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Introduction

Professor Li can be reached in 380-383FF; office hours are Tuesdays and Thursdays from 6-7:30pm (or by appoint-

ment). The CA (Qianhe Qin)’s office hours start next week and are available on Canvas.

There will be nine homework assignments, released weekly and due each Wednesday at midnight. Grading will be

70 percent homework (with lowest two homework grades dropped) and 30 percent final take-home exam.

This is a course in algebraic topology and will follow Hatcher’s book (it can be freely accessed online). That book

has four chapters on the fundamental group, homology theory, cohomology theory, and homotopy theory; we will cover

the first three. Some basic knowledge from topology and algebra will be assumed (like knowing what groups and group

homomorphisms are).

1 September 27, 2022
Throughout the course, we will assume that all spaces are topological spaces and all maps are continuous. In this first

week, we’ll discuss homotopy, CW complexes, and some basic ways to construct spaces, and after that we’ll get into

the content previously mentioned.

Definition 1

Let f , g : X Ñ Y be two (continuous) maps between topological spaces. We say that f and g are homotopic if

there is a (continuous) map H : I ˆ X Ñ Y (where I is the interval r0, 1s with its standard topology) such that

Hp0, xq “ f pxq and Hp1, xq “ gpxq. We denote this as f » g.

We can think of the interval as parameterizing “time,” so that we have a one-parameter (continuous) family of

maps ht : X Ñ Y which is a deformation from f to g.

Example 2

Suppose X “ Y “ R. Then the maps f pxq “ x and gpxq “ x2 are homotopic, because we have the homotopy

Hpt, xq (alternatively written htpxq) given by

Hpt, xq “ p1´ tqx ` tx2.

It can directly be checked that Hp0, xq “ f pxq and Hp1, xq “ gpxq and that H is continuous.
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Example 3

More generally, if X “ Rm and Y “ Rn (for m, n P Zě0) and f , g are two arbitrary maps X Ñ Y , we can always

construct a homotopy between them given by the linear interpolation htpxq “ p1´ tqf pxq ` tgpxq.

We can check that being homotopic is an equivalence relation, meaning that f » f , f » g if and only if g » f ,

and if f » g and g » h then f » h.

Definition 4

Let X and Y be two topological spaces. We say that X and Y are homotopy equivalent if there are maps

f : X Ñ Y and g : Y Ñ X such that f ˝ g » idY and g ˝ f » idX . We denote this as X » Y .

Example 5

Let X “ t0u and Y “ R2. These two spaces are indeed homotopy equivalent, since we can have f : X Ñ Y send

0 to p0, 0q and have g : Y Ñ X send everything to 0; indeed g ˝ f is the identity map on X and any two maps

R2 Ñ R2 are homotopic.

Definition 6

A space is contractible if it is homotopy equivalent to t0u.

Example 7

For any m, n ě 0, we can check that X “ Rm and Y “ Rn are homotopy equivalent with the same argument as

above.

Definition 8

Suppose X Ď Y , and we let f : X Ñ Y be the canonical inclusion. A map g : Y Ñ X is called a retraction if

gpxq “ x for all x P X (or equivalently, g|X “ idX).

For example, the map g in Example 5 is a retraction. And since X Ď Y , retractions can be interpreted as maps

g : Y Ñ Y whose image is X, or equivalently maps where g2 “ g. We’ll now relate this concept to that of homotopy

equivalence:

Definition 9

Let X Ď Y , and let g : Y Ñ Y (with impgq “ X) be a retraction. g is called a deformation retraction if there is

a homotopy ht : Y Ñ Y such that h0 “ idY and h1 “ g, and ht |X “ idX for all t.

In other words, we start from the identity map and deform it to a “projection” onto X, while keeping the map on

X constant. And the map g in Example 5 is a deformation retraction if we view 0 as the origin in R2.

Example 10

Let X “ Sn`1 be the n-dimensional unit sphere in Rn`1, given by X “ tpx1, ¨ ¨ ¨ , xn`1q P Rn`1 : x21`¨ ¨ ¨`x2n`1 “ 1u,

and let Y “ Rn`1zt0u.
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We claim that there is a deformation retraction from Y to X (though there is none from Rn to X). Indeed, let

g : Rn`1zt0u Ñ Sn`1 send y to the normalized vector 1
||y ||

y . Indeed g is a retraction (since a unit-length vector is

sent to itself), and the homotopy is given by the usual linear interpolation

htpyq “

ˆ

1´ t `
t

||y ||

˙

y .

Remark 11. In Hatcher’s book, the third condition ht |X “ idX is required for us to have a deformation retraction, but

in some other books this is called a “strong deformation retraction.” Note that if we have a homotopy ht : Y Ñ Y

between idY and a retraction g without that third condition, we already have X » Y .

The idea is that homotopy equivalent spaces will have the same fundamental groups, homology groups, and

cohomology groups, so they are “basically the same” when we consider them in those ways. But we’ll come back to

all of that later.

Our next topic will be CW complexes, and we’ll start with some motivation:

Example 12

A circle can be broken up into two points connected by two disjoint arcs, and a square can be broken up into a

face, four edges, and four vertices. Even with more complicated spaces, we can perform this process: for example,

we can cut a torus along a curve of “longitude” and “latitude,” and we end up with a square where two opposite

edges are identified.

(For example, if we imagine gluing together the red lines and the blue lines below in the same orientation, we will

recover a torus.)

The idea with CW complexes is that they are made up of various n-dimensional components, called n-cells (which

are homeomorphic to closed n-balls), glued together so that higher-dimensional cells are glued to lower-dimensional

cells at their boundary.

Definition 13

A CW complex is defined inductively in the following way: X0 is a discrete set of points, and given Xn´1, we

take a set of n-cells tDnαuαPI and define a set of characteristic maps tφnα : BDnα Ñ Xn´1uαPI . Then we define

the n-skeleton

Xn “

˜

Xn´1 >
ď

αPI

Dnα

¸

{ „

with quotient induced by the gluing maps px P BDnαq „ pφnαpXq „ Xn´1q and equipping it with the quotient

topology. Finally, take X “ Yně0X
n.

Example 14

For a single square, X0 would be a set of four vertices, X1 would be the set of four vertices with edges between

them (where we’ve specified which vertices are the boundaries of each edge), and X2 is the full square.
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To describe the topology on X more explicitly, we’re looking at the weak topology. In particular, Xn is equipped

with the quotient topology, and if X “ Xn0 for some n0, then the weak topology is just the quotient topology. But

more generally, if X “ X0 Y X1 Y X2 Y ¨ ¨ ¨ , we say that a set U Ď X is open if and only if U XDnα is open in Dnα for

any cell Dnα. (So this is the weakest topology on which all of the inclusion maps are continuous.) It’s also okay to

require that U XXn is open in for all n.

Remark 15. The name “CW-complex” comes from “closure finiteness” (any compact set intersects the interior of only

finitely many cells) and “weak topology.”

Example 16

Consider the two-dimensional sphere S2. We can decompose S2 into the northern and southern hemisphere (each

of which is a 2-cell) and an equator (which is S1). We denote this S2 “ S1 YD2` YD2´, and more generally we

can write Sn “ Sn´1 YDn` YDn´.

So this inductively allows us to find a CW structure for Sn, but it is not the only one – for example, we can write

S2 as D2 YD0 (by imagining gluing the entire boundary of a disk to a single point, “closing it” into a sphere).

Definition 17

The real projective space RPn is given by

RPn “ pRn`1zt0uq{ „,

where x „ λx for any nonzero scalar λ.

In other words, we can imagine that RPn is the set of all lines passing through the origin in Rn`1. We can give

this a CW structure by noticing that on the unit sphere Sn, only the points x and ´x are related to each other, so we

actually have RPn “ Sn{ „ under the relation x „ ´x . Thinking back to the decomposition Sn “ Sn´1 YDn` YDn´,

notice that points on the interior of Dn` and Dn´ are taken to each other, and what’s left is “half of” Sn´1. So we can

write the inductive relation

RPn “ Dn`{ „,

where „ is the relation that turns BDn` into RPn´1 by identifying opposite points. The gluing map is then the projection

map φn : BDn` Ñ RPn´1, and thus we are able to obtain Xn “ RPn from Xn´1 “ RPn´1.

Definition 18

Let Y be a CW complex. If X Ď Y is the union of some cells of Y , then pY,Xq is a CW-pair.

We’ll continue to cover some related ideas next time.

2 September 29, 2022

Last lecture, we discussed some basic ideas surrounding homotopy and CW complexes. (We won’t cover everything

in the book during lectures, but we can ask if we have any questions.) We’ll continue on today with “homotopy stuff,”

starting with criteria for homotopy equivalence. Recall that X » Y (X and Y are “homotopy equivalent”) if there exist

maps f : X Ñ Y and g : Y Ñ X such that f ˝ g » idY and g ˝ f » idX . We call the maps f and g homotopy
equivalences.
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Proposition 19

Let pX,Aq be a CW-pair (recall that this means that A is a union of some cells of the CW complex X), and

suppose A is contractible (meaning that A is homotopy equivalent to a single point). Then the natural quotient

map q : X Ñ X{A (in which all points in A are reduced to a single point) is a homotopy equivalence.

Example 20

Suppose X “ Dn is the n-dimensional disk, and A “ Sn´1 “ BDn. (This is not contractible – it’s just an example

to illustrate the quotient map.) Then it turns out X{A “ Sn – for example, we can imagine that identifying the

boundary of a two-dimensional disk gives us a sphere in 3D space by “rolling up.”

Example 21

Let T be a torus, and let u be a ring on the torus (a cross-section). Then we can compare X “ T {u with the

space Y “ S2 _ S1 where we “wedge” S2 and S1 together (gluing the two spaces along at a single point).

These spaces may look different, but it turns out they are homotopy equivalent. Indeed, consider the space

Z “ S2Yβ defined by starting with a 2-sphere and then adding an arc β connecting the north and south pole. Letting

α be an arc contained within S2 and also connecting N with S, we see that both α and β are contractible in Z. So by

Proposition 19, Z should be homotopy equivalent to both Z{α and Z{β. But quotienting by α gives us Y “ S2 _ S1

(where β becomes S1 and the sphere stays S2), and quotienting by β gives us X “ T {u (where the north and south

pole become the point that u contracts to).

We’ll discuss the proof of Proposition 19 later, but for now we’ll discuss another criterion for homotopy equivalence.

We’ll need the idea of gluing spaces for this:

Definition 22

Let A Ď X, and suppose f : A Ñ Y is a map. Then we can form the space X >f Y “ X > Y { „ by identifying the

point a P A with f pAq P Y .

Example 23

If A “ tx0u P X is a single point and f maps x0 to some y0 P Y , then we basically take X and Y together and

glue them together at the point x0 “ y0. This gives us the “wedge” X _ Y “ X >f Y .

(If X and Y are path-connected, then different choices of points x0, y0 are homeomorphic. But otherwise we may

need to specify x0 and y0 more specifically.)

Definition 24

The mapping cylinder Mf of a map f : X Ñ Y is the space

Mf “ pX ˆ Iq >f Y,

where we think of f as a map from X ˆ t1u Ñ Y .

The idea is that we imagine the image of X as a circle (so that X ˆ I looks like a cylinder, and we attach one end

of the cylinder to Y .
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Definition 25

The mapping cone Cf of f : X Ñ Y is the space

Cf “ pX ˆ I{X ˆ t0uq >f Y.

(This is very similar to the previous case, but we identify the other end of the cylinder so that we just have a cone

sticking out of Y . We call CX “ X ˆ I{X ˆ t0u the cone over X.)

Example 26

Suppose X “ Sn. Then the cone over X is the disk Dn`1 (we can imagine that the cone fills in the interior until

we get to the origin, which is the tip of the cone). Thus, for any map f : Sn´1 Ñ Y , the mapping cone Cf is

CSn´1 >f Y , which is just Dn >f Y . Thus the mapping cone glues an n-dimensional ball to Y along the boundary

given by f , and in particular this allows us to glue an n-cell to the skeleton in a CW complex. Specifically, if Y is

a single point, there is a unique map f : Sn´1 Ñ Y and the mapping cone gets us Cf “ Sn again.

Notice that for an arbitrary space X, the cone CX is always contractible by shrinking along the time-direction. So

now if we have a CW pair pX,Aq with contractible A, and ι : A ãÑ X is the inclusion, then we can glue the cone CA to

X along A, and thus Proposition 19 allows us to identify (by homotopy equivalence) the mapping cone Cι “ X Y CA

with X{A, whether or not A is contractible. And we’re now ready to state the second criterion:

Proposition 27

Let pX,Aq be a CW pair, and suppose f , g : A Ñ Y are homotopic. Then we have homotopy equivalence of the

spaces X >f Y » X >g Y .

Example 28

Suppose pX,Aq is a CW pair with A contractible. Then we can consider the inclusion map ι : A ãÑ X, as well as

the map f : A Ñ ta0u for some fixed point a0 P A Ď X.

Since A is contractible, these maps are homotopic, so applying Proposition 27 tells us that Cι » Cf . But X{A » Cι

as discussed, while Cf can be thought of X _ SA , which is wedging X with the suspension of A:

Definition 29

Let X be a space. Then the suspension of X is

SX “ pX ˆ r´1, 1s{X ˆ t1uq {X ˆ t´1u.

In the example above, quotienting at 1 corresponds to the mapping cone of A, and quotienting at ´1 corresponds

to gluing all points in A to a0 P X.

If we take S0 Ď S2 (which we can take to be the north and south pole), then S0 is not contractible (because it is a

set of two disjoint points) but it is homotopic to a single point in S2. So we can still work with the maps ι : S0 ãÑ S2

and f : S0 Ñ tNu, which are still homotopic, and the same conclusion still holds: Cι » S2{S0 is homotopy equivalent

to Cf » S2_SS0. But the suspension of S0 is S1, so we are saying that S2{S0 » S2_S1, recovering the result from

earlier this lecture. And more generally, if Sn Ď Sm and m ą n, we have Sm{Sn » Sm _ Sn`1.
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We can now start to discuss how to prove these two criteria for homotopy equivalence, and an important ingredient

will be homotopy extension. The idea is the following: let A Ď X, and consider maps ft : A Ñ Y for t P r0, 1s,

forming a homotopy. Additionally, suppose f0 extends to a map f̃0 : X Ñ Y . Then we may ask when ft etxends as

well:

Definition 30

A pair pX,Aq has the homotopy extension property if any homotopy ft : A Ñ Y extends to f̃t : X Ñ Y whenever

f0 extends to f̃0.

Recalling that a homotopy on X is a map on Xˆ I Ñ Y , we can imagine that Xˆ I is a cylinder that we would like

to map to Y , where we already have the map on Aˆ I (a smaller cylinder contained inside) and on X ˆ t0u (the base

of the larger cylinder). Homotopy extension is then equivalent to the following: any map pX ˆ t0uq Y pA ˆ Iq Ñ Y

extends to a map X ˆ I Ñ Y .

Lemma 31

The homotopy extension property is equivalent to pX ˆ t0uq Y pAˆ Iq being a retraction of X ˆ I (meaning that

there is a map r : X ˆ I Ñ X ˆ I such that imprq “ pX ˆ t0uq Y pA ˆ Iq, and such that r |pXˆt0uqYpAˆIq is the

identity map on that space).

Proof. If a retraction r X ˆ I Ñ pX ˆ t0uq Y pA ˆ Iq does exist, we can define f̃ “ f ˝ r to be the composition of

the retraction and the map f , which gives us a map X ˆ I Ñ Y and thus satisfying the homotopy extension property.

On the other hand, if pX,Aq satisfies the homotopy extension property, then we can extend the identity map on

pXˆ t0uq Y pAˆ Iq (that is, taking Y to be the space itself), and then the property yields the desired retraction r .

In general, it’s easier to construct a retraction and write the map explicitly, and that will automatically show

homotopy extension directly.

Example 32

If pX,Aq has the homotopy extension property, then so does pXˆY, AˆY q for any Y (by constructing a retraction

and then multiplying everything by Y ).

Recall that both Proposition 19 and Proposition 27 involve CW complexes, and this is actually an important detail:

Proposition 33

If pX,Aq is a CW pair, then pX,Aq satisfies the homotopy extension property.

For example, we’ll see that pDn, BDnq satisfies the homotopy extension, because there is a deformation retraction

Dn ˆ I Ñ pDn ˆ t0uq Y pBDn ˆ Iq. So we do have this property for a single cell.

Example 34

D1 is a line segment, so D1 ˆ I is a square. Then we want to retract the square onto three of its edges, which

we do by projecting downward as shown below.
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Applying this to an arbitrary CW pair pX,Aq, we find that because Xn is obtained from Xn´1 Y An by gluing

n-cells, Xn ˆ I is obtained from pXn ˆ t0uq Y ppXn´1 Y Anq ˆ Iq by gluing Dnα ˆ I along pDnα ˆ t0uq Y pBDαn ˆ I. So

on each cell Dnα ˆ I, we have a retraction, and thus we can (deformation) retract the entire n-skeleton Xn ˆ I to

pXn ˆ t0uq Y pXn´1 Y Anq ˆ I.

3 October 4, 2022

Last lecture, we established two criteria for homotopy equivalence: if pX,Aq is a CW-pair and A is contractible, then

the quotient map q : X ÞÑ X{A is a homotopy equivalence, and if f , g : A Ñ Y are homotopic maps, then the “glued

spaces” X >f Y » X >g Y are homotopy equivalent as well. We proved last time that any pX,Aq has the homotopy
extension property – specifically, there is a retraction X ˆ I Ñ pX ˆ t0uq Y pA ˆ Iq, and the existence of such a

retraction is sufficient, and for a CW pair we actually have a deformation retraction because we can do this cell by

cell.

We can start today by proving the two propositions stated last lecture:

Proof of Proposition 27. By assumption, because f and g are homotopic, there is a map H : A ˆ I Ñ Y such that

Hpa, 0q “ f paq and Hpa, 1q “ gpaq for all a P A. If we then consider the space pX ˆ Iq >H Y (thinking of A ˆ I as

a subspace of X ˆ I), then applying the homotopy extension property allows us to perform a deformation retraction

from pX ˆ Iq >H Y to ppX ˆ t0uq Y pAˆ Iqq >H Y – in particular, since we have the identity map on Aˆ I throughout,

the gluing does not get affected. And Xˆ t0u is only being glued to Y at Aˆ t0u, so the space we get here is actually

X >f Y , because we’re only gluing X to Y using Hp¨, 0q “ f .

But we may also perform the analogous deformation retraction to ppX ˆ t1uq Y pAˆ Iqq >H Y (swapping the roles

of 0 and 1). And this time, when we glue A ˆ I to Y we are only gluing X ˆ t1u to Y through A ˆ t1u, using the

map Hp¨, 1q “ g. So we are deformation retracting to X >g Y this time. So both X >f Y and X >g Y are homotopy

equivalent to pX ˆ Iq >H Y , and thus they are homotopy equivalent to each other.

Proof of Proposition 19. Since A is contractible, there is a homotopy ft : A Ñ A such that f0 is the identity on A

and f1 maps all of A to a single point a0 P A (this is also called a constant map), which we must think of as a map

ft : A Ñ X. The identity map f0 extends to all of X (it’s still just the identity map), so by the homotopy extension

property for the CW pair pX,Aq we get a map f̃t : X Ñ X which extends ft from A to X. In other words, we always

have the dotted map making the diagram below commute for any t P r0, 1s:

X X

A A

f̃t

ι

ft

ι
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But now f̃tpAq must be contained in A for all t (since we are extending the map ft : A Ñ A, so f̃t descends to a

map f t : X{A Ñ X{A, and this is well-defined.

X X

X{A X{A

q

f̃t

q

f t

(So if x P XzA and f̃tpxq P A, then f tpxq will be mapped to the point rAs corresponding to all of A.) We have

that f 0 is the identity on X{A (since f̃t was the identity on X). On the other hand, f̃1pAq “ ta0u, so we can actually

construct a “diagonal” map in our diagram here specifically because all of A goes to a single point:

X X

X{A X{A

q

f̃1

q

f 1

g

(We should check explicitly that both triangles here actually commute.) So we have g ˝q “ f̃1, which is homotopic

to f̃0 “ idX . On the other hand, q ˝g “ f 1, which is homotopic to f 0 “ idX{A. So the two compositions are homotopic

to the corresponding identity maps, which is what we need for homotopy equivalence. (Importantly, this map g only

necessarily exists at t “ 1 because not all of A needs to be mapped to a single point until then.)

We now have many criteria for proving homotopy equivalence, but we may now want to ask for ways to prove

that X fi Y (for example, if X “ R2 and Y “ R2zt0u). Usually we cannot exhaust all possible maps X Ñ Y as

possibilities, so instead the strategy will be to find invariants IpXq that are preserved under homotopy equivalence –

such invariants may be numbers, polynomials, groups, or more complicated, as long as we can show that IpXq “ IpY q

whenever X » Y . (There’s also a follow-up question of whether there is a “complete set of invariants” that would allow

us to also prove that X » Y .) So the three chapters of Hatcher’s book we’ll go through will give us three examples

of such invariants.

We’ll start with the fundamental group. The idea will basically be that any space X with some base point x0 P X

is associated with a group π1pX, x0q, and for a large family of manifolds we can actually determine the space from this

“fundamental” group. We’ll also find that maps between spaces induce group homomorphisms between fundamental

groups (which are the same if the maps are homotopic) – category theory abstracts all of this, and we might discuss

this a little if there’s time.

But for now, we’ll start with definitions, and the basic ingredient here will be the set of loops passing through x0.

Definition 35

We can think about loops in one of two ways – they’re f : r0, 1s Ñ X with f p0q “ f p1q “ x0, and they’re also

equivalently maps f : S1 Ñ X such that f pp1, 0qq “ x0 – and we’ll use both throughout this class. The space of

loops in X based at x0 is denoted ΩpX, x0q “ tf : r0, 1s Ñ X : f p0q “ f p1q “ x0u.

