is points of

the form (v , v) with v ∈ TM, so the normal to ∆M consists of vectors (v ,−v) with v ∈ TM, and this is isomorphic

to the tangent bundle because we just added a negative sign (though the changing orientation may give us an extra

factor of (−1)m). Thus the self-intersection

∆M · ∆M = χ(N∆)[∆] = χ(TM)[M],

since there is a map ι : M → M ×M sending x to (x, x) which yields a diffeomorphism M → ∆M . But we can also

calculate self-intersection differently by the Kunneth decomposition.

If we choose a basis {hi} of H∗(M), where all hi ∈ Hdim(hi )(M), and since the intersection is a nondegenerate

pairing we have a dual basis {hj}, meaning that hi · hj = δi j . Remember then that we pick up a sign if we change the

order, and thus hj ·hi = (−1)codim(hi )codim(hj )δi j (and if hi , hj do not have complementary dimension the pairing doesn’t

exist so we just declare it to be zero).

Lemma 150

Under Kunneth, the diagonal ∆M of M splits as

[∆M ] =
∑
(−1)dim(hi )hi × hi .
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Proof of sketch. This is a calculation – we have

[∆M ] =
∑
i ,j

ci jhi × hj ,

so if we want to find the coefficients ci j , we should intersect with hk × hℓ, upon which we get

∆ · (hk × hℓ) =
∑
i ,j

ci j(hi × hj)(hk × hℓ).

We can now use that (a × b) · (c × d) = (−1)codim(c)codim(b)(a · c) × (b · d) (this comes from how cup and cross

product relate, since cup is cross product restricted to the diagonal) and then we use Poincaré duality), and similarly

a · b = ∆M · (a × b). But then plugging everything back in yields

[∆M ](h
k × hℓ) = hk · hℓ = (−1)codim(k)codim(ℓ)δℓk .

This finishes the proof that we’re after, since we indeed get (−1)dim(hi ) for each i and adding them together yields the

Euler characteristic.

Corollary 151

Let S ⊆ M be a (smooth, closed, oriented) submanifold. If the Euler class of the normal bundle of S is nonzero,

then S cannot be pushed off of itself (or else the Euler class will be nonzero). And in particular, if the Euler

characteristic χ(M) is nonzero, then any vector field onM has at least one zero, and we’ve deduced a generalization

of the hairy ball theorem (since for example χ(S2) = 2).

We’ll look at more consequences next time, proving the Poincaré-Hopf and Lefschetz fixed point theorems!

17 March 9, 2023

Today, we’ll discuss zeros of vector fields and fixed points of flows or diffeomorphisms (as an application of what we’ve

done so far). The idea is to use intersection theory to show that (under certain conditions) fixed points must exist

and can be counted up to sign.

Recall that (in this part of the class, if we want to work with Z coefficients then all manifolds are smooth – though

C1 is enough – closed, and oriented) if we have a manifold M with a submanifold S, then the Poincaré dual of S is

the Thom class uS of the normal bundle. We’ve also defined an intersection product in homology which is Poincaré

dual to the cup product in cohomology, so that [P ] · [Q] is Poincaré dual to uP ∪ uQ. And if P and Q are transverse,

then these are equal to [P ∩Q] PD−−→ uP∩Q. We then found that if E → S is an oriented vector bundle, then the Euler

class χ(E) (a cohomology class) evaluated at the homology [S] is the self-intersection S ·S of the zero section, which

is [s−1(0)], the zero locus of a a section transverse to the zero section. So in short, the Poincaré dual to χ(E) (in S)

is the (homology class) of the zero locus of a section of E transverse to the zero section (in particular, the generic

section is transverse).

We’ll now apply all of this to vector fields. If we let v be a vector field on M (that is, a section of the tangent

bundle TM), recall that a zero of the vector field is also called a singular point.
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Definition 152

A singular point x of the vector field v is nondegenerate if v is transverse to the zero section at x .

Since the set of singular points is also the intersection of v with the zero section, and because we showed (by

“splitting the diagonal” in homology) that the Euler class satisfies

χ(M) = χ(TM)[M] = 0M · 0M ,

and this right-hand side is the sum of sign(x) over all singular points x in v if v has only nondegenerate singular

points. (Indeed, 0M and v are both m-dimensional, and we’re intersecting inside the (2m)-dimensional space TM, so

the intersection is a compact oriented 0-dimensional manifold, hence finitely many points because M is compact and

oriented.)

