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Introduction

Professor Ryzhik (who we should call Lenya) and Zhenyuan Zhang (the CA for the course) are the course staff for

this quarter. Office hours, class materials, lecture notes, and problem sets can be found on Canvas. Homework will

be assigned biweekly, and there will also be a midterm (but probably no final).

There are many texts on real analysis, and Royden’s “Real Analysis,” Rudin’s “Real and Complex Analysis,” and

Tao’s “An Epsilon of Room” (volume I) may be useful references. On the other hand, there is a book by Evans

and Gariepy (“Measure Theory and Fine Properties of Functions”) which is very dry but extremely correct. If we get

to Fourier analysis, there is a nice book “Fourier Analysis” by Duoandikoetxea and Pinsky’s “Introduction to Fourier

Analysis and Wavelets,” which is nice to read, often not correct, but correctable. None of these are required texts,

but some of them might be useful for us, and they might be available from the library.

We’ll start with measure theory and integration, then maybe Fourier analysis and Brownian motion, and perhaps

cover the maximal function and harmonic analysis if we have time.

1 September 29, 2022
We’ll begin with the Lebesgue measure, whose goal is to generalize the length of an interval or the volume of a cube

to more general sets. Such a “measure” m should satisfy the following properties:

1. m(E) should be defined for all sets E and always be nonnegative.

2. The measure of any interval I (open or closed) should be its length.

3. If sets Ei are disjoint, then m
(⋃∞

i=1 En
)
=
∑∞

j=1m(En).

4. For any x , we should have m(E + x) = m(E) (translation invariance).

Unfortunately, it is not actually possible for all of these to hold. Specifically, let ⊕ be addition modulo 1, so that

for any x, y ∈ [0, 1) we have

x ⊕ y =

x + y x + y < 1,

x + y − 1 x + y ≥ 1.

It turns out that we still have translation invariance with ⊕ (on a circle) if we assume properties (1), (3), and (4).

Indeed, for any E ⊂ [0, 1), we can let E1 = [0, 1 − y) ∩ E and E2 = [1 − y , 1] ∩ E. Then E1 ⊕ y = E1 + y and
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E2 ⊕ y = E2 + (y − 1), so

m(E ⊕ y) = m(E1 ⊕ y) +m(E2 ⊕ y) = m(E1 + y) +m(E2 + y − 1) = m(E1) +m(E2) = m(E).

(Basically we just keep track of which part of E crossed over 1 and shift it back down by 1 by ordinary translation-

invariance.) So now define the equivalence relation x ∼ y if x = y ⊕ q for some rational number q (we can check

that this is indeed an equivalence relation), and thus we can split [0, 1) into equivalence classes. So if P is a set which

contains one element from each equivalence class (note that we use the axiom of choice here), then we can enumerate

the countable set Q∩ [0, 1) and define Pj = P ⊕ qj . These Pj are pairwise disjoint subsets of [0, 1) (because whenever

p1⊕q1 = p2⊕q2, we must have p1 ∼ p2, and each Pj only has one element per equivalence class), and in fact [0, 1) is

the union of the Pjs. Thus we have m([0, 1)) =
∑∞

j=1m(Pj) =
∑∞

j=1m(P ) by translation invariance, so if m(P ) = 0

then m([0, 1) = 0 and if m(P ) > 0 then m([0, 1)) =∞. In either case, we break property (2).

So we need to drop one of the four assumptions – we don’t want to give up (2) if we want to generalize length,

and (3) and (4) should hold in Rn by “physical common sense.” So the point is that not every set should have a
measure.

We’ll begin by defining the outer Lebesgue measure, which we can define for all sets but will not satisfy property

(3).

Definition 1

Let E ⊆ R be any subset. The outer measure m∗(E) of E is defined by

m∗(E) = inf
covers of E by a countable union of open intervals In

{∑
ℓ(In)

}
In other words, we approximate E from above and we want to do so in the smallest way possible.

As an exercise, we can ask what happens if we only allow covers with finitely many intervals. We can check that

m∗(S) = 0 for any countable set S. Also, notice that A ⊆ B =⇒ m∗(A) ≤ m∗(B) because anything that covers B

also covers A.

Proposition 2

Let I be an (open, closed, or semi-closed) interval. Then m∗(I) = ℓ(I).

Proof. First of all, notice that the endpoints do not matter, because any of the intervals (a, b), [a, b], [a, b), (a, b] are

contained in (a − ε, b + ε). So m∗(I) ≤ b − a + 2ε for any ε > 0, which means m∗(I) ≤ b − a = ℓ(I).
On the other hand, suppose we have a closed interval I = [a, b] ⊆

⋃∞
j=1 Ij for open intervals Ij . By compactness,

there is a finite subcover such that I ⊆
⋃n
k=1 Ijk . Thus

[a, b] ⊆
N⋃
k=1

Ij =⇒ |b − a| ≤
N∑
k=1

ℓ(Ijk ) ≤
∞∑
j=1

ℓ(Ij)

(somewhat painful exercise but doable). So taking the infimum over all possible coverings, we indeed see that ℓ(I) ≤
m∗(I). Combining these inequalities gives us the desired result for closed intervals. Finally, for the other kinds
of intervals, m∗([a + ε, b − ε]) = b − a − 2ε, so m∗((a, b)) (or the same for semi-closed intervals) is at least

m∗([a + ε, b − ε]) ≥ b − a − 2ε, which again gives the desired result when combined with m∗(I) ≤ ℓ(I).
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Proposition 3

The outer measure is countably subadditive, meaning that

m∗

( ∞⋃
n=1

An

)
≤

∞∑
n=1

m∗(An).

Proof. If m∗(Ak) = ∞ for some k , then the result automatically holds. Otherwise, suppose m∗(Ak) < ∞ for all k ,

and choose intervals Ikj such that Ak is covered by
⋃∞
j=1 Ikj for all k , with

∑∞
j=1 ℓ(Ikj) ≤ m∗(Ak) +

ε
2k

. (We can do

this by the definition of outer measure.) Then
⋃
Ak is covered by the entire set of Ikjs, so

m∗

( ∞⋃
n=1

An

)
≤
∑
k,j

ℓ(Ikj) ≤
∑
k

(
m∗(Ak) +

ε

2k

)
=
∑

m∗(Ak) + ε,

and taking ε→ 0 yields the result.

(This is one way to prove that m∗(S) = 0 if S is countable, because the measure of a single point is zero.) It turns

out that we can get equality instead of inequality under some special conditions, though. Recall that the distance

between two sets is

dist(A,B) = inf{x − y : x ∈ A, y ∈ B}.

Lemma 4

If dist(E, F ) > 0, then m∗(E ∪ F ) = m∗(E) +m∗(F ).

Proof. Choose δ so that |x − y | ≥ δ for all x ∈ E and y ∈ F . We claim that

m∗(A) = inf
A⊆∪Ij ,|Ij |<δ

∑
ℓ(Ij).

In other words, we can always choose our intervals to be of length at most δ by splitting up our intervals into open

intervals such that we only gain at most an ε
2j

measure. So now if we let E ∪ F be covered by a set of intervals

with each interval having length at most δ
10 , then Ij cannot intersect both E and F (because it has length less than

δ), so we can let I ′j be the intervals intersecting E and I ′′j be the intervals intersecting F . So m∗(E) ≤
∑
ℓ(I ′j ) and

m∗(F ) ≤
∑
ℓ(I ′′j ), and we can choose the Ijs so that

∑
ℓ(Ij) (the sum of the lengths of all of the intervals) is at most

m∗(E ∪ F ) + ε. Thus m∗(E ∪ F ) + ε ≥
∑
ℓ(I ′j ) +

∑
ℓ(I ′′j ) ≥ m∗(E) +m∗(F ), so m∗(E ∪ F ) ≥ m∗(E) +m∗(F ), and

combining this with the previous result implies equality.

We can generalize outer Lebesgue measure to Rn by replacing open intervals with open boxes (and requiring that

the measure of B = (a1, b1)×· · ·×(an, bn) to be its volume |B| = (b1−a1) · · · (bn−an). The advantage of using boxes

over open balls is the following: call two boxes “almost disjoint” if their interiors are disjoint. Then we can check that for

a finite union E of pairwise almost disjoint boxes Bj , we have m∗(E) =
∑N

j=1 |Bj |, so if E is instead a countable union

of pairwise almost disjoint boxes, then m∗(E) =
∑∞

j=1 |Bj | as well. Indeed, E ⊆
⋃∞
j=1Bj =⇒ m∗(E) ≤

∑∞
j=1 |Bj |,

but since E ⊇
⋃N
j=1Bj for any N, m∗(E) ≥

∑N
j=1 |Bj |. Since this holds for any N, we must indeed have equality for

the countable sum.

The point now is that any open set in R is a finite or countable disjoint union of open intervals, but this does not

hold in Rn for n ≥ 2. Instead, we use the notion of dyadic boxes – take the unit lattice in Rn and repeatedly break

each box into 2n pieces. Then every dyadic box is contained in exactly one box from the previous iteration, so for any
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open set O and any x ∈ O we can draw a ball around x contained in O, which must contain a dyadic box. Choosing the

dyadic box to contain x (our boxes are closed), O is then a union of dyadic boxes because it’s the union of the dyadic

boxes across all x . Call a dyadic box B ∈ O maximal if it is not contained in any other dyadic box also contained in O
(in other words, double the box and see if it is still completely within O). Now it is nice that any two maximal dyadic

boxes are almost disjoint (since any two dyadic boxes that intersect must have one contained in another), so any open

set is a union of almost pairwise disjoint pairwise (dyadic, but that doesn’t matter any more) boxes, and there are only

countably many such boxes.

This is all we’ll say about the outer measure for now – we’ll now talk about Lebesgue measurability, which tells

us which sets we can actually define a measure on.

Definition 5

A set F is Gδ if it is an intersection of a countable collection of open sets (notice that this does not need to be

an open set).

Proposition 6

For any set A ⊆ Rn, the following are true:

1. There is an open set O ⊃ A such that m∗(A) + ε ≥ m∗(O) (so we can approximate from above with open

sets),

2. There is a Gδ set G ⊃ A such that m∗(A) = m∗(G),

3. m∗(A) = inf{m∗(O) : O open and O ⊇ A}.

Proof. (1) is achieved by covering A with a union of open boxes, and (3) is the definition of the outer measure. For

(2), take Oj ⊇ A so that m∗(Oj) ≤ m∗(A) + ε
2j

(in this case we could have just taken any numbers going down to

zero), and we can take G =
⋂∞
j=1Oj . Then G ⊇ A and m∗(G) ≤ m(Oj) for each j , so m∗(G) ≤ m∗(A) + ε

2j
for all j ,

meaning that m∗(G) ≤ m∗(A). Since G contains A, we must have equality.

Definition 7

A set A is Lebesgue measurable if for any ε > 0, there exists an open set O ⊇ A such that m∗(O \ A) < ε.

Notice that this condition is not the same as m∗(A) + ε ≥ m∗(O). Indeed, just because we only need ε more

measure to cover O than A does not mean that O \A can be covered with ε measure, especially if A is a terrible mess.

So measurability kind of requires us to be able to cover both A and O \ A nicely, and next time, we’ll discuss a more

abstract sense of measurability due to Caratheodory.

2 October 4, 2022
Last lecture, we defined the outer measure of a set E ⊂ R to be

m∗(E) = inf
E⊆∪Ik

∑
ℓ(Ik)

and similarly making the definition with boxes in Rn. We defined E to be (Lebesgue) measurable if there is an open

set O ⊇ E such that m∗(O \ E) < ε for any ε > 0. We can now check a few properties:
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• If Ej are measurable sets, then ∪∞j=1Ej is also measurable (by covering each Ej by an open set Oj with m∗(Oj \
Ej) ≤ ε

2j
and taking the union of the Ojs).

• Any open set is measurable (by taking itself), and any closed set is also measurable. Indeed, let E be a closed

set and find an open set O containing E of outer measure at most m∗(E) + ε, noticing that O \ E is open

and thus an at most countable union of almost disjoint boxes Bj). Then any finite subset of these boxes is a

positive distance away from E (since we have closed sets that do not intersect), so outer measure is additive

and m∗(E) +
∑N

j=1 |Bj | ≤ m∗(O) ≤ m∗(E) + ε. Thus m∗(O \ E) ≤
∑∞

j=1 |Bj | ≤ ε as well.

• The complement of a measurable set is also measurable. Indeed, if On is an open set containing E with

m∗(On \ E) < 1
n with complement Fn, then Ec = Fn ∪ (On \ E). Then m∗(Ec \ Fn) < 1

n , so if we look at

F =
⋃∞
n=1 Fn, then m∗(Ec \F ) ≤ m∗(Ec \Fn) < 1

n for all n, and thus m∗(Ec \F ) = 0. Thus Ec \F is measurable

(any set of outer measure zero is measurable because we can just cover it with an open set of arbitrarily small

measure ε to satisfy the definition), and F is also measurable because each Fn is closed and thus measurable.

Thus Ec (their union) is measurable, as desired.

• If En are measurable, then the intersection
⋂∞
n=1 En is measurable. Indeed, this is just some manipulation:

E =

∞⋂
n=1

En =⇒ Ec =

∞⋃
n=1

Ecn ,

and since each En is measurable, so is each Ecn , and so is their union Ec , and so is its complement E.

We thus have some nice closure properties for the set of measurable sets:

Definition 8

A collection of sets F is an algebra if it is closed under complements and finite unions (equivalently, for any

A,B ∈ F , we have Ac , A ∪ B ∈ F). F is a σ-algebra if it is also closed under countable unions.

Everything we’ve proven in the list above gives us the following result:

Theorem 9

The collection of all Lebesgue measurable sets forms a σ-algebra.

There is another important σ-algebra used by probabilists (in the sense that they consider the σ-algebra “generated

by” some fundamental collection):

Definition 10

The Borel σ-algebra is the smallest σ-algebra that contains all open sets.

It will turn out that not all Lebesgue measurable sets are Borel – this may not be surprising because the example

of a non-Lebesgue-measurable-set (the stuff we “need to remove”) has nothing to do with open sets, but it may be

surprising because Lebesgue measurable sets have to do with approximations by open sets.

It’s important to note that there is an alternative definition of measurability that we may also encounter:

Definition 11 (Caratheodory definition of measurability)

A set E is C-measurable if for each (not necessarily measurable) B ⊆ Rn, we have m∗(B) = m∗(B∩E)+m∗(B∩
Ec).
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With this definition, we directly see that E is C-measurable if and only if Ec is C-measurable. Notice that we

always have the inequality m∗(B) ≤ m∗(B ∩ E) +m∗(B ∩ Ec) (we can cover the left-hand side by covering the two

terms on the right-hand side separately), so we only need to check the other inequality, which we can do by checking

that m∗(B) ≥ m∗(B ∩E) +m∗(B ∩Ec)− ε for any ε > 0. We can now check a few properties under C-measurability

(the goal is ultimately to prove that we again have a σ-algebra):

• If m∗(E) = 0, then E is C-measurable. This is easier to prove than with the Lebesgue measurability definition:

notice that m∗(B ∩ E) = 0, so measurability just requires m∗(B) ≥ m∗(B ∩ Ec), which is true.

• Any “corner” A = {x1 > a1, x2 > a2, · · · , xd > ad} ⊆ Rn is C-measurable. Indeed, for any B ⊆ Rd , the inequality

we need to check is automatically satisfied if m∗(B) =∞. Otherwise, m∗(B) is finite, so for any ε > 0 there is

a countable collection of almost disjoint closed boxes Dn such that B ⊆ ∪nDn and m∗(B) + ε >
∑
|Dn|. Now

if we consider

An =
{
x1 ≥ a1 +

ε

2n
, · · · , xn ≥ an +

ε

2n

}
and define the “intersection boxes” D′n = Dn∩A and D′′n = Dn∩Acn (notice that Acn is bigger than Ac , and notice

that we’re intersecting each box with a different “modified corner” Acn). We want to say that these add up to

Dn plus only a small amount. Without loss of generality, we’ll assume that all sides of Dn are of size at most 1,

meaning that the intersection of D′n and D′′n is at most ε
2n (because one of the sides of the boxes has length at

most ε
2n by definition of An). Then taking the sets B1 = A ∩ B ⊆ ∪nD′n and B2 = Ac ∩ B ⊆ ∪nD′′n , we find

m∗(B1) +m
∗(B2) ≤

∑
n

|D′n|+
∑
n

|D′n| ≤
∑
n

|Dn|+
ε

2n
≤ m∗(B) + 2ε.

Well, we’ve actually cheated a bit here, because D′′n isn’t actually a box if it intersects A near the “actual corner.”

So there should really be a constant Cd factor in the ε
2n argument (depending on the dimension d – it’s the

maximum number of boxes needed to split up such an intersection, but we can just take 2d), but otherwise the

argument works.

• If E1 and E2 are C-measurable, then so is E1 ∪ E2. Indeed,

m∗(A) = m∗(A ∩ E1) +m∗(A ∩ Ec1 ) = m∗(A ∩ E1) +m∗((A ∩ Ec1 ) ∩ E2) +m∗((A ∩ Ec1 ) ∩ Ec2 )

by measurability of E2. Now the last term can be written as (A ∩ Ec1 ) ∩ Ec2 = A ∩ (E1 ∪ E2)c (because both

sides are “in A but not E1 or E2), and A ∩ (E1 ∪ E2) = (A ∩ E1) ∪ ((A ∩ Ec1 ) ∩ E2), so by subadditivity of the

outer measure we indeed have

m∗(A) ≥ m∗(A ∩ (E1 ∪ E2)) +m∗(A ∩ (E1 ∪ E2)c).

• Thus, if E1, · · · , En are pairwise disjoint C-measurable sets, then m∗(A ∩
(⋃n

i=1 Ei
)
) =

∑n
i=1m

∗(A ∩ Ei). (For

example, this gives us additivity of outer measure for C-measurable sets if we take A to be the whole space.)