Definition 36

Let f , g : r0, 1ss Ñ X be two loops (based at x0) with f p0q “ f p1q “ gp0q “ gp1q “ x0. A homotopy between
based loops f , g is a map H : r0, 1stˆr0, 1ss such that Hp0, sq “ f psq, Hp1, sq “ gpsq, and Hpt, 0q “ Hpt, 1q “ x0

for all t P r0, 1s.
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(This may also be denoted f » g rel tx0u, and more generally we can have f » g rel A if we want to fix a space

A throughout the homotopy.) This last condition is basically saying that Ht : r0, 1s Ñ X is always a loop based at x0
for any t, and it is in fact going to be a necessary additional assumption in some situations.

To define a fundamental group, we’ll first recall that a group pG, ¨q is a set with a binary operation ¨ : G ˆG Ñ G

which is associative, has an identity element e such that eg “ ge “ g for all g P G, and has inverses (so for any g

there is an element h such that gh “ hg “ e). We may ask whether there’s a way to construct such an operation on

ΩpX, x0q. There is indeed a natural map given by composition: if f and g are two loops, then we can define f ¨ g to

be the loop that “first travels through f ” during r0, 12 s and “then travels through g” during r 12 , 1s:

f ¨ gpsq “

$

&

%

f p2sq 0 ď s ď 1
2 ,

gp2s ´ 1q 1
2 ď s ď 1.

However, this does not satisfy the group axioms that we want: we don’t have associativity because pf ¨ gq ¨ h has us

traveling along h for the second half on r0, 1s, but f ¨ pg ¨ hq has us traveling along h only for the last quarter. (So

even though we travel along the same loops, we do not have the same map r0, 1s Ñ X.) To solve this, notice that

pf ¨ gq ¨ h and f ¨ pg ¨ hq are homotopic just by doing a time-change:

t

s

f g h

f g h

Explicitly, this means that one possible homotopy (there are many) is

Hpt, sq “

$

’

’

’

&

’

’

’

%

f pp4´ 2tqsq 0 ď s ď 1
4´2t ,

gp4sq 1
4´2t ď s ď 1

4´2t ` 1
4 ,

hp2` 2tqs 1
4´2t ` 1

4 ď s ď 1.

So this motivates studying loops up to homotopy: define the set π1pX, x0q “ ΩpX, x0q{ „, where f „ g if and only

if f » g rel tx0u.

The product formed by composition in π1pX, x0q is then associative – it’s an exercise to check that we can indeed

do the composition and get a homotopic result independent of the elements we choose in the initial equivalence class.

We also claim that the constant loop c : r0, 1s Ñ tx0u is the identity element – indeed, we need to check that

c ¨ f » f » f ¨ c for any loop f . Indeed (for example for c ¨ f » f ) we can consider a diagram as follows:

t

s

c f

f

(Explicitly, the computation is that Hpt, sq “

$

&

%

cpsq 0 ď s ď 1
2 ´ 1

2 t,

f pp2´ tqsq 1
2 ´ 1

2 t ď s ď 1.
) And to find inverses, we basically
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traverse our loops in reverse: if f : r0, 1s Ñ X satisfies f p0q “ f p1q “ x0, then we can define the loop f : r0, 1s Ñ X

by f psq “ f p1 ´ sq. And indeed, the idea is that instead of fully traversing f forward and f backward, at time t we

only traverse a fraction t of the loop forward and then retrace our steps:

Hpt, sq “

$

&

%

f pp2´ 2tqsq s P r0, 12 s,

f pp2´ 2tqs ` 2t ´ 1q s P r 12 , 1s.

So we do have a group operation on this set π1pX, x0q:

Definition 37

The fundamental group of pX, x0q is the group pπ1pX, x0q, ¨q as defined in the discussion above.

Example 38

Suppose X “ R2 and x0 “ tp0, 0qu. Then every loop is homotopic to the constant map, because we can construct

a homotopy Hpt, sq “ p1´ tqf psq ` p0, 0q between any based loop and the constant loop. Thus π1pR2, p0, 0qq is

the trivial group with only one element trcsu.

We may now ask whether the choice of base point matters in defining π1pX, x0q. If we assume X is path-connected

(to avoid any silly examples where loops are restricted to different components), it turns out that the groups will be

isomorphic:

Proposition 39

For any two base points x0, x1 in a path-connected space X, we have the group isomorphism π1pX, x0q – π1pX, x1q.

Proof. Since X is path-connected, there is a map h : r0, 1s such that hp0q “ x0 and hp1q “ x1 (this is a path, not a

loop). Let h be its reverse (so that hp0q “ x1 and hp1q “ x0). Notice that this path induces a map βh : π1pX, x1q Ñ

π1pX, x0q, because for any loop f P ΩpX, x1q, the map h ¨ f ¨ h (first traveling along h, then following f , then reversing

h) gets us a map in ΩpX, x0q.

It can be checked (exercise) that this is well-defined (meaning that the result only depends on the homotopy class

of h rel tx0, x1u) and that this is a group homomorphism. So we have the map βhprf sq “ rh ¨ f ¨ hs, and we have an

explicit inverse βh : π1pX, x0q Ñ π1pX, x1q. We can check that βh ˝ βh is the identity on π1pX, x0q, and βh ˝ βh is the

identity on π1pX, x1q, giving us the desired group isomorphism.

Thus if X is path-connected, we can just denote the fundamental group π1pXq and pick a base point for convenience.

And next lecture, we’ll explore how to study the fundamental groups of two spaces pX, x0q and pY, y0q given properties

of X and Y .

4 October 6, 2022

Last lecture, we proved the homotopy equivalence propositions and introduced the fundamental group π1pX, x0q. We

showed that for any path h from x0 to x1 we have π1pX, x1q – π1pX, x0q (through the map βh mapping loops rooted

at x1 to loops rooted at x0 described in Proposition 39), so the base point itself can be chosen for convenience. Today,

we’ll start asking how to relate the fundamental groups π1pX, x0q and π1pY, y0q by looking at continuous maps X Ñ Y .
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Theorem 40

Let φ : pX, x0q Ñ pY, y0q be a continuous map. Then we have a group homomorphism φ˚ : π1pX, x0q Ñ π1pY, y0q

which sends the equivalence class of f : r0, 1s Ñ X to the equivalence class of φ ˝ f : r0, 1s Ñ Y .

We need to check that this is actually well-defined and a group homomorphism, but we won’t go through the

details in lecture here. Instead, we’ll mention that this induced map behaves nicely even when we change the base

point or compare homotopic maps:

1. Suppose that we have two different base points x0, x1 mapping to y0, y1 under φ. Then we can get the following

diagram (with βh and βφh again coming from the isomorphism in Proposition 39):

π1pX, x0q π1pY, y0q

π1pX, x1q π1pY, y1q

βh

φ˚

βφh

φ˚

Checking that this is actually a commutative diagram is left as an exercise to us as well.

2. Next, suppose we have two homotopic maps φ » ψ and want to see if we can relate φ˚ and ψ˚. One complication

is that the corresponding base points φpx0q “ y0 and ψpx0q “ y1 may not be the same, but we want to find a

path h that makes the following diagram commute:

π1pX, x0q π1pY, y0q

π1pY, y1q

φ˚

ψ˚
βh

In order for such an h to exist, it’s important here that φ and ψ are homotopic. That means that there is a map

ηt : X Ñ Y such that η0 “ φ and η1 “ ψ, so a natural path between η0px0q “ y0 and η1px0q “ y1 is the path

hpsq “ ηspx0q. (So because x0’s image is shifting from y0 to y1 continuously during the homotopy, we should

just use that as our path.) Then we can check as an exercise that this is again a commutative diagram.

3. Finally, suppose we have maps X φ
ÝÑ Y

ψ
ÝÑ Z which send x0 Ñ y0 Ñ z0. Then we get a corresponding composition

π1pX, x0q
φ˚
ÝÝÑ π1pY, y0q

ψ˚
ÝÝÑ π1pZ, z0q, but we can also look at the map ψ ˝ φ : X Ñ Z and thus get a map

π1pX, x0q
pψ˝φq˚
ÝÝÝÝÑ π1pZ, z0q directly. These maps are the same (by unpacking what happens in each case to an

equivalence class of loops rf s), so pψ ˝ φq˚ “ ψ˚ ˝ φ˚.

Theorem 41

Suppose X » Y are homotopy equivalent, X and Y are path-connected, and we pick (an arbitrary) x0 P X, y0 P Y .

Then π1pX, x0q – π1pY, y0q.

(More generally, we can pick y0 to be any point in the same path component as φpx0q. But when we have

fundamental groups rooted at a point x0, the points in X not in the path component of x0 don’t matter anyway.)

Proof. Since X » Y , there are maps φ : X Ñ Y and ψ : Y Ñ X such that φ ˝ψ » idY and ψ ˝ φ » idX . Thus by the

composition property (3) above,

ψ ˝ φ » idX ùñ φ˚ ˝ ψ˚ “ pidXq˚ ˝ βh “ βh

12



(where the second-to-last step is because homotopic maps are different by a base-change βh (property (2) above),

and the last step is because the identity map gives us the identity group homomorphism on the fundamental groups).

So we have an isomorphism βh “ φ˚ ˝ ψ˚ and similarly an isomorphism βh1 “ φ˚ ˝ ψ˚, which implies that φ˚ and ψ˚

are both isomorphisms (since they must both be injective and surjective) betwen the fundamental groups.

Example 42

If X is contractible, that’s equivalent to saying that it is homotopy equivalent to a one-point space, which only

contains the trivial loop. Thus the fundamental group of a contractible space (such as R2) is also trivial.

On the other hand, just because the fundamental group is trivial does not mean the space is contractible – the

n-sphere Sn (for n ě 2) is not contractible but has trivial fundamental group, because we can shrink any loop to a

point (for example by stereographic projection from a point not on the loop, giving us R2) but Sn is non-contractible

(this can be seen for example through homology, which we’ll discuss later in the course).

Example 43

Recall that Y “ R2 ´ tp0, 0qu has a projection onto the unit sphere S1 : tpx, yq P R2 : x2 ` y2 ď 1u given by a

deformation retraction, so π1pR2 ´ tp0, 0qu, p1, 0qq is isomorphic to π1pS1, p1, 0qq.

In the next few lectures, we’ll develop some techniques for computing fundamental groups in general (such as the

van Kampen theorem and covering spaces). But for today, we’ll work towards computing π1pS1q. For any integer n,

we define the loop ωn : r0, 1s Ñ S1 by setting

ωnpsq “ pcosp2nπsq, sinp2nπsqq P S1.

Geometrically, these loops are basically traveling around the sphere n times counterclockwise at a constant rate, and

we give them a group structure by saying that rωnsrωms “ rωm`ns.

Theorem 44

There is a group isomorphism Φ : ZÑ π1pS
1, p1, 0qq sending n to ωn.

In other words, every loop is homotopic to exactly one of the ωn maps. We’ll first show some applications of this

result before proving it:

Corollary 45 (Brouwer fixed point theorem)

Any (continuous) map f : D2 Ñ D2 (where D2 is the unit disk tpx, yq : x2 ` y2 ď 1u) has some fixed point

x P D2 with f pxq “ x .

Proof. Suppose otherwise, so that there is some function f with f pxq ‰ x for all x P D2. Then we can construct

a retraction r : D2 Ñ S1 in the following way: for any x , draw a ray from f pxq towards x , and let rpxq be the

intersection of that ray with S1. We can check that there is always one such intersection point, and in particular if x

is on the boundary then rpxq “ x . But then the composition S1 ι
ÝÑ D2

r
ÝÑ S1 is the identity on S1, so this composition

should also give us an induced map on the fundamental groups r˚ ˝ ι˚ “ pidS1q˚ “ id, since the base point p1, 0q is

unchanged. But π1pS1, p1, 0qq
ι˚
ÝÑ π1pD

2, p1, 0qq
r˚
ÝÑ π1pS

1, p1, 0qq is a map Z ι˚
ÝÑ 0

r˚
ÝÑ Z (since D2 is contractible).

This composition must then be both the zero and identity map, which is a contradiction.
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Corollary 46

Let h : S1 Ñ S1 be a map such that hpxq “ ´hp´xq for all x . Then h is not nullhomotopic (in other words, h is

not homotopic to the constant map).

The idea is that we can rotate the map h so that hp1, 0q “ p1, 0q, so we can think of h as a loop on S1. Then we

wish to show that rhs ‰ r0s P π1pS
1, p1, 0qq. But we’ll postpone the proof of this for a bit – the idea is related to the

proof that π1pS1, p1, 0qq – Z.

Corollary 47 (Borsuk-Ulam)

Let f : S2 Ñ R2 be any map. Then there is some point x P S2 such that f pxq “ f p´xq.

(One interpretation of this result is that there are always two antipodal points on Earth with the same temperature

and pressure.)

Proof. Suppose otherwise, so that there is some map f : S2 Ñ R2 with f pxq ‰ f p´xq for all x P S2. Then we can

define a new map g : S2 Ñ S1 given by

gpxq “
f pxq ´ f p´xq

||f pxq ´ f p´xq||
,

and we can look at the image of the equator S1 Ă S2 under g. Letting ι : S1 Ñ S2 be the inclusion of the equator in

S2, we get a map h “ g ˝ ι : S1 Ñ S1. But notice that

hp´xq “
f p´xq ´ f pxq

||f p´xq ´ f pxq||
“ ´hpxq,

and by Corollary 46 h is not homotopic to the constant loop. But h : S1 Ñ S2 Ñ S1 factors through S2, and any

loop is null-homotopic in S2, which is a contradiction (again the map ZÑ 0Ñ Z cannot have a nonzero image).

The two remaining things left to prove – that Φ : ZÑ π1pS
1, p1, 0qq is an isomorphism and that we cannot have

a nullhomotopic map h : S1 Ñ S1 with hpxq “ ´hp´xq – are both proved using covering spaces. To motivate that,

recall that S1 is the unit sphere tpx, yq P R2 : x2 ` y2 “ 1u, so we can define a map q : RÑ S1 given by

qpsq “ pcosp2πsq, sinp2πsqq.

We then have qpnq “ p1, 0q for all n P Z, and we can imagine that this map loops around the circle once in every unit

interval. So this means that any map r0, 1s Ñ S1 can be lifted to a map r0, 1s Ñ R (R is called the universal cover
of S1), and it turns out such a lift will be unique up to some conditions, which we’ll see in subsequent lectures.

5 October 11, 2022

Last lecture, we stated (in Theorem 44) that the fundamental group of S1 is Z. In other words, we claimed that there

is an isomorphism Φ : Z Ñ π1pS
1, p1, 0qq which sends n to rωnpsq “ pcosp2nπsq, sinp2nπsqqs, the loop which goes

around S1 n times counterclockwise.

We will prove this in three steps, showing that Φ is a group homomorphism, that it is surjective, and that it is

injective. Step 1 can be verified directly: the composition of the loops ωm and ωn is indeed homotopic to the loop

ωm`n, as represented in the diagram below (writing down the detailed expression is an exercise for us):
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t

s

1
2

m
m`n

ωmpsq ωnpsq

For the second step, we will make use of the map p : R Ñ S1 mapping s to cosp2πs, sin 2πsq. The point is that

any loop f : r0, 1s Ñ S1 will be lifted to a path f̃ : r0, 1s Ñ R, because we can figure out more easily what’s going

on with the homotopy on R. Indeed, any two paths f̃ , g̃ : r0, 1s Ñ R with the same start and end point x̃0 and x̃1 are

homotopic on R (for example by linear interpolation), so they must descend to homotopic loops on S1 rel tx0, x1u.

But we’ll need to figure out how to ensure that such a lift exists, and it’s important that we chose the map p

specifically because for any pa, bq P R with b´ a ď 1, we get a homeomorphism p : pa, bq Ñ ppa, bq (in other words,

any small enough open interval is mapped to an open interval on S1.), and we’ll use this property to lift the path.

Fact 48 (Covering property of S1)

For any x P S1, there is a neighborhood (open set) U Ď S1 containing x such that any connected component V

of its preimage p´1pUq Ď R yields a homeomorphism p|V : V Ñ U.

Geometrically, if we imagine a small neighborhood U in S1, its preimage is a disjoint union of a bunch of intervals,

and any of these intervals projects down to U. (This will become a general property when we look at more general

covering spaces soon.)

Proposition 49

Fix any path f : r0, 1s Ñ S1, and fix any point x̃0 such that ppx̃0q “ f p0q. Then there is a unique path

f̃ : r0, 1s Ñ R such that f̃ p0q “ x̃0 and p ˝ f̃ “ f (that is, f lifts to f̃ ).

Proof. For any point x P S1 there is some neighborhood Ux of x satisfying the covering property. Since S1 is

compact and the set of Uxs covers it, we can cover S1 by finitely many such neighborhoods. Thus we see that

f r0, 1s Ď U0 Y ¨ ¨ ¨ Y Un, where each Ui P S1 satisfies the covering property, and where we assume that x0 P U0. Let

V0 be the component of p´1pU0q which contains x̃0. Because we have a homeomorphism between U0 and V0, we can

locally lift f uniquely to f̃ : r0, εq Ñ V0 (by composing with p´1). Now U0 intersects some other interval U1, so the

same argument shows that we can extend f to U0 Y U1. Repeating this eventually lets us extend to U0 Y ¨ ¨ ¨ Y Un by

patching these extensions together.

And uniqueness follows because locally p is a one-to-one map, so there are no other paths possible besides the one

that we constructed.

Remark 50. More precisely (to avoid some of the issues with infinitely switching between the Uis), for every point

s P r0, 1s we have a small neighborhood pas , bsq P r0, 1s so that f pas , bsq Ď U Ď S1. Then we can use those

neighborhoods in our compactness instead.
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But now returning to our goal, recall that what we care about is loops in S1, and the next step we wanted to

perform is to show that Φ : Z Ñ π1pS
1, p1, 0qq is surjective. To do this, consider any loop f : r0, 1s Ñ S1 based at

p1, 0q, and choose x̃0 “ 0 P R. The lifting property then tells us that we have a path f̃ : r0, 1s Ñ R with f̃ p0q “ 0 and

p ˝ f̃ “ f . Then f̃ p1q should be in the preimage of p´1p1, 0q “ Z, so our path ends at some integer on R. There is

indeed a path from 0 to n, namely the linear path ω̃npsq “ ns. But f̃ and ω̃n both have the same starting and ending

points, so they are homotopic rel t0, nu on R, and thus (composing with p) they descend to homotopic maps on S1

rel tp1, 0qu. But w̃n gives us the loop ωn, and f̃ gives us back our original f . Thus rf s “ rωns P imΦ for some n. This

means that the map Z Ñ Π1pS
1, p1, 0qq sending n Ñ rωnpsqs is surjective because any element of Π1pS1, p1, 0qq is

some class rωnpsqs.

On the other hand, we can also prove that Φ : ZÑ π1pS
1, p1, 0qq is injective, meaning that we wish to show that

ωn and ωm are not homotopic rel tp1, 0qu for any m ‰ n. For this, we’ll make use of another useful property:

Fact 51 (Homotopy lifting for S1)

If f , g : r0, 1s Ñ S1 have the same endpoints f p0q “ gp0q “ x0 and f p1q “ gp1q “ x1, and f » g reltx0, x1u, let

H : r0, 1st ˆ r0, 1ss Ñ S1 be such a homotopy (meaning that Hpt, 0q “ x0, Hpt, 1q “ x1, Hp0, sq “ f psq, and

Hp1, sq “ gpsq for all s, t P r0, 1s). Then if we fix any x̃0 P p´1px0q, H lifts to a (unique) map H̃ : r0, 1stˆr0, 1ss Ñ

R, such that p ˝ H̃ “ H and H̃pt, 0q “ x̃0.

The proof here is very similar to our previous argument – we lift the square piece by piece by compactness instead

of lifting the circle. And now we can prove injectivity: if we write f̃ psq “ H̃p0, sq and g̃psq “ H̃p1, sq, we have p˝ f̃ “ f

and p ˝ g̃ “ g (just by restricting p ˝ H̃ “ H to only part of the domain), so we see that H̃ is a homotopy between the

lifts of f and g. Additionally, if we define h̃ : r0, 1s Ñ R via h̃ptq “ H̃pt, 1q, we get a path from f̃ p1q to g̃p1q which

descends to hptq “ Hpt, 1q, the constant path at p1, 0q. But by uniqueness of path lifting, that means h̃ must be a

constant, so f̃ p1q and g̃p1q must be the same point. But ωm and ωn lift to paths from 0 to m and 0 to n, so they can

only be homotopic if m “ n.

Notice that all we’ve really used is the local homeomorphism covering property – it’s not important that we just

work with paths into S1 or even with S1 and R in particular. So that’s what we’ll be generalizing now:

Definition 52

Let X, X̃ be two spaces. A map p : X̃ Ñ X is a covering map if for any x P X, there is a neighborhood U of x

such that for any connected component V of p´1pUq, the restriction p|V : V Ñ U is a homeomorphism. If this

holds, then X̃ is a covering space of X.

(We require a connected component here because we want to be able to uniquely lift maps into X to maps into

X̃.)

Theorem 53 (General lifting property)

Let p : X̃ Ñ X be a covering map, Y be an arbitrary space, and let ft : Y Ñ X be a homotopy of maps such that

f0 lifts to f̃0 : Y Ñ X̃. Then there is a unique lift f̃t : Y Ñ X̃ for all t P r0, 1s, meaning that p ˝ f̃t “ ft .