More generally, if x is any isolated zero of a vector field on M (which doesn’t mean the intersection has to be

transverse – imagine something like y = x2 intersecting the x-axis), we can generalize the notion of a sign and associate

to x the index indx(v) ∈ Z given by the local intersection number. In other words, (1) we deform v in a neighborhood

of x so that it is transverse to the zero section, and then count (with sign) the number of intersection points. (We

do need to check that this is well-defined independent of the (sufficiently small) perturbation we want, though.) Or

we can use the following alternative method: (2) restrict v to a small ball Bε(x) in M, such that x is the only zero of

v . Work in a local trivialization and choose a metric, and let Sε(x) be the sphere of radius ε around x in M. Then we

can let indx(v) be the degree of the map y 7→ v(y)
|v(y)| from Sε(x) to Sm−1 (here we’re looking at the value in the fiber

TyM), and we again have to check that this is well-defined independent of the choices (of metric, local trivializations,

and our sufficiently small ε). And we may show that these definitions are the same.

Example 153

If we consider a vector field in R2 which is pointing radially inward towards the origin, then the vector field has

index 1.

Theorem 154 (Poincaré-Hopf)

Let M be a smooth, closed, oriented manifold, and let v be a vector field on M with only isolated zeros. Then

the Euler characteristic of M is

χ(M) =
∑

x∈v−1(0)

indx(v).

Proof sketch. If v is transverse to the zero section, then the index indx(v) is the sign of x (with our second method,

the idea is that locally the vector field looks linear so we just need to determine the sign); otherwise perturb to make

it transverse.

(In particular, any vector field on the sphere must have zeros because χ(S2) ̸= 0.)
We’ll now see another similar setup: let f : M → M be a diffeomorphism (such as a flow of a vector field), and

let x be a fixed point of f (meaning that f (x) = x , or equivalently that we have an intersection point of Γf with the

diagonal ∆M , which is also the graph of the identity map). Then x is nondegenerate if Γf is transverse to ∆ at x .

Then the sign of x is given by

sign(x) = sign det(I − df ).
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And if x is an isolated fixed point of f , then we can define an index indx(f ) similarly to how we did above by taking

the local intersection number at x of Γf with ∆ (here we’re using that the normal bundle to the diagonal is isomorphic

to the tangent bundle), or also as the appropriate map between spheres as before.

Theorem 155 (Lefschetz fixed point theorem)

Let M be a smooth, closed, oriented manifold, and let f be a diffeomorphism of M. If f has only isolated fixed

points, then the local index is equal to the Lefschetz number

∑
x∈Fix(f )

indx(f ) = L(f ) =
m∑
k=0

(−1)ktrace(f∗,k),

where f∗,k is the induced map of f on homology Hk(M) (with real coefficients, but it doesn’t matter), and we are

taking its trace as a linear transformation.

Proof. The left-hand side is a sum of indices, which (as before) is the intersection is the intersection Γf · ∆. Since

we have a splitting of (homology class of) the diagonal (in terms of a basis in homology and a dual basis), which we

discussed last lecture, we can use the same approach to get a splitting of the graph Γf in homology:

[Γf ] =
∑
i

(−1)dim(hi )hi × f∗(hi)

where hi is a basis of H∗(M) and hi is its dual basis with respect to the intersection product. (So in the case of the

identity the map f∗ is just the identity.) And we can show this by demonstrating that the two sides are equal if we pair

against hi × hj , which form a basis of H∗(M ×M) = H∗(M) ⊗ H∗(M) (here we’re working with R-coefficients). So

because ∆ = Γid we can plug things in and use properties of the cross product to get the result.

Corollary 156 (Topological Lefschetz fixed point theorem)

Let f : X → X be a homeomorphism (in fact sufficient to have X a CW complex and f continuous) with nonzero

Lefschetz number L(f ). Then f has a fixed point.

This is basically a generalization of the Brouwer fixed point theorem, and in fact this tells us a way to count the

sum of the indices of our fixed points (if they are isolated). In particular, if f is homotopic to the identity, f∗ is just

the identity map and the trace of idV is just dim(V ). Thus in this case we will have L(f ) =
∑
(−1)k dimHk = χ(M)

equal to the Euler characteristic.