Indeed, this can be done by induction; the base case n = 1 is clear, and assuming that it works for (n − 1) we

have (by C-measurability of En)

m∗

(
A ∩

n⋃
i=1

Ei

)
= m∗

((
A ∩

n⋃
i=1

Ei

)
∩ En

)
+m∗

((
A ∩

n⋃
i=1

Ei

)
∩ Ecn

)
.

The first term is just m∗(A ∩ En) because all of the Eis are disjoint, and the second term is m∗
(
A ∩

⋃n−1
i=1 Ei

)
(because we can’t intersect En if we’re in Ecn ). Applying the inductive hypothesis to this last term yields the

result.
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• Next, suppose E1, E2, · · · are C-measurable and E =
⋃∞
k=1 Ek . Define Ẽk = Ek \

⋃
j<k Ẽj , so that Ẽ1 = E1,

and then the union of Ẽ1 through Ẽk is the same as the union of E1 through Ek but constructed inductively to

be disjoint. Now we know that the sets Fn =
⋃n
k=1 Ẽk are C-measurable (because it’s obtained from a series of

manipulations of finite unions and complements of the Eks). Thus for any set A ⊆ Rn, we have

m∗(A) = m∗(A ∩ Fn) +m∗(A ∩ F cn ) ≥ m∗(A ∩ Fn) +m∗(A ∩ Ec)

because Fn ⊂ E implies that Ec ⊂ F cn . But now applying the previous bullet point, we get

m∗(A) ≥
n∑
k=1

m∗(A ∩ Ẽk) +m∗(A ∩ Ec),

and taking n →∞ yields

m∗(A) ≥
∞∑
k=1

m∗(A ∩ Ẽk) +m∗(A ∩ Ec).

Since E is the union of the Ẽks, subadditivity gives us m∗(A) ≥ m∗(A ∩ E) + m∗(A ∩ Ec), so the countable

union E is indeed measurable.

Putting this all together gives us our result:

Theorem 12

The collection of C-measurable sets is a σ-algebra.

From this, we see that any open set is C-measurable. This is because corners are C-measurable, and the σ-algebra

containing all open corners also contains all closed boxes, and the countable unions of closed boxes are the open sets.

And we get a stronger result:

Proposition 13

A set is C-measurable if and only if it is Lebesgue measurable.

Proof. Let E be a Lebesgue measurable set, and suppose we have any A ⊆ Rn. To show that m∗(A) ≥ m∗(A ∩ E) +
m∗(A ∩ Ec), take an open set O ⊇ E such that m∗(O \ E) < ε. But because we know that O is C-measurable (since

it’s open), we have

m∗(A) = m∗(A ∩O) +m∗(A ∩Oc)

≥ m∗(A ∩ E) +m∗(A ∩Oc)

≥ m∗(A ∩ E) + (m∗(A ∩ Ec)− ε)

because we can apply subadditivity to A ∩ Ec = (A ∩ (O \ E)) ∪ (A ∩ Oc), and the outer measure of A ∩ (O \ E) is

at most the measure of O \ E, which is ε. Since ε is arbitrary, we indeed get m∗(A) ≥ m∗(A ∩ E) +m∗(A ∩ Ec) as

desired.

On the other hand, suppose E is C-measurable. Then

E =

∞⋃
n=1

E ∩ {||x || ≤ n},

so it suffices to show that any bounded C-measurable set is Lebesgue measurable (since we know Lebesgue measurability

is preserved under countable intersection). Bounded sets have finite outer measure, so there is an open set O ⊇ E
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such that m∗(O) ≤ m∗(E) + ε. But then O = E ∪ (O \ E), and because E is C-measurable by assumption and

O is C-measurable because it is open, we have (by additivity of outer measure for C-measurable sets) m∗(O) =

m∗(E) +m∗(O \ E). But this means that m∗(O \ E) = m∗(O)−m∗(E) ≤ ε, so E is Lebesgue measurable.

Notice that the only “analysis” part of this argument open sets are C-measurable – the rest is basically manipulating

sets. And now we’ll generalize and explain the general construction of a measure:

Definition 14

Let X be a set. A mapping µ∗ : 2X → R is an outer measure on X if µ∗(∅) = 0, µ∗(A) ≤
∑∞

k=1 µ
∗(Ak)

whenever A ⊆ ∪∞k=1Ak (subadditivity), and it is finite if µ∗(X) <∞.

For example, the Lebesgue measure (this is the same as the Lebesgue outer measure), counting measure (counting

the number of elements in a set), and delta measure (where δ(A) = 1 if 0 ∈ A and 0 otherwise) are all outer

measures. And if B is Lebesgue measurable for some fixed set B, we can restrict µ∗ to B and define the measure

µ∗B(A) = µ
∗(A∩B). The Caratheodory definition is then powerful because all of this algebraic manipulation still goes

through for general measures:

Definition 15

A set E is µ-measurable if for every A ⊆ X, we have µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec).

And the same argument we just made for the Lebesgue measure carries over directly:

Theorem 16

For any outer measure µ∗, the set of µ-measurable sets forms a σ-algebra.

3 October 6, 2022

Last lecture, we defined an outer measure on a set X to be a map µ∗ : 2X → R satisfying µ∗(∅) = 0 and countable

subadditivity µ∗
(⋃∞

k=1 Ak
)
≤
∑∞

k=1 µ
∗(Ak). (In the Lebesgue case, “outer” makes sense because we’re approximating

our sets “from the outside,” but there isn’t any other explanation of the name for now.) We then said that a set E is

µ-measurable if µ∗(A) = µ∗(A∩E)+µ∗(A∩Ec) for any A (this is the Caratheodory definition of measurability), and

then we can write µ(E) = µ∗(E) if E is measurable. Our argument (working with various set theory manipulations)

then showed that the set of µ-measurable sets is a σ-algebra.

Remark 17. The concepts of “outer measure” and “measure” should be thought of as basically one and the same:

we define the outer measure, and then we use the definition of measurability to decide which sets are measurable and

write µ(E) instead of µ∗(E) for measurable E.

Proposition 18

Let E1, E2, · · · be pairwise disjoint measurable sets. Then we have countable additivity, meaning that

µ

( ∞⋃
k=1

Ek

)
=

∞∑
k=1

µ(Ek).

(The proof is the same as for the Lebesgue measure.)
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Proposition 19

Let Ej be measurable sets forming a nested sequence where Ej+1 ⊆ Ej for all j , and assume that µ(E1) < ∞.

Then µ
(⋂

j Ej
)
= limj→∞ µ(Ej).

This result is “continuity from above:” if we have smaller and smaller measurable sets nested inside each other,

then the measure of the limit is the limit of the measures. To explain why the finiteness of E1 matters, we should be

careful about measures “escaping off to infinity:” for example, if Ej = (j,∞), then the intersection is the empty set

but each Ej has infinite measure.

Proof. Define Fn = En \En+1 for all n, and let E =
⋂∞
j=1 Ej be the intersection of the sets. (The Fns are disjoint and

measurable.) Notice that being in E1 but not E means that we’re in some smallest En, so

E1 \ E =
∞⋃
j=1

Fj =⇒ µ(E1 \ E) =
∞∑
j=1

µ(Fj),

which simplifies (by a telescoping sum) to

µ(E1)− µ(E) =
∞∑
j=1

µ(Ej)− µ(Ej+1) = lim
j→∞

µ(E1)− Ej+1,

and canceling out the µ(E1)s (here we use finiteness) yields the result.

It turns out that when we nest in the other direction, there’s no trouble with “losing measure” in the same way:

Proposition 20

Suppose Ek are measurable sets with Ek+1 ⊇ Ek for all k . Then limn→∞ µ(En) = µ
(⋃∞

n=1 En
)
.

In particular, µ(En) must increase to infinity if the union of the sets has infinite measure.

Proof. Similarly to before, we have the telescoping sum

µ(Ek+1) = µ(E1) +

k∑
j=1

µ(Ej+1)− µ(Ej) = µ(E1) +
k∑
j=1

µ(Ej+1 \ Ej)

for all k . Taking k →∞, we find that

lim
k→∞

µ(Ek) = lim
k→∞

µ(E1) + k∑
j=1

µ(Ej+1 \ Ej)

 = µ(E1) + ∞∑
j=1

µ(Ej+1 \ Ej),

and now by countable additivity we find that

lim
k→∞

µ(Ek) = µ

E1 ∪ ∞⋃
j=1

Ej+1 \ Ej

 = µ
 ∞⋃
j=1

Ej

 .
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Definition 21

A measure µ∗ on Rn is Borel if every Borel set is measurable. µ∗ is Borel regular if it is Borel and for any set A,

there is a Borel set B ⊇ A with µ∗(A) = µ(B). Finally, µ∗ is Radon if it is Borel regular and for every compact

set K (closed, thus measurable) we have µ(K) <∞.

Proposition 22

Let µ be a Borel regular measure. Then if A is a measurable set with µ(A) < ∞, then ν = µ|A (the measure

restricted to A) is a Radon measure.

Note here that A is not necessarily Borel, but we should prove this first when A is a Borel set and use Borel

regularity to restrict to B instead of A. (This is a routine check that we can work out on our own.)

Proposition 23

Let µ be a Borel regular measure, and suppose we have (not necessarily measurable) sets Ej satisfying Ej ⊆ Ej+1.
Then limj→∞ µ∗(Ej) = µ∗

(⋃∞
i=1 Ej

)
.

Proof. By definition, we can find Borel (measurable) sets Bk ⊇ Ek such that µ(Bk) = µ∗(Ek). These Bks may not

be increasing, but we can define the sets Ck =
⋂∞
j=k Bj and notice that Ek ⊆ Ej ⊆ Bj for all j > k , meaning that

Ek ⊆ Ck . But also µ∗(Ek) = µ(Bk) ≥ µ(Ck), and Ck is an increasing sequence (because we’re taking an intersection

over fewer sets), so

lim inf
k→∞

µ∗(Ek) ≥ lim
k→∞

µ(Ck) = µ

( ∞⋃
k=1

Ck

)
≥ µ∗

( ∞⋃
k=1

Ek

)

where the inequalities come from µ∗(Ek) ≥ µ(Ck), the fact that Ck are measurable, and that Ek ⊆ Ck , respectively.

But we also have lim sup
k→∞

µ∗(Ek) ≤
∞∑
j=1

µ∗(Ej) (because Ek is always contained in the union), so combining these

gives the result.

Theorem 24

Let µ be a Radon measure. Then we have the following properties:

1. For each set A, we have µ∗(A) = inf{µ(U) : U ⊇ A,U open}, like for the Lebesgue measure.

2. For each µ-measurable set A, we have µ∗(A) = µ(A) = sup{µ(K) : K ⊆ A,K compact} (in other words,

our measure is inner regular).

We’ll prove these facts first for Borel sets:

Lemma 25

Let µ be a Borel measure on Rn and B be a Borel set. Then we have the following:

1. If µ(B) <∞, then for all ε > 0 there is a closed set C ⊆ B with µ(B \ C) < ε.

2. If µ is Radon, then for all ε > 0 there is an open set B such that µ(U \ B) < ε.

10



Proof. For (1), if µ(B) is finite, then ν = µ|B is Radon by Proposition 22. Let F be the set of µ-measurable sets A

such that for any ε > 0, there is a closed set C ⊆ A with ν(A \ C) < ε – we want to show that F contains all Borel

sets. We will do that by showing that it’s a σ-algebra that contains all closed sets.

For the first step, F indeed contains all closed sets, because we can just take C = A in that case. Next, notice

that the countable intersection A of sets Aj ∈ F is also in F . Indeed, take Cj ⊆ Aj closed with µ(Aj \Cj) < ε
2j

. Then⋂∞
j=1 Cj ⊆

⋂∞
j=1 Aj , so letting C be the intersection of the Cjs, we have

ν(A \ C) ≤ ν

 ∞⋃
j=1

Aj \ Cj

 ≤∑ ν(Aj \ Cj) < ε.

We may wish to repeat this argument with the union, but
⋃∞
j=1 Cj may not be closed, so we should look at

⋃m
j=1 Cj

for a large enough m. Similar manipulations tell us that

lim
m→∞

ν

A \
 m⋃
j=1

Cj

 = ν
A \ ∞⋃

j=1

Cj

 ≤ ν
 ∞⋃
j=1

Aj \ Cj

 ≤ ∞∑
j=1

ν(Aj \ Cj) < ε,

where we use that ν is finite, meaning we don’t have to worry about infinite measures when applying Proposition 19.

So we can choose m large enough so that ν
(
A \

⋃m
j=1 Cj

)
< ε and let our set be C =

⋃m
j=1 Cj .

Next, let G be the collection of all sets A in F such that Ac is also in F . Then G contains all open sets (because

they are countable unions of closed dyadic boxes and the complement of an open set is closed), and it is a σ-algebra.

Indeed, it is closed under complements by definition, and for any sets A1, A2, · · · ∈ G we know that
⋃∞
k=1 Ak is in F

(we showed closure under infinite unions above) and
(⋃∞

k=1 Ak
)c
=
⋂∞
k=1 A

c
k is also in F (we showed closure under

intersections and Ack ∈ F because Ak ∈ G). Thus
⋃∞
k=1 Ak ∈ G. This means G satisfies the conditions to be a

σ-algebra containing closed sets, so it contains all Borel sets. Thus F ⊇ G must contain all Borel sets as well, as

desired.

For part (2), let B be a Borel set. If µ(Bc) is finite, then we can find some closed set C ⊆ Bc with µ(Bc \C) < ε by

part (1). But then µ(Cc \B) = µ(Bc \C) < ε (draw a Venn diagram), so the open set Cc does the job. On the other

hand, if µ(Bc) =∞, let B(0, m) be the ball of radius m centered at the origin, and let Bcm = B
c ∩B(0, m). Then for

each integer m, we can find Cm ⊆ B(0, m)∩Bc such that µ((B(0, m)∩Bc)\Cm) < ε
2m . Denoting Qm = B(0, m)∩B,

we have B =
⋃∞
m=1Qm and µ(Ccm \Qm) = µ(B(0, m)∩Bc \Cm) < ε

2m (by the same Venn diagram as before). Taking

the union of these open sets Ccms, we get an open set O, and µ(O \ B) <
∑

ε
2m = ε, as desired.

Proof of Theorem 24. For part (1), if µ∗(A) =∞, then the inequality automatically holds. Otherwise, since µ is Borel

regular, there is some Borel set B ⊇ A with µ∗(B) = µ(A). Thus by part (2) of Lemma 25 applied to B, there is

some U ⊇ B with µ(U) < µ(B) + ε. Thus we’ve found U ⊃ A with µ∗(U) < µ∗(A) + ε, which implies the result.

Finally, for part (2), if µ(A) < ∞, we know that ν = µ|A is a Radon measure, so applying part (1) to ν

gives us an open set U ⊇ Ac with µ(U \ Ac) = ν(U) < ε. But then we can use the closed set C = Uc to get

ν(A \ C) = ν(U \ Ac) < ε. Since A \ C ⊆ A, we know that ν(A \ C) = µ(A \ C) < ε, as desired. Meanwhile, if A is

an infinite measure, we do the same trick with intersecting with larger and larger annuli / balls. And for compactness,

we need to make sure to use C ∩ B(0, m) for some larger enough m (such that the measure of A outside the ball is

small enough).

Essentially, what we’re saying is that we have something similar to the construction of the Lebesgue measure – for

any measure µ, we can start by defining µ on the open sets U and then define µ∗ based on that.
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4 October 11, 2022

We’ll start today by discussing measurable functions (and soon we’ll be able to actually start doing analysis). Con-

tinuous functions are those where preimages of an open sets are open, but open sets don’t form a σ-algebra and thus

the limit of a sequence of continuous functions don’t need to be continuous (in fact it can be seriously discontinuous).

This is bad, because Riemann integration is only built for functions whose discontinuities form a set of measure zero,

and even those are hard to work with under limits. So we want to build something that works better for integration

theory.

Proposition 26

For any function f (x), the following are equivalent:

1. For any α ∈ R, the set {x : f (x) > α} is µ-measurable.

2. For any α ∈ R, the set {x : f (x) ≥ α} is µ-measurable.

3. For any α ∈ R, the set {x : f (x) ≤ α} is µ-measurable.

4. For any α ∈ R, the set {x : f (x) < α} is µ-measurable.

Proof. We see that (1) and (3) are equivalent, as are (2) and (4), because the complement of a measurable set is

always measurable. Also, notice that {x : f (x) > α} =
⋃∞
n=1{x : f (x) ≥ α+

1
n}, so (2) implies (1). Similarly we have

(3) implies (4), and all of these together (2 implies 1 implies 3 implies 4 implies 2) mean that any of (1), (2), (3), (4)

imply the other.

Definition 27

Let X be a measure space and Y be a topological space. We say that f : X → Y is µ-measurable (also simply

measurable) if for every open set O ⊂ Y , f −1(O) is µ-measurable.

Proposition 28

Suppose f , g : X → R are µ-measurable functions. Then for any c ∈ R, cf , f + c, f + g, and f g are all

µ-measurable.

Proof. We see that {f (x) + c > α} = {f (x) > α − c} is always measurable, and something similar works for cf

(though we need to write out separate cases for c positive, negative, or zero). Next, notice that

{f (x) + g(x) < α} =
⋃
q∈Q
{f (x) < α− q} ∩ {g(x) < q}.

(The idea here is that if f (x)+g(x) < α, we can always pick a rational number q close enough to g(x).) Since the right-

hand side is measurable, so is the left-hand side. Finally, notice that {f 2(x) > α} = {f (x) >
√
α} ∪ {f (x) < −

√
α},

so f 2 is measurable, and thus 14((f + g)
2− (f − g)2) = f g is measurable as well (given that f , g are measurable).

All of these properties that we’ve just mentioned should be expected of a nice class of functions.

12



Theorem 29

If f1, f2, · · · , fn are all µ-measurable, then so are the functions gn(x) = sup1≤j≤n fj(x), qn(x) = inf1≤j≤n fj(x),

g(x) = supn fn(x), q(x) = inf fn(x), s(x) = lim supn fn(x), and w(x) = lim infn fn(x).