In particular, if Y is a single point, this gives us the path lifting property, and if Y is the interval r0, 1s, we get the

homotopy lifting property.
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Theorem 54

Let p : X̃ Ñ X be a covering map with ppx̃0q “ x0. Then the corresponding map p˚ : π1pX̃, x̃0q Ñ π1pX, x0q is

injective.

Proof. Suppose we have two loops f̃ , g̃ : r0, 1s Ñ X̃ with f̃ p0q “ f̃ p1q “ g̃p0q “ g̃p1q “ x0. Then if p˚rf̃ s “ p˚rg̃s,

that means that p ˝ f̃ » p ˝ g̃ reltx0u. But by homotopy lifting this means that f̃ » g̃ reltx0u, so rf̃ s “ rg̃s.

Next, we’ll mention a necessary condition for being able to lift a general map f : Y Ñ X to a map f̃ : Y Ñ X̃. If

such a lift exists, then f “ p ˝ f̃ means that f˚ “ p˚ ˝ f̃˚, meaning that we must have the condition f˚pπ1pY, y0qq Ď

p˚pπ1pX̃, x̃0q. But it turns out this condition is also sufficient:

Theorem 55

Let p : X̃ Ñ X be a covering map with ppx̃0q “ x0. Then if Y is path-connected and locally-path-connected, and

f : Y Ñ X is a map such that f py0q “ x0 and f˚pπ1pY, y0qq Ď p˚pπ1pX̃, x̃0qq, then f lifts to a map f̃ : Y Ñ X̃

with f̃ px0q “ x̃0.

6 October 13, 2022
Last lecture, we introduced the concept of a covering space and its lifting property. Specifically, a covering map
is a map p : X̃ Ñ X where any x P X has a neighborhood U, such that for any component of the preimage

V Ă p´1pUq, we have a homeomorphism p|V : V Ñ U. Such a construction is useful because it allows us to lift

paths and homotopies from X to X̃ (Theorem 55): as long as Y is path-connected and locally-path-connected, the

relation f˚pπ1pY, y0qq Ď p˚pπ1pX̃, x̃0qq between the fundamental groups is equivalent to the existence of an extension

f̃ : Y Ñ X̃.

Proof of Theorem 55. For one direction, if a lift f̃ exists, then we have f “ p ˝ f̃ ùñ f˚ “ p˚ ˝ f̃˚, which means the

image of f˚ is contained in the image of p˚.

The other direction is more substantial: suppose f˚pπ1pY, y0qq Ď p˚pπ1pX̃, x̃0qq, and we want to define the map

f̃ . We know that f̃ should preserve the base point, so we must define f̃ py0q “ x̃0. Now for any y1 P Y , by path-

connectedness, there is some path h : r0, 1s Ñ Y such that hp0q “ y0 and hp1q “ y1. Then f ˝ h is a path in X with

f ˝ hp0q “ x0 and f ˝ hp1q “ x1, and by the path lifting property f ˝ h lifts uniquely to a path ˜f ˝ h : r0, 1s Ñ X̃ if we

fix the starting point x̃0. Thus we can define f̃ py1q “ ˜f ˝ hp1q “ x̃1.

To make sure f̃ is well-defined, we must show that it does not depend on the path h : r0, 1s Ñ Y that we chose.

Suppose there is some other path h1 : r0, 1s Ñ Y also with h1p0q “ y0 and h1p1q “ y1, so that f ˝ h1 : r0, 1s Ñ X is a

path in X with f ˝ h1p0q “ x0 and f ˝ h1p1q “ x1. We must ensure that the lift of this new path ˜f ˝ h1 also ends at

x̃1. Notice that γ “ h1 ˝ h is a loop in Y starting and ending at y0, which means f ˝ γ “ pf ˝ hq ˝ pf ˝ hq is a loop

in X starting and ending at x0. Since rγs P π1pY, y0q, f˚prγsq P f˚pπ1pY, y0qq Ď p˚pπ1pX̃, x0qq, meaning that there is

some loop δ̃ on X̃ starting and ending at x̃0 such that f˚prγsq “ p˚prδsq. This means that f ˝ γ and p ˝ δ̃ have the

same homotopy class in X rel tx0u. By the homotopy extension property of covering spaces, we thus get a homotopy

between ˜f ˝ γ and δ̃ rel tx̃0u (since δ̃ is a lift of p ˝ δ̃ and lifts are unique). But this means that ˜f ˝ γ is homotopic to

a loop and thus must be a loop itself, and that can only happen if the extension of h1 ends at the same point as the

extension of h. (Throughout this argument, we have crucially used that lifts are unique in a few spots.)
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Finally, we need to make sure that f̃ is actually continuous (since we defined it point-by-point), and this is where

locally-path-connectedness matters (which basically means for any point and any open neighborhood of that point,

there is a smaller neighborhood which is path-connected). We should read the details of that part of the argument in

our textbook.

The next question is to ask when (and how) such an extension map can be unique:

Proposition 56

Suppose p : X̃ Ñ X is a covering map such that f : Y Ñ X has two extensions f1, f2 : Y Ñ X̃, meaning that

p ˝ f̃1 “ p ˝ f̃2 “ f . If Y is connected (not necessarily path-connected) and there is some point y0 such that

f̃1py0q “ f̃2py0q, then f̃1 “ f̃2 on all of Y .

Proof sketch. Suppose f̃1py0q “ f̃2py0q “ x̃0. By definition, there is some neighborhood U around x0 “ ppx̃0q such that

p is a local homeomorphism on that neighborhood. Thus f̃1 and f̃2 must coincide locally on all of f ´1pUq. Thus the

set S “ ty P Y : f̃1pyq “ f̃2pyqu is open, and so is the set ty P Y : ty P Y : f̃1pyq ‰ f̃2pyqu (because f̃1 and f̃2 can be

contained in disjoint neighborhoods). Thus Y ´S is also open, meaning S is closed, and by connectedness this means

S must be the whole space.

We’ll come back to covering spaces next week, but for now we’ll cover some other important techniques for

computing fundamental groups:

Definition 57

Let G and H be two groups. The free product of G and H, denoted G ˚ H, is the set of words tg1g2 ¨ ¨ ¨ gnu,

where each gi is an element of G or an element of H, quotienting by the relations that if gigi`1 are from the same

group, then g1 ¨ ¨ ¨ gigi`1 ¨ ¨ ¨ gn “ g1 ¨ ¨ ¨ gi´1pgigi`1qgi`1 ¨ ¨ ¨ gn.

In other words, we can simplify our words by using the group multiplication of G and of H separately, but there are

no relations between elements of G and H. We can also explain this concept using group presentations: we let

G “ xgα : α P I|rβ : β P I 1y , H “
@

g1
α : α P J

ˇ

ˇr 1
β : β P J 1

D

,

where the gαs are generators of the groups and rβs are relations. Then the free product is given by

G ˚H “
@

gα, g
1
α : α P I Y J

ˇ

ˇrβ, r
1
β : β P I 1 Y J 1

D

.

Theorem 58 (Von Kampen)

Let X be a topological space, and let Aα be an open cover of X (meaning that each Aα is open and
Ť

Aα “ X.)

Suppose there is some x0 P
Ş

αPI Aα Ď X, and Aα X Aβ is path-connected for all α, β. Then there is a natural

map Φ : ˚αPI π1pAα, x0q Ñ π1pXq which sends any word pg1, g2, ¨ ¨ ¨ , gnq to g1g2 ¨ ¨ ¨ gn, which is surjective.

Furthermore, for rγs P π1pAαXAβ, x0q, then we can define (by inclusion) iαrγs P π1pAα, x0q and iβrγs P π1pAβ, x0q.

Then if AαXAβXAγ is also path-connected for any α, β, γ, the kernel of Φ is generated by elements iαrγspiβrγsq´1

for all α, β, γ.

We can read the proof of this result on our own – being able to use it in applications is more important. The

algebraic way of saying this is that the fundamental group of X is actually a pushout coming from the inclusion maps

A1 X A2 Ñ A1 and A1 X A2 Ñ A2.
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Example 59

Suppose X “ A1YA2, with x0 P A1XA2 and A1XA2 path-connected. Then if π1pA1, x0q has group presentation

xq1, ¨ ¨ ¨ , qn|r1, ¨ ¨ ¨ , ruy, π1pA2, x0q has group presentation xf1, ¨ ¨ ¨ , fm|s1, ¨ ¨ ¨ , sv y, and π1pA1 X A2, x0q has group

presentation xe1, ¨ ¨ ¨ , eℓ|t1, ¨ ¨ ¨ , tw y. Then by Von Kampen, we have the group presentation

π1pX, x0q “ xg1, ¨ ¨ ¨ , gn, f1, ¨ ¨ ¨ , fm|r1, ¨ ¨ ¨ , ru, s1, ¨ ¨ ¨ , sv , i1˚pe1q “ i2˚pe1q, ¨ ¨ ¨ , i1˚peℓq “ i2˚peℓqy .

Example 60

Consider the wedge S1 _ S1; we’ll apply Van Kampen’s theorem to the diagram below, where the red and purple

regions form A1 and the blue and purple regions form A2.

A1 A2

A1 X A2

By Van Kampen, we know that π1pXq “ π1pA1q ˚ π1pA2q{ ker Φ. But A1 and A2 are homotopy equivalent to

circles, and the intersection is contractible and thus provides no new relations. This means the fundamental group of

X is Z ˚ Z.

Example 61

Now suppose X “ S2, and let A1 and A2 be the upper and lower hemispheres of S2 extended a bit (so that

A1XA2 is homotopy equivalent to the equator – we call this a collar of the equator). But the fundamental group

of A1 and A2 are each trivial because they are open disks, so we indeed see that π1pS2q is trivial (we don’t even

need to consider the quotient).

A similar argument also shows that π1pSnq is trivial for any n ě 2. But we cannot make an analogous argument

for S1 because we need A1 X A2 to be path-connected.

Example 62

Suppose we have a CW complex X “ YnX
n, where Xn is the n-skeleton of X. We wish to understand π1pXq

based explicitly on how cells are attached to form X.

The answer turns out to be yes, but we’ll do the argument in parts:

Proposition 63

Attaching an n-cell for n ě 3 does not change the fundamental group of X.

Proof. Recall that n-cells are added to X via an attaching map φ : BDn Ñ Xn´1 and use φ to glue Xn´1 to Dn along

the boundary. But Dn can be thought of as a mapping cone CSn´1, so Dn – r0, 1s ˆ Sn´1{pt1u ˆ Sn´1q. But now
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we can decompose X “ Xn´1 >φ D
n into two parts, where A1 “ p 13 , 1q ˆ Sn´1{pt1u ˆ Sn´1q is only the “tip” of the

mapping cone” and A2 “ X >φ p0, 23 q ˆ Sn´1. Their intersection is a collar (from 1
3 to 2

3) of Sn´1, and thus

π1pX, x0q “ π1pA1, x0q ˚ π1pA2, x0q{ ker Φ.

But the fundamental group of A1 is trivial (because it is a cone and thus contractible when n ě 3), while the

fundamental group of A2 is just π1pXq because we can deformation retract the attached cylinder back to Xn´1.

Finally, π1pA1XA2, X0q “ π1pS
n´1q is also trivial for n ě 3. Thus the fundamental groups of Xn´1 and of Xn´1 >φD

n

are the same, and the attachment did not change the fundamental group.

Corollary 64

For any CW complex X with 2-skeleton X2, we have π1pX2q – π1pXq.

We’ll understand how to study the attachment of 2-cells and 1-cells later on!

7 October 18, 2022

We’ll discuss covering spaces in more detail today. Recall that a covering space of X is a space X̃ with a covering

map p, such as p : R Ñ S1 sending s to pcosp2πsq, sinp2πsqq; we in particular used this space to compute πpS1q

because R is contractible. R plays a special role for S1 in that it is a “universal cover:”

Definition 65

Suppose X̃ is a covering space of X which is simply connected (meaning that it is path connected and its

fundamental group is trivial). Then we call X̃ the universal cover of X.

We’ll see later that “universal” refers to the universal property that any other covering space of X is also covered

by X̃ – in particular, this gives us uniqueness of the universal cover up to homeomorphism, if it exists – but the

characterization as a simply connected space is what we’ll care about here, because it helps us compute π1pXq.

We’ll first try to figure out when universal covers do exist, and we’ll start with a necessary condition. We’ll focus

our attention on path-connected and locally-path-connected spaces here – suppose we have a universal cover X̃, so

that there is a map pX̃, x̃0q Ñ pX, x0q, where x̃0 is any preimage of x0. Because we have a covering space, we can find

a small neighborhood U of x0 P X and a small neighborhood V of x̃0 P X̃ so that p : V Ñ U is a homeomorphism. We

thus get the following commutative diagram, where i , j are inclusions:

pV, x̃0q pU, x0q

pX̃, x̃0q pX, x0q

p

i j

p

This gives us a corresponding map between fundamental groups as shown:

π1pV, x̃0q π1pU, x0q

π1pX̃, x̃0q π1pX, x0q

p˚

i˚ j˚

p˚
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But because X̃ is a universal cover, its fundamental group is trivial, and the p˚ map on the top is an isomorphism

by definition of U and V because we have a homeomorphism V Ñ U. Thus, j˚ must have trivial image for any

arbitrary base point x0:

Definition 66

A space X is semi-locally simply connected if for any x P X, there is a neighborhood U of x such that

j˚ : π1pU, xq Ñ π1pX, xq is trivial.

For example, consider an annular neighborhood of the origin U in R2. Then π1pU, xq is nontrivial, but any loop is

trivial when mapped into π1pX, xq. In this case we could have chosen a simpler neighborhood, but there are spaces

that are semi-locally simply connected but not simply connected.

Fact 67

There is also a notion of being locally simply connected, where for any x P X there is a neighborhood U of x

which is simply connected. In particular, this is a stronger assumption than being semi-locally simply connected

(because it means π1pU, xq is always trivial so the map into π1pX, xq will be trivial). And the point is that all CW
complexes are locally simply connected.

It turns out that this is the only necessary condition:

Theorem 68

Suppose X is path-connected, locally-path-connected, and semi-locally simply connected. Then X admits a

universal cover.

To figure out how to construct such a universal cover, recall that such a construction must have the path lifting

property (in which any path γ : r0, 1s Ñ X with γp0q “ x0 has a unique lift γ̃ : r0, 1s Ñ x̃ with γ̃p0q “ x̃0) and also

must have the homotopy lifting property (where any γt : r0, 1s Ñ X with γtp0q “ x0 and γtp1q “ x1 for all t uniquely

lifts to γ̃t : r0, 1s Ñ X̃ with γtp0q “ x̃0 and γ̃1ptq “ x̃1 for some unique x̃1 determined by x̃0). In addition, we must

have that any two paths from x̃0 to x̃1 are homotopic because X̃ is simply connected. Thus, we are motivated to think

of the universal cover as the space of homotopy classes of paths on X starting at some fixed starting point x0,
since the path class just depends on the final point γ̃p1q P X̃ of the lift. Specifically, if a universal cover X̃ exists, then

we have the map

Φ : trγs : γ : r0, 1s Ñ X, γp0q “ x0u Ñ X̃

sending rγs to γ̃p1q, and if X̃ is simply connected then this is a bijection. So now we’re ready to actually construct

the universal cover:

Proof. Define X̃ to be the set of homotopy classes of paths rγs starting at x0 (meaning we consider all γ : r0, 1s Ñ X

with γp0q “ x0), where the covering map p : X̃ Ñ X maps rγs to γp1q. We need to (1) define a topology on X̃,

(2) show that p is actually a covering map, and (3) check that π1pX̃, x̃0q is trivial. (It turns out that if we choose a

different base point x0, we’ll get a homeomorphic space. But we’ll talk about uniqueness later.)

For (1), recall from point-set topology that a basis for a topology τ on X is a set of open sets U “ tUαuαPI so

that for all U, V P U and any x P U X V , there is some W P U such that x P W Ď U X V . (For example, think about

the set of arbitrarily small balls in Rn.) We’ll use a basis for the topology on X to construct a basis for the topology
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on X̃. Specifically, we can define

U “ tU : U open and path-connected, such that π1pUq Ñ π1pXq is trivial.u

This forms a basis for X (exercise), and now we can construct a basis for X̃ as follows. For any U P U , and for any

path γ : r0, 1s Ñ X between γp0q “ x0 and γp1q “ x1 P U (that is, any path from x0 to a point in U), we will define

an open set Urγs on X̃ (the “open neighborhood” of γ), which is the set of compositions rη ˝ γs, where η is a path

in U with ηp0q “ x1. In other words, because U is path-connected we can draw a path from x1 to another point in U

(staying within U), and we can use that path to extend γ. So the set of all extensions gives us a subset of X̃, which

will be an element of our basis for X̃.

There are a few important properties of this set Urγs:

(a) If γp1q P V Ď U and V is also open and path-connected, then we can construct Vrγs, which will be a subset of

Urγs (because any path within V is also a path within U).

(b) If γ1 is another path r0, 1s Ñ X with γ1p0q “ x0 and γ1p1q “ x 1
1 P U (not necessarily ending at the same point

x1), and we assume rγ1s P Urγs, then γ1p1q P U, and we actually have Urγ1s “ Urγs. (This relies on the fact that

the map π1pUq Ñ π1pXq is trivial.)

We claim that

Ũ “
␣

Urγs : U P U , γ : r0, 1s Ñ X where γp0q “ x0, γp1q P U
(

gives us a basis on X̃. To show that this set can actually be a basis which lets us define a topology, we must show

that for any Urγ1s, Vrγ2s P Ũ and any point rγs P Urγ1s X Vrγ2s, there is some Wrγ3s such that rγs P Wrγ3s Ď Urγ1s X Vrγ2s.

We know by (b) that if rγs P Urγ1s X Vrγ2s, then γp1q P U X V , and (by properties of the original basis U on X) there

is some open set W P U such that γp1q P W Ď U X V . But now by (a), because W is a subset of U X V , Wrγs must

be a subset of Urγs X Vrγs. And now by the second part of property (b), that also means that Wrγs Ď Urγ1s X Vrγ2s, as

desired. So Ũ is actually a valid basis, and from that we can define a topology on X̃ in the usual way (a set O is open

if for any point x in the set, there is some U in the basis so that x P U Ď O).

Remark 69. A more naive approach would be to take the pullback of the topology on X to get a topology on X̃

(which is the weakest topology making p : X̃ Ñ X continuous). But this doesn’t quite work – the pullback of the

topology on S1 to R collapses all of the different “sheets” and gives us the topology on S1 again.

Next, we work on (2), showing that p : X̃ Ñ X is a covering map. If we pick a small open set U P U of X, then any

preimage of a point in U is some γ : r0, 1s Ñ X mapping from x0 to some point in U. Thus we have the “neighborhood

of γ” Urγs, and we claim that p : Urγs Ñ U is in fact a one-to-one correspondence sending rγηs to γηp1q (injective

because the fundamental group of U is trivial, and surjective because U is path-connected). Furthermore, p restricted

to Urγs is a homeomorphism, because we get a bijection between restrictions of bases U |U Ñ Ũ |Urγs
.

So we indeed have a covering space because this covering map p is valid – indeed, for any U P U , the preimage of

U under p is the set of homotopy classes

p´1pUq “
ď

γ:r0,1sÑX
γp0q“x0
γp1qPU

Urγs.

And the key fact is that UrγsXUrγ1s is either empty or the two neighborhoods are the same (since a nontrivial intersection

means we have a common point rγ2s in both neighborhoods, so γ2p1q P U and Urγs “ Urγ2s “ Urγ1s). So p´1pUq is a

disjoint union of sets, and each is homeomorphic to U, so we do indeed have a covering space.

Finally, we must check (3), which is showing that X̃ is simply connected. We’ll do that argument next time!
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8 October 20, 2022

Last time, we discussed the construction of a simply-connected covering space (that is, a universal cover) of a path-

connected, locally-path-connected, and semi-locally simply connected space X. Specifically, we define X̃ to be the set

of homotopy classes of paths rγs (for γ : r0, 1s Ñ X starting at some fixed point x0), from which we can define a

topology and show that p : X̃ Ñ X is in fact a covering map. Our goal is now to check that this space is simply

connected, which we can do by checking first that X̃ is path-connected and then by showing that π1pX̃q is trivial.

Our first step will be to restate the lifting property for X̃ in a better way, because we have an explicit description

of the covering space. Given any path γ : r0, 1s Ñ X with γp0q “ x0, we can describe its lift in X̃ in the following way.

We need to choose some x̃0 P p´1px0q Ď X̃ – in particular, we can choose x̃0 to be the class of the constant path
rx0s (because that constant path ends at x0, and our covering map sends rγs to γp1q). The lifting property then tells

us that γ has a unique lift starting at x̃0. For any t P r0, 1s, we can define a new path

γtpsq “ γptsq, s P r0, 1s,

which is the path that travels along only the first t fraction of γ from x0 to γptq. We can thus define γ̃ : r0, 1s Ñ X̃ by

letting γ̃t “ rγts. In other words, the path in X̃ can be thought of as starting with the constant path and then stretching

out along γ, and this is always a valid element of X̃ because we’re always starting at x0. Then γ̃p0q “ rγ0s “ rx0s and

γ̃p1q “ rγ1s “ rγs.

But this shows that X̃ is path-connected – fix x̃0 “ rx0s as before to be our chosen base point on the covering

space. Then for any rγs P X̃ (that is, any path on X starting at x0), we know that γ lifts to γ̃ : r0, 1s Ñ X̃, which is

a path in the space of (classes of) paths connecting x̃0 to rγs. Thus any point is connected to x̃0 and thus the whole

space is path-connected.