Example 157

If v is a vector field and φt is a series of diffeomorphisms coming from the flow, then all of these maps are

diffeomorphic to the identity, so L(φt) = χ(M).

Example 158

If x is a zero of a vector field v , that yields a fixed point of φt . Thus a nondegenerate zero leads us to a

nondegenerate fixed point of the flow, and this connects back to Poincaré-Hopf as well. More generally we can

look at time-t periodic orbits, which also correspond to fixed points of φt , and find that L(φt) =
∑

indxφt .
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Remark 159. In dynamical systems, we may start with a diffeomorphism f : M → M and consider the fixed points of

its iterates f i . We can then assemble the Lefschetz zeta function, which is the formal power series

ζf (t) = exp

( ∞∑
n=0

L(f n)

n
tn

)
.

We can in fact do some calculations and see that

ζf (t) =

∏
k odd det(I − tf∗k)∏
k even det(I − tf∗k)

For example, the zeta function for any map homotopic to the identity is ζ = (1− t)−χ(M).

The last thing we’ll do today is to discuss transversality a bit more – there are a few needed results about

transversality that we needed when defining (for example) the intersection number. All of these follow from the

following fact (which we proved), which is an application of Sard’s theorem:

Theorem 160 (Thom transversality)

Assume that F : P ×S → M is transverse to a map g : Q→ M. Then for a generic s ∈ S, the map Fs = F |P×{s}
is generic to g.

Theorem 161

Let E → M be a vector bundle over a compact manifold M, and let g : P → E be a smooth map. Then we can

deform the zero section of E to make it transverse to g, or we can deform g to make it transverse to the zero

section.

In particular, this yields all of the transversality that we wanted in the earlier results (for example showing that we

can make the zero section transverse to itself), since we can always perform the correct deformations.

Proof. We’ll just prove the first statement. The idea here is that M is compact, so E can be embedded into some

large trivial bundle εN of large rank. Writing εN = E ⊕ F (with F = E⊥ with respect to some fixed metric), then

we get a projection π : εN → E. Then for each y ∈ RN we have a constant section sy , and for generic y the

projection π(sy ) is a section of E transverse to the zero section, since putting these maps all together yields a map

F : Rn ×M → εN → E sending (y , x) to sy (x) to π(sy (x)), and (since F is transverse to the zero section) the Thom

transversality theorem applies.

Next time, we’ll discuss Morse theory, and as an application we’ll be able to get estimates of the number of critical

points of a (Morse) function.

18 March 14, 2023
Our topic for these last two lectures will be Morse theory – we’ll present two perspectives, both the classical one

and the “more modern” one which has more applications to current problems. We’ll let M denote a closed (smooth)

manifold, oriented when needed, and f : M → R a smooth function. Recall that x is a critical point of f if dfx is not

onto, and since we have a map onto R that’s equivalent to having dfx = 0. (The typical example to keep in mind is

the height function of the torus, where we stand it up and let f denote its height.) So the linearization of f vanishes

at any critical point x , meaning we can instead look at the “quadratic” approximation. One definition uses a metric,

but here is a more intrinsic one:
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Definition 162

Let x be a critical point of f . The Hessian at x , denoted Hessx(f ), is the symmetric bilinear form TxM×TxM → R
defined by

Hessx(f )(v , w) = V (Wf )x ,

where V,W are vector fields on M that extend v and w , and where we recall that V f = (df )v is the directional

derivative of f in the direction of v .

Lemma 163

The definition above is well-defined (meaning that it is independent of the extension of vector field) and symmetric.

Proof. We’ll first show that this is symmetric – indeed, V (Wf )x − W (V f )x = ([V,W ]f )x , where the commutator

[V,W ] is also a vector field and thus this becomes df [V,W ] evaluated at x , which is zero because x is a critical point.

(So notably the Hessian is only symmetric at critical points – partial derivatives in different directions may not commute

in general.) Then h = Wf is a function on M, and (V h)x = dhx(V ) = dhx(v) only depends on the value of the vector

field at the point x and is independent of extension. So then by symmetry the same argument shows that this only

depends on teh value of W at the point x .