Proof. All of these are set theory checks (they’re general enough that the proofs cannot be too complicated): notice

that

{gn(x) > α} =
n⋃
j=1

{fj(x) > α}, {g(x) > α} =
∞⋃
j=1

{fj(x) > α}

and the right-hand sides are measurable so the left-hand sides are as well. A similar argument works for qn(x) and

q(x). For the limsup and liminf, we have to be slightly more clever and write

s(x) = lim sup
n

fn(x) = inf
n

(
sup
k≥n

fk(x)

)
,

and the inner term on the right is measurable, so the whole infimum is as well. A very similar argument works for w(x)

too.

This result is extremely useful in real analysis, and it’s important to note that everything started with the

Caratheodory definition (which makes it easy to check that the set of measurable sets forms a σ-algebra). So

it’s important that we started with the right definition, and we’ll see that this definition is useful when we get into

integration too.

Definition 30

A measurable function f (x) is simple if it takes at most countably many values, meaning that it can be written as

f (x) =
∑
j

αj1{x ∈ Aj},

where 1{x ∈ Aj} is the indicator function of a measurable set Aj (also denoted 1Aj ) and the Ajs are pairwise

disjoint.

Theorem 31

Let f (x) be µ-measurable, and suppose f (x) ≥ 0 for µ-almost-every x (so except for a set of measure zero).

Then there are µ-measurable sets Ak such that f (x) =
∑∞

k=1
1
k 1{x ∈ Ak}.

In particular, truncating this sum at some finite n means that f (x) can only take on at most 2n values, so we can

approximate any µ-measurable function with simple functions by breaking up into the 2n disjoint sets on which f takes

on those values.

Proof sketch. We can essentially imagine “raising a water level” by 1, then 1
2 , then 1

3 , and so on, and adding as much

to each set Ak to keep the water below the function.. Start with our function f , and let A1 be the set of values where

f (x) ≥ 1. Then define A2 to be the set of values where f (x) − 1{x ∈ A1} ≥ 1
2 , A3 to be the set of values where

f (x)− 1{x ∈ A1} − 12 · 1{x ∈ A2} ≥
1
3 , and so on. Notice that for all k , we have

f (x) ≥
k∑
j=1

1

j
1{x ∈ Aj}
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inductively by the definition of Aj , so taking the limit yields

f (x) ≥
∞∑
j=1

1

j
1{x ∈ Aj}.

But if this inequality were strict, then we must have x ∈ Aj for all j (because otherwise the Ajs would make f (x) −∑
j
1
j 1{x ∈ Aj} arbitrarily close to zero), meaning that f (x) ≥

∑∞
j=1

1
j =∞.

Notice that all that’s important with our 1k factor is that it goes to zero but the sum
∑

k
1
k diverges, so we can

replace it with any other sequence αk with αk → 0 and
∑
αk =∞.

We’ll next discuss extension of a continuous function from a compact set:

Problem 32

Let K ⊂ Rn be a compact set, and let f be continuous on K. Can we extend f to all of Rn, and do we need to

increase the supremum norm of f when we do so?

(Here, we should not think of “compact” as being particularly nice, because closed sets can look pretty ugly. This

is a common kind of problem in analysis, in which we want to gain some additional structure without losing too much

of what we already have.) The answer turns out to be as nice as possible:

Theorem 33

Let K ⊂ Rn be compact, and let f : K → R be continuous. Then there exists a continuous function f : Rn → R,

such that f (x) = f (x) on K and supx∈Rn |f (x)| = supx∈K |f (x).

Proof. We need to extend f (x) to the open set U = Kc so that if x ∈ U and y ∈ K is near x , we have f (x) close to

f (y). Let s1, s2, · · · be a dense set in K (for example, take a finite cover of K using balls of radius 1
2n for each n ≥ 0,

and pick a point in each ball), and the idea will be to define a weight wj(x) such that
∑∞

j=1 wj(x) = 1 for all x ∈ U.

Then we can define f (x) =
∑∞

j=1 wj(x)f (sj) – specifically, we wish to take weighted averages of values of f on sj , and

for sj close to x we weight further.

To do this mathematically, consider the function

us(x) = max

[
2−

|x − s|
dist(x,K)

, 0

]
.

We can check that 0 ≤ us(x) ≤ 1 for all x ∈ U and s ∈ K because dist(x,K) ≤ |x − s|, and us(x) = 0 if

|x − s| ≥ 2 dist(x,K). Notice also that us(x) → 1 (uniformly) as x → ∞ and s is kept fixed. Also, this function is

continuous for any s, so we can define

σ(x) =

∞∑
j=1

1

2j
usj (x),

which is also continuous by the Weierstrass test. Additionally, notice that σ(x) > 0 for all x ∈ U, because there is a

point y ∈ K where dist(x,K) = dist(x, y), and there is some sj sufficiently close to y that makes usj (x) ̸= 0. And

with that we can finally define weights by renormalizing as

vj(x) =
1

2j
usj (x)

σ(x)
.
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This is always nonnegative, and we have
∑∞

j=1 vj(x) = 1 for all x ∈ U. So then we can define

f (x) =

∞∑
j=1

vj(x)f (sj)

for all x ∈ U, and keep f (x) = f (x) for all x ∈ K. We check that this function has the desired properties: for

any x ∈ U, we can find a ball around U not intersecting K, so f (x) = 1
σ(x)

∑∞
j=1

f (sj )

2j
usj (x). But σ and usj are all

continuous, and 0 ≤ usj (x) ≤ 1 and |f (sj)| ≤ M for all j , where M = supy∈K |f (y)|. Thus our sum is continuous

(again by Weierstrass) and bounded by 1
σ(x)

∑∞
j=1

M
2j
usj (x) =

1
σ(x)M(σ(x)) = M. Thus this function is continuous on

U and bounded by the same sup norm.

Finally, we must check that this function is continuous on K. For any x ∈ K and y ∈ U, our goal is to compare f (x)

with f (y) and show that f (y) is close to f (x) (using that points contributing to the sum for y are also close to x). To

make this more precise, note that us(y) = 0 if |y − s| ≥ 2 dist(y ,K). So for any x ∈ K, we can find δ > 0 such that

|f (x)− f (z)| < ε if |x − z | < δ. Now for any y ∈ U with |x − y | < δ
100 , notice that if |x − sk | ≥ δ, then |y − sk | ≥ δ

4 by

the triangle inequality (because sk is far from x , but y is close to x). But this means |y − sk | > 2 dist(y ,K), meaning

that usk (y) = 0. Thus

f (y) =
∑
j

vj(x)f (sj) =
∑

j :|sj−x |<δ

vj(x)f (sj)

is only a weighted average over points at most δ away from x , while we can write f (x) in the same way because∑
vj(y) = 1 for any y ∈ U:

f (x) =

∞∑
i=1

vj(y)f (x) =
∑

|sj−x |<δ

vj(y)f (x).

If we subtract these two expressions, we see that

|f (y)− f (x)| ≤
∑

|sj−x |<δ

vj(y)|f (x)− f (sj)| <
ε

100

∑
vj(y) =

ε

100
< ε.

So indeed we find that for any ε > 0, if |x − y | < δ
100 , then |f (x) − f (y)| < ε. So f is continuous on K as well

(because f (y)→ f (x) for y within K and also within U), completing the proof.

One useful thing to ask is if f (x) is Lipschitz on K (meaning that |f (x) − f (y)| ≤ C|x − y | for all x, y ∈ K),

whether f constructed in this way is also Lipschitz, and if so whether the Lipschitz constant needs to change.

Theorem 34 (Lusin)

Let µ be a Borel-regular measure and let f : Rn → R be µ-measurable. Let A ⊆ Rn be µ-measurable with

µ(A) < ∞. Then for any ε > 0, there is some compact set Kε ⊂ A such that f is continuous on Kε and

µ(A \Kε) < ε.

In other words, any measurable function restricts to a continuous function on almost all of A. In particular, for any

f , we can look at the function f formed by extending fKε to all of A using Theorem 33, yielding the following corollary:

Corollary 35

Let A be µ-measurable and f : A → R be µ|A-measurable with µ(A) < ∞. Then there is a continuous function

f : Rn → R and a compact set Kε ⊆ A such that µ(A \Kε) < ε and f agrees with f (x) on all of Kε.

Proof of Theorem 34. We’ll construct a family of continuous functions fp such that fp(x) → f (x) uniformly on Kε.

Define the sets Bp,j =
[
j
2p ,

j+1
2p

)
for j ∈ Z and p ∈ N, and let Ap,j = A ∩ f −1(Bp,j) and A =

⋃∞
j=−∞ Ap,j . Then we
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have compact sets Kp,j ⊆ Ap,j such that µ(Ap,j \Kp,j) < ε
10·2p+|j | . This means that when we sum over j , we find

µ

A \⋃
j∈Z
Kp,j

 <
ε

2 · 2p

for each p, and thus we can pick N(p) so that µ
(
A \

⋃
|j |≤Np Kp,j

)
< ε
2p as well (here we use continuity from above,

in particular the fact that µ(A) is finite). Then we get a compact set Kε =
⋃
|j |≤N(p)Kp,j , but the Kp,js are pairwise

disjoint for any fixed p because each one is contained within Ap,j , which are contained within preimages of distinct

intervals Bp,j .

Now for each p, define f p(x) to be j
2p on Kp,j , meaning that we’re defining the function on the compact set

Kε,p =
⋃
|j |≤N(p)Kp,j . Each of these f s are continuous (because they’re constant on disjoint compact sets), and

|f p(x)− f (x)| < 1
2p for all x ∈ Kεp . Thus if we look at the functions f p on all of Kε =

⋂∞
p=1Kε,p, we have continuous

functions f p defined on Kε which uniformly converge to f , meaning that f is continuous on Kε. Since we lose measure
ε
2p for each p, µ(A \Kε) < ε, as desired.

5 October 13, 2022
We’ll start today with a result similar to Lusin’s theorem:

Theorem 36 (Egorov)

Let µ be a measure on Rm, and let fn : Rm → R be µ-measurable. Assume that µ(A) < ∞ and fn → g

µ-almost-everywhere on A. Then for all ε > 0, there is a set Bε ⊆ A such that fn → g uniformly on Bε and

µ(A \ Bε) < ε.

This theorem fails if we do not have the assumption µ(A) < ∞: for example, consider the functions fn : R → R
given by fn(x) = x

n , which converge to 0 but do not converge uniformly on unbounded set.

Proof. The idea is to “throw out the sets” which are not yet good enough to be uniformly convergent: define

Ci j =

∞⋃
k=j

{
x ∈ A : |fk(x)− g(x)| >

1

2i

}
.

Here, i is the “scale of closeness,” and not being in Ci j means that once we’re at the jth function, we’re within 1
2i

of

the limit. Furthermore,
⋂∞
j=1 µ(Ci j) = 0 for any i , because a point x can only be in that set if fn(x) does not converge

to g(x) (because for any j we can find some k > j such that fk(x) is more than 1
2i

away from g(x)) . Thus for each

i , there is some Ni such that µ(Ci ,Ni ) <
ε
2i

.

Then for all x ∈ A \ Ci ,Ni , we have that |fn(x) − g(x)| < 1
2i

once n ≥ Ni , so fn → g uniformly on the set

B = A \
⋃∞
i=1 Ci ,Ni (because for any ε we can find an i , yielding an Ni that uniformly works for all x), and µ(A \B) <∑

i
ε
2i
= ε, as desired.

Notice that the structure of Rm is not so important here – we don’t need compactness or anything – so this result

is really a statement about measure spaces in general.

We’ll now mention an alternative notion of convergence which is useful in probability theory:
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Example 37

Consider a sequence of functions on [0, 1], where fn is the indicator function of an interval of length 1
n . Then for

large n, the “probability” of fn being zero gets larger and larger, but fn doesn’t converge pointwise to 0 anywhere

if we make the intervals line up back-to-back (and loop around [0, 1]), since fn(x) will be 1 infinitely many times

for each x .

Definition 38

A sequence of measurable functions fn converges in probability to f on a set E if for all ε > 0, there is some N

such that µ {x ∈ E : |fn(x)− f (x)| > ε} < ε for all n > N.

Theorem 39

If fn converges in probability to f on a set E, then there is a subsequence nk such that we have pointwise

convergence fnk → g almost everywhere on E.

The point is that in an example like Example 37, we should take a subsequence that only visits every point finitely

many times. That prompts the following approach:

Proof. For any j , we can find some Nj such that for all n ≥ Nj we have

µ

(
x ∈ E : |g(x)− fn(x)| ≥

1

2j

)
<
1

2j
.

We can then take our subsequence to be φj(x) = fNj (x). Then defining the sets Ej(x) =
{
x ∈ E : |g(x)− fNj (x)| ≥ 1

2j

}
,

we get a decreasing sequence of sets Dk =
⋃∞
j=k Ej . If x ̸∈ Dk , then we have |g(x)− fNj (x)| < 1

2j
for all j ≥ k , which

means that fNj (x) converges to g(x) as long as x ̸∈
⋂∞
k=1Dk .

But the measure of
⋂∞
k=1Dk is at most the measure of Dk , and the measure of each Dk is at most

∑∞
j=k

1
2j
≤ 2
2k

by

the definition of Nj . Thus the measure of this intersection must be zero, and our function converges almost everywhere

on this subsequence.

We’ll now turn our attention to the Lebesgue integral (following the Royden treatment) – the idea is that instead

of computing with the Riemann integral and dividing up our x-axis into small intervals, calculating areas of rectangles,

we’ll split the y -axis into small intervals and look at the measure horizontally instead. (And this is better because we

don’t need to worry about issues with discontinuities like in the Riemann integral.)

To define the integral, we’ll build it up step by step:

Definition 40

For any nonnegative simple function f (x) =
∑

j αj1{x ∈ Aj}, we define

ˆ
f (x)dµ =

∑
j

αjµ(Aj).

(We may also just write this as
´
f .) More generally for a simple function f = f + − f − with both

´
f + and

´
f −

finite, we define
´
f dµ =

´
f +dµ−

´
f dµ.
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Proposition 41

Let f be a bounded function defined on a measurable set E with µ(E) < ∞. Then the “upper” and “lower”

approximations
´ ∗
E f dµ = inf f≤ψ

´
E ψdµ and

´
∗,E f dµ = supf≥φ

´
E φdµ are equal (where we take the inf and sup

over all simple functions satisfying the corresponding inequalities) if and only if f is measurable.

Proof. First suppose that f is measurable. Fix some positive integer n; because |f | ≤ M, we can define

Ek =

{
x :

k

n
≤ f (x) <

k + 1

n

}
.

There are finitely many nonempty Eks (for a fixed n), the Eks are disjoint and measurable, and we can consider the

“upper approximation” ψn(x) =
∑

k
k+1
n 1{x ∈ Ek} and “lower approximation” φn(x) =

∑
k
k
n1{x ∈ Ek}. By definition

of the set Ek we know that φn(x) ≤ f (x) ≤ ψn(x), and

ˆ
E

ψndµ−
ˆ
E

φndµ =

∞∑
k=−∞

1

n
µ(Ek) <

1

n
µ(E).

We then find that ˆ ∗
E

f dµ ≤
ˆ
E

ψndµ ≤
1

n
µ(E) +

ˆ
E

φndµ ≤
1

n
µ(E) +

ˆ
∗,E
f dµ .

Since µ(E) is finite, taking n →∞ shows that the two approximations are equal.

On the other hand, suppose that
´
∗,E f dµ =

´ ∗
E f dµ. Then we can find φn ≤ f and ψn ≥ f simple functions so

that |
´
E(ψn − φn)dµ| <

1
n . Let ψ∗(x) = lim infn ψn(x) and φ∗(x) = lim supn φn(x). Since φn(x) ≤ f (x) ≤ ψn(x) for

all n, taking limits tells us that φ∗(x) ≤ f (x) ≤ ψ∗(x) as well.

But for any j , we can define Aj =
{
ψ∗(x) > φ∗(x) +

1
2j

}
. Then (by definition of liminf and limsup) for n > Nj

large enough, we have ψn(x) ≥ ψ∗(x) − 1
10·2j > φ∗(x) +

1
10·2j > φn(x) on all of Aj , because ψ∗ and φ∗ differ by at

least 1
2j

and bringing them closer by 1
10·2j on each side still preserves ψ∗ > φ∗. But this means that (because we’re

integrating nonnegative functions)
ˆ
E

(ψn − φn)dµ ≥
ˆ
Aj

(ψn − φn)dµ ≥
1

100 · 2j µ(Aj)

for all n > Nj . (Here the 1
100 can really just be 45 , but we don’t want to worry about constants.) So we can only have

lim
´
ψn = lim

´
φn if µ(Aj) = 0 for all j , which means that ψ∗(x) = φ∗(x) almost everywhere. Since f is sandwiched

between them, we find that f (x) = ψ∗(x) = φ∗(x), and in particular it is measurable because it is a liminf of simple

functions (which are measurable), as desired.

In words, this result tells us that measurability is the same as being able to be approximated from above and

below by simple functions. So we’ve found another way to work with the abstract Caratheodory notion that is “more

physical.”
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Definition 42

For any bounded measurable function f defined on a measurable set E of finite measure, we define
ˆ
E

f dµ = sup
ψ≤f ,ψ simple

ˆ
E

ψdµ.

Similarly, for any nonnegative measurable function f defined on any measurable set E, we have
ˆ
E

f dµ = sup
ψ≤f ,ψ simple and vanishes

everywhere except a set of finite measure

ˆ
E

ψdµ.

Finally, for any measurable function f = f +− f −, we say that f is integrable if
´
E f
+ and

´
E f
− are both defined,

and we set
´
E f dµ =

´
E f
+dµ−

´
E f
−dµ.

In other words, we approximate from below by simple functions for which we know how to calculate the integral.

(And we approximate from below to avoid worrying about infinite integrals, though we have seen that for measur-

able functions approximating from below and above are equivalent.) Here, we should note that there are different

conventions for whether “integrability” requires that the integrals are finite, so we should be careful.

We’ll now mention two useful results that are often used in probability:

Theorem 43 (Markov’s inequality)

For any nonnegative measurable function f ≥ 0 and any λ > 0, we have µ{x : f (x) > λ} ≤ 1
λ

´
f (x)dµ.