We can now show that π1pX̃, x̃0q is trivial. Recall that for a covering map p : pX̃, x̃0q Ñ pX, x0q, the map

p˚ : π1pX̃, x̃0q Ñ π1pX, x0q is injective. So it suffices to show that any loop (of paths) γ̃ : r0, 1s Ñ X̃ sends to a loop

γ “ p ˝ γ̃ (with γ̃p0q “ γ̃p1q “ x̃0 “ rx0s under the covering map, which is nullhomotopic in X. In other words, we

wish to show that rγs “ rx0s. By assumption, γ̃ is the unique lift of γ starting at x̃0 “ rx0s, and because γ̃ is a loop, it

ends at x̃0. But by the path-lifting property, γ (now viewed as a path in X) also has a unique lift on X̃ from x̃0 to rγs

on X̃. Thus uniqueness means rγs and rx0s must be in the same homotopy class of loops, which is what we wanted

to show.

We will now return to the question of uniqueness of the universal cover:

Theorem 70

Let X be path-connected and locally-path-connected. Suppose we have two connected covering spaces p1 :

pX̃1, x̃1q Ñ pX, x0q and p2 : pX̃2, x̃2q Ñ pX, x0q. Then there exists a homeomorphism h : pX̃1, x̃1q Ñ pX̃2, x̃2q so

that p1 “ p2 ˝ h if and only if the images of p1,˚ and p2,˚ are the same (in other words, p1,˚pπ1pX̃1, x̃1qq “

p2,˚pπ1pX̃2, x̃2qq Ď π1pX, x0q.

Remembering that π1pX̃1, x̃1q is trivial for simply-connected covering spaces and thus the image is also trivial in X,

we immediately get the following result:

Corollary 71

There is a unique simply-connected covering space (up to homeomorphism).
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Proof. For one direction, if the map h exists, then p1 “ p2 ˝ h induces a corresponding diagram between fundamental

groups with p1,˚ “ p2,˚ ˝ h˚, where h˚ is an isomorphism because h is a homeomorphism. Then the images of the

fundamental groups will be the same.

The other direction is more challenging. Suppose we know that impp1,˚q “ impp2,˚q. Because pX̃2, x̃2q is a

covering space of pX, x0q, the map pX̃1, x̃1q Ñ pX, x0q lifts to a map h : pX̃1, x̃1q Ñ pX̃2, x̃2) because we satisfy

that necessary lifting assumption (Theorem 55). Similarly, switching the roles of the two spaces gives us a map

g : pX̃2, X̃2q Ñ pX̃1, x̃1q. We now want to show that gh and hg are the identity maps on X̃1 and X̃2, respectively. For

this, notice that we can lift the covering map p1 : pX̃1, x̃1q Ñ pX, x0q to its covering space X̃1 in two ways: we can use

the identity map, or we can use g ˝ h (because for the latter choice, we have pp1 ˝ gq ˝ h “ p2 ˝ h “ p1). Thus those

two maps must be the same lift by uniqueness because they coincide on at least the point x̃1 (since both the identity

at g ˝ h send x̃1 to x̃1). Similarly we can show that h ˝ g “ IdX̃2 , as desired.

So up to homeomorphism, all path-connected covering spaces of X must correspond to subgroups of the funda-

mental group of X, and now we want to ask if we can achieve all subgroups. In other words, if N is a subgroup of

π1pX, x0q, then we want to know if there is a covering space pN : pXN , x̃Nq Ñ pX, x0q with pN,˚pπ1pXN , x̃0qq “ N.

When X is path-connected, locally-path-connected, and semi-locally path connected, the answer turns out to be yes
– first, start with the universal cover pX̃, x̃0q, and now define an equivalence relation on X̃ (which we can identify

with the set of classes of paths rγs starting at x̃0) by setting rγ1s „N rγ2s if γ1p1q “ γ2p1q and rγ1 ¨ γ2s (which is a

loop based at x̃0, so we can think of it as an element of the fundamental group) is an element of N. We can check

(exercise) that this is actually an equivalence relation, so that we can define XN “ X̃{ „N . We then get two natural

maps p1 : X̃ Ñ XN (the quotient map; we can check that this is also a covering map) and pN : XN Ñ X, and we can

check that pN gives us the covering space that we desire.

Definition 72

Let p : pX̃, x̃0q Ñ pX, x0q be a covering map. A homeomorphism h : X̃ Ñ X̃ such that p “ p ˝ h is called a Deck
transformation. The group of Deck transformations will be denoted GpX̃, pq.

In other words, h is a homeomorphism such that for any x P X, the set p´1pXq Ď X̃ is preserved. Notice that if

two Deck transformations h1 and h2 coincide at any point, meaning h1px̃q “ h2px̃q for some x̃ P X̃, then h1 and h2
coincide on the connected component of X̃ containing x̃ .

Definition 73

A covering space p : X̃ Ñ X is normal if for all x P X, Gpx̃ , pq acts transitively on the set p´1pxq P X̃. In other

words, for all x̃1, x̃2 P p´1pxq P X̃, there is some h P GpX̃, pq such that hpx̃1q “ x̃2.

Theorem 74

Suppose X is path-connected and locally-path-connected, and we have a path-connected covering space given

by p : X̃ Ñ X (note that X being locally-path-connected also implies that X̃ is locally-path-connected). Let

H “ p˚pπ1pX̃, x̃0qq Ď π1pX, x0q. Then X̃ is a normal covering space if and only if H is a normal subgroup of

π1pX, x0q. Also (independent of that fact), GpX̃, pq – NpHq{H, where NpHq is the normalizer of H.

(Here, the normalizer of H Ď π1pX, x0q is the subgroup

NpHq “ ta P π1pX, x0q such that a´1Ha “ Hu,
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and a subgroup is normal if NpHq “ π1pX, x0q.)

Proof sketch. For the first fact, suppose that X̃ Ñ X is a normal covering space; we wish to show that H is normal.

So we need to show that for any rγs P π1pX, x0q, we have rγs´1Hrγs “ H. Notice that rγs is a path r0, 1s Ñ X, so

it can be lifted to a path rγ̃s : r0, 1s Ñ X̃ with γ̃p0q “ x̃0 and γ̃p1q “ x̃1 P p´1px0q (because we started with a loop γ

rooted at x0, we must have γ̃1 end at a point x̃1 that projects down to x0). But now we can apply the definition of a

normal covering space to find some Deck transformation h that maps x̃0 to x̃1. The property p “ p ˝ h of the Deck

transformation then gives us an induced relation on the fundamental groups. But

H “ p˚pπ1pX̃, x̃0qq “ p˚ ˝ h˚pπ1pX̃, x̃0qq – p˚pπ1pX̃, x̃1qq,

and now we can compose with the change-of-basepoint homomorphism βγ̃ (this is the only place where we use the

Deck transformation) to get

H “ p˚ ˝ βγ̃pπ1pX̃, x̃0qq.

So now if η̃ is any loop on X̃ with η̃p0q “ η̃p1q “ x̃0, we see that

p˚ ˝ βγ̃prη̃sqs “ p˚prγ̃η̃γ̃sq “ rp ˝ pγ̃η̃γ̃qs

by definition of p˚. But this now simplifies to

“ rpp ˝ γ̃qpp ˝ η̃qpp ˝ γ̃qs “ rγpp ˝ η̃qγs “ rγs´1p˚prη̃sqrγs.

Since γ was arbitrary and we had an arbitrary element p˚prη̃sq P H, this shows that H “ rγs´1Hrγs, and thus H is

normal.

9 October 25, 2022
We’ll start our discussion of homology today – it has some connections to the fundamental group but not direct

relations, and we’ll only cover this at a basic level. (And if we’re seeing this for the first time, we should check all of

the details at least once.)

We’ll start with some motivation for why we want to study homology: when we defined the fundamental group

π1pX, x0q, the main ingredient is the set of loops γ : r0, 1s Ñ X with γp0q “ γp1q “ x0, or equivalently the set of

maps S1 Ñ X with p1, 0q mapping to x0, where we have equivalence coming from homotopies S1 ˆ I Ñ X with

Hpp1, 0q, tq “ x0 for all t. We now want to generalize these objects a bit to remove a few restrictions – topologically

we care about more than maps from circles and cylinders. Instead, we’ll think about higher-dimensional objects –

studying γ : Sn Ñ X will give us the higher homotopy groups πnpXq (with some fixed data), but that’s not the

direction in which we’ll go. Instead, we’ll allow more general n-dimensional objects, such as the surfaces of arbitrary

genus. Additionally, we can also generalize homotopy – instead of going from S1 to S1 ˆ I, we’ll go more generally

from n dimensions to pn ` 1q dimensions (for example imagining that a genus-g surface connects our two S1s rather

than just a cylinder / sphere).

We’ll start with some homological algebra. Let R be a commutative ring with unit 1 – we’ll be considering the

modules over the ring R. (We can imagine R “ Z for now if we’re not too comfortable doing this, and we can just

think that we’re working with abelian groups.)
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Definition 75

A chain complex is a pair pC, dq, where C is an R-module and d : C Ñ C is a module morphism (called the

differential) such that d2 “ 0.

Usually the idea is that C is a graded module C “
À

iPZ Ci , where d maps Ci to Ci´1 (in other words, it has degree

´1) – we’ll see that d will increase the degree in cohomology, but it decreases it here. We’ll then let di denote the

restriction of d to Ci . In general for the situations that we’re seeing, we’ll have C “ C0 ‘ C1 ‘ ¨ ¨ ¨Cn. We see that

this setup means we have a sequence

¨ ¨ ¨ ÝÑ Ci`1
di`1
ÝÝÑ Ci

di
ÝÑ Ci´1 ÝÑ ¨ ¨ ¨ ,

where d2 “ 0 is really saying that di ˝ di`1 “ 0, or in other wrods im di`1 Ă ker di .

Definition 76

The homology of the chain complex pC, dq, denoted H˚pC, dq, is ker d{im d . In other words, for each i , we have

the module

Hi pC, dq “ ker di{im di`1,

and then we define H˚pC, dq “
À

i Hi pC, dq.

Example 77

Suppose our chain complex looks like 0Ñ Z 2
ÝÑ ZÑ 0, where 2 means we have the multiplication-by-2 map. This

notation is meant to mean that the only nontrivial parts of the chain complex are C0 “ Z and C1 “ Z.

This is indeed a chain complex (easy check); to compute the homology, we have

H1pC, dq “ ker d1{im d2 “ 0{0 “ 0, H0pC, dq “ ker d0{im d1 “ Z{2Z,

which is the field of two elements. All other homology modules / groups Hi pC, dq will be zero because the kernel of

di must be zero.

What we’re interested in studying is often how to relate different chain complexes:

Definition 78

Let pC, dq, pC1, d 1q be two chain complexes. A module morphism f : C Ñ C1 is a chain map if d 1 ˝ f “ f ˝d (that

is, the differentials commute with f ).

Proposition 79

Any chain map f : pC, dq Ñ pC1, d 1q induces a canonical module morphism f˚ : H˚pC, dq Ñ H˚pC1, d 1q.

Indeed, if we send rxs to rf pxqs, we can check that the map is well-defined and actually a module morphism. And

there is also a functoriality property (which we can check by computation as well):

Proposition 80

If we have chain maps pC, dq
f
ÝÑ pC1, d 1q

g
ÝÑ pC2, d2q, then we also get a chain map g ˝ f , and pg ˝ f q˚ “ g˚ ˝ f˚.
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We may ask whether two chain maps f , g : pC, dq Ñ pC1, d 1q yield identical induced morphisms f˚, g˚ – in the case

of the fundamental group the answer came from homotopy, and here we have a “chain homotopy” as well:

Definition 81

A module morphism (not necessarily a chain map) T : pC, dq Ñ pC1, d 1q is a chain homotopy between chain maps

f , g : pC, dq Ñ pC1, d 1q if f ´ g “ d 1T ` Td . (We say that f and g are chain homotopic.)

Proposition 82

If f and g are chain homotopic, then f˚ “ g˚ as maps H˚pC, dq Ñ H˚pC1, d 1q.

We’ll encounter more algebra as we move forward, but this is all the preparation we’ll do on that front for now.

For now, we’ll move on to some other preliminaries:

Definition 83

The simplex ∆n is a subset of Rn`1, defined via

∆n “ tpx0, ¨ ¨ ¨ , xnq :
n
ÿ

i“0

xi “ 1, xi ě 0u.

For example, the 1-simplex is the set of points px0, x1q P R2 with x0 ` x1 “ 1 in the first quadrant, which is a line

segment. A 2-simplex is then a triangle, and a 3-simplex is a tetrahedron (and a 0-simplex is a single point). In general,

∆n is then a convex space spanned by pn`1q standard basis vectors – we’ll let those vectors vi “ p0, ¨ ¨ ¨ , 0, 1, 0 ¨ ¨ ¨ , 0q

be the vertices of our simplex and write the simplex as rv0, v1, ¨ ¨ ¨ , vns. The faces of ∆n are then spans of subsets:

Definition 84

Let rv0, ¨ ¨ ¨ , vns be an n-dimensional simplex. Given any nonempty subset tvi0 , ¨ ¨ ¨ , vimu, we get a subspace

∆m Ď ∆n (the convex space spanned by the subset), which we call an m-dimensional face of ∆n.

For example, picking a subset of size 2 gives us a line segment, and a subset of size 3 gives us a triangle. In making

all of these definitions, the order has not mattered (something like rv0, v2, v1s produces the same simplex as rv0, v1, v2s

but rearranging the faces), but we do want to describe how they are different in terms of traversing along cyclic paths.

This basically comes down to characterizing permutations in a particular way:

Definition 85

A transposition is a permutation in which only two elements are switched (so vi is sent to vj and vice versa, but

all other elements stay fixed).

Fact 86

All permutations are a finite product of transpositions (by induction), and for any permutation, the parity of the

number of transpositions required is fixed. (One way to see this is to think about permutations as matrices;

requiring an even (resp. odd) number of permutations then corresponds to a determinant of 1 (resp. ´1).
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Definition 87

A permutation is even (resp. odd) if the number of transpositions in its representation is always even (resp. odd).

The set of orderings of the vertices of a simplex is then divided into two equivalence classes, where equivalence

means that we get from one to another by an even permutation. An orientation of ∆n is a choice of one of the

two equivalence classes.

For example, if we write ∆2 “ rv0, v1, v2s, we have now denoted an oriented simplex, which is ordered in the

opposite way as rv0, v2, v1s. And for any subsimplex ∆m of an oriented simplex ∆n, we get an induced orientation on

∆m (from the induced ordering).

We’re now actually ready to introduce what homology theory looks like for topological spaces – it turns out we

really just care about codimension-1 faces, and the point of this orientation is that it gives us some negative signs

when we do calculations in chain complexes. There’s two ways we can set this up, which give rise to two different

homology theories, but it turns out they will be isomorphic:

‚ Simplicial homology, in which we embed simplices into our topological space X (in other words, triangulate the

space),

‚ Singular homology, in which we think about continuous maps σ : ∆n Ñ X.

(There is also cellular homology coming from CW complexes, which is what is more useful for actual computa-

tions.) For simplicial homology, our setup is as follows (this definition will be rewritten next lecture):

Definition 88 (Sketch)

A simplicial structure of a topological space X is a collection of embeddings (homeomorphic injection) of simplices

tσnαα : ∆
nα
α Ñ XuαPI (often we’ll just write the images as ∆nαα Ď X) such that X “

Ť

αPI ∆
nα
α , with the condition

that whenever ∆nαα X ∆
nβ
β is nontrivial, there is some γ P I with ∆nγγ “ ∆nαα X ∆

nβ
β which is a face of both ∆nαα and

∆
nβ
β (so simplices must intersect along a common face, which is also a simplex in the embedding).

(In particular, this does restrict the set of spaces X we can consider – even for manifolds, there is the triangulation

conjecture which was proven false, so not all spaces can be triangulated.) The point of such a simplicial structure

will be to define a chain complex on which we can do homology: if K “ t∆nαα uαPI is a simplicial structure on X, then

define the chain complex pCK , dKq as follows. Fix some commutative ring R with unit 1, and let

CK “

#

n
ÿ

i“1

ri∆i : ri P R,∆i P K

+

be the set of finite formal sums of all simplices (of any dimension), which is an R-module. We then get a natural

decomposition into its various graded parts CK “
À

mPZ C
K
m , defining

CKm “

#

n
ÿ

i“0

ri∆
m
i : ri P R,∆mi P K, dim∆mi “ m

+

.

Then the differentials will basically take m-dimensional simplices to pm ´ 1q-dimensional simplices, but we’ll see that

in more detail next time.
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10 October 27, 2022
We introduced simplices last time, with the goal of creating simplicial structures on topological spaces for the purpose

of computing homology. We’ll begin by slightly restating the simplicial structure definition to account for a few extra

conditions:

Definition 89

A simplicial structure is a collection of maps K “ tσnαα Ñ XuαPI with the following conditions:

1. For any α, σα restricted to the interior of ∆nαα is an embedding (injective map).

2. If our simplicial structure contains σα : ∆nαα Ñ X and ∆m Ď ∆nαα is a face of the simplex, then σα|∆m : ∆
m Ñ

X is also one of the embeddings in K.

3. For any two maps σα : ∆nαα Ñ X and σβ : ∆
nβ
β Ñ X, if σαp∆nαα qXσβp∆

nβ
β q ‰ ∅, then we have a “common face”

(meaning that σ´1
α pσαp∆nαα q X σβp∆

nβ
β qq “ ∆̃α Ď ∆nαα , and similarly σ´1

β pσαp∆nαα q X σβp∆
nβ
β qq “ ∆̃β Ď ∆

nβ
β ).

4. X “
Ť

αPI σαp∆nαα q; that is, X is covered by the simplices.

5. A subset U Ď X is open if and only if U X σαpintp∆nαα qq is open for any α.

6. The interior of any two simplices do not intersect in X.

In other words, we want to glue simplices along the common boundary, restricting the topology formed by those

gluings (so that we can’t make the topology arbitarily stronger).

Remark 90. We often also call a simplicial structure on X a triangulation. A simplicial structure has more requirements

than a CW complex because of point (3) – gluings can only happen along entire faces in simplicial structures. So

simplicial structures give rise to CW complexes but not necessarily the other way around. Expanding on what was

mentioned last time, all smooth manifolds do admit simplicial structures, and all manifolds of dimension at most 3 do

as well, but there are n-dimensional topological manifolds which do not for any n ě 4.

We can now describe simplicial homology (the most restrictive homology theory) in more detail than we did last

time. We start by defining a chain complex in terms of the simplicial structure K of X – here, we’ll work with abelian

groups to make the construction simpler and define

CkpXq “

#

n
ÿ

i“1

riσi : ri P Z, σi : ∆nαα Ñ X simplex in K

+

to be the set of Z-finite sums of simplices (more generally Z can be replaced with any commutative ring, but we’ll just

think about this in terms of abelian groups for simplicity). We can place a grading on this ring, where the mth graded

part CKm is restricted only to sums over the m-dimensional simplices. To define the differential map dK for this chain

complex, we just need to define dKm : C
K
m Ñ CKm´1 for each m; we know the generators of CKm are the m-dimensional

simplices, so we just need to define the differential of any simplex and extend by linearity: we’ll basically sum over all

faces in an alternating fashion:

dmprv0, v1, ¨ ¨ ¨ , vmsq “ rv1, v2, v3, ¨ ¨ ¨ , vms ´ rv0, v2, v3, ¨ ¨ ¨ , vms ` rv0, v1, v3, ¨ ¨ ¨ , vms ´ ¨ ¨ ¨ ` p´1qmrv0, v1, ¨ ¨ ¨ , vm´1s.

In other words, when we remove the ith vertex, we get p´1qi times the pm ´ 1q-dimensional face without i . This

choice of signs is to ensure that we actually have d2 “ 0, and it’s also motivated by the induced orientation that we

29



discussed last time. Checking that we do have d2 “ 0 will be left as an exercise, but as an example notice that

d2rv0, v1, v2s “ dprv1, v2s ´ rv0, v2s ` rv0, v1sq

“ pv1 ´ v2q ´ pv0 ´ v2q ` pv0 ´ v1q

“ 0.

Intuitively, the differential gives us the boundary of our simplex, and the boundary of a boundary is zero. So

pCK , dKq is a chain complex, and we can define the simplicial homology HK˚ pXq “ H˚pCK , dKq.

Remark 91. If we want to make this definition, we have two main problems: X may not have a simplicial structure,

and we need to check that this is well-defined regardless of the choice of our chain complex. Additionally, if pX,KXq

and pY,KY q are two spaces equipped with simplicial structures, then we may want to relate X and Y with a continuous

map f . But f does not generally preserve simplicial structure, so it is hard for us to describe how f gives a map

HK˚ pXq Ñ HK˚ pY q.

In classical simplicial homology there is a way to show well-definedness and also deal with continuous maps (specif-

ically using barycentric subdivision) but we won’t explain that here because it takes a bit of work. Instead, we’ll now

show some of the more advanced techniques so that we don’t have to think about these kinds of questions. We’re

mentioning simplicial homology mostly because it came first in mathematical development and as motivation for more

powerful theories.

In singular homology, the point is that we no longer require σα : ∆nα Ñ X to be injective in the interior, so that

we can work with more general objects:

Definition 92

A singular simplex is a continuous map σ : ∆n Ñ X.

We’ll again just work with Z coefficients here and construct a chain complex. This time, we have

CpXq “

#

n
ÿ

i“0

riσi : ri P Z, σi : ∆ni Ñ X singular simplices

+

;

notice that we’re allowing arbitrary continuous maps into X now, so this space is now much bigger than the CpXq

that we had before. And now we define the differential in a similar way: we can decompose CpXq “
À

mě0 CmpXq,

where CmpXq is generated by the m-dimensional singular simplices, and then we can define d : CmpXq Ñ Cm´1pXq by

defining it on the generators, so that for any σ : rv0, v1, ¨ ¨ ¨ , vms Ñ X we have

dσ “ σprv1, ¨ ¨ ¨ , vmsq ´ σprv0, v2, ¨ ¨ ¨ , vmsq ` ¨ ¨ ¨ ` p´1qmσprv0, v1, ¨ ¨ ¨ , vm´1sq.