Example 164

When M = Rn, the Hessian Hessx(f ) is the usual matrix of second derivatives
(
∂2f
∂xixj
(x)
)

in coordinates. So this

also extends to charts and local coordinates on a general manifold.

Definition 165

A critical point x of f is nondegenerate if the Hessian Hessx f is nondegenerate as a bilinear form (that is,

Hessx f (v , v) = 0 if and only if v = 0).

Remember that if we have a map f : M → R, then we can think of df as a map TM → TR but also as a map

x 7→ dfx . Then since dfx : TxM → TR = R is a 1-form, we see that df is a section of the cotangent bundle T ∗M

and thus traces out a “graph” on M (where at x we have (x, dfx) ∈ T ∗xM). The critical points of f then form the zero

locus of this section, and those points being nondegenerate corresponds to transversality to the zero section. (This

is because intrinsically the Hessian at x is like the derivative of the derivative, so we basically have (∇s)x for some

connection ∇ in E so that we still end up with a section. And then a calculation shows that at the zero section s,

we have (∇s)x independent of the choice of connection.)

Definition 166

Let x be a nondegenerate critical point of f . The index indx f is the number of negative eigenvalues of Hessx f ,

counted with multiplicity (this is also related to the signature of the Hessian).

Here note that because the Hessian is a symmetric, nondegenerate bilinear form, it has only positive and negative

real eigenvalues. And then (as we discussed last time) indx(f ) will be the local intersection number of S (that is, the

intersection of df with the zero section).
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Lemma 167 (Morse lemma)

Let p be an index k nondegenerate critical point of f . Then there are local coordinates (x1, · · · , xn) around p,

such that

f (x) = f (p)−
k∑
i=1

x2i +

n∑
i=k+1

x2i .

In other words, we can find coordinates so that we just have a quadratic function.

Proof. Assume without loss of generality that f (p) = 0 (just by shifting) and remember that in local coordinates we’re

working around 0. We may arrange for f (x) to look like
∑n

i,j=1 xixjhi j(x) near p, where the hi js are smooth functions

with the values of hi j(0) forming the Hessian matrix. (The idea is to write

f (x) =

∫ 1
0

d

dt
f (tx)dx,

and then we can use the chain rule and get an expression of the form
∑
xi(stuff), then repeat one more time.) From

there, we can do the proof by induction: change coordinates so that f (x) = ±x21 ± x22 · · · ± x2ℓ +
∑n

i,j=ℓ+1 xixjhi j(x),

and then we can change variables because the Hessian is nondegenerate – the formula is to keep um = xm for all m ≤ ℓ
and then define

uℓ+1 =
√
hℓ+1,ℓ+1(x)

(
xℓ+1 +

n∑
m=ℓ+2

xm
hm,ℓ+1(x)

hℓ+1,ℓ+1(x)

)
if hℓ+1,ℓ+1(x) is positive and otherwise we put a negative inside the square root. Then plugging it in either yields x2ℓ+1
or −x2ℓ+1; in particular, the number of negative signs will always be the same because it is the dimension of the negative

eigenspaces of Hessx(f ), which is independent of coordinates and equal to the index.

Corollary 168

If f has only nondegenerate critical points, then the critical points are isolated.

Indeed, we can see this from the local model, since
∑
±x2i only has a critical point at zero. But alternatively,

nondegenerate critical points correspond to transverse intersection, meaning the intersection is a 0-dimensional manifold

(and is thus a collection of isolated points).

Definition 169

A (smooth) function f : M → R is Morse if all of its critical points are nondegenerate.

Example 170

Thinking back to the height function on a torus (which is Morse), there are four critical points – the bottom one

looks like x21 + x
2
2 (index 0), the top one looks like −x21 − x22 (index 2), and the middle two are saddle points (index

1).

Example 171

The monkey saddle f (x, y) = x3 + 3xy2 is not Morse, because 0 is a degenerate critical point. But adding a

small deformation (such as ax + by for small a, b) will make this a Morse function. And for a “worse example,”

something like f (x) = e−1/x
2
sin
(
1
x

)
is smooth but not Morse, since it vanishes at infinite order at 0.
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We’ll show that adding linear terms does work for making functions Morse in general. Notice that if M is a closed

manifold and f is Morse, then the set of critical points is a 0-dimensional compact manifold, hence finite.