In probabilistic terms, this tells us that the probability a random variable is large is bounded in terms of the

expectation of the random variable (since
´
f (x)dµ is the average value of f if µ is a probability measure with total

measure 1).

Proof. Notice that f (x) > λ · 1Eλ , so
ˆ
f (x)dµ ≥ λ

ˆ
1Eλdµ = λµ(x : f (x) > λ).

Dividing by λ yields the result.

Not all random variables are always positive, so there is a related result that can also get us tail bounds more

generally:

Theorem 44 (Chebyshev’s inequality)

Suppose f is a measurable function. Define f =
´
f dµ and m2 =

´
(f − f )2dµ (these are the “mean” and

“variance,” respectively). Then for any λ > 0,

µ
(
x : |f (x)− f | > λ

√
m2
)
≤
1

λ2
.

In other words, the probability we’re more than λ standard deviations away from the mean is at most 1
λ2 . This

result does not require that we have a probability measure µ (meaning that µ(E) = 1), but notice that this inequality

is strongest when we minimize m2 (as a function of f ), and this in fact occurs where 1
µ(E)

´
f dµ is plugged in for f .
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Proof. Let g(x) = (f (x)− f )2. Then by Markov’s inequality applied to g,

µ(x : (f − f )2 > λ2m2) ≤
1

λ2m2

ˆ
(f (x)− f )2dµ,

and this right-hand side is 1
λ2m2

·m2 = 1
λ2 .

6 October 18, 2022
Our topic for today is the Lebesgue dominated convergence theorem, which we’ll prove in baby steps. Much like

we defined the Lebesgue integral in a sequence of steps, we’ll need to slowly build up towards our general result. The

question we’re basically asking is whether convergence fn → f almost everywhere on a set E implies
´
E fndµ→

´
E f dµ.

There’s a few obvious counterexamples which show that this isn’t true in general:

Example 45

If fn = 1[n,n+1] for all n, then
´
fn = 1 for all n, but fn → 0 for all x ∈ R so

´
f = 0.

Example 46

If fn is a triangle of height n and base 1n (that is, we define fn(x) = 2nx for x ∈ [0, 12 ], then again
´
fn = 1 for all

n but fn → 0 for all x ∈ R so
´
f = 0 again.

In the first example, we should think of the issue as “the function escaping to infinity horizontally,” and in the second

example, we can think of the issue as “frequency going to infinity” or “the function escaping to infinity vertically.” So

whatever convergence theorems we have must rule these issues out.

Theorem 47 (Bounded convergence theorem)

Let E be a set of finite measure. Assume there is some M > 0 such that |fn(x)| ≤ M for all x ∈ E and all positive

integers n. Then if fn(x)→ f almost everywhere on E, then
´
E fndµ→

´
E f dµ.

Proof. By Egorov’s theorem, for any ε > 0 we can find a subset Aε ⊆ E such that fn → f uniformly on Aε and

µ(E \ Aε) < ε. Then we can break up the integral and use the triangle inequality to find∣∣∣∣ˆ
E

fndµ−
ˆ
E

f dµ

∣∣∣∣ ≤ ˆ
Aε

|fn − f |dµ+
ˆ
E\Aε
|fn − f |dµ.

We may choose N large enough so that |fn − f | < ε
100µ(E) on all of Aε for all n ≥ N and pick a set Aε so that

µ(E−Aε) < ε
100M . Then the first integral can be bounded by εµ(Aε)

100µ(E) ≤
ε
100 , while the second integral can be bounded

by 2Mµ(E\Aε) < 2ε
100 . Thus the overall expression is less than ε, and thus we must indeed have

´
E fndµ→

´
E f dµ.

Theorem 48 (Fatou’s lemma)

Let fn ≥ 0 be measurable, and suppose fn → f converges µ-almost-everywhere on a measurable set E. Then
ˆ
E

f dµ ≤ lim inf
n→∞

ˆ
E

fndµ.
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In other words, if we have positive functions, then we cannot “gain mass” by taking the limit (though we can lose

mass, as we can see from the examples above). So this is a very useful tool for obtaining estimates on a limiting

object.

Proof. Let h ≤ f be any simple function that vanishes outside a set of finite measure. Define hn(x) = min(h(x), fn(x)).

We know that hn(x) → h(x) µ-almost-everywhere (because if h(x) = f (x) then we converge to f (x), and otherwise

eventually hn(x) = fn(x)), but h is bounded and vanishes outside a set of finite measure E′, so by the bounded

convergence theorem we have
ˆ
E

hdµ =

ˆ
E′
hdµ = lim

n→∞

ˆ
E′
hndµ ≤ lim inf

n→∞

ˆ
E′
fndµ,

since hn ≤ fn for each n. But now increasing the set E′ to E only increases the integral because the fn are positive,

so
´
E hdµ ≤ lim infn→∞

´
E fndµ for any simple function of the form of h. Taking the sup over all such h, we find that´

f dµ ≤ lim infn→∞
´
E fndµ, as desired.

Theorem 49 (Monotone convergence theorem)

Let fn(x) be an increasing sequence of nonnegative-valued functions on E (where the fn and E need to be

measurable, but we won’t keep writing this down). Then
ˆ
E

f dµ = lim inf
n→∞

ˆ
E

fndµ.

Proof. This follows directly from Fatou’s lemma, since one direction already holds and then f ≥ fn for all n yields the

other inequality.

Since partial sums of nonnegative functions form an increasing sequence, we thus find that if fn are a set of

nonnegative functions, then ˆ
E

∞∑
n=1

fndµ =

∞∑
n=1

ˆ
E

fndµ.

Theorem 50 (Lebesgue dominated convergence theorem)

Let fn → f almost everywhere on a set E, and assume there is some function g(x) such that (1) |fn(x)| ≤ g(x)
for µ-almost-every x ∈ E and (2)

´
E |g(x)|dµ <∞. Then

´
E fndµ→

´
E f dµ.

In other words, it’s okay for g to not have compact support and also not be bounded, but it must be defined in a

way that keeps g integrable. Then if the fns are stuck in the finite volume contained between −g and g, then we get

convergence of the integral. (Notice that the bounded convergence theorem is a special case of this where E is a set

of finite measure and g is a constant.)

Proof. The functions g − fn are all nonnegative (because |fn| ≤ g for all n), so by Fatou’s lemma we have
ˆ
E

(g − f )dµ ≤ lim inf
ˆ
E

(g − fn)dµ.

But because g is integrable and |fn| and |f | are all bounded by g so they are all integrable, we can separate the integrals

and find that ˆ
E

gdµ−
ˆ
E

f dµ ≤
ˆ
E

gdµ− lim sup
n→∞

ˆ
fndµ =⇒

ˆ
E

f dµ ≥ lim sup
n→∞

ˆ
E

fndµ.
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On the other hand, g + fn are all also nonnegative functions, so Fatou’s lemma tells us that
ˆ
E

(g + f )dµ ≤ lim inf
ˆ
E

(g + fn)dµ =⇒
ˆ
E

f dµ ≤ lim inf
ˆ
E

fndµ.

Thus the liminf is at least the limsup of
´
E fndµ, and

´
E f dµ is between them, so the limit must actually exist and be

equal to
´
E f dµ.

Notice that we did need to build up this result slowly (we used Fatou’s lemma, which was obtained from the

bounded convergence theorem), and the “real content” of the result is not in this proof but rather in Fatou’s lemma

and perhaps the definition of the Lebesgue integral as an approximation by simple functions.

We’ll next discuss absolute continuity of the integral, which in particular tells us that the Dirac delta function is

not an integrable function:

Theorem 51

Let f ≥ 0 be integrable. Then for any ε > 0, there is some δ > 0 such that if we have any set A with µ(A) < δ,

then
´
A f dµ < ε.

Proof. Suppose otherwise. Then there is some ε0 > 0 such that there are sets An of measure µ(An) < 1
2n where´

An
f dµ ≥ ε0 for all n (since we can find sets of arbitrarily small measure that achieve integral ε). Defining gn(x) =

f (x)1An(x), we see that gn(x)→ 0 except if x is in infinitely many of the Ans, meaning that the “bad set” is

A =

∞⋂
n=1

∞⋃
j=n

Aj

(since being in infinitely many Ajs is equivalent to being in every
⋃∞
j=n Aj). But then by countable subadditivity we

have

µ(A) ≤
∞∑
j=n

µ(Aj) ≤
2

2n
,

so we must have µ(A) = 0 and thus gn(x)→ 0 µ-almost-everywhere. But applying Fatou’s lemma to f − gn, we find

that because f (x)− gn(x) converges to f (x) for almost all x , we have
ˆ
f dµ ≤ lim inf

n→∞

ˆ
(f − gn) =

ˆ
f dµ− lim sup

n→∞

ˆ
gndµ

(because f and gn ≤ f are all integrable). But each
´
gndµ is at least ε0, so the limsup is also at least ε0, which is a

contradiction.

With that, we’re ready to turn to calculus, specifically looking at the Newton-Leibniz formula (that is, the

fundamental theorem of calculus)

f (b)− f (a) ?=
ˆ b

a

f ′(x)dx, f (x)
?
=

d

dx

ˆ x

a

f (z)dz.

We want to ask whether these identities hold – for example, we want to ask if f ′ is integrable when it exists and

whether it’s equal to f (b)− f (a) (as well as whether we can extend the result to a larger class of functions by density),

and we want to ask whether
´ x
a f (z)dz is differentiable and equal to f (x) almost everywhere. But first we need to

define the derivative:

22



Definition 52

Define the functions D+f (x) = lim suph→0+
f (x+h)−f (x)

h , D+f (x) = lim infh→0+
f (x+h)−f (x)

h (upper and lower deriva-

tives on the right) and D−f (x) = lim suph→0−
f (x)−f (x−h)

h , D−f (x) = lim infh→0+
f (x)−f (x−h)

h (upper and lower

derivatives on the left). If all four functions coincide, then we say that f is differentiable and call its derivative

Df (x).

Theorem 53

Suppose f ∈ L1([a, b]) (meaning that f is integrable on [a, b]), and suppose F (t) =
´ t
a f (x)dx . Then F ′(t) = f (t)

almost everywhere.

Definition 54

A function g(x) is absolutely continuous on an interval [a, b] if for any ε > 0, there is some δ > 0 such that

whenever we have a finite collection of nonnegative hns with
∑N

n=1 hn < δ and xn arbitrary so that (xn, xn + hn)

do not overlap,
N∑
n=1

|f (xn + hn)− f (xn)| < ε.

This is similar to uniform continuity but even stronger, since we can “split up the total length” into arbitrarily small

intervals. In particular, notice that if f ∈ L1, then F (x) =
´ x
a f (t)dt is absolutely continuous by absolute continuity

of the integral, since F (x + hn)− F (x) is the integral of f over the interval [x, x + hn].

Theorem 55

A function F (t) can be written as
´ t
a f (x)dx with some f ∈ L1 if and only if F is absolutely continuous.

We’ll prove these results about absolute continuity in future lectures, but we’ll first state a benign-looking result

here:

Theorem 56

Any increasing function f on [a, b] is differentiable almost everywhere on [a, b], and f ′ is a measurable function.

This result might seem similar to the fact that any increasing function can only have a countable set of discontinuities

(because each one is a jump discontinuity and the sum of uncountably many positive numbers is infinite), but it turns

out to be more complicated. We’ll need Vitali’s covering lemma for this:

Definition 57

A cover of a set E by nontrivial closed intervals is a fine cover of E if for any x ∈ E and any ε > 0, there is some

interval I of length less than ε containing x .

Theorem 58 (Vitali’s lemma)

Let E be a set with m∗(E) <∞. Any fine cover of E by closed intervals has the following property: for any ε > 0,

there is a finite subcollection I1, · · · , INε such that the Iks are disjoint and m∗(E \
⋃Nε
k=1 Iε) < ε.
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In other words, we get a result similar to Heine-Borel with a compromise, and the advantage is that we can get

disjoint intervals Ik without losing too much measure.

Proof. Since m∗(E) < ∞ and our cover is fine, there exists some open set O ⊇ E such that m(O) ⊂ ∞ and we

can assume that I ⊆ O for all intervals I (because we can just include the small-enough intervals containing each x

that don’t go outside O and we’ll still cover E). Pick an arbitrary closed interval I1, and then repeat the following

iterative process: if I1, I2, · · · , In have been chosen already, then let kn be the supremum of the lengths of all intervals

not intersecting I1 ∪ · · · ∪ In. Then O \ (I1 ∪ · · · ∪ In) is open, so if kn = 0 then we have covered everything (because

if there were a point uncovered, there would be some finite interval around it contained in O \ (I1 ∪ · · · ∪ In) and thus

kn > 0). Otherwise, choose In so that |In+1| > kn
2 and In+1 does not intersect I1 ∪ · · · ∪ Ik . If this process ever stops,

we are done; otherwise we get some countable collection of intervals {In}n≥1. Then
∑∞

k=1 |Ik | < m(O) because the

intervals are pairwise disjoint, so we can choose N and ε so that
∑∞

k=Nε++1
|Ik | < ε

100 .

Now if we set Aε =
⋃Nε
k=1 Ik and Bε = E \ Aε, we claim that m(Bε) < ε. Indeed, for any x ∈ Bε, we can find

some interval Ix in the cover containing x that doesn’t intersect any of I1, · · · , INε (since the union of those intervals is

closed). But it was not chosen as a candidate interval at any point, meaning that there is some smallest m ≥ Nε + 1
so that Ix ∩ Im ̸= ∅. But then |Ix | ≤ 2|Im| (because both Ix and Im were candidates for being added to Aε, but Im was

chosen), so Ix is contained in the interval 10Im (where we scale each interval Im from its center). Since this argument

applies to all x ∈ Bε, we find that Bε is contained in the union
⋃∞
k=Mε+1

10Ik , meaning that

m(Bε) ≤ 10 ·
∞∑

k=Mε+1

|Im| < 10 ·
ε

100
< ε.

Thus our finite subcollection Aε of disjoint intervals covers everything in E except a set of measure less than ε.

The same result also holds for closed boxes in Rn by a very similar argument.

Corollary 59

Let O ⊆ Rn be an open set of finite measure, and let δ > 0. Then there is a countable collection of disjoint closed

balls Bn contained in O, such that the diameter of each ball is at most δ and m(O \
⋃
Bn) = 0.

Proof. By Vitali’s lemma, we can find balls B1,1, · · · , B1,n1 such that all balls have diameter at most δ and m(O \⋃n1
k=1B1,k) <

m(θ)
10 . Next, we can find B2,1, · · · , B2,N2 such that m(O \

⋃n1
k=1B1,k \

⋃n2
i=1B2,k) <

m(θ)
100 . Repeating this

process gives us a countable collection with the “missing set” of measure 0.

The main idea here is that in the Lebesgue measure, blowing up a set by a factor of c multiplies the measure by a

corresponding factor – this is a property of “doubling measures.” So Vitali’s lemma is really only relevant for a special

class of measures, and we may see a stronger covering lemma later on in the course.

7 October 25, 2022
We’re currently discussing differentiation and the Newton-Leibniz formula – last time, we defined the derivative func-

tions D+, D−, D+, D− (which are upper and lower derivatives on the right and left), and we say that f is differentiable

at x if these functions all coincide. In particular, then we have

Df (x) = lim
n→∞

n

(
f

(
x +
1

n

)
− f (x)

)
,
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so if f is measurable and the derivative Df (x) exists, then Df (x) is measurable. Alternatively writing Df (x) = f ′(x),

we may then ask whether the Newton-Leibniz formula (“fundamental theorem of calculus”) f (b)− f (a) =
´ b
a f
′(x)dx

holds as long as f ′ exists. What we started to show last time is that the derivative f ′ exists (Lebesgue-)almost

everywhere for a monotonic function f . Specifically we showed Vitali’s lemma last time, which shows that we can

always take a finite subcollection of a fine cover of some set E of finite measure such that the uncovered part has

arbitrarily small measure. We’ll now show how to use this to prove our claim:

Proof sketch of Theorem 56. Consider the set of x where the limsup from the right is greater than the limsup from

the left, so we define E = {x : D+f (x) > D−f (x)}. We wish to show that m(E) = 0. Notice that whenever this

occurs, we can find two rationals between those values, so

E =
⋃
r,s∈Q

Drs , Drs = {x : D+f (x) > r > s > D−f (x)},

and by countable additivity it suffices to show that m(Drs) = 0 for all r, s ∈ Q. Let ℓ = m∗(Drs), which is finite

because it’s a subset of [a, b]. We may cover Drs by an open set O such that m∗(O) < m∗(Drs)+ε; because D−(f (x))

is bounded by s from above, for every x ∈ Drs , there must be arbitrarily small hn ↓ 0 such that f (x)− f (x−hn) < shn,

and the intervals [x − hn, x ] cover Drs . So by Vitali’s lemma, we may pick a finite disjoint subcollection {I1, · · · , IN}
so that A =

⋃N
k=1 Ik ∩Drs has measure in [ℓ− ε, ℓ+ ε). But for any y ∈ A, we have D+f (y) > r , so there are some

δ → 0 with f (y + δ)− f (y) > rδ.

The point now is that the total increase across one endpoint of an interval Ii is at most sℓ(Ii), but now we can

choose a finite subcollection of intervals covering A, where on each of those intervals we go up by r times the length

of any of those intervals. Since f is monotonic (so between the intervals we cannot go down), we can do some careful

bounding to show that the total jump cannot be both this small and this large unless the total length ℓ was zero. Thus

D+ and D− must agree almost everywhere. A similar argument works for showing that the other derivative functions

also agree.

Fact 60

As we saw on our homework, there is a continuous monotonic function f (x) where f (0) = 0, f (1) = 1, and

f ′(x) = 0 almost everywhere (the Cantor function). So it is possible that f (1)− f (0) = 1 but
´
f ′(x)dx = 0.

Theorem 61

Let f be monotonically increasing on [a, b]. Then
´ b
a f
′(x)dx ≤ f (b)− f (a).