This is again restricting to faces, so the argument for showing that d2 “ 0 is identical. So we have singular homology

Hs˚pXq “ H˚pCpXq, dq defined in the usual way for a chain complex.

This time, we don’t have issues with specifying a simplicial set anymore, but because our chain complex is generally

infinitely generated it’s hard to answer questions like “is homology finite-dimensional?”. In general, simplicial homology

is more computable if we have a finite simplicial structure (because it’s induced by simplices rather than continuous

maps or other properties), but it has worse functoriality properties and it’s hard to see why it’s well-defined. We’ll

mention just a few cases where singular homology can be actually computed:
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Example 93

If X is a single point tpu, then CmpXq only has a single unique generator which sends all of ∆m to p.

Our goal is then to calculate the homology of the chain complex ¨ ¨ ¨ ÝÑ Cm
dm
ÝÑ Cm´1

dm´1
ÝÝÝÑ ¨ ¨ ¨

d1
ÝÑ C0 – the actual

calculation is left as an exercise for us, but we can check that each Ck is freely generated (as Z) – in particular, we’re

not modding out by relations from permutations – and then we get

HnpXq “

$

&

%

Z n “ 0,

0 n ‰ 0.

(And now if we replace Z with an arbitrary commutative ring, all of the Zs become Rs, including our final answer.)

Example 94

Now suppose X is a path-connected space; we will still be able to compute H0pXq.

We need to understand the chain complex C1pXq
d1
ÝÑ C0pXq

d0
ÝÑ 0 and calculate ker d0{im d1, but all of C0pXq

maps to zero so the kernel of d0 is all of C0pXq. But remember that zero-dimensional simplices are maps from a point

into X, so C0pXq can be regarded as t
řn
i“0 rixi : ri P Z, xi P Xu. On the other hand, C1pXq is the set of maps from

a line segment into X, which can be thought of as the formal sum of paths in X. Furthermore, if σ : r0, 1s Ñ X is

an element of C1pXq, then dσ “ σp1q ´ σp0q. So modding out by the kernel of d1 means σp0q “ σp1q for any path σ

in C0pXq, but X is path connected so any two points are equal under this relation! Thus H0pXq is isomorphic to the

group generated by any one point, which is Z.

Theorem 95

For any space X that admits a simplicial structure, we have HK˚ pXq – HS˚pXq.

It turns out that (when we introduce it later) cellular homology will also be isomorphic to these homology theories.

This is not a coincidence – there turns out to be an set of axioms that guarantee isomorphism, which we may explore

more if we have time. But the point is that we can pick whichever is easiest to use to make arguments or perform

computations.

11 November 1, 2022

We introduced singular homology last time, in which we study the set of singular simplexes (that is, the set of

continuous maps σ : ∆n Ñ X). We get the chain complex CpXq of linear combinations
řn
i“1 riσi (where ri P Z and

σi are simplexes), and we get the differential map d : CpXq Ñ CpXq in which di : Ci pXq Ñ Ci´1pXq restricts each

simplex to its faces with alternating signs and orientations as we’ve previously described:

dpσprv0, ¨ ¨ ¨ , vnsqq “ σprv1, v2, ¨ ¨ ¨ , vnsq ´ σprv0, v2, ¨ ¨ ¨ , vnsq ` ¨ ¨ ¨

`p´1qiσprv0, ¨ ¨ ¨ , vi´1, vi`1, ¨ ¨ ¨ , vnsq ` ¨ ¨ ¨ ` p´1qnσprv0, v1, ¨ ¨ ¨ , vn´1sq.

Last time we shows that the homology groups Hi pXq of a point are Z for i “ 0 and 0 otherwise, and we also showed

that whenever X is path-connected, H0pXq “ Z. Today, we’ll understand how continuous maps f : X Ñ Y relate to
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singular homology. For any such map f , we get a natural map f# : CpXq Ñ CpY q which sends any singular simplex

σ : ∆n Ñ X to f ˝ σ : ∆n Ñ Y .

We can check that (1) this is in fact a chain map (meaning that it commutes with the differential, so dY ˝ f# “

f# ˝ dX), (2) if f is the identity map X Ñ X, then f# is the identity map CpXq Ñ CpXq, and (3) if we have maps

f : X Ñ Y and g : Y Ñ Z, then g# ˝ f# “ pg ˝ f q#. In particular, (1) says that because f# is a chain map, we get a

natural map on homology f˚ : H˚pXq Ñ H˚pY q, (2) tells us that the induced map id˚ on homology is also the identity

map H˚pXq Ñ H˚pXq, and (3) tells us that g˚ ˝ f˚ “ pg ˝ f q˚ at the homology level too. And what’s nice is that with

singular homology, we get this induced map in a very natural way.

The next natural question to ask is whether the maps f# : g# : CpXq Ñ CpY q or f˚, g˚ : H˚pXq Ñ H˚pY q can

be related if we have homotopic maps f , g : X Ñ Y . Recall that f » g can be restated as having a continuous map

H : Xˆ I Ñ Y , and any singular simplex σ : ∆n Ñ X gives us a composition of maps ∆n ˆ r0, 1s Ñ Y by first applying

σˆ idI and then the homotopy H. This composition restricted to t0u is H|Xˆt0u : ∆
n Ñ Y , which is f ˝σ (the image of

σ under f#), and this composition restricted to t1u is H|Xˆt1u : ∆
n Ñ Y , which is g ˝σ (the image of σ under g#). So

with that, we can now define a chain homotopy T : CnpXq Ñ Cn`1pY q making use of H: for any σ : rv0, ¨ ¨ ¨ , vns Ñ X,

denote vi ˆ t0u by the original vi and denote vi ˆ t1u by v 1
i . Then we basically “triangulate” rv0, v1, v2s ˆ I by defining

T pσq “ H ˝ pσ ˆ idq|Irv0, v
1
0, v

1
1, ¨ ¨ ¨ , v 1

ns ´H ˝ pσ ˆ idq|Irv0, v1, v
1
1, ¨ ¨ ¨ , v 1

ns

` ¨ ¨ ¨ ` p´1qiH ˝ pσ ˆ idq|Irv0, v1, ¨ ¨ ¨ vi , v
1
i , ¨ ¨ ¨ , v 1

ns ` ¨ ¨ ¨ ` p´1qnH ˝ pσ ˆ idq|Irv0, v1, ¨ ¨ ¨ , vn, v
1
ns ` ¨ ¨ ¨ ,

a pn ` 1q-simplex into Y . We can check by computation that

g# ´ f# “ dY T ` TdX ,

so by Proposition 82 we indeed have identical maps f˚, g˚ : H˚pXq Ñ H˚pY q. And similarly, if X » Y , then

H˚pXq Ñ H˚pY q by constructing inverse maps on homology, so for example for any contractible space we get the

homology of a single point pZ for n “ 0 and 0 otherwise).

Example 96

Consider the case where ∆1 “ rv0, v1s. By the construction above, we have T prv0, v1sq “ rv0, v
1
0, v

1
1s ´ rv0, v1, v

1
1s,

and we can check the chain map condition here explicitly, using that g#prv0, v1sq “ rv 1
0, v

1
1s and f#prv0, v1sq “

rv0, v1s.

Indeed, we have

dY T prv0, v1sq “ rv 1
0, v

1
1s ´ rv0, v

1
1s ` rv0, v

1
0s ´ rv1, v

1
1s ` rv0, v

1
1s ´ rv0, v1s

and

TdXprv0, v1sq “ T prv1s ´ rv0sq “ rv1, v
1
1s ´ rv0, v

1
0s,

so adding these together preserves only the terms rv 1
0, v

1
1s ´ rv0, v1s, which indeed corresponds to g˚prv0, v1sq ´

f˚prv0, v1sq.

We’ll now discuss relative homology: let A Ď X be a subspace, and we define the homology H˚pX,Aq in

the following way. We have CkpAq Ď CkpXq for each k , so we can form the quotient complex CpXq{CpAq (or

equivalently making formal sums zero if they consist of terms inside CpAq), which is a direct sum
ř

kPZ CkpX{Aq “
ř

kPZ CkpXq{CkpAq. Additionally, the differential dK : CkpXq Ñ Ck´1pXq also maps CkpAq Ñ Ck´1pAq, so we get a

natural differential on the quotient complex X{A.
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Definition 97

The relative homology H˚pX,Aq is the homology of the quotient complex H˚pX{Aq.

This relative homology turns out to be useful for doing certain computations:

Proposition 98

If U Ď X is an open set with A Ď U a deformation retraction of U, then HnpX,Aq – HnpX{Aq for all n ą 0.

For example, if X “ D2 and A “ BX “ S1, then we can let U be an open collar of the boundary. Since U

deformation retracts onto A, we have HnpX{Aq – HnpX,Aq for all n ą 0, meaning that HnpX,Aq – HnpS2q for all

n ą 0 (and the zero-dimensional case is easy because we have a connected space, so H0pS2q – Z). Similarly, whenever

we have X “ Dn and A “ BDn, then X{A – Sn so HkpSnq – HkpX,Aq for all k ą 0 and H0pSnq – Z.

But we want a way to actually compute the relative homology of CpX,Aq “ CpXq{CpAq, and it turns out we can

make use of an exact sequence:

Definition 99

A sequence of group homomorphisms between abelian groups ¨ ¨ ¨ Ñ An
fn
ÝÑ An´1

fn´1
ÝÝÑ An´2 Ñ ¨ ¨ ¨ is exact if for

any n, we have kerpfn´1q “ impfnq.

(Remember that in chain complexes, we have a sequence of such maps in which each kernel contains the previous

image, but exactness is stronger – a chain complex is exact if and only if HnpC, dq “ 0 for all n.) For example,

0 Ñ A
f
ÝÑ B is exact if and only if f is injective (since ker f “ 0), A g

ÝÑ B Ñ 0 is exact if and only if g is surjective

(since ker g “ B), and 0 Ñ A
h
ÝÑÑ B Ñ 0 is exact if and only if f is an isomorphism. So the inclusion ι : A Ñ X

induces a map ι# : CpAq Ñ CpXq, and we also get a quotient map q : CpXq Ñ CpXq{CpAq. We can check that ι˚ is

injective, q is surjective, and kerpqq “ impι˚q, so we have an exact sequence (called a short exact sequence because

it is of the form 0Ñ A Ñ B Ñ C Ñ 0)

0Ñ CpAq Ñ CpXq Ñ CpXq{CpAq Ñ 0.

We can now make use of an important theorem in homological algebra:

Theorem 100 (Zigzag lemma)

Suppose 0 Ñ pA, dAq Ñ pB, dBq Ñ pC, dCq Ñ 0 is a short exact sequence of graded chain complexes. In other

words, we have chain maps f : A Ñ B and g : B Ñ C which preserve gradings of A,B, C (meaning f pAnq Ď Bn

and gpBnq Ď Cn), such that f is injective, g is surjective, and kerpgq “ impf q. Then we can construct a long

exact sequence with the connecting maps B˚

¨ ¨ ¨ Ñ HnpAq
f˚
ÝÑ HnpBq

g˚
ÝÑ HnpCq

B˚
ÝÑ Hn´1pAq

f˚
ÝÑ Hn´1pBq

g˚
ÝÑ Hn´1pCq

B˚
ÝÑ Hn´2pAq Ñ ¨ ¨ ¨ .

Applying this to our particular question, we find the following property for relative homology:

Corollary 101

If A Ď X is a subspace, then there is a long exact sequence

¨ ¨ ¨ Ñ HnpAq Ñ HnpXq Ñ HnpX,Aq Ñ Hn´1pAq Ñ Hn´1pXq Ñ Hn´1pX,Aq Ñ ¨ ¨ ¨ .
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The essential step to showing the zigzag lemma is constructing the connecting map B˚ : HnpCq Ñ Hn´1pAq, and

we can visualize this in the diagram below (we will do some “diagram chasing”):

Cn`1

0 An Bn Cn 0

0 An´1 Bn´1 Cn´1 0

0 An´2 Bn´2 Cn´2 0

dn`1

g

dn

dn´1

f

To construct the blue map HnpCq Ñ Hn´1pAq, we need to start with an element of kerpdnq{impdn`1q. We can

pick some arbitrary representative α P kerpdnq Ă Cn (sent to zero under dn), and because g is surjective, we can find

some β P Bn such that gpβq “ α. But then dnpβq P Bn´1 must be sent to zero because of the commutative square

formed by Bn, Cn, Bn´1, Cn´1, so dnpβq P kerpgq. By exactness, this means it is also in the image of f , so there is

some element γ in An´1 which maps to dnpβq – we wish to define B˚prαsq “ rγs.

Next, we check that γ is actually in kerpdn´1q. For the latter, by the commutative square formed by An´1, Bn´1, An´2, Bn´2,

we know that f pdn´1γq “ dn´1pdnpβqq “ 0 (because B is a chain complex), but f : An´2 Ñ Bn´2 is injective we must

have dn´1γ “ 0. Thus γ does represent a homology class in Hn´1pAq.

But there is still work to do – we need to check that our choices of α, β, γ do not affect the final homology class

Hn´1pAq, and we also have to check that B˚ actually fits into the long exact sequence. But that’s left as an exercise

for us, and what’s important is that this is a very powerful result for computation:

Example 102

Let X “ Dn, A “ BX “ Sn´1. The short exact sequence 0Ñ CpAq Ñ CpXq Ñ CpX,Aq Ñ 0 yields a long exact

sequence including

¨ ¨ ¨ Ñ HkpSn´1q Ñ HkpDnq Ñ HkpDn, Sn´1q Ñ Hk´1pS
n´1q Ñ Hk´1pD

nq Ñ Hk´1pD
n, Sn´1q Ñ ¨ ¨ ¨ .

But for all k ą 1 we have HkpDnq “ Hkppointq “ 0, so in fact the blue part of the long exact sequence yields an

isomorphism HkpDn, Sn´1q – Hk´1pS
n´1q for all k ą 1.

12 November 3, 2022

Last lecture, we introduced relative homology, defining a quotient chain complex CpX,Aq “ CpXq{CpAq and defining

the relative homology H˚pCpX,Aqq in terms of the induced differential map of the quotient. We mentioned that there

is a short exact sequence of chain complexes 0Ñ CpAq Ñ CpXq Ñ CpX,Aq Ñ 0, which then gives rise to a long exact

sequence of the homology groups (with B˚ “connecting maps” constructed by the zigzag lemma). We care about this

quotient chain complex, because it turns out the relative homology is actually related to the homology of the quotient

space – HnpX,Aq “ HnpX{Aq for all n ą 0 if A is a deformation retraction of some open set U Ď X.

Remark 103. The case n “ 0 is generally a bit trickier – we don’t expect H0pX,Aq – H0pX{Aq, because in the case

where A “ X (so the deformation retraction condition is clearly satisfied) the right-hand side is Z, but H0pX,Xq “ 0

because CpAq “ CpXq so the relative homology chain complex is just identically trivial.
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So if we want to include the case n “ 0 in our characterization, we’ll make use of the reduced homology, where

we extend the original (singular) chain complex Cn Ñ Cn´1 Ñ ¨ ¨ ¨ Ñ C1 Ñ C0 Ñ 0 to a complex

Cn
dn
ÝÑ Cn´1 Ñ ¨ ¨ ¨ Ñ C1

d1
ÝÑ C0

d0
ÝÑ ZÑ 0.

So most of the maps are defined as usual, but we now need to define d0 in a way that still makes this a chain

complex. Remembering that C0pXq is spanned by the set of maps from a single point into X, we can basically write

C0pXq “ t
ř

i rixi : ri P Z, xi P Xu as a formal sum of points. Since C1pXq is generated by paths (maps from r0, 1s into

X) γ which are sent under d1 : C1pXq Ñ C0pXq to γp1q ´ γp0q, we want to make sure d0pγp1q ´ γp0qq “ 0 so that

the chain complex does satisfy d2 “ 0. So this motivates us to define

d0

˜

n
ÿ

i“0

rixi

¸

“

n
ÿ

i“0

ri ,

which works because we get a 1 ´ 1 contribution from any image γp1q ´ γp0q of a path. Keeping all other dis the

same, this extended chain complex is often denoted pC̃pXq, d̃q, and we define the reduced homology

H̃npXq “ HnpC̃pXq, d̃q “ kerpd̃nq{impd̃n`1q.

By the way we’ve defined this chain complex, H̃npXq and HnpXq will agree for all n ą 0, and the only difference comes

in the n “ 0 term: we have HnpXq – H̃npXq ‘ Z . So now we can rephrase our previous result for relative homology:

Theorem 104

Let A Ď X be a subspace such that there is some open set U Ď X with A Ď U a deformation retraction. Then

H̃˚pX{Aq – H˚pX,Aq.

Example 105

The n-cell X “ Dn is homotopy equivalent to a point (it is contractible). Then the reduced homology H̃npXq is

zero for any n (since we have one less copy of Z in the reduced homology compared to the ordinary one).

Example 106

This reduced homology being completely trivial actually helps us do some other calculations. For example, take

A “ BX “ Sn´1 as discussed last time. Then HnpDn, Sn´1q – H̃npDn{Sn´1q – H̃npSnq, since quotienting the

boundary of an n-ball gives us an n-sphere.

Applying a long exact sequence to the reduced homology, we have

H̃kpSn´1q Ñ H̃kpDnq Ñ HkpDn, Sn´1q Ñ H̃k´1pS
n´1q Ñ H̃k´1pD

nq Ñ ¨ ¨ ¨ .

But the two red terms are trivial, so the two terms between them must be isomorphic (because exactness proves

injectivity and surjectivity), and we see that H̃kpSnq – H̃k´1pS
n´1q. So now we can inductively compute the reduced

homology of Sn. First of all, S0 “ tp, qu has H0pS0q “ Z2 and all other groups zero, so we also have H̃kpS0q “ Z
(one rank lower) and all other groups zero. This then shows that H̃kpSnq is Z for k “ n and 0 for all other groups,

and thus the actual homology is

HkpSnq “

$

&

%

Z k “ 0, n,

0 otherwise.
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Remark 107. In doing this induction, there’s two ways we can deal with the cases where k ă n. First of all, we can

compute H̃0pSnq for each n, noticing that it’s trivial because we have a path-connected space. Or alternatively, we can

notice that the zigzag lemma for reduced homology can be extended to negative homology groups ´k , with C´1 “ Z
(this is the space we added when extending the chain complex) and C´2 “ C´3 “ ¨ ¨ ¨ “ 0.

We’ll now turn to applications: much like for fundamental groups, we can take advantage of the nontrivial homology

groups HnpSnq. The details are left as exercises to us, but the argument is very similar to before:

Example 108

There is no retraction γ : Dn Ñ Sn´1 “ BDn, because the induced map on the homology groups would need to

be trivial. Also, for any continuous map f : Dn Ñ Dn, f admits a fixed point.

Example 109

For n ‰ m, Rn and Rm are not homeomorphic – intuitively, we’re saying that the dimension of Rn and Rm are

actually different.

Indeed, if f : Rn Ñ Rm were a homeomorphism, pick x P Rn and y “ f pxq, so that we have a homeomorphism

from Rnztxu to Rmztyu (just by restricting f ). Thus the homology of Rnztxu should be isomorphic to the homology

of Rmztyu, but H̃n´1pRn ´ txuq “ Z because Rn ´ txu retracts to Sn´1, while H̃n´1pRm ´ tyuq “ H̃n´1pS
m´1q “ 0

because n ‰ m, a contradiction.

We’ll now move to the discussion of multiplicity – we may have first encountered this when thinking about roots

of polynomials (for example, px ´ 1q2 “ 0 has a root x “ 1 of multiplicity 2), and it comes up in algebraic geometry

because the map f pzq “ z2 in the complex plane is a 2-to-1 covering except at z “ 0. So that tells us that the

multiplicity of f at z “ 0 is 2 (since at this singular point we get two sheets collapsing).

Our question is therefore to ask how to describe multiplicity of general continuous maps f : X Ñ Y in algebraic

topology. We’ll restrict to the case where X and Y are both manifolds (meaning that for any point x P X, there is an

open neighborhood U Ă X of x such that U is homeomorphic to some Euclidean space). To define this multiplicity

mf pxq, we’ll need a result in homology theory:

Theorem 110 (Excision theorem)

Suppose we have subspaces Z Ď A Ď X such that Z Ă intpAq (so the closure of Z is contained in the interior of

A). (This is a very weak condition.) Then H˚pX,Aq – H˚pX ´ Z,A´ Zq.

(We should read the proof of this on our own – it’s in our textbook.) With this, we can consider a map f : X Ñ Y

between n-dimensional manifolds and consider points x P X, y “ f pxq P Y . We then take U Ď X to be some open

neighborhood of X homeomorphic to Rn; by excision for the triple where A “ Xztx0u and ZzX´U (so throwing away

everything except the local behavior), we see that

H˚pX,X ´ txuq – H˚pU,U ´ txuq.

But U is homeomorphic to Rn for some n, so we can treat it as Dn so that U ´ txu is effectively Sn´1. So this

right-hand side is basically H˚pDn, Sn´1q – H̃˚pSnq; in particular, we see that

HnpX,X ´ txuq – Z.
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This means that for a map f : X Ñ Y and whenever x “ f ´1pyq for y P Y (not just f pxq “ y), we induce a map

f˚ : HnpX,X ´ txuq Ñ HnpY, Y ´ tyuq, which is a map Z Ñ Z. We then want to define the multiplicity at the point

x to be mf pxq “ f˚p1q. Intuitively, what’s happening near x is that mf tells us how many times the input Sn wraps

around the target Sn. But notice that we’ve switched from x “ f ´1pyq to f pxq “ y in the condition above – the point

is that if the preimage f ´1pyq contains more points than just x , then f pX ´ txuq Ĺ Y ´ tyu so we can’t say that we

have a map pX,X ´ txuq Ñ pY, Y ´ tyuq. But multiplicity is a local property anyway, so we can use excision to only

look at a local neighborhood.