Lemma 172

Let M be a closed manifold. Then the generic function f : M → R is Morse.

The idea is to do something similar to how we showed the generic projection works in the Whitney embedding

theorem, producing a bunch of perturbations from a finite-dimensional space.

Proof. Embed M in RN for some N, and look at linear perturbations of the form F (a, x) = fa(x) = f (x)+ a · x , where

a ∈ RN . So F is a map RN ×M → R (where we use the embedding of M in RN), and we wish to show that dF is

transverse to zero (so that by Thom transversality we see that dfa is transverse to zero for generic a). But this is true

because regardless of the value of x , dF will be onto by choosing a appropriately.

Unfortunately, the space of Morse functions is not path-connected in general – that is, if we look at C∞(M) (with

the compact open topology) and we take a generic path in C∞(M), we will have finitely many instances where ft still

has an isolated critical point. (For example, if we start with a kink in the graph and straighten it out, there will be

a point where the critical point is degenerate – thus the bad locus corresponds to birth or death of a pair of critical

points and to dft being tangent to the zero section.)

Definition 173

The sublevel set of f is the inverse image Ma = f −1((−∞, a]).

By transversality, but extended to manifolds with boundary (we just need to ask for the boundary to be transverse

as well), we find that for all regular values a of f , Ma is a manifold with boundary (with boundary given by the level

set f −1(a)).

Proposition 174

Suppose a < b and there are no critical values in [a, b]. Then f −1([a, b]) is diffeomorphic to f −1(a)× [a, b]. Thus,

Ma is diffeomorphic to Mb and we have Mb = Ma ∪f −1(a) f −1(a)× [a, b] (where we glue along the boundary).

We’ll just prove the first one. The idea is to “run the gradient flow” – we can imagine basically pouring liquid into

our manifold and letting the height rise. The gradient does depend on the metric, though:

Proof. Choose a metric g on TM, which induces an isomorphism TM ∼= T ∗M (since g : TxM × TxM → R allows us

to map v 7→ g(v , ·)). We can then take the section df of T ∗M, and this maps under this isomorphism to a vector

field ∇f (this is called the gradient, and it has nothing to do with the connection) given by

df (·) = g(∇f , ·).

But the gradient is perpendicular to level sets, so we just need to scale it so that it varies appropriately: define

ρ : M → R to be

ρ(x) =
1

||(∇f )x ||2

on f −1([a, b]), with norm measured with respect to g. (This is well-defined, since having no critical points means

∇f ̸= 0 everywhere on f −1([a, b]). If we then bump this function down to zero outside f −1([a − 2ε, b + 2ε]), and we
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look at the flow of the rescaled vector field

v = ρ(x)∇f .

We can then check that when we take its flow φt , we do get φb−a : Mb → Ma a diffeomorphism, with

d

dt
(φt) = df (v) = ⟨∇f , v⟩ = ⟨∇f , ρ(x)∇f ⟩ = ρ(x)||∇f ||2,

which is 1 within [a, b] and 0 outside [a − 2ε, b + 2ε]. This yields the diffeomorphism.

So in other words, the topology of sublevel sets only changes whenever we cross a critical value.

Definition 175

Let M be an m-dimensional compact manifold with boundary ∂M, and let f : Sk−1 × Dn−k → ∂M be a (not

necessarily smooth) map. Then the space M ∪f (Dk × Dn−k) is said to be “obtained from M by attaching a

k-dimensional handle.”

This construction is topological, but the Morse lemma really implies the following:

Theorem 176

If x is a critical point of index k of a Morse function f : M → R, and c = f (x) is a critical value with x the only
critical point in (c − ε, c + ε), then Mc+ε is obtained from Mc−ε by attaching a k-handle.

In other words, the Dk part is the negative eigenspace, and Dn−k is the positive eigenspace – this will relate to the

direction in which the gradient flows to or away from x .

19 March 16, 2023

We’ll continue Morse theory today, mostly discussing the classical case (with finite-dimensional manifolds) and then

briefly mentioning the modern approach. Recall that the key example to keep in mind is the height function f : M → R
of a manifold, where the critical points are all nondegenerate (for example by seeing that the Hessian is nondegenerate

or that df is transverse to the zero section). Then each critical point has an index, which is the number of negative

eigenvalues of the Hessian, and at each such point p the function looks like f (x1, · · · , xn) = f (p) +
∑

i ±x2i in local

coordinates (with indp(f ) equal to the number of negative signs).