Proof. Extend the function f by defining f (x) = f (b) for all x > b, and define

gn(x) = n

(
f

(
x +
1

n

)
− f (x)

)
.

Then f ′(x) = limn→∞ gn(x) almost everywhere, and gn(x) ≥ 0 because f is increasing. Thus by Fatou’s lemma,

ˆ b

a

f ′(x)dx ≤ lim inf
n→∞

ˆ b

a

gn(x)dx lim inf
n→∞

n

(ˆ b+1/n

b

f (x)dx −
ˆ a+1/n

a

f (x)dx

)
.

But by monotonicity we know that f
(
a + 1

n

)
≥ f (a), so we can bound this by (noting that the first term is just the

integral of a constant)

≤ lim inf
n→∞

(
n ·
1

n
f (b)− n ·

1

n
f (a)

)
= f (b)− f (a),
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as desired.

So even though this result looks elementary, it takes quite a bit of work to arrive at in the Lebesgue formalism.

And now we want to think about the case where equality holds:

Definition 62

Let f (x) be a function on [a, b], and consider a partition a = x0 < x1 < · · · < xn−1 < xn = b. Define the sum of

the positive and negative jumps to be

p =

m−1∑
k=0

[f (xk+1 − f (xk)]+, n =

m−1∑
k=0

[f (xk+1 − f (xk)]−,

where a+ and a− denote the “positive part” and “negative part” of a. We know that p − n = f (b) − f (a);
we let t = p + n be the total variation

∑m−1
k=0 |f (xk+1) − f (xk)| with respect to the partition. Then define

P xa [f ], N
x
a [f ], T

x
a [f ] to be the supremum of p, n, t over all partitions on [a, x ], and say that f has bounded

variation (BV) if T ba [f ] <∞. Let the set of functions on [a, b] of bounded variation be denoted BV([a, b]).

Theorem 63

A function f has bounded variation on [a, b] if and only if it is the difference of two monotonic functions.

Proof. First, write f = g1−g2 for increasing functions g1, g2. Then T ba [f ] ≤ T ba [g1]+T ba [g2] (by the triangle inequality

on the expressions of p and n), but the total variation of a monotonic function is just the overall difference and thus

the right-hand side is g1(b)− g1(a) + g2(b)− g2(a).
On the other hand, suppose f is of bounded variation on [a, b]. Then it is also of bounded variation on [a, x ] for

all a ≤ x ≤ b because using a smaller partition can only give us smaller positive and negative parts. So now P xa [f ]

and Nxa [f ] are increasing functions (this is where we use bounded variation), and we want to write f in terms of them.

Now for any partition of [a, x ] we have

p − n = f (x)− f (a) =⇒ p = n + f (x)− f (a) ≤ Nxa [f ] + f (x)− f (a),

and the right-hand side does not depend on our partition so we can take the supremum over all partitions and

get P xa ≤ Nxa + f (x) − f (a). Similarly, because n = p + f (a) − f (x) ≤ P xa + f (a) − f (x), taking sup gives us

Nxa ≤ P xa + f (a)− f (x). Combining these equations tells us that P xa −Nxa = f (x)− f (a), so f (x) = f (a) + P xa −Nxa ,
and f (a) + P xa and Nxa are both monotonic functions.

Corollary 64

Every function of bounded variation is differentiable almost everywhere (because it is the difference of monotonic

functions, which are differentiable almost everywhere).

This result can be applied to something like optimization in sharpening images (trying to have clear boundaries

while not changing the image too much); what we want to improve in those cases turns out to be the total variation

norm.

Theorem 65

Let f ∈ L1([a, b]) (meaning that f is (absolutely) integrable) and set F (x) =
´ x
a f (t)dt. Then F ′(x) = f (x)

almost everywhere.
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Proof. We first show that F is actually differentiable everywhere. By absolute continuity of the integral, F is continuous

(because for any ε > 0 we can find some δ so that
´ x1+δ
x1

f (t)dt is small enough). Additionally, F has bounded total

variation

t =

N−1∑
k=1

∣∣∣∣ˆ xk+1

xk

f (t)dt

∣∣∣∣ ≤ N−1∑
k=1

ˆ xk+1

xk

|f (t)dt| =
ˆ b

a

|f (t)|dt

by assumption on f , so the total variation is finite and our previous result shows that F is differentiable. We must now

prove a lemma:

Lemma 66

Let f (t) be integrable on [a, b], and assume that
´ x
a f (x)dx = 0 for almost every x . Then f (x) = 0 almost

everywhere.

Proof of lemma. Suppose that f (x) > 0 on a set E with positive measure m(E) > 0. Then there is some compact

set K ⊂ E such that m(K) > m(E)
2 , and we can write

0 =

ˆ b

a

f (t)dt =

ˆ
K

f (t)dt +

ˆ
Kc

f (t)dt.

The first term is always positive (because on E the sets where f (t) > 1
n approach the whole set, so there is some n

where this overlaps K with positive measure). But then Kc is an at most countable union of open intervals, so there

is an open interval I such that
´
I f (t)dt ̸= 0, a contradiction. A similar argument shows that f (x) < 0 only on a set

of measure zero.

Returning now to the proof, if we first assume that |f (x)| ≤ K on [a, b], then the function fn(x) =
F(x+ 1n )−F (x)

1/n =

n
´ x+1/n
x f (t)dt is also bounded by that same K. But since fn(x) → F ′(x) almost everywhere by definition, the

bounded convergence theorem tells us that

ˆ x

a

F ′(t)dt = lim
n→∞

ˆ x

a

fn(t)dt = lim
n→∞

(
n

ˆ x+1/n

x

F ′(t)dt − n
ˆ a+1/n

a

F ′(t)dt

)
,

which converges to F (x)− F (a) because F is continuous. But because F (a) = 0, this means that

F (x) =

ˆ x

a

F ′(t)dt =

ˆ x

a

f (t)dt =⇒
ˆ x

a

(F ′(t)− f (t))dt = 0

and by our lemma this can only happen if F ′(t) = f (t) almost everywhere.

More generally, if f is not bounded, we can still assume without loss of generality that f ≥ 0 (since we can do

the problem separately for the positive and negative parts of f ), and now we can define gn(x) = min(f (x), n) and

Gn(x) =

ˆ x

a

(f (t)− gn(t))dt . Each Gn(x) is increasing (because the integrand is nonnegative), so it has a derivative

gn(x) which is nonnegative almost everywhere; by the previous case (since gn is bounded) we know that

d

dx

ˆ x

a

gn(t)dt = gn(x).

But now we have almost everywhere that (restating the boxed equality)

Gn(x) = F (x)−
ˆ x

a

gn(x)dx =⇒ F (x) = Gn(x) +

ˆ x

a

gn(x)dx,

and Gn(x) and
´ x
a gn(x) are both differentiable so we must have F ′(x) = G′n(x) + gn(x) almost everywhere, meaning

F ′(x) ≥ gn(x) almost everywhere. Taking the limit as n →∞ (because gn → f pointwise), we find that F ′(x) ≥ f (x)
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almost everywhere. Thus ˆ x

a

F ′(t)dt ≥
ˆ x

a

f (t)dt = F (x)− F (a) = F (x).

But f ≥ 0 almost everywhere, so F is increasing. Thus by our previous result we also know that
´ x
a F

′(t)dt ≤
F (x)− F (a) = F (x), so we can put these together to find

F (x) ≥
ˆ x

a

F ′(t)dt ≥
ˆ x

a

f (t)dt = F (x),

meaning that we must have equality.

We’ll study the class of functions for which this kind of equality holds in more detail next time!

8 October 27, 2022

Last time, we showed that derivatives of monotone functions (on [a, b]) exist almost everywhere, and in fact
´ b
a f
′(x)dx ≤

f (b)− f (a) by a Fatou argument. We also showed that if f is absolutely integrable, then F (x) =
´ x
a f (t)dt is differ-

entiable almost everywhere with F ′(x) = f (x). So now we want to go backwards, figuring out whether a function F

gives rise to a function f . To do so, we need to make an additional definition:

Definition 67

A function f is absolutely continuous (sometimes denoted AC) if for any ε > 0, there is some δ such that for

any finite collection of intervals [x (i ℓ), x
(r)
i ] with

∑N
i=1 |x

(r)
i − x

(ℓ)
i | < δ, we have

∑N
i=1 |f (x

(r)
i )− f (x

(ℓ)
i )| < ε.

This is a stronger notion than uniform continuity, since that only allowed us to use a single interval instead of

arbitrary collections.

Example 68

By absolute continuity of the integral, if f ∈ L1([a, b]) (is absolutely integrable) and F (x) =
´ x
a f (t)dt, then F (x)

is absolutely continuous on [a, b].

Theorem 69

Let F be absolutely continuous on [a, b]. Then F is differentiable almost everywhere on [a, b] with F (x)−F (a) =´ x
a F

′(t)dt.

Proof. If F is absolutely continuous, then f has bounded total variation (useful exercise to check from the definition),

meaning that we can write F (x) = F1(x)− F2(x) with F1, F2 increasing. But then F ′(x) = F ′1(x)− F ′2(x), and F ′1, F
′
2

are integrable (bounded from above by F1(b) − F1(a) and F2(b) − F2(a), respectively), so G(x) =
´ x
a F

′(x)dx is a

well-defined function. Define

R(x) = F (x)− G(x) = F (x)−
ˆ x

a

F ′(x)dx.

Since F and G are differentiable almost everywhere (because F is absolutely continuous and G is the integral of an

integrable function), R′(x) = F ′(x)− G′(x) = F ′(x)− F ′(x) = 0 almost everywhere. This alone does not prove that

R is a constant, but now R(x) is absolutely continuous because F and G are, and we claim this implies R(x) = R(a)

for all x ∈ [a, b].
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Indeed, fix some ε > 0. For almost every x ∈ [a, b], we can find hn → 0 such that |R(x + hn) − R(x)| < εhn.

Then the set E ⊆ [a, b] on which R′(x) = 0 is covered by these intervals [x, x + hn], so by Vitali’s covering lemma (we

need hn → 0 to have a fine cover) we can take a finite subcollection of these intervals so that m∗(E \ ∪Nk=1Ik) <
δ
10 .

We know that E has full measure (equal to the measure of [a, b]), so the sum of the complement (which is some

collection of intervals) is of length less than δ
5 . But if we choose δ to be small enough to satisfy absolute continuity

for R′, then notice that the variation over the good intervals Ik is at most ε(b − a), and on the complement we can

bound the increase by at most ε. Thus |R(b) − R(a)| ≤ ε + ε(b − a) for all ε, so we must have R(b) = R(a). This

argument works for any point x ∈ [a, b] instead of just b, so F (x)−G(x) must indeed be constant and that constant

must be F (a).

(The main idea of this proof is to split up the contributions to R on a “good set,” which we obtain here using

Vitali’s lemma, and a “bad set,” which we control with absolute continuity.)

We’ll now turn to product measures and Fubini’s theorem – the main idea is motivated by calculus, in which we

can find a function f (x, y) such that
´ 1
0

´ 1
0 f (x, y)dydx and

´ 1
0

´ 1
0 f (x, y)dxdy both exist but are not equal. (We just

pick a function f which blows up in some way.) To make sense of this with our integration theory, we must first define

a product measure:

Definition 70

Let µ be a measure on X and ν a measure on Y . We define the product measure µ × ν by setting, for any

S ⊆ X × Y ,

(µ× ν)(S)∗ = inf

 ∞∑
j=1

µ(Aj)ν(Bj)

 ,
where the infimum is taken over all measurable sets Aj ⊂ X,Bj ⊂ Y with S ⊆

⋃∞
j=1 Aj × Bj .

Our goal is to show that we can actually write this measure as an integral

(µ× ν)(S) =
ˆ
Y

(ˆ
X

1S(x, y)dµ(x)

)
dν(y) =

ˆ
X

(ˆ
Y

1S(x, y)dν(y)

)
dµ(x).

(We’ll write dµ(x) or dµx interchangeably.) To do this, we’ll let F be the collection of sets S ⊆ X × Y with 1S(x, y)

µ-measurable for ν-almost-every-y such that s(y) =
´
X 1S(x, y)dµx is ν-integrable. (So we’re looking at which sets we

can actually calculate in this way.) For any such set S, we then define ρ(S) =
´
Y s(y)dν(y) =

´
Y

(´
X 1S(x, y)dµx

)
dνy .

(The principle here is that if we have a two-dimensional body, we calculate the length along a cross-section and then

integrate that along the other axis – this is Cavalieri’s principle. And we’re trying to show that computing cross-sections

in either direction gives us the same answer as covering by rectangles, but we need to set up this notation to figure

out when such a process is actually possible.)

We’ll prove that F contains all sets which are measurable with respect to µ× ν. First, notice that if U, V ∈ F and

U ⊆ V , then ρ(U) ≤ ρ(V ) (because 1U(x, y) ≤ 1V (x, y)) – this will be useful later. Additionally, if A is µ-measurable

and B is ν-measurable, then S = A × B ∈ F (because
´
1A×BdµX = 1B(y)µ(A), which is measurable because B is

measurable, and then integrating it over Y gives us µ(A)ν(B)). So now let P1 be the set of countable unions of such

sets:

P1 =


∞⋃
j=1

(Aj × Bj) : Aj µ-measurable and Bj ν-measurable

 .
For any set S ∈ P1, we can do set theory manipulation and subdivide our rectangles to write S =

⋃∞
i=1 A

′
i × B′i , so
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that the intersection of A′i × B′i and A′j × B′j is empty if i ̸= j . Then

ˆ
X

1S(x, y)dµ =

ˆ ∞∑
j=1

1Aj×Bj (x, y)dµX ,

and now we have a nonnegative sum in the integral, so we can evaluate it termwise to get
∑∞

j=1 µ(Aj)1Bi (y). In

particular, all Bis are measurable, so this means anything in P1 is indeed in F . Integrating this over Y then gives us

ρ(S) =
∑∞

j=1 µ(Aj)ν(Bj) for any such set S written as a disjoint union of rectangles.

Now for any set U, we can write its outer measure by approximating from above:

(µ× ν)∗(U) = inf {p(s) : U ⊆ S, S ∈ P1} .

(Indeed, the measure was originally defined by taking a not-necessarily disjoint union, but we can always write any

covering of U using a disjoint union.) We can now relate the notion of “being in F ” to “being measurable:”

Proposition 71

If A is µ-measurable, and B is ν-measurable, then A× B is µ× ν-measurable.

Proof. We know that (µ × ν)(A × B) = ρ(A × B) = µ(A)ν(B) (because A × B covers itself, and for any other

subset covering it we use the fact that U ⊆ V implies ρ(U) ≤ ρ(V )). To show measurability, take any arbitrary subset

T ⊆ X× Y , and let R be any set in P1 with R ⊇ T . Then R∩ (A×B)c and R∩ (A×B) are in P1 and are disjoint, so

(µ× ν)∗(T ∩ (A× B)c) + (µ× ν)∗(T ∩ A× B) ≤ ρ(R ∩ (A× B)c) + ρ(R ∩ (A× B)) = ρ(R)

because ρ is additive. But if we take the infimum over all R, we find that

(µ ∗ ν)∗(T ∩ (A× B)c) + (µ ∗ ν)∗(T ∩ (A× B)) ≤ (µ× ν)∗(T ),

so A× B is measurable.

We’re now ready to calculate areas of more than just rectangles by defining

P2 =

{ ∞⋂
i=1

Sj : Sj ∈ P1

}
.

Proposition 72

For each S ⊆ X × Y , there is some set R ∈ P2 ∩ F with S ⊆ R and ρ(R) = (µ× ν)∗(S).

Proof. We proved in the last argument that the outer measure of S is the infimum of all ρ(R) where R covers S and

is in P1, so we may pick a sequence of such sets that approximates the measure from above. Choose Rj ∈ P1 so that

ρ(Rj) < (µ× ν)∗(S) + 1j for all j , and define the intersection and partial intersections

R =

∞⋂
j=1

Rj , Qk =

k⋂
i=1

Rk .

We know that Qk decreases to R and ρ(Q1) = ρ(R1) < ∞, so we must have 1R(x, y) = limk→∞ 1Qk (x, y). In

particular, since each DRi is measurable, so is DQi . That means there is a set of full measure for each k such that Rk
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is measurable, so there is some S0 ⊆ Y of full ν-measure so that for all y ∈ S0, 1R(x, y) is µ-measurable. Thus by

the bounded convergence theorem, for all y ∈ S0 we have

ρR(y) =

ˆ
X

1R(x, y)dµ = lim
k→∞

ρk(y),

where ρk(y) =
´
X 1Qk (x, y)dµx , so ρR(y) is ν-measurable almost everywhere (being a limit of measurable functions

almost everywhere). Thus

ρ(R) =

ˆ
Y

ρR(y) =

ˆ
Y

lim
k→∞

ρk(y)dy = lim
k→∞

ρk(y)dy = lim
k→∞

ρ(Qk) ≤ (µ× ν)∗(S),

but each Qk covers S and is in P1, so (µ× ν)∗(S) ≤ ρ(Qk) for all k , meaning (µ× ν)∗(S) ≤ ρ(R). Thus combining

the inequalities we see that ρ(R) = (µ× ν)∗(S).

Theorem 73

Let S ⊆ X×Y be σ-finite with respect to µ×ν (meaning that S =
⋃∞
j=1 Sj for measurable sets Sj with µ×ν(Sj)

finite for all j). Then the cross-section Sy = {x : (x, y) ∈ S} is µ-measurable for ν-almost-everywhere y and vice

versa, with

(µ× ν)(S) =
ˆ
Y

µ(Sy )dνy =

ˆ
X

ν(Sx)dµx .

Proof. First of all, if (µ × ν)(S) = 0, then there is some R ∈ P2 with ρ(R) = 0 and S ⊆ R. But we have Sy ⊆ Ry
for ν-almost-every y , so µ(Sy ) ≤ µ(Ry ) ≤ 0 for ν-almost-every y because ρ(R) = 0.