Definition 111

A map f : X Ñ Y is proper if for any compact set C Ď Y , f ´1pCq Ď X is also compact.

Compactness is useful here because for any proper f : X Ñ Y , plus some additional constraints, the preimage

f ´1pyq is actually finite for any y P Y , so for any x P f ´1pyq we can pick some open neighborhood U Ď X such that

U X f ´1pyq “ txu. This lets us make a proper definition:

Definition 112

Let f : X Ñ Y be a continuous map with finite preimages, let x P f ´1pyq, and suppose we have U as above.

Then f induces a map f˚ : HnpU,U ´ txuq Ñ HnpY, Y ´ tyuq, which is a map Z Ñ Z. The multiplicity is then

mf pxq “ f˚p1q.

We’ll now consider the special case where we have a map f : Sn Ñ Sn, in which the nth homology of Sn is Z so

we have f˚ : ZÑ Z without needing to look locally at any point.

Definition 113

The degree of a map f : Sn Ñ Sn is the value of f˚p1q in Z.

This “global multiplicity” is in fact related to the multiplicity:

Theorem 114

Let f : Sn Ñ Sn be a continuous map, and suppose y P Sn with f ´1pyq finite. Then

degpf q “
ÿ

xPf ´1pyq

mf pxq

(in particular, we claim this is independent of y).

Example 115

If f : Sn Ñ Sn is the identity map, then f˚ is the identity map as well so degpf q “ 1. Meanwhile, if f : Sn Ñ Sn is

not surjective, then f is homotopic to a constant map (if x is missing from the image we can use a stereographic

projection from x to map to Rn), so degpf q “ 0 because HnpSnq Ñ Hnptxuq Ñ HnpSnq is always the zero map.

(On the other hand, there are indeed surjective maps with degree zero.)

Example 116

The map f : C Ñ C sending z Ñ zn indeed has mf p0q “ n, so this multiplicity we’ve defined coincides with the

algebraic one at least in this simple case.
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Fact 117

Notice that two maps f , g : Sn Ñ Sn of different degree must not be homotopic to each other, so deg is a

homotopy invariant. But the converse is also true, and this is a result of Hopf: if f , g : Sn Ñ Sn are two maps

with degpf q “ degpgq, then we actually have f » g. (But this is a very hard theorem to prove – we can take a

look at the fourth chapter of Hatcher for the details.)

This degree is actually what will lead us to cellular homology, a more computable homology theory for CW

complexes. We’ll discuss that next time – basically the degree will give us the coefficients in the differential maps when

defining the chain complex.

13 November 10, 2022
Last time, we described an long exact sequence for pairs A Ă X relating the homology groups of X, A, and relative

homology pX,Aq. We mentioned that if there is an open set U Ď X with A Ď U a deformation retraction, then we

have H̃˚pX{Aq – H˚pX,Aq. For example, we saw that H̃kpSnq “ HkpDn, Sn´1q is Z if k “ n and 0 otherwise; we

then used this to define the degree of a map Sn Ñ Sn to be the image of 1 in the map f˚ : HnpSnq Ñ HnpSnq (a

map ZÑ Z), and we mentioned that the degree can be calculated locally if preimages are finite.

Today, we’ll discuss how to use degree to define cellular homology, another homology theory which applies to

CW complexes. If X is a CW complex (in which we have cells that are glued along boundaries to lower-dimensional

skeletons) and we have some fixed CW structure tψα : e
nα
α Ñ Xnα´1u for X, our chain complex CpXq will be generated

by the set of cells teαu in that structure; in other words, we have

CpXq “

#

n
ÿ

i“1

rie
ni
i : ri P Z, enii cell

+

,

graded by the dimension of the cell (so CkpXq is the Z-span of the k-cells eki ). We now need to define a differential,

which is a map dk : CkpXq Ñ Ck´1pXq satisfying dk´1 ˝ dk “ 0, meaning that for each cell enαα with nα “ k , the map

takes the form

dkpenαα q “
ÿ

βPI,nβ“k´1

dαβk e
nβ
β .

(In words, the differential of a k-cell is some linear combination of pk ´ 1q-cells.) Our job is then to specify all

coefficients dαβk by thinking about how cells are glued to their boundary. We know that there is a map from any k-cell

ψα : Benαα Ñ Xk´1, and the skeleton Xk´1 in particular contains enββ , so we can consider the quotient

Xk´1{pXk´1zintpenββ qq

where we identify everything outside the interior of the pk ´ 1q-cell β, which actually just gives us a sphere Sk´1. So

composing ψα with this quotient map, we get a map ψ̃αβ in which we start with Benαα , which is a sphere Sk´1, and

end up in the quotient sphere, which is also Sk´1. We will thus define

dαβk “ degpψ̃αβq

to be the degree of the map Sk´1 Ñ Sk´1 (which is some integer), and that gives us a complete characterization of

the map. Intuitively, this number tells us how many times we wrap around the pk ´ 1q-cell β.

We might be concerned that there might be infinitely many nonzero coefficients dαβk , since elements of the chain
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complex should only contain finite linear combinations. But this is where the CW complex definition comes in:

ψα : Benαα Ñ Xk´1 is a map from a compact set, so the image must also be compact in Xk´1 (by how our topology

is defined). And any compact set only intersects finitely many cells, even if the CW complex has infinitely many.

Additionally, we also have to check that this is a valid differential map – we need that d2 “ 0. We won’t do this

in too much detail, instead just explaining this at an intuitive level: if the image of ψα is contained in a single β-cell,

meaning impψαq Ď intpenββ q, then because enββ is contractible, ψ is nullhomotopic and thus dαβk “ 0 for any β, meaning

the image itself is zero (we don’t even need to look at d2). On the other hand, if the image of ψα wraps around each

of the two adjacent pk ´ 1q-cells enββ and enγγ once, and those two pk ´ 1q-cells overlap on the Xk´2-skeleton. But the

coefficients from α Ñ β and α Ñ γ are both 1, and then the coefficients from β and γ to their common intersection

will cancel out (because we wrap around in opposite directions). That’s why we should expect any coefficient to be

zero.

So we do have a chain complex CpXq along with a valid differential map d , and thus we can define the CW

homology

HCWpXq “ H˚pCpXq, dq.

Theorem 118

The simplicial, singular, and cellular homology theories Hk˚pXq, HS˚pXq, and HCW
˚ pXq are all isomorphic to each

other.

In particular, for both simplicial and cellular homology we even have to answer the question of well-definedness

– the homology is independent of the choice of simplicial or CW structure we put on X. And this is powerful for

computation because CW structures have fewer restrictions than simplicial ones.

Example 119

We’ll compute the cellular homology for surfaces, specifically thinking about the (one-holed) torus S.

We can place a simplicial structure on S and compute the simplicial homology, but we’ll do so for cellular homology

here. We can cut along the usual two circles for a torus and unfold to get the following picture:

e

v

v

v

v

b

b

a a

We have one 0-cell v , two 1-cells a and b, and one 2-cell e. Then C2pSq “ Zxey, C1pSq “ Zxa, by, and C0pSq “

Zxvy, and we need to define the differential map. Orienting e counterclockwise, we see that Be “ a´ b ´ a` b “ 0.

Similarly, Ba “ Bb “ v ´ v “ 0. Thus all of the differential maps are zero, and we see that

HkpSq “

$

’

’

’

&

’

’

’

%

Z k “ 0, 2

Z2 k “ 1

0 otherwise.
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We can similarly consider a chain complex for a two-holed torus, in which we again have a single 0-cell, four 1-cells

(two for each hole), and one 2-cell, Again there will be no differentials at all, so the homology will be Z,Z4,Z. This

can in fact be generalized to general genus g.

Example 120

Next, we can compute the cellular homology for a Klein bottle, in which the gluing looks slightly different:

e

v

v

v

v

b

b

a a

This time everything is the same as for the torus, except δe “ a ´ b ´ a ´ b “ ´2b, so that our chain complex

looks like

C2pSq “ xey
e ÞÑ´2b
ÝÝÝÝÑ C1pSq “ xa, by

0
ÝÑ C0pSq “ xvy Ñ 0.

Then we have H2pSq “ 0 because there’s no kernel in the map e ÞÑ ´2b, and H1pSq “ xa, by{p´2bq “ Z ‘ Z{2Z.

Finally, H0pSq “ Z and we’ve computed all of our homology groups.

Example 121

Now, we’ll find the cellular homology for Sn for n ě 2.

We know that one possible CW complex structure for Sn consists of one 0-cell plus one n-cell, so we have

CnpSq Ñ 0Ñ ¨ ¨ ¨ Ñ 0Ñ C0pSq. So if n ě 2 all such maps are zero, and this shows quickly that the homology groups

HkpSnq are Z for n “ 0, k and 0 otherwise.

We’ll mention one more important tool for homology computations now, in which we glue two spaces together to

make a new one:

Theorem 122 (Mayer-Vietoris)

Let X be a topological space with subspaces A,B Ď X, such that X “ intpAq Y intpBq. Then there is a long exact

sequence

HnpAX Bq Ñ HnpAq ‘HnpBq Ñ HnpAY Bq Ñ Hn´1pAX Bq Ñ ¨ ¨ ¨ ,

where we can notice that HnpAYBq “ HnpXq. In fact, we can describe all of the maps here explicitly. Additionally,

there is also a version with reduced homology which also holds.

In other words, knowing homology of AX B, A, and B tells us homology of AY B. The idea of the proof is that

we have a standard process for generating a long exact sequence given a short exact sequence of chain complexes (the

zigzag lemma), so we can make use of the short exact sequence 0Ñ CpAXBq Ñ CpAq ‘ CpBq Ñ CpAYBq Ñ 0 in

which the maps CpA X Bq Ñ CpAq ‘ CpBq and CpAq ‘ CpBq Ñ CpA Y Bq can be explicitly given: we have natural

inclusions i : CpA X Bq Ñ CpAq and j : CpA X Bq Ñ CpBq, and we also have natural inclusions k : A Ñ A Y B and
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ℓ : B Ñ A Y B. We then get maps on the chain level i7, j7, k7, ℓ7, and we claim the maps that give us a short exact

sequence of chain complexes are

0Ñ CpAX Bq
i7‘j7
ÝÝÝÑ CpAq ‘ CpBq

k7´l7
ÝÝÝÑ CpAY Bq Ñ 0.

So through the proof of the zigzag lemma, we can figure out the connecting map HnpAYBq Ñ Hn´1pAXBq by hand.

But it turns out the answer is that elements of HnpAY Bq are represented by n-dimensional “objects” αn, which can

be decomposed into a part in A αnA and a part B αnB, so that αn “ αnA Y αnB intersecting along a common boundary

BαnA “ BαnB. Then we are basically sending αn to this common boundary, which will be an object in Hn´1pAX Bq.

Example 123

Consider the case where X is a two-holed torus, and we pick A and B so that A contains one of the holes and B

contains the other one. (So imagine cutting the two-holed torus in half, and letting each half plus a little bit of

the other be one of the two spaces we’re considering.)

Then the homology of AX B follows the long exact sequence in Mayer-Vetoris for reduced homology

H̃1pAX Bq Ñ H̃1pAq ‘ H̃1pBq Ñ H̃1pAY Bq Ñ H̃0pAX Bq

Since the intersection of A and B is a connected annular region, H̃0pA X Bq and H̃1pA X Bq – H̃1pSq. Similarly, we

have the sequence

H̃2pAX Bq Ñ H̃2pAq ‘ H̃2pBq Ñ H̃2pAY Bq Ñ H̃1pAX Bq Ñ H̃1pAq ‘ H̃2pBq ,

in which we know that H̃2pA X Bq “ H̃2pS
2q “ 0, but we don’t know how to compute H̃2pAq or H̃2pBq. for that,

notice that both of them are basically a punctured torus, so we can think about the Mayer-Vietoris sequence for a

torus covered by A and D2. That gives us

H̃2pAXD2q Ñ H̃2pAq ‘ H̃2pD
2q Ñ H̃2pAYD2q

B˚
ÝÑ H̃1pAXD2q,

and these spaces are 0 Ñ H̃2pAq Ñ Z isomorphism
ÝÝÝÝÝÝÝÑ Z, so in fact H̃2pAq must be trivial. Similarly, we can find that

H̃1pAq “ Z2 by looking further down that sequence. So plugging back in to our boxed sequence, we find that it is

0 Ñ 0 Ñ H̃2pA Y Bq Ñ Z 0
ÝÑ Z2 ‘ Z2), and this shows that we must have H̃2pA Y Bq – Z. Similarly, we can find

that H̃1pAYBq – Z4, and we indeed see that we get back the same answer with Mayer-Vietoris as with our previous

method above.

14 November 15, 2022
We’ll finish our discussion of homology theory today with a few remarks. The first thing we’ll talk about is orientation
– we’ll focus on manifolds here, in which we have a topological space X with an open cover tUαuαPI such that there

are homeomorphisms ρα : Rn Ñ Uα for each α. (There are also some other conditions that are required, but this is

the most important one.) We see that our manifold X is smooth (this also gives definitions for C1, C2, and so on), if

the transition map ρ´1
β ˝ ρα from ρ´1

α pUα X Uβq to ρ´1
β pUα X Uβq is a smooth map Rn Ñ Rn.

Our goal is then to define an orientation for manifolds. For smooth manifolds this is easy, because the differential

dpρ´1
β ˝ ραqx at any x P ρ´1

α pUα X Uβq is a map Rn Ñ Rn. Since ρ´1
β ˝ ρα is a diffeomorphism, dpρ´1

β ˝ ραqx is

nondegenerate for all x (meaning that the corresponding n ˆ n matrix is of full rank).
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Definition 124

A manifold X is orientable if we can pick an open cover tUαuαPI so that detpdpρ´1
β ˝ ραqx q ą 0 for all α, β P I

and x P ρ´1
α pUα X Uβq.

Intuitively, the point is that we have local coordinate charts at every open set in our cover, and we want the

canonical choice of Rn to agree in orientation when we transition from one open set to another. But this only works if

the transition map is differentiable, and for an arbitrary topological manifold we cannot use this definition. So instead

we want to ask what happens in general. In particular, the map ρ´1
β ˝ ρα : ρ

´1
α pUα X Uβq Ñ ρ´1

β pUα X Uβq will just be

continuous, not differentiable, and in such a case we will use homology to define orientation instead.

Definition 125

Let f : U Ñ V be a homeomorphism between open subsets U, V of Rn. Then for any x P U, we have a map

H˚pU,U ´ txuq Ñ H˚pV, V ´ tf pxquq (this is well-defined because f pxq is only mapped to by x), which is a map

ZÑ Z by excision. Then 1 is sent to either 1 or ´1 because f is a homeomorphism; we say that f is orientable
if 1 is sent to 1.

Definition 126

A topological manifold is orientable if there is an open cover tUαu such that for any α, β P I, ρ´1
β ˝ρα is orientable.

In most cases we can use the differential definition, but there are some manifolds that are not “smoothable,” so

this homology definition is more general.

Next, we’ll see how all of this is related to simplicial complexes – recall that we can define orientation in that

setting, but not all topological manifolds can be triangulated. Suppose X is a topological manifold which does admit

this simplicial structure. Notice that if we have an n-dimensional topological manifold, then we must basically take

a bunch of n-dimensional simplices and glue them along pn ´ 1q-dimensional faces, which is much more constrained

than the usual construction.

But recall that for a single simplex, we define an orientation by choosing the parity of ordering of its vertices

(we get the same orientation if we perform an even permutation on that ordering). And for any codimension-1

(meaning dimension n ´ 1) face of an n-simplex ∆n “ rx0, ¨ ¨ ¨ , xns, we get an induced orientation on the n vertices

x0, ¨ ¨ ¨ , xi´1, xi`1, xn – specifically, we need to use p´1qi rx0, x1, ¨ ¨ ¨ , xi´1, xi`1, ¨ ¨ ¨ , xns. (That’s what appears in the

definition of the differential map when we constructed homology that way.) Repeating this process repeatedly gives

us orientation on all sub-simplices.

So turning back to our n-dimensional topological manifold X admitting a simplicial structure, it turns out that X

is orientable if and only if each n-simplex in the given structure can be oriented so that the induced orientations on

common codimension-1 faces are opposite to each other.

Example 127

Recall that both the torus and Klein bottle are obtained by gluing opposite edges of a square together, and we

can form triangulations in both cases by drawing one of the diagonal lines of the square.
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The torus is shown on the left, and the Klein bottle is shown on the right, with their corresponding triangulations.

Consider the top left triangle ∆1 and place an orientation on it as given by the arrows. If we call the bottom left

vertex v p1q
0 , the top left vertex v p1q

1 , and the top right vertex v p1q
2 , then ∆1 “ rv

p0q
0 , v

p1q
1 , v

p2q
2 s, so that a “ rv

p1q
0 , v

p1q
1 s,

b “ rv
p1q
1 , v

p1q
2 s, and c “ ´rv

p1q
0 , v

p1q
2 s. We can then check that we can choose one of the two orientations on the

bottom right triangle ∆2, so that the orientations for a, b, c (which are all identified with a, b, c in ∆1) are all opposite.

But we can check that kind of process will not work for either of the two choices in the Klein bottle, which is not

orientable.

So now if we look at the top of the chain complex for an orientable n-dimensional manifold X, then we already

know some elements of the kernel dn : CnpXq Ñ Cn´1pXq: the sum
ř

∆n will be in kerpdnq because the opposite faces

will all cancel out. So there is some nontrivial element in the top homology HnpXq “ kerpdnq{impdn`1q. This turns

out to be a general fact:

Theorem 128

Let X be a closed, connected n-dimensional manifold. Then HnpXq – Z if X is orientable and HnpXq – 0

otherwise.

In particular, the actual result holds whether or not X admits a simplicial structure. And it will turn out that certain

duality results only hold if we have a nontrivial top homology, which we will see later.

Given the result above, it turns out we can also define degree for a general orientable manifold:

Definition 129

If f : X Ñ Y is a continuous map between connected, closed, oriented manifolds, then there is a map f˚ :

HnpXq Ñ HnpY q which is a map ZÑ Z. Then the degree of f is the image of 1 under f˚.

We’re now going to turn to some “abstract nonsense:” we’ve discussed topological spaces and continuous maps

between them (along with homotopy and some other properties), and there’s also some similar structure that comes

up when we have groups and homomorphisms between them, or abelian groups and homomorphisms between them.

These are all very similar “packages,” and we can even map between them (for example, π1 maps from topological

spaces to groups, and H˚ maps from topological spaces to abelian groups) in a way that also sends continuous maps

to group homomorphisms. The point is that we can make all of this more abstract using category theory, a way to

describe this phenomenon more generally.

43



Definition 130

A category C consists of a collection of objects obpCq (such as the collection of groups, or topological spaces, or

abelian groups), as well as a collection of morphisms MorpX, Y q for any objects X, Y P C, such that the following

properties hold:

‚ For any X P C, there is a distinguished element idX P MorpX,Xq.

‚ There is a map ˝ : MorpX, Y qˆMorpY, Zq Ñ MorpX,Zq sending pf , gq to g˝f , such that idY ˝f “ f ˝idX “ f .

‚ For all morphisms f , g, h, we have pf ˝ gq ˝ h “ f ˝ pg ˝ hq.

Remark 131. There’s some problem in set theory where we can’t actually say that we have a “set of all topological

spaces” without a Russell’s paradox coming up – that’s why we use the word “collection” instead.

For example, Top is the category of topological spaces, where the set of morphisms from X to Y is the set of all

continuous maps X Ñ Y . We can make similar definitions for the category of sets Set, the category of groups Grp,

and the category of abelian groups AbGrp. And then all of the conditions are basically generalizing the structures of

composition and identity and so on that we’re used to.

One particular example that’s relevant for us is the category Pairs, which has objects of the form pX,Aq where

A Ď X and has morphisms f : pX,Aq Ñ pY,Bq in which X Ñ Y is continuous and f pAq Ď B. We can also define

the category Based, which is a subcategory of Pairs in which we must have pX, x0q and where a morphism is a map

f : pX,X0q Ñ pY, y0q in which f px0q “ y0. Finally, we can think about a category Homotopy, in which the objects

are topological spaces and the morphisms are a refinement of those in Top: they are the set of continuous maps up

to homotopy. Since homotopy composes, composition is still respected, and we just have a smaller set of morphisms

between any two topological spaces.

Our construction of fundamental groups and homology groups can both be thought of as relations between cate-

gories, in which we change from one to another:

Definition 132

Let C and D be two categories. A functor F : C Ñ D consists of maps F : obpCq Ñ obpDq and F : MorpX, Y q Ñ

MorpF pXq, F pY qq for all X, Y P C, such that F pidXq “ idF pXq and F pf ˝ gq “ F pf q ˝ F pgq (this is called the

functoriality property).

Example 133

Our construction of fundamental groups π1 : Based Ñ Group is a functor. Indeed, we map each pX, x0q to a

group π1pX, x0q, and we go from a continuous map of based topological spaces to a group homomorphism of

their fundamental groups.

Example 134

For any k P Z, we have a functor Hk : Top Ñ AbGrp sending X to HkpXq. Similarly, reduced homology H̃k is

also a functor Top Ñ AbGrp, and relative homology is a functor Pairs Ñ AbGrp sending pX,Aq to HkpX,Aq.
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Example 135

We have a functor Top Ñ Homotopy sending X to X itself and f to its class rf s, but we know that two continuous

maps that are in the same homotopy class have the same homology. Thus Hk : Top Ñ AbGrp factors through

Homotopy via the (“forgetful”) functor Top Ñ Homotopy.