The idea is that up to diffeomorphism, level sets and sublevel sets only change when we get to a critical point.

Then if we suppose f has only a single critical point x of index k for each critical value c (imagine having a manifold

with two “humps” at the same height – we can just slightly deform the function so that the points appear at different

values of f ), then we get the sublevel set Mc+ε = f −1(−∞, c + ε] from the sublevel set Mc−ε = f −1(−∞, c − ε] by
“attaching a k-handle” – that is, taking the union with Dk ×Dn−k and attaching via some map Sk−1 ×Dn−k .

Example 177

If we think about the height function of a torus and consider the second lowest critical point (with index 1) at

value c , notice that the level set at c + ε consists of two circles (for the two sides of the torus). Then as we go

down to c − ε, those two circles will “flow down.” Pictorally, we can imagine a purse with a handle; the two circles

of the torus will flow down to form the boundary of the top of the purse on the two sides of the handle. Then

Dk corresponds to the “core” of the handle and Sk−1 corresponds to the attaching point.
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(And the proof that this attaching process works does in fact use some kind of gradient flow line idea.) In particular,

this means that any smooth closed (really C2 is enough) manifold has the topology of a CW complex, since we’re

attaching a k-cell Dk when we attach a k-handle:

Theorem 178

Let M be a smooth closed manifold, and let f : M → R be a Morse function. Then M has the homotopy type of

a CW complex, with one cell in dimension k for each index-k critical point of f .

For example, the height function on a torus has points of index 0, 1, 1, 2, and indeed the usual construction where

we identify opposite edges of a square is a CW complex with those cells. However, note that this result does not hold

for topological manifolds.

Corollary 179

There is a chain complex, called the Morse-Smale complex

· · · ∂−→ CMk
∂−→ CMk−1

∂−→ · · · ,

such that CMk is the free Z-module generated by critical points of index k , and such that the homology is

(naturally) isomorphic to the usual (singular, cellular, etc.) homology H∗(M,Z).

In particular, we get bounds for the minimum number of critical points. We know that there will always be a

minimum and a maximum for any function f : M → R on a smooth closed manifold, but we can now say more:

Theorem 180 (Weak Morse inequalities)

Let f : M → R be a Morse function on a smooth closed manifold M. Then the number of critical points of index

k is at least rank(Hk(M)).

Example 181

Any Morse function on M = CPn must have at least one critical point of index 2k for all k ∈ {0, 1, · · · , n}, so in

particular there are at least (n + 1) critical points.

On the other hand, the sphere can have just two critical points (the minimum and the maximum). We in fact have

a converse:

Theorem 182 (Reeb)

Let M be a smooth closed manifold of dimension n with a Morse function with exactly two critical points. Then

M is homeomorphic to Sn.

Indeed, the first nontrivial sublevel set must be a ball (because we start off with a minumum), and then we get an

attaching map with the maximum, meaning that M is Bn ∪ Bn with some attaching map along the boundary. This

means (because the attaching map is a diffeomorphism, hence a homeomorphism, and then using some facts about

Homeo(Sn)) M is homeomorphic to Bn ∪id B
n = Sn.

On the other hand, M is not always diffeomorphic to Sn – Milnor found an exotic 7-sphere, which is a manifold

homeomorphic but not diffeomorphic to the standard S7, and he did so by using this attaching construction. He
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then classified the exotic smoooth structures on S7 and found that there are 28 of them (coming from denominator

of the Bernoulli numbers). In general there will be finitely many such smooth structures – the Smale h-cobordism
theorem implies that in dimensions at least 5, the number of exotic smooth structures on Sn is π0(Diff(Sn−1)), where

the diffeomorphisms on Sn−1 are exactly our attaching maps along the equator and we’re considering them up to

homotopy. And then a result of Milnor and Kervaire implies that (for n ≥ 5) there are finitely many different smooth

structures on Sn which form a finite-dimensional group under connected sum.