On the other hand, if (µ × ν)(S) is nonzero and finite, then there is some R ∈ P2 such that S ⊆ R and

ρ(R) = (µ× ν)(S). Thus (µ× ν)(R \ S) = 0, so µ(Sy ) = µ(Ry ) for ν-almost-every y . Thus

(µ× ν)(S) = ρ(R) =
ˆ
Y

(ˆ
R

(x, y)dµ(x)

)
dνy =

ˆ
Y

(ˆ
X

1S(x, y)dµx

)
dνy ,

as desired. Finally, for σ-finite measures as opposed to finite ones, we just make approximations of this result using

the Sjs.

We thus get an analogous result for functions:

Theorem 74 (Fubini)

Suppose f is (µ× ν)-measurable and integrable and X × Y is σ-finite. Then
ˆ
f d(µ× ν) =

ˆ
X

(ˆ
Y

f (x, y)dνy

)
dνx =

ˆ
Y

(ˆ
X

f (x, y)dµx

)
dνy .

And similarly, we also have Tonelli’s theorem, which tells us the same result if f is nonnegative instead of

integrable.

9 November 1, 2022
We’ll discuss the Besicovitch covering theorem today, which doesn’t need the scaling argument that we did in the

Vitali covering lemma (where we said that blowing up the balls by a factor of 5 only multiplies the measure by 5d).
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Definition 75

A measure is doubling if there is some constant C > 0 such that for any x ∈ Rn and R > 0, we have

1

C
µ(B(x, 2R)) ≤ µ(x, R) ≤ µ(x, 2R).

Vitali’s lemma then holds for any doubling measure, but for non-doubling measures we have to compensate in

another way.

Theorem 76 (Besicovitch)

There is a number N(n) (depending only on the dimension n) such that the following property holds: let F be

a nondegenerate collection of closed balls in Rn, such that D = supB∈F [diam(B)] is finite. Let A be the set of

centers of balls in F . Then there are subcollections J1, · · · ,JN(n) of these balls such that

A ⊆
N(n)⋃
k=1

⋃
B∈Jk

B,

such that each Jk contains only pairwise disjoint balls. (In particular, this implies that Jk must be countable

because each ball contains some point in Qn.)

Remember that in Vitali’s lemma, we only chose one subcollection and covered “most” of the set, and in this case

we have finitely many collections of these balls but they completely cover our set A. And the number of balls we need

depends only on the dimension n, not on the particular set A.

Corollary 77

Let µ be a Borel regular measure on Rn, let F be any collection of nondegenerate closed balls, and let A be the set

of centers of balls in F . Assume that µ∗(A) is finite, and for each a ∈ A there are arbitrarily small balls centered

at a (that is, inf{r : B(a, r) ∈ F} = 0). Then for each open set U ⊆ Rn, there is an at most countable collection

J of pairwise disjoint balls in F (just one collection) such that

µ∗

(
(A ∩ U) \

⋃
B∈J

B

)
= 0.

There is no requirement written here that the balls are contained in U, but we can just choose our collection initially

so that it only contains balls in U. And in particular we can take U = Rn as a typical application, and we see that we

in fact do not lose anything when not requiring a doubling measure.

Proof of corollary. First, only keep the balls B(a, r) of radius r ≤ 1 in our collection. By the Besicovitch theorem,

A ∩ U can be covered by N(n) subcollections, so by the pigeonhole principle we can choose one of the subcollections

Jk so that we cover more than 1
N(n) of the total:

µ∗

(
(A ∩ U) ∩

⋃
B∈Jk

B

)
≥
1

N(n)
µ∗(A ∩ U).

But now we can take some finite subcollection of the balls B1,k , · · · , BM1,k in Jk so that

µ∗

(
(A ∩ U) ∩

M1⋃
p=1

Bp,k

)
≥

1

2N(n)
µ∗(A ∩ U),
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because Jk is countable and looking at the measure of the partial unions must approve But now we have covered a

positive fraction of A∩U with finitely many balls in F , and now we can repeat the same argument to (A∩U)\
⋃M1
p=1Bp,k

since any point in that set is a positive distance away from the balls we remove (and thus the property still holds).

Notice that

m∗

(
(A ∩ U) \

M1⋃
p=1

Bp,k

)
≤
(
1−

1

2N(n)

)
µ∗(A ∩ U),

so repeatedly again getting another finite collection of balls to gain another factor of
(
1− 1

2N(n)

)
shows that we can

get

m∗

(
(A ∩ U) \

Ma⋃
p=1

Bp,k

)
≤
(
1−

1

2N(n)

)a
µ∗(A ∩ U)

for any positive integer a; repeating this gives us the countable collection that we desire since the right-hand side goes

to 0 as n →∞.

We’ll now turn to the proof of the Besicovitch theorem, which will not require any particularly advanced techniques

but will be a long proof:

Proof of Theorem 76. Here’s the strategy: we’ll choose a sequence of balls B1, B2, · · · that are “large enough” in

some sense, covering A but not caring about intersections between them, and we’ll prove that we can do so in a way

so that each Bk intersects at most N(n) − 1 balls in B1, · · · , Bk−1. But then we can distribute the Bks into N(n)

buckets inductively, always putting Bk into a bucket where it does not intersect with any of the previous balls.

We can assume without loss of generality that A is bounded. Indeed, consider concentric annuli of radius 10∆,

and alternate coloring them red and blue. Then the balls within different red annuli cannot intersect each other, and

similarly the balls within different blue annuli cannot intersect each other. So if we can do the job separately with N(n)

buckets for each annulus (which is bounded), we can do the job with 2N(n) buckets (N(n) of them for red and N(n0

of them for blue).

To actually choose the balls Bi , first choose any B1(a,R1). Now inductively, after choosing B1, · · · , Bk , choose

Bk+1(ak+1, Rk+1) so that ak+1 ̸∈
⋃k
j=1Bj and with radius “near-maximal:”

Rk+1 ≥
3

4
sup

R : B(a, r), a ̸∈ k⋃
j=1

Bj

 .
In particular, we don’t need the whole ball B(a,R) to be disjoint from the previous balls, but we do need a to be, and

here is where we use that D is finite. We’ll now study this process in more detail:

• The balls B
(
ai ,

Ri
3

)
are pairwise disjoint. Indeed, for any j > i , we have aj ̸∈ B(aj , Rj), so |aj − ai | > ri . But

rj ≤ 4
3 ri (because Bj was chosen later than Bi , so Bj was a valid candidate in place of Bi so couldn’t have been

much bigger). This means that

|aj − ai | > Ri =
Ri
3
+
2Ri
3
≥
Ri
3
+
Rj
2
≥
Ri + Rj
3

,

so indeed the shrunk balls do not intersect.

• The process can terminate (if we’ve covered all of the centers), but if it does not terminate, then we must

have limj→∞Rj = 0. Indeed, we know that
⋃∞
j=1B

(
aj ,

Rj
3

)
must be a bounded set because A is assumed to

be bounded (without loss of generality) and the diameters are also bounded, and the balls are all disjoint so we

must have
∑
Rnj <∞.
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• Thus, this process does indeed cover A (we have A ⊆
⋃∞
j=1B(aj , Rj)). This is because any point a ∈ A contains

some ball B(a,R) centered around it, and we must have either chosen that ball or covered a with another ball.

Indeed, if we have only finitely many balls we cover everything, and otherwise limj→∞Rj → 0 so eventually

Rj <
R
100 meaning that B(a,R) was a candidate and stopped being one.

So our balls cover A, and we now claim that B(aj , Rj) intersects at most N(n) previous balls B(ai , Ri) for i < j

(this is the crux of the argument). Consider the “bad indices”

Im = {j : 1 ≤ j ≤ m,Bj ∩ Bm ̸= ∅},

the “small bad balls”

Km = Im ∩ {j : Rj ≤ 3Rm},

and the “large bad balls”

Pm = Im ∩ {j : Rj > 3Rm}.

• We claim that |Km| ≤ 20n – for any j ∈ Km, we can show that the shrunk ball B(aj ,
Rj
3 ) is contained in the

stretched ball B(am, 5Rm). Indeed, for any x ∈ B(aj , Rj3 ), we know that

|x − am| ≤ |x − aj |+ |aj − am| ≤
Rj
3
+ (Rj + Rm)

(because the original balls around aj and am intersected by definition of Km), and we can bound this as

|x − am| ≤ Rm + (3Rm + Rm) = 5Rm =⇒ B

(
aj ,
Rj
3

)
⊂ B(am, 5Rm).

This means that

5n|Rm|n ≥
∑
j∈Km

1

3n
Rnj

because all of the shrunk balls in Km are disjoint and their union is contained within the stretched ball B(am, 5Rm).

But furthermore Rj ≤ 4
3Ri whenever j > i , so we find that

5n|Rm|n ≥ |Km|
1

3n

(
3

4

)n
Rnm =⇒ 20n ≥ |Km|.

So there can be at most 20n small balls intersecting the mth ball.

• For the large balls Pm, here is the key claim: if i , j ∈ Pm with |ai | < |aj |, and θ is the angle between the lines

connecting ai and aj to am, then θ ≥ cos−1 6164 > 0. This proves the theorem because the number of points on

the unit sphere where any two are at an angle at least cos−1 6164 apart is finite and depends only on the dimension

n. To prove this claim, we prove that (1) if cos(θ) > 5
6 (meaning the balls are somewhat collinear), then we

have ai ∈ B(aj , Rj) (so in particular that implies j > i or else we couldn’t pick the balls in this order), and (2) if

ai ∈ Bj , then cos θ ≤ 61
64 (they cannot be too collinear).

For sake of notation, pick am = 0 to be the origin in Rn. For (1), am was chosen after ai and aj , so am ̸∈ Bi ∪Bj ,
meaning that Ri < |ai | and Rj < |aj |. Additionally, |ai − am| = |ai | < Rm + Ri (because Bm and Bi intersect)

and similarly |aj | < Rm + Rj ; also by definition of large balls we have Ri > 3Rm, Rj > 3Rm. So chaining these

facts together we see that

3Rm < Ri < |ai | < Ri + Rm, 3Rm < Rj < |aj | < Rj + Rm.
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We claim that |ai − aj | ≤ |aj | if cos θ > 5
6 . Indeed, if |ai − aj | > aj , we have

cos θ =
|ai |2 + |aj |2 − |ai − aj |2

2|ai ||aj |
≤

ai |2

2|ai ||aj |
≤
1

2
<
5

6
,

a contradiction. Thus |ai − aj | ≤ |aj |, meaning that ai ∈ B(aj , aj). But now if ai ̸∈ B(aj , Rj) (so |ai − aj | > Rj),

we must have

cos θ =
|ai |2 + |aj |2 − |ai − aj |2

2|ai ||aj |
=
|ai |
|aj |
+
(|aj | − |ai − aj |)(|aj |+ |ai − aj |)

2|ai ||aj |

≤
1

2
+
|aj | − |ai − aj |

|ai |
≤
1

2
+
|aj | − Rj
|ai |

≤
1

2
+
Rj + Rm − Rj

Ri

≤
1

2
+
1

3
=
5

6
,

a contradiction and thus we do have ai in the ball B(aj , Rj).

Finally, to prove (2), similar arguments show that |ai − aj | + |ai | − |aj | ≥ |aj |
8 , but also |ai − aj | + |ai | − |aj | ≤

8
3 |aj |(1− cos θ); putting these equalities shows the result.

Thus we’ve successfully obtained our constant N(n) and proven the theorem with our “buckets” argument.

In particular, we claim that N(1) = 2 and N(2) = 19 (though this may be somewhat painful to check).

10 November 3, 2022

We’ll see an application of (the corollary of) Besicovitch’s theorem today to the Radon–Nikodym theorem, which asks

us to recover one measure from another given a relation between them:

Definition 78

Let µ, ν be two Borel regular measures on Rn. The upper and lower Radon–Nikodym derivative are defined as

Dµν(x) = lim sup
r→0

ν(B(x, r))

µ(B(x, r))
, Dµν(x) = lim inf

r→0

ν(B(x, r))

µ(B(x, r))
.

If Dµν = Dµν, then we call that function the Radon-Nikodym derivative Dµν(x) of ν with respect to µ.

(All balls B here will be closed and nontrivial.) We wish to reconstruct the Riemann integral now in the following

way: for any set A, take small balls in µ-measure around points in A. Then it is reasonable to assume that the

ν-measure is approximately the µ-measure multiplied by the Radon-Nikodym derivative at each point, so

ν(A) =

ˆ
A

Dµν(x)dµ.

For example, suppose ν(A) =
´
A f (x)dx for some continuous function f (x) ∈ L1(Rn). Then the Radon-Nikodym

derivative of ν with respect to the Lebesgue measure is just Dµν(x) = f (x) by continuity at x . But if we just have

f ∈ L1(Rn), we now want to ask whether we still have Dµν(x) = f (x) (now we must say µ-almost-everywhere, since

f is only defined up to a set of measure zero). Then the values of f in a small ball look like they may not have to do

with f in the center.
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Theorem 79

Let µ and ν be Radon measures on Rn. Then Dµν(x) exists µ-almost-everywhere and is µ-measurable.

Proof. The definition of Dµν(x) and Dµν(x) are local at x , so we can assume without loss of generality that µ(Rn)
and ν(Rn) are finite.

Lemma 80

Let µ, ν be two finite Radon measures on Rn, and fix 0 < s < ∞. Then we have the following for any (not

necessarily measurable) set A:

• If A ⊆ {x ∈ Rn : Dµν ≤ s}, then ν∗(A) ≤ sµ∗(A).

• If A ⊆ {x ∈ Rn : Dµν ≥ s}, then ν∗(A) ≥ sµ∗(A).

Proof of lemma. We’ll just do the first argument (the second one is basically identical). For any x ∈ A, we can

find a sequence rn → 0 so that ν(B(x, rn)) ≤ (s + ε)µ(B(x, rn)). By Besicovitch, there is a countable collection of

disjoint balls B such that µ∗
(
A \

⋃
j Bj
)
= 0. Thus by countable subadditivity and because the balls are measurable,

µ∗(A) ≤ µ
(⋃

j Bj
)
=
∑

j ν(Bj). But we chose our balls Bj so that the ν-measure is no more than (s + ε) times the

µ-measure, so

ν∗(A) ≤ (s + ε)
∞∑
j=1

µ(Bj).

So now we see that we can take any open set U ⊇ A, and we can choose our rns such that B(x, rn) ⊆ U (since we can

just start with arbitrarily small radii). But all of these balls are contained in U and are pairwise disjoint, so we actually

have

ν∗(A) ≤ (s + ε)
∞∑
j=1

µ(Bj) ≤ (s + ε)µ(U);

taking the infimum over all U ⊇ A yields ν∗(A) ≤ (s + ε)µ∗(A). Taking ε→ 0 yields the desired result.

Now returning to our theorem, we can fix any rational a < b and consider

Ra,b =
{
x : Dµν(x) ≤ a,Dµν(x) ≥ b

}
.

By our lemma, we know that

ν∗(Ra,b) ≤ aµ∗(Ra,b), ν∗(Ra,b) ≥ bµ∗(Ra,b) =⇒ bµ∗(Ra,b) ≤ aµ∗(Ra,b)

which can only occur if µ∗(Ra,b) = 0. Since this argument works for all a, b ≥ 0, we see that

µ∗
(
x : Dµν(x) < Dµν(x)

}
= 0

because this set is in the countable union of the Ra,bs, which each have measure zero. Since µ∗
(
x : Dµν(x) < Dµν(x)

}
=

0 by definition, we see that the lower and upper Radon–Nikodym derivatives agree µ-almost-everywhere, as desired.

It remains to show that Dµν(x) is actually µ-measurable, and we’ll do so in the following way:
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Lemma 81

For all x ∈ Rn and r > 0, we have (here remember B is a closed ball)

lim sup
y→x

µ(B(y , r)) ≤ µ(B(x, r)), lim sup
y→x

ν(B(y , r)) ≤ ν(B(x, r)).

In other words, if we look at balls of the same radius near x , we can gain measure when we shift the balls, but we

cannot lose measure.

Proof. Let yk → x be a sequence of points and define fk(z) = 1{z ∈ B(yk , r)}. We claim that lim supk→∞ fk(z) ≤
1{z ∈ B(x, r)}. This equality is clear if z ∈ B(x, r) (because the right-hand side is 1 and the left-hand side is always

at most 1). And if z ̸∈ B(x, r), then |z − yk | > r , so fk(z) = 0 for large enough k . But now by Fatou’s lemma,

lim inf
k→∞

(1− fk(z)) ≥ 1− 1{z ∈ B(x, r))} =⇒
ˆ
B(x,2r)

1− 1{z ∈ B(x, z)}dµ ≤ lim inf
k→∞

ˆ
B(x,2r)

(1− fk(z))dµ,

so evaluating the integral we find that

µ(B(x, 2r))− µ(B(x, r) ≤ lim inf
k→∞

[µ(B(x, 2r))− µ(B(yk , r))] ;

because our measures are finite (because µ is Radon) we can cancel the µ(B(x, 2r))s and get the desired result.

The point is that this shows that fr (x) = µ(B(x, r)) is an upper semicontinuous function (which are measurable

with respect to any Radon measure – this was on our homework), and so is gr (x) = ν(B(x, r)), so their ratio is

measurable. But then this implies Dµν(x) is a limit of µ-measurable functions and is thus measurable. (It’s true that

Dνµ(x) is measurable as well, but that Radon–Nikodym derivative can be infinite unlike Dµν(x).)

So we now want to go back to our original question, asking if we can obtain ν by integrating Dµν(x) with respect

to µ. This cannot always be true – for example, if µ(A) = 0 that would mean ν(A) = 0 (because integral over a set

of measure zero is always zero). So we’ll take that as an assumption instead:

Definition 82

A measure ν is absolutely continuous with respect to µ if whenever µ(A) = 0, we have ν(A) = 0. (We will write

this as ν ≪ µ.)

Theorem 83 (Radon–Nikodym)

Let µ and ν be two Radon measures on Rn, and suppose ν ≪ µ. Then for any µ-measurable set A, we have

ν(A) =

ˆ
A

Dµν(x)dµ.

(This result also holds over more general measure spaces, but we won’t talk about that here.)