Remark 136. Noticing that we can compose functors, we may ask whether there is a category of all categories with

morphisms given by functors. But it turns out we run into set-theoretic issues there.

Recall that we stated that the different Hk homology constructions give us the same map, but we didn’t show

fundamentally why that was the case. It turns out that there’s some fundamental axioms for homology called the

Eilenberg-Steenrod axioms, such that if a homology theory satisfies those axioms, it will agree with the constructions

we’ve already made. We say that we have a homology theory if we have a sequence of functors Hk : Pair Ñ AbGrp
(where we can treat a single topological space X as pX,∅q) together with a natural transformation (we won’t make

the definition here, but it’s basically a map between functors) B˚ : HkpX,Aq Ñ Hk´1pAq (previously B˚ was the

connecting map). Then we want the homology theory to satisfy these axioms:

1. Homotopy: under the functor, f : pX,Aq Ñ pY,Bq is sent to f˚ : HkpX,Aq Ñ HkpY,Bq. Then if f » g, we

require that f˚ “ g˚.

2. Excision: if Z Ď A Ď X with clpZq Ď intpAq, then HkpX,Aq – HkpX ´ Z,A´ Zq.

3. If X is a single point, then HkpX,∅q “ Z if k is trivial and 0 otherwise.

4. Union: if X “ >αPIXα, then HkpXq “
À

αPI HkpXαq. (Notice that direct sum and product agree when we only

have finitely many terms, but not in general.)

5. There is a long exact sequence HnpAq Ñ HnpXq Ñ Hn´1pX,Aq
B˚
ÝÑ Hn´1pAq Ñ ¨ ¨ ¨ .

So with (1) and (3) we can compute all contractible spaces, (5) allows us to compute pairs, (2) lets us compute

quotients, particularly Sn, which allows us to pass to cellular homology along with (4).

15 November 17, 2022
We’ll start our last topic of the course, cohomology, today – it’ll be similar to homology but with some different

constructions and some different properties. We can use any of the homology theories we’ve developed to construct

cohomology – we’ll use singular homology here. Recall that CnpXq is the set of sums t
řn
i“1 riσiu, where ri P Z and

σi : ∆
n Ñ X are continuous maps. We’ll now construct the corresponding dual space

CnpXq “ HompCnpXq,Zq,

the set of group homomorphisms CnpXq Ñ Z (equivalently, the Z-valued linear functions on CnpXq). (Note that we

have to be careful trying to identify Cn with Cn because of infinite-dimensional considerations.) To make this into a

chain complex, we need to construct a new differential δn : CnpXq Ñ Cn`1pXq (going in the opposite direction as

before, increasing the grading). We already have an old differential dn`1 : Cn`1pXq Ñ CnpXq from homology, and

we can define δn in the following way: any f P CnpXq is a homomorphism CnpXq Ñ Z, and if we pre-compose it by

dn`1, we get a homomorphism f ˝ dn`1 : Cn`1pXq Ñ Z. That will then be an element of Cn`1pXq, and we call that

element δnf . (We then call this the “dual” of the map dn`1 – this construction is following the general idea that a map
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f : A Ñ B leads us to a map f ˚ : B˚ Ñ A˚ for a general abelian group A.) This can be represented in the following

diagram:

Cn`1 HompCn`1,Zq

Cn HompCn,Zq

dual

dn`1

dual

δn

Then δn`1 ˝ δn “ 0 as a map CnpXq Ñ Cn`2pXq just from the definition: for any f P CnpXq, we have

δn`1 ˝ δnpf q “ δn`1pf ˝ dn`1q “ f ˝ dn`1 ˝ dn`2,

which is always the zero map and thus δn`1 ˝ δn sends anything to zero. So given any topological space X with a

singular chain complex CnpXq, we can define CnpXq “ HompCnpXq,Zq and define a differential δnpf q “ f ˝ dn`1, and

pCn, δnq will be a valid chain complex and we can define a homology theory for it, which we call cohomology:

Definition 137

The nth cohomology of X, denoted HnpXq, is

HnpXq “ kerpδnq{impδn´1q.

Since we’re looking at the dual spaces to the ones from homology, there are a few expected properties that we

now have:

‚ A continuous map f : X Ñ Y now yields a map in cohomology in the opposite order – it induces a map

f 7 : C˚pY q Ñ C˚pXq and thus a map f ˚ : H˚pY q Ñ H˚pXq.

‚ If f „ g : X Ñ Y are homotopic maps, then we induce equal maps f ˚ “ g˚ : H˚pY q Ñ H˚pXq.

‚ The composition X f
ÝÑ Y

g
ÝÑ Z gives us an induced map pg ˝ f q˚ “ f ˚ ˝ g˚ : H˚pZq Ñ H˚pXq. So this is

functoriality in the opposite order.

‚ We can define a cohomology for pairs similar to the homology for pairs: if A Ď X, then we can define CnpX,Aq “

tf P CnpXq : f |A “ 0 P CnpAqu. We can still define a δ differential on this chain complex, which gives us

cohomology HnpX,Aq.

‚ Just like in homology, we can write a long exact sequence coming from the short exact sequence of chain

complexes, where the sequence of arrows is reversed:

¨ ¨ ¨ ÐÝ HnpAq ÐÝ HnpXq ÐÝ HnpX,Aq ÐÝ Hn´1pAq ÐÝ ¨ ¨ ¨ .

‚ Excision still holds: if Z Ď A Ď X so that Z Ď intpAq, then H˚pX,Aq – H˚pX ´ Z,A´ Zq.

‚ Similarly, we still have a Mayer-Vietoris sequence but with all arrows reversed: if A,B Ď X with X “ intpAq Y

intpBq, then we have a long exact sequence

¨ ¨ ¨ ÐÝ HnpAX Bq ÐÝ HnpAq ‘HnpBq ÐÝ HnpXq ÐÝ Hn´1pAX Bq ÐÝ ¨ ¨ ¨ .

Beyond reversing arrows, though, the reason for cohomology theory is that there are some unique structures that

don’t show up in homology. Specifically, there is a cup product Y : HkpXq ˆ HℓpXq Ñ Hk`ℓpXq (which we will talk

46



about next time), which makes cohomology into a ring (not just an abelian group). Additionally, cohomology has

various applications, which we’ll show now:

Fact 138

On a smooth manifold, there is a de Rham cohomology – there are covariant derivatives on differential forms,

where the derivative of a k-form is a pk ` 1q-form and the square of that derivative is zero. So we can in fact do

analysis on manifolds, which connects to many branches of mathematics. And like with homology, the different

cohomology theories are all equivalent – there is also a set of axioms for cohomology just like the ones we saw

last time for homology.

Fact 139

Characteristic classes are certain cohomology classes that obstruct or classify certain structures (like existence

of bundles over a manifold). For example, if M is a closed and smooth n-manifold, then the Whitney embedding

theorem says that M embeds into R2n, and 2n is the minimal bounding constant. Specifically, RP n does not

embed into R2n´1, and we can see this using a certain cohomology construction that obstructions the embedding.

We can read Milnor’s book ‘Characteristic Classes” for more.

Before we dive more into properties of cohomology, we want to first find a relation between homology and cohomol-

ogy. We know that HnpXq “ kerpδnq{impδn´1q and HnpXq “ kerpdnq{impdn`1q, so given an element class rαs P HnpXq

and an element rxs P HnpXq, α can be thought of as some element of CnpXq with δnα “ 0 (an actual element in the

cochain complex sent to zero under the differential), and similarly x can be thought of as some element of CnpXq with

dnx “ 0. But by definition, Cn is the dual of Cn – α is a map from CnpXq Ñ Z. Thus we can evaluate α at x , and

we can check that this evaluation gives rise to a well-defined map

e : HnpXq ˆHnpXq Ñ Z, prαs, rxsq Ñ αpxq

which is Z-bilinear. Thus we get a natural map e : HnpXq Ñ HompHnpXq,Zq sending each element to the evaluation

map we wrote above. On the chain level this is an identity map, but on the homology level we won’t necessarily have

an isomorphism:

Theorem 140 (Universal coefficients theorem)

There is a split exact sequence

0Ñ ExtpHn´1pXq,Zq Ñ HnpXq Ñ HompHnpXq,Zq Ñ 0,

where being split means that there is an isomorphism that represents the middle term HnpXq as a direct sum

ExtpHn´1pXq;Zq ‘ HompHnpXq,Zq, and where Ext is explained below.

So what this means is that we can calculate cohomology from homology as long as we know what the Ext map is.

We won’t define what the Ext functor is in full generality, but we will explain how to compute it:

‚ If A,B, C are abelian groups, then ExtpA‘ B,Cq “ ExtpA,Cq ‘ ExtpB,Cq.

‚ ExtpA,Bq “ 0 if A is free.

‚ ExtpZ{nZ, Aq – A{nA “ cokerpA n
ÝÑ Aq (that is, the cokernel of the multiplication-by-n map). We will sometimes

write Z{nZ as Zn.
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However, note that Ext is not symmetric: for example,

ExtpZ,Z{nZq “ 0, ExtpZ{nZ,Zq “ Z{nZ.

The idea is that if we have a torsion part of HnpXq, then it will not contribute to HompHnpXq,Zq, and if we have a

free part of Hn´1pXq, it will not contribute to ExtpHn´1pXq,Zq.

Here we actually just have ExtpHn´1pXq,Zq “ TorpHn´1pXqq, but if we were doing cohomology with different
coefficients, not necessarily Z, then Ext could be more complicated. For a more general abelian group G, we can

define the singular chain and cochain complex

CnpX;Gq “

#

n
ÿ

i“1

gi ˝ σi : gI P G, σi : ∆
n Ñ X

+

and CnpX;Gq “ HompCnpXq, Gq. We then get corresponding differential maps dn : CnpX;Gq Ñ Cn´1pX;Gq and

δn : CnpX;Gq Ñ Cn`1pX;Gq as before – all the proofs and constructions are the same – so we get homology

HnpX;Gq and cohomology HnpX;Gq with the same definition (kernel of one map modded out by the image of the

next). And with this, we can state a more general universal coefficients theorem as well – we’ll write HnpXq for

HnpX;Zq and specify the group G otherwise.

Theorem 141 (Universal coefficient theorem, general version)

We have the split exact sequence

0Ñ ExtpHn´1pXq, Gq Ñ HnpX;Gq Ñ HompHnpXq;Gq Ñ Z

where Hn´1pXq and HnpXq are using integer coefficients. We also have the split exact sequence

0Ñ HnpXq bZ G Ñ HnpX;Gq Ñ TorpHn´1pXq, Gq Ñ 0.

Similarly, we’ll mention a few properties of the Tor functor so that we can do computations for it:

‚ For any abelian groups A,B, C, TorpA‘ B,Cq “ TorpA,Cq ‘ TorpB,Cq.

‚ TorpA,Bq “ TorpB,Aq (so Tor is symmetric, unlike Ext),

‚ TorpA,Bq “ 0 if either A or B is free.

‚ TorpZ{nZ, Aq – kerpA
n
ÝÑ Aq.

Example 142

Suppose X is a closed connected manifold of dimension n. Recall that the top dimension homology is either Z
or 0 depending on whether X is orientable or not, and if X admits a simplicial structure and is orientable, then

HnpXq is generated by
ř

∆n ∆
n, the sum of all n-simplices (since each codimension-1 face is in two simplices with

opposite orientations which cancel out under the differential d). But if we instead work with Z{2Z-coefficients,

no matter which orientation we give, each codimension-1 face will be counted twice, and 2 “ 0. So HnpX;Z2q is

always nonzero.

In particular, if X is not orientable, HnpXq “ 0, but HnpX;Z2q is nontrivial. Thus by the universal coefficients

theorem, looking at the second split exact sequence, we know that TorpHn´1pXq,Z2q – HnpX;Z2q becauseHnpXqbZZ2
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is zero. Thus TorpZ2, Hn´1pXqq ‰ 0, meaning that multiplication by 2 has a nontrivial kernel in Hn´1pXq. That can

be restated in the following way:

Proposition 143

Let X be a closed n-dimensional manifold which is not orientable. Then Hn´1pXq has 2-torsion.

(For example, if X is the Klein bottle, H1pXq – Z ‘ Z2 (from our past calculations), and if X is RP 2, then

H1pXq – Z2.) Now to look at another kind of example, we can apply the first split exact sequence for H1pXq (since

we know H0pXq): applying it with G “ Z, we see that

H1pXq – ExtpH0pXq;Zq ‘ HompH1pXq;Zq.

But H0pXq is a free abelian group, so by our rules above Ext of it is zero. So H1pXq – HompH1pXq;Zq , and in fact

HompH1pXq;Zq is a free abelian group. That tells us the following statement:

Proposition 144

For any topological space X, H1pXq has no torsion.

In the first example above, we saw that whenever X is non-orientable, Hn´1pXq has 2-torsion. We’ll see later on in

the class that whenever X is orientable, Poincaré duality tells us that Hn´1pXq – H1pXq, so Hn´1pXq must be free.

So there will be more systematic approaches for studying the structure of these different homology and cohomology

groups, and we’ll study those in the rest of the course.

16 November 29, 2022

We’ll discuss the cup product construction today: our goal is to construct a map Y : HmpXq ˆHnpXq Ñ Hm`npXq,

making cohomology into a ring with unit. We will define it by first constructing a product on the cochain level

Y : CmpXq ˆ CnpXq Ñ Cm`npXq, so first we will review what all of that means. Recall that if we’re working with

singular homology, then CkpXq consists of formal sums
řℓ
i“1 riσi where ri P Z, σi : ∆k Ñ X is a singular simplex, and

we have the differential map dk : CkpXq Ñ Ck´1pXq defined by an alternating sum over codimension 1 simplices. We

then define CkpXq “ HompCk , Xq to be the dual space of CkpXq, where we define the dual map δk´1 by saying that

for any f : Ck´1pXq Ñ Z, the map δk´1pf q Ñ CkpXq is defined via

δk´1pf qpσkq “ f pdkσ
kq.

So now suppose we have two maps ψ : Cmpxq Ñ R and φ : CnpXq Ñ R, and we want to define ψYφ : Cm`npXq Ñ R.

Remembering that the simplex ∆k has a standard embedding tpx0, ¨ ¨ ¨ , xkq :
řk
i“0 xi “ 1, xi ě 0u, giving us a canonical

ordering of its vertices v0 “ p1, 0, ¨ ¨ ¨ , 0q, v1 “ p0, 1, ¨ ¨ ¨ , 0q, ¨ ¨ ¨ , vk “ p0, 0, ¨ ¨ ¨ , 1q. A map Cm`n Ñ Z would then

need to be defined on all simplices rv0, v1, ¨ ¨ ¨ , vm`ns, and we define

pψ Y φqprv0, v1, ¨ ¨ ¨ , vm`nsq “ ψprv0, ¨ ¨ ¨ , vmsqφprvm, vm`1, ¨ ¨ ¨ , vm`nsq.

This then defines a map Cm`n Ñ Z. (More generally, if we’re working with homology and cohomology with coefficients,

we will need a ring for the base coefficients so that we can actually multiply those two values together.) We can explore

a few properties of this map we’ve just defined:
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‚ Applying the differential to our cup product, δpψ Y φq “ pδψq Y φ` p´1qmψ Y pδφq. (where ψ P CmpXq).

‚ Since a class in cohomology HmpXq is a class rψs where δψ “ 0, we can define the cup product on cohomology

Y : HmpXq ˆHnpXq Ñ Hm`npXq by taking the cup product on the representative ψs:

rψs Y rφs ÞÑ rψ Y φs.

We must check that ψ Y φ is in fact in the kernel of the differential map if ψ, φ are, and we must also check

that this definition is well-defined (yielding the same result within a given class). But by the previous point,

δpψ Y φq “ pδψq Y φ ` p´1qmψ Y pδφq, and by assumption both terms on the right-hand side are zero so the

left-hand side is zero as well. Thus ψ Y φ does represent a cohomology class. For well-definedness, we must

show for example that if rψ1s “ rψs, then rψ Y φs “ rψ1 Y φs P Hm`npXq (and then we just need to do the

same with the second argument, but it’s the same reasoning). If rψ1s “ rψs, that means δψ1 “ δψ “ 0 and

ψ ´ ψ1 P impδq. Thus ψ ´ ψ1 “ δη for some η P Cm´1pXq. But then

ψ Y φ´ ψ1 Y φ “ pψ ´ ψ1q Y φ “ pδηq Y φ,

and now we can apply the first bullet point again: because δφ “ 0, this is also

“ pδηq Y φ` p´1qm´1η Y pδφq “ δpη Y φq,

which is zero in cohomology. Thus if ψ and ψ1 are in the same class, then rψ Y φs “ rψ1 Y φs as desired.

Remark 145. We may ask why this is more natural in cohomology than in homology – one reason comes from the

case where X is a smooth manifold and we can look at de Rham cohomology, studying the differential forms. Then

the wedge product actually coincides with the cup product.

‚ Next, suppose f : X Ñ Y is a continuous map. Then f ˚ : H˚pY q Ñ H˚pXq preserves the cup product – that is,

f ˚pαY βq “ f ˚pαq Y f ˚pβq. In other words, f ˚ is actually a ring homomorphism.

‚ This cup product has a unit when X is path-connected. Indeed, since the cup product maps HmpXq ˆHnpXq Ñ

Hm`npXq, the unit must be something in H0pXq. We know that H0pXq – Z (for example by the universal

coefficients theorem because H0pXq – Z), and 1 P H0pXq will then be a unit. More explicitly, C0pXq consists of

finite integer linear combination of points in X, so C0pXq is a map C0pXq Ñ Z, which we can think of basically

as a map f : X Ñ Z. So taking the constant map c sending all of X to 1 (which represents the generator in

cohomology – exercise), we can check that c Y ψ “ ψ P CmpXq.

It turns out that this ring structure almost forms a commutative ring:

Theorem 146

If α P HmpXq and β P HnpXq, then αY β “ p´1qmnβ Y α.

This is very similar to how wedge products work for differential forms, since we need to switch mn “pairs” and pick

up a negative sign each time. This result is true on the homology level, and if we try to pass it to the chain level we

should expect a chain homotopy. (But we should read through the proof on our own.)
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Example 147

To make our computation easier, we’ll go back to simplicial structures and look only at simple surfaces via

triangulation. Consider the simplicial structure of the torus X given by identifying opposite edges of a square in

the same orientation:

Here, c1, c2, c3, c4 represent the outgoing edges from the central vertex, and e1, e2, e3, e4 represent the faces.

v1

v2

v4

v3

a

a

b b

e1

e2

e3

e4 v0

c1

c2

c3
c4

We’ll orient everything so that the central vertex is always the “first vertex,” and for each of the four faces we

orient the other two vertices in terms of the orientation of the edge mentioned. We then find that de1 “ c1 ` a´ c2,

de2 “ c3 ` b´ c2, de3 “ c4 ` a´ c3, de4 “ c4 ` b´ c1, and the differentials for each edge are just the differences of

the end and start vertices. Recall that H2pXq – Z, but explicitly it turns out to be generated by e1´e2´e3`e4. Then

H1pXq – Z2, generated by a and b, and H0pXq is generated by any of the vertices, say v0. To find the cohomology,

we can then use the universal coefficients theorem:

HnpXq – HompHnpXq,Zq ‘ ExtpHn´1pXq,Zq,

but all homology groups are free so there is no torsion, meaning we have isomorphism between homology and coho-

mology. Thus HnpXq – Z if n “ 0, 2, Z2 if n “ 1, and 0 otherwise. Our goal is then to find the dual basis for H1pXq

– that is, we want H1pXq generated by rαs and rβs such that αpaq “ 1, αpbq “ 0, βpaq “ 0, βpbq “, and then we

want to understand α Y β. To do this, we must first find maps C1pXq Ñ Z such that δα “ δβ “ 0. There are six

one-dimensional simplexes (a, b, c1, c2, c3, c4), but we can think about the two blue lines in the diagram below which

are really loops on the torus:

v1

v2

v4

v3

a

a

b b

e1

e2

e3

e4 v0

c1

c2

c3
c4

α

β

Motivated by where these points intersect the lines, we define αpaq “ αpc2q “ αpc3q “ 1 and αpbq “ αpc1q “

αpc4q “ 0, and similarly we define βpbq “ βpc1q “ βpc2q “ 1, and βpaq “ βpc3q “ βpc4q “ 0. We can check that

δα “ δβ “ 0 as map C2pXq Ñ Z, but that just needs to be done by checking that δαpei q “ 0 and δβpei q “ 0 for each

i . Indeed,

δαpe1q “ αpde1q “ αpc1 ` a ´ c2q “ 0` 1´ 1 “ 0,
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and similarly all of the other checks work out, so α, β do represent classes in cohomology. And indeed α, β evaluate

correctly on a and b (more precisely we evaluate in cohomology, with rαsprasq “ αpaq “ 1 and so on), so we have found

a dual basis for H1pXq. We can now compute the cup product, but αYβ should lie in H2pXq – HompH2pXq,Zq – Z,

so we should find a generator in H2pXq. Indeed, the generator of H2pXq is re1 ´ e2 ´ e3 ` e4s, so we can choose

rγs P H2pXq such that rγspre1 ´ e2 ´ e3 ` e4sq “ 1. We now just need to compare rαY βs and rγs. By definition of

how we’ve oriented our simplices,

pαY βqpe1q “ αpc1qβpaq “ 0

and similarly pα Y βqpe2q “ αpc3qβpbq “ 1, pα Y βqpe3q “ αpc4qβpaq “ 0, and pα Y βqpe4q “ αpc4qβpbq “ 0. This

means that pαY βqpe1 ´ e2 ´ e3 ` e4q “ ´1, and thus we must have rαY βs “ ´rγs in cohomology.

This type of computation works in general, just dealing with more simplices as the surface gets more complicated.