Morse theory is in fact a good tool for classifying one- and two-dimensional closed manifolds because we can only

attach so many things – in one dimension we just have the circle, and in two dimensions we just have the sphere,

torus, and connected sums of tori. That type of argument shows that there are no exotic spheres in dimension at

most 3, but in fact the question for n = 4 is still open. In contrast, Taubes proved around 1980 using gauge theory

has proved that there are infinitely many smooth structures on R4 – the way to tell them apart is by writing down

a geometric PDE and extracting an invariant to count the number of solutions. And then Donaldson proved around

1990 that there are 4-dimensional topological manifolds that do not admit a smooth structure.

Remark 183. Since then, there has been various progress constructing smooth structures on various closed 4-

dimensional manifolds (which are distinguished by some larger homology H∗(M)). Even something like CP2 doesn’t

have enough homology for the question to be answered – the invariants aren’t good enough – but it is known that the

connected sum of three copies of CP2 does have infinitely many smooth structures.

The same techniques that prove the weak Morse inequalities in fact tell us more:

Corollary 184 (Strong Morse inequalities)

Let f : M → R be a Morse function on a smooth closed manifold M, and let ck(f ) be the number of critical

points of index k for f and bk(M) be the Betti numbers rank(Hk(M)). Then for all k ,

k∑
i=0

(−1)k−ici(f ) ≥
k∑
i=0

(−1)k−ibi(M).

In particular, adding the results for k and k + 1 yields ck+1(f ) ≥ bk+1(M), which is the weak inequality.

To conclude, we can also formulate the Morse-Smale-Witten version of Morse theory. Again let M be a closed

manifold and f : M → R be a Morse function. Our goal is to construct a complex like the Morse-Smale complex,

generated by the critical points, and now specifying the differential (boundary) map to count the number of gradient
flow lines of f . The idea is to pick a metric g on M – the metric gives a canonical isomorphism TM ∼= T ∗M, and thus

df ∈ T ∗M corresponds to the vector field ∇f = grad(f ) which is perpendicular to level sets of f . So we can consider

the negative gradient flow of f , meaning that we consider integral curves – we can imagine pouring syrup on the top

of the manifold and seeing how it flows down. (This is a closed manifold, so flow exists for all time.) We then want a

solution γ : R→ M such that
dγ

dt
+ (∇f )(γ(t)) = 0,

which we then think of as a flow φt .
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Definition 185

Let x be a critical point of f of index k . We can then define the stable manifold

W s(x) = {y ∈ M : φt(y)→ x as t →∞}

and the unstable manifold
W u(x) = {y ∈ M : φt(y)→ x as t → −∞}.

For example, on the torus, the “inner circle” forms the stable manifold on the bottom index-1 critical point, and

then the circle sitting below that point forms the unstable manifold. This gives us a saddle picture. In general,

we will find using the Morse lemma that W s ,W u are homeomorphic to balls of dimension n − k, k respectively, so

dim(W s(X)) = n − indx(f ), dim(W u(x)) = indx(f ).

Definition 186

A metric g is Morse-Smale with respect to f if W s(x) is transverse to W u(y) for all critical points x, y .

In such a situation, we can always consider the set of points with gradient flow lines from x to y (or alternatively

go to x as t → −∞ and y as t → ∞); this can be characterized by the set W u(x) ∩ W s(y), and it is a smooth

manifold of dimension indx(f ) − indy (f ). Since we have an R-action which translates by time, we can mod this set

out by our action (so if two points are along the same flow lines, they are identified), and that will give us the set of

gradient flow lines. (Notice that if x ̸= y , then this action is free since the flow cannot stay put.) LettingM(x, y) be

the resulting quotient, we will get a smooth manifold (Hausdorff takes a bit of work, but we can basically take a slice

near x) of dimension indx(f )− indy (f )− 1. And now we can define our complex: let CMk(f , g) be the chain complex

again generated by critical points of index k in degree k , and now define

∂x =
∑

y of index k−1
(number of gradient flow lines (counting with sign) x → y) · y .

Indeed, if the index of x is one more than the index of y , thenM(x, y) is a zero-dimensional manifold, so it is a bunch

of points (and we can check that it is oriented). We then just need to check that ∂2 = 0 and that the homology

agrees with the usual one. (Here note that the gradient flow lines do depend on the metric g, but it will turn out that

the homology will still be naturally isomorphic to H∗(M).)
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