Proof. Notice that if a set A is µ-measurable and ν ≪ µ, then A will be ν-measurable as well. (This is not true for

measures in general – for example, a set in supp(µ) which is not µ-measurable but is outside supp(ν) is ν-measurable

of measure zero.) To prove this, take a Borel set B ⊇ A with µ(B \ A) = 0. Then ν(B \ A) = 0 as well by absolute

continuity, and B \ A is ν-measurable (because it is of measure zero) so A = B \ (B \ A) is also ν-measurable (since

B is Borel and thus measurable). So we indeed don’t need to use outer measure in the statement of this theorem.

37



Now consider the sets

Z = {x : Dµν(x) = 0}, I = {x : Dµν(x) =∞}.

Then we know that µ(I) = 0 (because we’ve just previously shown that Dµν(x) exists – that is, is finite – µ-

almost-everywhere), so ν(I) = 0 by absolute continuity. On the other hand, ν(Z) ≤ εµ(Z) for any ε > 0, so

ν(Z ∩B(0, R)) ≤ εµ(Z ∩B(0, R)) for any ball B(0, R). But because µ is Radon, µ(Z ∩B(0, R)) is finite for any R,

so ν(Z ∩ B(0, R)) = 0. That implies that ν(Z) = 0 by continuity from below. This means we don’t have to worry

about the sets where the Radon–Nikodym derivative is zero or infinite.

We can now fix some t > 1 and write our set A as a disjoint union

A =

∞⋃
m=−∞

Am ∪ (A ∩ Z) ∪ (A ∩ I) ∪ {Dµν does not exist}, Am = {x : tm ≤ Dµν(x) < tm+1}.

But the sets in (A ∩ Z) ∪ (A ∩ I) ∪ {Dµν does not exist} all have ν-measure-zero, so

ν(A) =

∞∑
m=−∞

ν(Am).

But now for each m, we know that ν(Am) ≤ tm+1µ(Am) and ν(Am) ≥ tmµ(Am), so

ν(A) ≤
∑
m

tm+1µ(Am) ≤ t
∑
m

tmµ(Am).

Now on Am we know the Radon-Nikodym derivative is at least tm, so

ν(A) ≤ t
∑
m

ˆ
Am

(Dµν(x))dµ = t

ˆ
A

Dµν(x)dµ .

(In the last part we notice that A ∩ Z doesn’t necessarily have µ-measure zero, but the Radon–Nikodym derivative

integrates to zero on that set anyway.) Similarly, we can flip things around and write

ν(A) =
∑
m

ν(Am) ≥
∑
m

tmµ(Am) ≥
1

t

∑
m

tm+1µ(Am) ≥
1

t

∑ˆ
Am

Dµν(x)dµ =
1

t

ˆ
A

Dµν(x)dµ .

Taking t → 1 and combining the two inequalities yields the result.

The next question to ask is what happens when the absolute continuity condition ν ≪ µ is violated. One naive

example is where the supports of µ and ν are in disjoint intervals, but things can be much more complicated. For

example, consider the usual ternary Cantor function f (a monotonic function) and define the measure of any interval

[x, y ] to be the difference of f (y) and f (x). Then its relation to the Lebesgue measure is somewhat complicated.

The idea is that given any µ, ν, we want to split up a measure ν into a part that is absolutely continuous to µ and

the “remaining part:”

This is indeed something we can do:

Definition 84

We say that two measures µ, ν are mutually singular, denoted µ ⊥ ν, if there is a set B ⊆ Rn such that

µ(B) = ν(Rn \ B) = 0.

Theorem 85 (Lebesgue decomposition theorem)

Let µ, ν be two Radon measures. Then we can decompose ν as νac + νs , where νac ≪ µ and νs ⊥ µ.
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The idea of the proof is to choose a set B such that νac = ν|B and νs = ν|Bc – specifically, we choose the largest

such set B that makes our restriction still absolutely continuous, and we do so by considering all candidates

F = {A ⊆ Rn : µ(Rn \ A) = 0}.

Specifically, we want the ν-measure of A to be as small as possible, or else we can find some positive-ν-measure set

outside of A with µ-measure zero, breaking absolute continuity when we restrict to A. What’s more complicated in

all of this discussion is the structure of the singular measure, but that’s more delicate and we won’t get much into it.

11 November 10, 2022

Last time, we discussed the Radon–Nikodym theorem: we say that ν ≪ µ if whenever µ(E) = 0, we also have ν(E) =

0, and Radon–Nikodym says that whenever this absolutely continuous condition holds for two Radon measures, we

have

ν(E) =

ˆ
E

Dµνdµ.

We said that two measures were mutually singular if there is some Borel set B such that µ(Rn \B) = ν(B) = 0, and

we stated the Lebesgue decomposition theorem, which says that we can decompose any measure ν into νac + νs (for

νac ≪ µ and νs ⊥ µ); in other words, for any E we have

ν(E) +

ˆ
E

Dµνac(x)dµ+ νs(E).

We’ll write the proof out more explicitly now:

Proof of Theorem 85. Wihout loss of generality we can assume that µ(Rn) and ν(Rn) are both finite; otherwise, we

can consider the ball B(0, R) and take R → ∞ (exercise). Notice that if we take any set B such that µ(Bc) = 0,

then the restriction of ν to Bc is singular to µ. But there’s no reason to expect ν|B to be absolutely continuous with

respect to µ unless B is small enough – we don’t want a place inside B where µ has no measure but ν has positive

measure. So our goal is to minimize the ν-measure inside B to avoid those problem spots. Define

F = {B ⊆ Rn Borel : µ(Bc) = 0}.

(We’re restricting to Borel sets because we then know for sure that everything is both µ- and ν-measurable.) Now for

each k , define Bk ∈ F such that

ν(Bk) ≤ inf
A∈F

ν(A) +
1

k

and define B =
⋂∞
k=1Bk . Then we know that

µ(Bc) ≤
∞∑
k=1

µ(Bck ) =
∑
0 = 0,

so B ∈ F as well and in fact B achieves the infimum ν(B) = inf
A∈F

ν(A) . We can now define νac = ν|B and νs = ν|Bc ;

we know that νs ⊥ µ because B ∈ F and we want to show that νac is actually absolutely continuous with respect to µ.

Suppose otherwise; then there would be some Borel set E such that νac(E) > 0 but µ(E) = 0. That means E contains

some subset of B; define B̃ = B \ E. Then B̃c = B ∪ (B ∩ E), so in particular µ(B̃c) ≤ µ(Bc) + µ(E) = 0 + 0 = 0
(by definition of B and E). Thus B̃ ∈ F as well, but ν(B̃c) = ν(B) − ν(B ∩ E) is smaller than ν(B), since

ν(B ∩E) = νac(E) > 0 by assumption. This contradicts B achieving the infimum boxed above, so we do indeed have
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absolute continuity.

And now we can also notice that Dµνs = 0. Indeed, if we look at the set

Cz = {Dµνs > z} = (Cz ∩ B) ∪ (Cz ∩ Bc),

we see that µ(Cz ∩ Bc) = 0 because µ(Bc) = 0, and νs(Cz ∩ B) ≥ zµ(Cz ∩ B) by Lemma 80 but the left-hand

side is zero because νs is supported only on Bc . Thus both terms on the right-hand side have measure zero and

thus µ(Cz) = 0 for all z ; this implies that the Radon–Nikodym derivative is zero µ-almost-everywhere, and by the

Radon–Nikodym theorem Dµν = Dµνac. That gives us the desired equation ν(E) +
´
E Dµνac(x)dµ+ νs(E).

(What we’ve done is applicable more generally to measure spaces – nothing here is specific to Radon measures or

Rn – and there’s only a few places where we’ve really used any regularity.) And with that, we’re now ready to turn to

the question that we started last week, asking what happens when we average a function over a ball. Define
 
E

f dµ =
1

µ(E)

ˆ
E

f dµ;

what we’re curious about is whether averages around small balls get us the value of the function at the center.

Theorem 86 (Lebesgue differentiation theorem)

Let µ be a Radon measure, and suppose f ∈ L1loc(dµ) (meaning we’re integrable around a small ball). Then

f (x) = lim
R↓0

 
B(x,R)

f (y)dµy

for µ-almost-every x ∈ Rn. (Here µy indicates integrating in y but using the measure µ.)

This result is not surprising for continuous functions, but it is surprising for L1 functions that integrability and

measurability is enough to get the value at the center to be equal to the limit of the averages. The proof is “abstract

nonsense:”

Proof. Let f = f+ − f− – we’ll assume f ∈ L1 to avoid some pesky details; in general, we can just restrict to a small

ball and do everything within that. Define

ν+(E) =

ˆ
E

f+dµ, ν−(E) =

ˆ
E

f−dµ

for all Borel sets E. Now for general sets A define

ν∗(A) = inf {ν(B) : B ⊇ A,B Borel}

to get a measure ν. Since f ∈ L1(Rn) (and thus f + and f − are), ν± are absolutely continuous with respect to µ,

meaning that

ν+(A) =

ˆ
A

Dµν+dµ, ν−(A) =

ˆ
A

Dµν−dµ.

But at the same time, we also know that

ν+(A) =

ˆ
A

f+dµ, ν−(A) =

ˆ
A

f−dµ.

So if we look at a set of the form Sq = {Dµν+ > f+ + q} for any q > 0, then

ν+(Sq) =

ˆ
Sq

f+dµ =

ˆ
Sq

Dµν+dµ >

ˆ
Sq

(f+ + q)dµ,

40



which can only occur if µ(Sq) = 0 for all positive q. Flipping the roles of f+ and Dµν+, this means Dµν+ = f+

µ-almost-everywhere, and similarly Dµν− = f− µ-almost everywhere. So f = Dµν µ-almost-everywhere, which is

actually exactly what we wanted to prove by the definition of the function Dµν.

Definition 87

Let f ∈ Lploc(dµ) for some 1 ≤ p <∞. A point x ∈ Rn is a Lebesgue point if

lim
R↓0

 
B(x,R)

|f (y)− f (x)|pdµy = 0.

Corollary 88

For any Radon measure µ and f ∈ Lploc(dµ), we have that µ-almost-every x ∈ Rn is a Lebesgue point of f .

Bad proof. We cannot directly apply the previous result because |f (y)− f (x)|p depends on x , and if we tried to fix x

and apply the Lebesgue differentiation theorem with g(z) = |f (z)− f (x)|p (which is in L1loc), then the previous result

tells us that

lim
R↓0

 
B(z,R)

|f (y)− f (x)|pdµ = |f (z)− f (x)|p

for µ-almost-every z ∈ Rn. But there’s no reason for this to be true at x specifically, because x could be in the “bad

set.”

Proof. Instead, we have to be a bit more careful: start with a dense set of values ξj in R and set

gj(z) = |f (z)− ξj |p.

Then for each j , there is some set Gj ⊆ Rn such that µ(Gcj ) = 0 and

lim
R↓0

 
B(z,R)

|f (y)− ξj |pdµy = |f (z)− ξj |p

for all z ∈ Gj . We know that G =
⋂
Gj is a set of full measure, since µ(Gc) ≤

∑
µ(Gcj ) = 0, and now we know that

for any x ∈ G, by the triangle inequality

lim
R↓0

 
B(x,R)

|f (y)− f (x)|pdµy ≤ C lim
R↓0

 
B(x,R)

|f (y)− ξj |pdµy + C|f (x)− ξj |p

for some constant C depending on p – here there’s no integral on the second term because |f (x)−ξj |p doesn’t depend

on y . Because ξj is a dense set, for any ε we can find some ξj such that |f (x)−ξj | < C|f (x)−ξj |p+ε, and the integral on

the right-hand side goes to zero as R ↓ 0 because we’re in the good set G. Thus limR↓0
ffl
B(x,R) |f (y)−f (x)|

pdµy ≤ Cεp

for all ε and thus must be zero for any x ∈ G.

What’s important is that we do not have uniformity in this statement – the rate of convergence at the different ξjs

are different, so we can’t find a uniformly small R so that the averages around various points x are uniformly close to

their respective f (x)s. But it’s still a powerful result – for example, applying this result to the characteristic function

of y ∈ B(x, R) yields the following:
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Corollary 89

Let E be a Lebesgue measurable set in Rn. Then for almost every x ,

lim
|B(x, R) ∩ E|
|B(x, R)| =

1 x ∈ E,

0 x ̸∈ E.

In other words, except for a set of measure zero, the points around any point in E fill everything, and the points

around any point not in E are almost nothing.

We’ll now switch gears and talk about bounded linear functionals on function spaces – for example, fix some

µ ∈ Rn and a function g and define

Lg(f ) =

ˆ
Rn
f gdµ.

We’re then curious to see the set of functions f for which this is defined. By Hodler’s inequality, we know that if

f ∈ Lp and g ∈ Lq, where 1
p +

1
q = 1, then |Lg(f )| ≤ ||f ||Lp ||g||Lq . So for any g ∈ Lq, Lg is a bounded linear

functional on Lp (where 1p +
1
q = 1). So we want to ask if the converse is true as well – in other words, we want to

know if any bounded linear functional F : Lp → R is of the form F (f ) = Lg(f ) for some g ∈ Lq. It turns out the

answer is yes for any 1 ≤ p <∞, but the case p =∞ is more complicated. There’s no particularly good answer, and

we’ll instead rephrase this case by thinking not about L∞(Rn) but about Cc(Rn), the space of continuous functions

with compact support. Then the linear functionals on Cc(Rn) do have a nice description – it turns out they are all

integrals against a signed measure, meaning that we always have

F (f ) =

ˆ
f dν ∀f ∈ Cc(Rn).

To get to this result, we’ll first talk about signed measures, then discuss the Riesz representation theorem for Lp

(1 ≤ p <∞), and finally discuss the Riesz representation theorem for Cc(Rn).

Remark 90. There were two brother mathematicians both named Riesz, who sometimes worked together but had

different proof strategies. This one comes from F. Riesz, who had a more fundamental approach, but we’ll see M.

Riesz’s trickier proofs later on in the course.

Definition 91

A signed measure is a function defined on a σ-algebra B of sets, such that (1) ν takes at most one of the

values ∞ and −∞, (2) ν(∅) = 0, and (3) for any countable collection of pairwise disjoint sets in B,
∑∞

i=1 ν(Ej)

converges absolutely and is equal to ν
(⋃∞

j=1 Ej
)
.

The point of assumption (1) is to avoid issues with computing measures if we have∞−∞, and notice that absolute

convergence is part of the assumption in (3).

Definition 92

A set A is positive with respect to a signed measure ν if ν(E) ≥ 0 for all E ⊆ A with E ∈ B.

In words, a set is positive if none of its subsets have negative measure.

Proposition 93

Let A ∈ B be a set with ν(A) > 0. Then there is some E ⊆ A (with E ∈ B) such that E is positive and ν(E) > 0
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We should think of ν(E) =
´
E f dµ for some f ∈ L1(dµ), where f does not necessarily need to be a positive

function. So what we’re saying is basically that there is a set on which f is positive.

Proof. The point is to throw away sets of negative measure. Take the smallest n1 such that A contains a set B1 with

ν(B1) < − 1n1 , and remove B1 from A. Then take the largest n2 such that A\B1 contains a set B2 with ν(B2) < − 1n2 ;
throw out B2. Repeat this process and define Ã = A \ (

⋃
Bk). We know that

ν(Ã) +
∑

ν(Bk) = ν(A) =⇒
∑
|ν(Bk)| = ν(Ã)− ν(A) < ν(Ã),

and we know that ν(Ã) is finite because the series converges absolutely. So
∑∞

k=1 |ν(Bk)| is finite and converges to

some finite value, meaning ν(Bk) → 0 as k → ∞. We now claim that Ã cannot contain a set of negative measure.

Suppose it did contain such a set S; then there is some k at which S could have been chosen but wasn’t (because it

beats out the set of measure − 1k by being more negative). Thus no S can exist and Ã is the set we want.

(In the case where ν(Ã) =∞, not much changes – the measure cannot take the value −∞, so
∑
(Bk) should still

converge absolutely.)

We’ll use this next time to prove the Hahn decomposition theorem, which lets us split up a space into a “positive

part” and a “negative part” with respect to ν (specifically, any signed measure is the difference of two measures with

disjoint support).

12 November 15, 2022

Our first topic today is the Riesz representation theorem on Lp. Recall that a bounded linear functional on Lp(Rn, µ)
is a linear functional Lp(Rn, µ)→ R such that |L(f )| ≤ C||f ||Lp for all f and some constant C; we then call the norm

of f the infimum of all such constants C. More precisely, this means

||F || = sup
f ̸=0,f ∈Lp

|F (f )|
||f || Lp

.

One simple example we discussed last time is to fix a function g and define Fg(f ) =
´
f gdµ. In the cases where

g ∈ Lq(Rn, dµ) where 1p +
1
q = 1, we know that Fg is a bounded linear functional with norm at most ||g||q by Holder’s

inequality, since Fg(f ) ≤ (
´
|g|q)1/q(

´
|f |p)1/p = ||q||Lq ||f ||Lp . For another point of view, we can define a new measure

ν via dν = gdµ, so that Fg(f ) =
´
f dν. Then ν is a signed measure with a density (living in Lq) with respect to µ

– on Cc(Rn) we’ll see that this view is useful.

Now suppose we’re given a bounded linear functional F : Lp → R which is of the form Fg. Then we can always

reconstruct g, because we can take f to be some indicator function 1E to find that

F (1E) =

ˆ
E

gdµ,

so that we can define a signed measure ν(E) = F (1E), and then g must be be the Radon–Nikodym derivative of ν

with respect to µ (if it exists). Noticing now that if we know F (1E) for all E, we know the values of F on all simple

functions (meaning F (f ) =
´
f g for all simple f ), and thus we know the values of F everywhere as long as simple

functions are dense in our space. So this whole thing works as long as 1 ≤ p < ∞, but it doesn’t when p = ∞, and

that explains why the situation with linear functionals is different for L∞.

All of this has been motivation for what we actually need to prove:
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Theorem 94

Let µ be a Radon measure, let 1 ≤ p < ∞, and let F : Lp(Rn, dµ) → R be a bounded linear functional. Then

there exists g ∈ Lq(Rn, dµ) with 1
p +

1
q = 1, such that F (f ) =

´
f gdµ for all f ∈ Lp(Rn, dµ) and ||F || = ||g||Lq .