And it works for non-orientable surfaces too:

Example 148

Next consider X “ RP 2, which is obtained by taking S2 and identifying antipodal points x „ ´x . We get a

simplicial structure by taking the upper half hemisphere and identifying opposite points on the equator, which we

can write as shown below:

e2e1a a

c1

c2

α

This time we can compute in Z2-coefficients to get something nontrivial with the differential map H2pXq Ñ H1pXq:

we find that HnpX;Z2q – Z2 for n “ 0, 1, 2 and 0 otherwise and the same for cohomology. And we can similarly

find α P C1pX;Z2q which generates H1pX;Z2q, specifically evaluating to 1 on a and c1 and 0 on c2, and we find that

rα Y αs “ rαs Y rαs is a generator of H2pX;Z2q, which we write α2. This means that H˚pRP 2;Z2q can be thought

of as a polynomial ring Z2rαs{pα3q, and that turns out to be a general fact: replacing RP 2 with RP n, we get the

polynomial ring Z2rαs{pαn`1q instead. (And we do need Z2 coefficients here, because RP n is orientable if and only if

n is odd.)

17 December 1, 2022

We’ll discuss the cup product some more today: recall that we define Y first on the complex level (for singular

homology) by setting

pψ Y φqprv0, ¨ ¨ ¨ , vm`nsq “ ψprv0, ¨ ¨ ¨ , vmsq ¨ φprvm, ¨ ¨ ¨ , vm`nsq

for any ψ P CmpXq and φ P CnpXq. We showed last time that this actually induces a cup product on cohomology,

so we have a map Y : HmpXq ˆ HnpXq Ñ Hm`npXq. It turns out we can also generalize this to relative cohomology

– if A Ď X, recall that CnpX,Aq is defined to be CnpXq{CnpAq for each n, so CnpX,Aq can be interpreted as

the set of functions f : CnpXq Ñ Z that vanish when restricted to CnpAq. Thus, we can define a cup product

CmpX,Aq ˆ CnpX,Aq Ñ Cm`npX,Aq, and in fact even if A and B are two different subspaces, we can define a cup

product CmpX,AqYCnpX,Bq Ñ Cm`npXq. We are taking a function ψ vanishing on CmpAq and a function φ vanishing
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on CnpBq, so ψYφ vanishes on Cm`npAq and Cm`npBq. We can compare that to the space of functions Cm`npXq Ñ Z,

which are the functions which vanish on Cm`npA Y Bq. We then have an inclusion Cm`npX,A Y Bq into this space

tf : Cm`npXq Ñ Z : f |Cm`npAq “ 0, f |Cm`npBq “ 0u which is not necessarily an isomorphism (since there might be some

simplices partially contained in A and partially contained in B), but under some weak conditions it turns out that this

inclusion induces isomorphism in cohomology:

Proposition 149

If A,B Ď X are open subspaces, then we have a cup product on relative homology Y : HmpX,Aq ˆ HnpX,Bq Ñ

Hm`npX,AY Bq.

We will next discuss the Kunneth formula, which helps us understand the product of two topological spaces

and how homology and cohomology behave under that operation. For this, it will be convenient to work with CW

complexes, since the product of an m-cell em1 of X and an n-cell en2 of Y is an pm ` nq-cell em1 ˆ en2 of X ˆ Y with

boundary

Bpem1 ˆ en2 q “ ppBem1 q ˆ en2 q Y pem1 ˆ pBem2 qq.

Recall that in cellular homology, CmpXq is generated by m-cells of X and CnpY q is generated by n-cells of Y , so

CkpX ˆ Y q is generated by cells of the form em1 ˆ en2 for any m, n ě 0 such that m ` n “ k . Then it turns out

CkpX ˆ Y q “
à

m`n“k,m,ně0

CmpXq b CnpY q,

which we will write in short as C˚pXˆY q “ C˚pXqbC˚pY q. And the differentials for the product can also be computed

in terms of the differentials of the individual spaces: whenever a P CmpXq, we have

dXˆY pa b bq “ pdXaq b b ` p´1qma b pdY bq.

The Kunneth formula then gives a formula for the homology of the tensor product chain complex in terms of the

individual chain complexes:

Theorem 150

There is a split exact sequence

0Ñ H˚pXq bH˚pY q Ñ H˚pX ˆ Y q Ñ TorpH˚pXq, H˚pY qq Ñ 0.

In the special case in which H˚pXq or H˚pY q is free, we know that the Tor term goes to zero, so H˚pX ˆ Y q –

H˚pXq bH˚pY q.

A similar thing happens for cohomology as well, and we also get similar results if we work with general coefficients:

Theorem 151 (Kunneth formula, special case)

Suppose X and Y are CW complexes and R is a commutative ring. If H˚pY ;Rq is a finitely generated free

R-module, then we have a module isomorphism µ : H˚pX ˆ Y ;Rq – H˚pX;Rq bH˚pY ;Rq.

We may then ask how the cup product or relative cohomology interact with this homomorphism – both of them

do turn out to work. There is a natural cup product H˚pX ˆ Y ;Rq, and we can define the cup product for our tensor

product in the following way: for any a, c P H˚pXq and b, d P H˚pY q, we can set

pa b bq Y pc b dq “ p´1qmnpa Y cq b pb Y dq,
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where b P HmpXq and c P HnpY q.

Theorem 152 (Kunneth formula with cup product)

The isomorphism µ in Theorem 151 preserves the cup product as defined above.

Very similarly, if pX,Aq and pY,Bq are CW pairs and R is a commutative ring, then we have an analogous result:

Theorem 153 (Kunneth formula, relative version)

Let pX,Aq, pY,Bq be CW pairs, R be a commutative ring, and suppose H˚pY,B;Rq is a free finitely-generated

R-module. Then there is an isomorphism µ : H˚pX,A,Rq b H˚pY,B;Rq Ñ H˚pX ˆ Y, pA ˆ Y q Y pX ˆ Bq;Rq

which preserves the cup product.

Here, the reason for pAˆY qYpBˆXq is that this is the space on which all functions must vanish. And in particular,

this theorem holds whenever R is a field and we have finite CW complexes, because modules over R would be vector

spaces and there is no torsion.

Example 154

We’ll compute the cohomology ring of the projective spaces RP n “ P n (for simplicity) over Z2 – we’ll prove that

H˚pRP n : Z2q – Z2rxs{xn`1 where x has degree 1 (that is, it’s the generator of H1pRP n,Z2q.

Omit the Z2 in notation for brevity. We did this for RP 2 last time using an explicit simplicial structure, but here

we will use cell structures and apply the Kunneth formula to get a more general result. (And something similar would

work with complex projective spaces too.) Recall that P n “ pRn`1 ´ t0uq{ „, where we identify x and λx for any

nonzero constant λ. (So projective space is the set of lines through the origin.) Alternatively, we can think of P n as

Sn{ „, where „ now identifies antipodal points. In particular, P 1 is just S1, so nothing interesting happens there, and

P 2 can be thought of as the upper hemisphere of S2 with its boundary identified via the antipodal map, or equivalently

gluing D2 to S1 via the quotient map S1 Ñ P 1. More generally, we can look at the upper hemisphere of Sn, whose

boundary is Sn´1, and we get a cell structure for P n in which there is one cell in each dimension: the m-skeleton is

just Pm, and we glue via the natural quotient map Sm Ñ Pm. Thus if Ci pP nq is generated by the cell ei , our chain

complex is

CCWpP nq “

n
à

i“0

Z2xe iy.

To figure out the differential map, we’re basically adding up the local degrees, but the quotient map is 2-to-1 and

we’re working in Z2 so in Z2-coefficients all differentials d : C˚pP nq Ñ C˚pP nq vanish. Then because δ is the dual

of d , δ “ 0 as well, and thus

Hi pP
n;Z2q “

$

&

%

Z2 0 ď i ď n,

0 otherwise,

and for similar reasons we also have

Hi pP n;Z2q “

$

&

%

Z2 0 ď i ď n,

0 otherwise.

(Note that P n ´ P n´1 is the interior of our single n-cell and thus homeomorphic to Rn.) We now want to study the

cup product, and if we want to know what happens to Y : Hi pP nq ˆHjpP nq Ñ Hi`jpP nq for any n ě i ` j , we can just

look at Hi pP i`jq ˆHj pP i`j q Ñ Hi`jpP i`jq, since the inclusion P i`j Ñ P n induces an isomorphism (all differentials are
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zero so the chain complexes literally just include). So we can reduce to thinking about the case where i ` j “ n. The

trick is to think about the relative homology

Hi pP n, P n ´ P j q ˆHjpP n, P n ´ P i q Ñ HnpP n, pP n ´ P jq Y pP n ´ P i qq,

because if we start with an pi ` jq-dimensional disk which we think of as a product of an i-dimensional disk and

a j-dimensional disk, quotienting by the antipodal map gives us the spaces listed. Checking that we then have an

isomorphism Hi pP n, P n ´ P jq Ñ Hi pP nq and Hj pP n, P n ´ P i q Ñ Hj pP nq is then an exercise, and then HnpP n, pP n ´

P jq Y pP n ´ P i qq is exactly HnpP n, P n ´ tpuq (where p is the only point of intersection between the two disks – this

is where we use i ` j “ n). So the point is that we get the following diagram of maps:

Hi pP nq ˆHjpP nq HnpP nq

Hi pP n, P n ´ P j q ˆHjpP n ´ P i q HnpP n, P n ´ tpuq

Y

–

Y

–

By the excision theorem, we now want to look at P n´1 Ď P n – removing it from P n yields just an open ball

homeomorphic to Rn, and the subset P i of P n correspondingly has Ri removed. Thus we get the additional blue part

of the diagram by the excision theorem:

Hi pP nq ˆHjpP nq HnpP nq

Hi pP n, P n ´ P jq ˆHjpP n ´ P i q HnpP n, P n ´ tpuq

Hi pRn,Rn ´ Rjq ˆHjpRn,Rn ´ Ri q HnpRn,Rn ´ t0uq

Y

–

Y

excision

–

excision

But then Hi pRn;Rn ´ Rjq – Hi pRi ,Ri ´ t0uq and similarly Hj pRn,Rn ´ Ri q – Hi pRj ,Rj ´ t0uq by “removing

the dimensions that are unnecessary,” and finally thinking of Ri ,Rj ,Rn instead as i , j, n-dimensional cubes and retract

everything but 0 to the boundary in all three cases, we get a map

Hi pI i , BI i q ˆHjpI j , BI jq Ñ HnpIn, BInq,

and now we can identify pIn, BInq “ pI i ˆ I j , pBI i ˆ I jqYpI i ˆBI jqq. But now at this last stage, we finally an isomorphism

by the Kunneth formula which maps generators to generators, so tracing this back up to Hi pP nq ˆHjpP nq Ñ HnpP nq

gives us the desired result.

It turns out that the cohomology ring structure H˚pRP n;Z2q – Z2rxs{xn`1 tells us something powerful:

Corollary 155

Suppose Rn admits a division algebra structure (a not-necessarily abelian group structure where every nonzero

element is invertible). Then n is a power of 2.

Proof. The multiplication Rn ˆ Rn Ñ Rn also gives us a continuous map between spaces h : RP n´1 ˆ RP n´1 Ñ

RP n´1, from which we get a cohomology ring structure h˚ : H˚pRP n´1q Ñ H˚pRP n´1 ˆ RP n´1q preserving the

cup product. By the Kunneth formula, H˚pRP n´1 ˆ RP n´1q has the structure Z2rx1, x2s{pxn1 , x
n
2 q; in particular,

H1pRP n´1 ˆ RP n´1q is Z1xx1, x2y. If we say that H1pRP nq (on the left) is generated as Z2xxy, then the map h˚

must send x to k1x1 ` k2x2, where k1, k2 P t0, 1u. But because we have a division algebra, if we keep the first
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argument in h : RP n´1ˆRP n´1 Ñ Rpn´1 fixed then we get an isomorphism, which lets us deduce that we must have

hpxq “ x1 ` x2. But then H˚pRP n´1q “ Z2rxs{xn, so px1 ` x2q
n “ ph˚pxqqn “ h˚pxnq “ 0 in Z2rx1, x2s{pxn1 , x

n
2 q. The

binomial expansion then tells us that
řn´1
k“1

`

n
k

˘

xk1 x
n´k
2 ` xn1 ` xn2 “ 0, which is true if and only if all coefficients

`

n
k

˘

for

1 ď k ď n ´ 1 are even. And this is only true if n is a power of 2.

It turns out that there is a full classification of the allowed division algebras (for example, the only associative ones

are R,C, and the quaternions, and then we also have some more interesting constructions like the octonions), but the

point is that we can prove some interesting things with cohomology.

18 December 6, 2022
Our last topic for this class is Poincaré duality – we’ve understood some relations between homology and cohomology

in terms of the Ext and Tor functors through the universal coefficient theorem, and now we’ll see another useful tool

along those lines. Our discussion will be restricted to the case where M is a connected, closed manifold (meaning that

connectedness and path-connectedness are the same thing, and that things look like Rn locally). By compactness, it

is a basic fact that H˚pMnq is always finitely generated.

We previously introduced a cup product Y : CmpXqˆCnpXq Ñ Cm`npXq, and we will now introduce a new operator

called the cap product, which maps X : CmpXq ˆ CnpXq Ñ Cm´npXq for m ě n (notice that we have a chain in one

case and a cochain in the other). So we take in some simplex σ : rx0, ¨ ¨ ¨ , xms Ñ X and some map Ψ : CnpXq Ñ Z,

and we will produce a simplex σ X ψ P Cm´npXq, defined by setting

σ X ψ “ ψpσ|rx0,¨¨¨ ,xnsqσ|rxn,xn`1,¨¨¨ ,xms.

(So we get a number times an pm ´ nq-dimensional singular simplex.) Using the definitions of chain and cochain

complexes, we can check that this cap product gives us an operation on homology and cohomology as well, so there

is a map X : HmpXq ˆHnpXq Ñ Hm´npXq. Furthermore, the cup and cap product have an interesting relation:

σ X pψ Y φq “ pσ X ψq X φ

Finally, there is some naturality here: for any continuous map f : X Ñ Y , we may think about how to relate

HmpXq ˆ HnpXq Ñ Hm´npXq and HmpY q ˆ HnpY q Ñ Hm´npY q. We do have maps f˚ from the homology groups

HmpXq Ñ HmpY q and Hm´npXq Ñ Hm´npY q, and we have a map f ˚ backwards as well (from HnpY q Ñ HnpXq). The

point is then that if we have some class rxs P HmpXq and some rψs P HnpY q, we indeed have analogous results of the

cap products:

f˚prxs X f ˚rψsq “ pf˚rxsq X rψs.

(We can prove this on the level of chain complexes and then have it descend to homology.)

Example 156

Consider the example of the torus from a previous lecture (Example 147) and use the same diagram. We found

the homology groups (Z,Z2,Z for n “ 0, 1, 2, 0 otherwise) and the cohomomology groups (the same). We

then found the generators of homology and cohomology: H1pXq is generated by ras, rbs, H2pXq is generated by

re1 ´ e2 ´ e3 ` e4s, and then (with corresponding dual bases) H1pXq is generated by rαs and rβs, and H2pXq is

generated by rγs. We then found that rαs Y rβs “ ´rγs.

56



We’ll now try to compute the cap product – the case C1pXq ˆ C1pXq Ñ C0pXq is left as an exercise, and we’ll

demonstrate C2pXq ˆ C1pXq Ñ C1pXq here. For example, we see that

e1 X α “ rv0, v2, v3s X α “ αpc1qrv2, v3s “ 0, e2 X β “ βpe1qrv2, v3s “ a.

Similarly, we have

e2 X α “ αpc3qrv4, v3s “ b, e2 X β “ βpc3qrv4, v3s “ 0,

and also that e3 X α, e3 X β, e4 X α, e4 X β are all zero. But H2pXq is generated by e1 ´ e2 ´ e3 ` e4, so to compute

H2pXq ˆH1pXq Ñ H1pXq, we see that

re1 ´ e2 ´ e3 ` e4s X rαs “ r´bs, re1 ´ e2 ` e3 ` e4s X rβs “ ras.

And notice that H1pXq is generated by rαs and rβs, while H1pXq is generated by ras and rbs. It turns out this is a

general phenomenon – for any closed oriented n-dimensional manifold, we know that the top homology group HnpMq

is a copy of Z, and we can write its generator as rMs. (If we had a simplicial structure on M, it would be the

sum of all oriented top-dimensional simplices.) We call M the fundamental class)of M, and we then define a map

D : HkpMq Ñ Hn´kpMq via

Dprψsq “ rMs X rψs P Hn´kpMq.

Theorem 157 (Poincaré duality)

If M is closed and oriented, then the map D : HkpMq Ñ Hn´kpMq is an isomorphism.

Remark 158. If M is an oriented manifold, then for any commutative ring we get the isomorphism HkpM;Rq –

Hn´kpM;Rq as well – the proof is independent of the coefficient ring. On the other hand, if M is unorientable, we

no longer get duality results with Z coefficients – for example, HnpMq – HnpMq “ 0 but H0pXq – Z for a connected

unoriented manifold. However, if R is a commutative ring in characteristic 2, we still have HnpXq “ R, and thus we

still have an isomorphism HkpM;Rq – Hn´kpM;Rq.

Example 159

Suppose Y n is a connected, closed, oriented n-dimensional manifold, and suppose R “ Q so we don’t need to

think about quotients. By the universal coefficient theorem (and using that the Ext functor is trivial) we then

have HkpX;Qq – HompHkpX;Qq;Qq.

So for any nonzero cohomology class rψs P HkpX;Qq, we have a nonzero Poincar’e dual Dprψsq P Hn´kpX;Qq

(because D is an isomorphism), and then there is an element φ P Hn´kpX,Qq such that

rφspDrψsq ‰ 0.

But by definition, this is saying that

0 ‰ rφsprMs X rψsq “ rMs X prψs Y rφsq,

and thus we must have rψs Y rφs ‰ 0. In words, any cohomology class (in HkpM;Qq) has a cohomology class of

complementary dimension (in Hn´kpM;Qq), such that their cup product is nonzero (in HnpM;Qq – Q). So the cup

product is nondegenerate as long as we work with rational coefficients, and the nondegeneracy result works when we

quotient out the torsions too.
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Example 160

Poincaré duality also has applications to the signature of manifolds of dimension a multiple of 4. We’ll work with a

special case where X is still connected, closed, and oriented, and we’ll keep using Q-coefficients, but now say that

Y is a manifold of dimension 2n for some n. Then the cup product Y : HnpX;Qq ˆHnpX;Qq Ñ H2npX;Qq – Q
is a bilinear form on the middle dimension n.

Notice that rψs Y rφs “ p´1qn
2

rφs Y rψs, so this bilinear form is symmetric if n is even and antisymmetric if n

is odd. In the former case, we can then represent the bilinear form as a symmetric m ˆ m rational matrix, where

m “ dimHnpX;Qq. We can then define the signature σpXq of X to be the signature of that m ˆm matrix, which is

the number of positive eigenvalues minus the number of negative eigenvalues.

Poincaré duality then tells us that the map Y : HnpX;Qq ˆ HnpX;Qq Ñ Q becomes a map I : HnpX;Qq ˆ

HnpX;Qq Ñ H0pX;Qq – Q (often called the intersection form). And there is a famous result along these lines:

Fact 161 (Freedman’s theorem)

Let X be a closed, connected, oriented, smooth 4-dimensional manifold with π1pXq trivial (so X is simply

connected). Then X is classified by its intersection form I, meaning that two such spaces are homeomorphic if

they have the same intersection form.

(For another result on σpXq, we can look up the Atiyah-Singer index theorem, which is a different deep result.)

For now, we’ll turn back to the intersection form and think about its geometric interpretation. Assume that everything

is smooth for simplicity. Suppose X is a p2nq-dimensional manifold and that we’re using Q-coefficients, so our map

is I : HnpXq ˆ HnpXq Ñ H0pXq – Q. Suppose now that M Ď X is an n-dimensional closed, connected, orientable

submanifold – then HnpMq – Q, so there is a fundamental class rMs P HnpMq. The natural inclusion ι : M Ñ X

then gives us a map ι˚ : HnpMq Ñ HnpXq, and in particular we may ask about ι˚pMq, which we will also write as

rMs P HnpXq. So any such manifold M gives us a class in HnpXq.

Then given two such n-dimensional closed, connected, orientable submanifolds M and N, we can use facts from

differential topology, because we’re assuming things are smooth. In the special case n “ 1, we have two curves inside a

2-dimensional surface, and we can perturb them slightly so that the curves generically intersect transversally at various

points. Then M XN will be a set of finitely many points (because of compactness), and the generators of H0pXq are

points themselves. So it’s reasonable that rMs ˆ rNs is just going to be a signed count of the points in M X N:

IprMs, rNsq “
ÿ

xPMXN

sgnpxq .

More generally, if M and N are n-dimensional and X is 2n-dimensional, near any point x P M X N, we can find a

neighborhood D of x in M XN so that M and N are “intersecting transversally” – that is, we can choose D – R2n so

that M X D – Rn, N X D – Rn, and x P D maps to the origin. We can then use the orientations to define sgnpxq:

specifically, we define sgnpxq “ 1 if the orientations of M and N together (by putting together the oriented bases of

M and N at x) coincide with that of X, and ´1 otherwise.

Remark 162. More formally, having a local orientation is equivalent to choosing an element of each of the relative

homologies HnpM,M ´ txuq, HnpN,N ´ txuq, and H2npX,X ´ txuq with Z-coefficients (each of which is isomorphic

to Z by excision) – the sign of x then corresponds to whether the cup product Y : HnpM,M ´ xq ˆ HnpN,N ´ xq Ñ

H2npX,X ´ txuq gives us `1 or ´1.
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