Proof. First assume that µ(Rn) <∞ so that f = 1 is in all Lp spaces, and 1E ∈ Lp(Rn, dµ) for all Borel sets as well.

We will also assume that p > 1 so that q ̸=∞. Thus we can define ν(E) = F (1E) for all Borel sets E. ν is a signed

measure by linearity of F , and by definition of the norm of our bounded linear operator F ,

|ν(E)| ≤ ||F || · ||χE ||Lp = ||F ||(µ(E))1/p.

Thus ν ≪ µ, because if µ(E) = 0 then ν(E) = 0 as well (and notice that this part of the argument does not work if

p =∞). But that’s a sloppy thing to say when we have signed measures involved, so instead by Hahn decomposition

we can write ν = ν+ − ν− and split up Rn = A ∪ B, where A is a positive set and B is a negative set. We then have

ν+(E) = ν(A ∩ E) ≤ ||F ||(µ(A ∩ E))1/p ≤ ||F ||(µ(E))1/p

so by the same argument ν+ ≪ µ and similarly ν− ≪ µ. Therefore by Radon–Nikodym we have ν+ =
´
g+dµ and

ν− =
´
g−dµ, with g+ and g− both in L1(dµ). Thus g ∈ L1(dµ) as well, and we’ve constructed a function satisfying

the property

F (χE) =

ˆ
E

gdµ

for all Borel sets E. We claim that g is actually in Lq(dµ) (which is a stricter condition than being in L1 if µ is finite).

We take ψn(x) to be a nondecreasing sequence of simple functions, taking finitely many values, so that ψ1/qn → g

(from below). For example, we can take

ψn(x) =
j

2n
if |x | ≤ n,

j

2n
≤ |g(x)|q <

j + 1

2n

and define ψn(x) = 0 otherwise (if |x | ≥ n or |g(x)|q > 2n); notice that this does make ψn only take on finitely many

values. If we then define φn = (ψn)1/psgn(g), then ||φn||Lp = (
´
ψndµ)

1/p, and
ˆ
ψndµ =

ˆ
ψ1/pn ψ1/qn dµ =

ˆ
|ψn|1/q |φn|dµ ≤

ˆ
|g||φn|dµ =

ˆ
gφndµ

because φn and g always have the same sign. But φn is a simple function taking on finitely many values, so in fact this

last expression is F (φn) by our definition on simple functions. Since φn is in Lp, we can thus bound this by ||F ||·||φn||Lp .
Putting this together, ˆ

ψndµ ≤ ||F || · ||φn||Lp = ||F ||
(ˆ

ψndµ

)1/p
.

Dividing by
(´
ψndµ

)1/p
on both sides yields

(´
ψndµ

)1/q ≤ ||F ||, so we see that(ˆ (
|ψn|1/q

)q
dµ

)1/q
≤ ||F || =⇒ |||ψn|1/q ||Lq ≤ ||F ||.

Since the blue function converges to g, we must also have ||g||Lq ≤ ||F || by Fatou’s lemma, and thus g ∈ Lq.
This means that F (f ) =

´
f gdµ for all simple functions for some g ∈ Lq(Rn, dµ), and by density this means

F (f ) =
´
f gdµ for all f ∈ Lp(Rn, dµ) (a bounded linear functional defined on a dense set can be extended to the

whole space, and ||F (f )|| ≤ ||g||Lq ||f ||Lp by Holder so ||F || ≤ ||g||Lq . Putting the boxed statements together shows

that the two norms are equal.
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Now we remove the additional assumptions that we placed. If the total measure µ(Rn) is infinite, we now define

1R(x) = 1B(0,R)(x) for any R. we claim that ||f ·1R− f ||p → 0 as R→∞. Indeed, if we define FR(f ) = F (f ·1R) and

define µR to be the restriction of µ to B(0, R), then we can check that FR is a bounded linear functional on Lp(dµR).

Since the original measure was Radon, µR is finite, and thus FR(f ) =
´
f · 1RgRdµR =

´
f · 1RgRdµ. But if R1 > R2,

then gR1 = gR2 on B(0, R2), so if we define gR = g1R we have
ˆ
|gr |qdµ ≤ ||FR|| ≤ ||F || =⇒

ˆ
|g|qdµ ≤ ||F ||,

and the rest of this just follows from the above case.

The more interesting question is to ask about the case p = 1. Then F (f ) =
´
f gdµ for all simple functions for f

taking on finitely many values, and we can consider the sets {x : |g(x)| ≤ ||F ||+ ε}. We then know that

|
ˆ
E

gdµ| ≤ ||F || · ||1E ||L1 = ||F ||µ(E),

but taking E to be the set {x : |g(x)| ≤ ||F ||+ ε} we have (||F || + ε)µ(E) ≤ ||F ||µ(E), which can only happen if

µ(E) = 0. So |g(x)| ≤ ||F || almost everywhere, meaning g ∈ L∞ and ||g||L∞ ≤ ||F ||. The rest of the proof follows as

in the above case, and to show that the norm of F is exactly ||g||∞, we notice that F (f ) =
´
f gdµ ≤

´
f ||g||∞dµ =

||g||∞||f ||L1 , so ||F || ≤ ||g||L∞ and the matching inequality is proven.

Notice that none of this proof really relies on our space being Rn, as long as we have the Radon–Nikodym theorem.

Now we’re ready to look at the more challenging case of Cc(Rn). We know that we can integrate against L1, but

just having L1 is in some sense too restrictive because any function of compact support can integrate against 1 or

in general bounded functions. So we need a different sense of “bounded linear functional” as we do for functional

analysis:

Definition 95

A linear function L : Cc(Rn,Rm) (using Rm instead of R doesn’t complicate things too much more) is bounded
if for every compact set K, the quantity

LK = sup{L(f ) ∈ Cc(R,Rm) : supp(f ) ⊆ K, |f (x)| ≤ 1 ∀x ∈ Rn}

is finite.

(This is the same as being continuous in the compact open topology.)

Theorem 96

For any bounded linear function L : Cc(Rn,Rm), there is some Radon measure µ and a µ-measurable function

σ : Rn → Rm, such that the following properties hold:

1. |σ(x)| = 1 for µ-almost-every x ∈ Rn,

2. L(f ) =
´
Rn(f · σ)dµ for all f ∈ Cc(Rn;Rm).

In particular, if m = 1, then dν = σdµ is a signed measure (because σ takes values in R), and L(f ) =
´
f dν

for all f ∈ Cc(Rn).

Beginning of proof. We’ll just do the case m = 1. The key construction here is finding the Radon measure µ. Like in

the last proof, we want to say that L(f ) =
´
f dν and define L(1E) = ν(E) for all E. But 1E is not in Cc(Rn), so this
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is not a valid step. Instead, we define the variation measure for any open set V

µ∗(V ) = sup{L(f ) : f ∈ Cc(Rn,Rm), |f | ≤ 1, supp(f ) ⊆ V }

(this is basically an approximation to what we wanted to do in the previous proof), and then for an arbitrary set A we

define

µ∗(A) = inf{µ∗(V ) : V open, V ⊇ A}.

We must show that µ is a Radon measure. We do this by generalization: notice that the condition |f | ≤ 1, supp(f ) ⊆ V
is the same as saying that |f | ≤ 1V , so we should think of µ∗(V ) as (in some sense) the “integral of 1V .”) Motivated

by this, define for any positive function f ∈ C+c (Rn) (not just the indicator functions)

λ(f ) = {supL(g) : |g| ≤ f , g ∈ Cc(Rn)}.

We claim that λ is a linear functional and that λ(f ) =
´
f dµ. And now to get our function σ, we define for any scalar

f and vector e ∈ Rn

λe(f ) = L(f e) =

ˆ
f σedµ.

Then defining σ =
∑
σej (x)ej(x), we see that

f =
∑
(f · ej)ej =⇒ L(f ) +

∑
L((f · ej)ej) =

∑
λej (f · ej)

=
∑ˆ

(f · ej)σeidµ =
ˆ
(f · σ)dµ.

From there, the next step is to show that |σ| = 1.

We’ll continue the proof next time, but the point is to first set up an approximation µ∗ and then realize that we

need more, leading us to define λ. But the point is to represent λ as an integral against some measure, and that is

the key step.

13 November 17, 2022

We’ll continue proving Theorem 96 today, showing that for any linear functional L on Cc(Rn,Rm) such that sup{L(f ) :
f ∈ Cc(Rn;Rm), |f | ≤ 1, supp(f ) ⊆ K} is finite for any compact set K, we have a Radon measure µ and a function

σ : Rn → Rm so that |σ(x)| = 1 µ-almost-everywhere and L(f ) =
´
(f · σ)dµ for all f ∈ Cc(Rn). In particular, we get

a signed measure ν = σµ in dimension m = 1, meaning that such linear functional can be represented as integration

against a signed measure ν.

Proof continued. As we mentioned last time, the difficulty in constructing this µ is that we want to insert 1E instead

of f , but 1E is not continuous so we can’t apply L to it. So we defined

µ∗(V ) = sup{L(g) : g ∈ Cc(Rn;Rm), |g| ≤ 1, supp(g) ⊆ V }

for every open set V and let µ∗(A) be the infimum of µ∗(V ) over all open sets V ⊇ A for a general A. The point is

that g is supposed to play the role of plugging in an arbitrary 1E , so now we can define

λ(f ) = sup{L(g) : g ∈ Cc(Rn,Rm), |g| ≤ f }.

But before we go on, we need to prove a few properties. First we verify that as defined on V and A above, µ is a
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measure. We must check subadditivity first on open sets: if Vj ⊆ Rn and V =
⋃∞
i=1 Vj , then we can choose g supported

in V such that |g| ≤ 1. Then Kg = supp(g) is a compact set with Kg ⊆ V , so by compactness Kg ⊆
⋃k
i=1 Vj for some

finite subset. Taking ζj to be continuous functions such that supp(ζj) ⊆ Vj and
∑k

j=1 ζj = 1 on all of Kg (this is a

partition of unity), we see that

g =

k∑
j=1

gζj .

But |gζj | ≤ 1 because |g| ≤ 1 and |ζ| ≤ 1, and the support of gζj is contained in Vj , so |L(g(ζj))| ≤ µ∗(Vj) by the

definition of our measure µ. So |L(g)| ≤
∑k

j=1 µ
∗(Vj) ≤

∑∞
j=1 µ

∗(Vj). Finally taking a supremum over g, we see that

µ∗(V ) ≤
∑∞

j=1 µ
∗(Vj).

Now for showing subadditivity on general sets Aj , pick Vj ⊇ Aj so that µ∗(Aj) ≥ µ∗(Vj)− ε
2j

. Then

A =

∞⋃
i=1

Aj ⊆
∞⋃
j=1

=⇒ µ∗(A) ≤ µ∗
 ∞⋃
j=1

 Vj ≤∑µ∗(Vj) ≤
∑

µ∗(Aj) + ε,

so taking ε→ 0 yields the desired subadditivity in general.

Now we check that we have a Borel measure – for that, we use a nice criterion by Caratheodory:

Lemma 97

Let µ be a measure such that µ∗(A∪B) = µ∗(A) + µ∗(B) whenever dist(A,B) > 0. Then µ is a Borel measure.

(This is basically an exercise in the measure theoretic properties of being a closed set.) So if V1, V2 are open sets

that are a positive distance away from each other, then any function supported on the union of them can be broken

up into functions on each part, so µ∗(V ) = µ∗(V1) + µ∗(V2). Then if general A1, A2 are such that they are a positive

distance away from each other, we can find U1 ⊇ A1 and U2 ⊇ A2 so that dist(U1, U2) > 0 (for example take a small

ball of radius dist(U1,U2)
10 around every point and take the union. Then for any V ⊇ A1 ∪ A2, we have

V = (V ∩ U1) ∪ (V ∩ U2) ⊇ A1 ∪ A2

a union of two open sets, where A1 ⊆ V ∩ U1 and A2 ⊆ V ∩ U2 so

µ∗(V ) = µ∗(V1) + µ
∗(V2) =⇒ µ∗(A1 ∪ A2) ≥ µ∗(A1) + µ∗(A2)

(since we can always choose V so that µ∗(A1 ∪ A2) ≥ µ∗(V )− ε). Combining this with subadditivity, Caratheodory’s

criterion is satisfied and we have a Borel measure; Radon-ness follows by intersecting open sets in the definition of µ∗.

Next we check that λ as defined is a linear functional. Recall that

λ(f ) = sup{L(g) : g ∈ Cc(Rn,Rm), |g| ≤ f , f ∈ C+c (Rn)}

where f is a positive linear function on Cc(Rn). We claim that λ(f1+ f2) = λ(f1)+λ(f2); indeed, take g1 with |g1| ≤ f1
and g2 with |g2| ≤ |f2|. We will not actually take g = g1 + g2; instead we will take the “larger”

g = g1sgn(L(g1)) + g2sgn(L(g2)).

Call the two terms g′1 and g′2. Then |g| ≤ g′1 + g′2| ≤ f1 + f2, and

L(g) = |L(g1)|+ |L(g2)| = L(g′1) + L(g′2),

and by linearity of L this is equal to L(g′1+g
′
2) ≤ λ(f1+ f2), so λ(f1) + λ(f2) ≤ λ(f1 + f2) . For the other direction, if
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we take some g with |g| ≤ f1+f2, we can define gk = fk
f1+f2

g if f1+f2 > 0 and 0 otherwise for k = 1, 2. Then g = g1+g2
because the two sides are both zero if f1 + f2 = 0, and |g1| ≤ f1 and |g2| ≤ f2, so |L(g)| ≤ |L(g1)| + |L(g2)| =≤
λ(f1) + λ(f2). So taking the supremum over all g yields λ(f1 + f2) ≤ λ(f1) + λ(f2) . Putting those together shows

the result.

So λ is linear, and the next step is to show that λ is integration against this µ that we’ve defined. The construction

should somehow tell us what µ’s measure is on indicator functions, but as we mentioned previously we have to dance

around the issues of continuity. Choose a partition (fine mesh) 0 < t0 < t1 < · · · < tN = 2||f ||L∞ , such that

µ
(
f −1(tk)

)
= 0 for all k . (We do this so we don’t hit values where the preimage has a positive measure – this can

only happen on a countable set so there’s no issues.) Then the sets Ui = f −1(ti−1, ti) are open and bounded because

f is compactly supported, so µ(Uj) <∞ for all j .

We want to construct (scalar functions) hj such that 0 ≤ hj ≤ 1, supp(hj) ⊆ Uj , and µ(Uj)− ε
N ≤ λ(hj) ≤ µ(Uj).

(The idea is that we are making a good approximation to the characteristic function of hj .) Taking Kj compact so that

Kj ⊆ Uj for all j and such that µ(Uj \Kj) < ε
N , and finding (vector functions) gj ∈ Cc(Rn;Rm) so that supp(gj) ⊆ Uj

and and |L(gj)| ≥ µ(Uj)− ε
N , we can indeed choose hj of the form to be 1 on Kj ∪ supp(gj) (we want hj to be 1 on

Kj so it’s a good approximation of the indicator of Uj , and we want it to be 1 on supp(gj) so that hjgj = gj). Then

hj ≥ |gj | means that λ(hj) ≥ |L(gj)| ≥ µ(Uj)− ε
N , and we get the other bound λ(hj) ≤ µ(Uj) for free because we’re

defining on a more restrictive set in the supremum.

If we now look at the set where we don’t have hj = 1, namely

A = {f (x) > 0, 0 ≤ hj < 1 ∀1 ≤ j ≤ N}

(remember that the hjs have disjoint support so we just have to keep track of one at a time), then

µ(A) = µ

 N⋃
j=1

(Uj \ {hj = 1}

 ,
since f needs to be positive so it’s in one of the Ujs and hj cannot be 1. But this can be bounded by

µ∗

(
N⋃
i=1

Uj \Kj

)
≤

N∑
i=1

ε

N
= ε,

so the set A is small. And now if we plug into λ, by definition we have

λ

f − f N∑
j=1

hj

 = sup{|L(g)| : g ∈ Cc(Rn;Rm), |g| ≤ f − f ∑ hj

}

and f − f
∑
hj is nonzero only on A, so λ

(
f − f

∑N
j=1 hj

)
≤ µ(A)||f ||L∞ ≤ ε||f ||L∞ . That means

λ(f ) ≤
N∑
i=1

λ(f hj) + ε||f ||L∞ ≤
N∑
i=1

tjµ(Uj) + ε||f ||L∞

by definition of the sets Uj . But also by the upper bound on the sets Uj we know that

λ(f ) ≥
N∑
i=1

λ(f hi)− ε||f ||L∞ ≥
N∑
j=1

tj−1µ(Uj)− ε||f ||L∞ .

And since we basically did a Riemann sum approximation
∑
tjµ(Uj) and found upper and lower bounds, we now see
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why we needed the preimage of each tk to have measure zero – we needed
´
f dµ =

∑N
j=1

´
Uj
f dµ. This means that

∑
tj−1µ(Uj)

ˆ
f dµ ≤

∑
tjµ(Uj)

with upper and lower bound differing by at most ε(supp(f )), so∣∣∣∣λ(f )− ˆ
f dµ

∣∣∣∣ ≤ Cε
for some constant C independent of ε. Taking ε→ 0 proves λ(f ) =

´
f dµ.

Finally, we must construct the function σ. For any f̃ ∈ Cc(Rn) (scalar functions are with tildes) and e ∈ Sm−1,
we can define

λe(f̃ ) = L(f̃ e).

Since |f̃ e| ≤ |f̃ |, we know that |λe(f̃ )| ≤ λ(f̃ ) =
´
|f̃ |dµ (by definition of λ) and thus λe is a bounded linear functional

on L1(dµ) (it’s linear because L is linear). So by the previous Riesz representation theorem on Lp spaces, there is

some σe ∈ L∞(Rn) such that L(f̃ e) =
´
f̃ σedµ. But now f = (f · e1)e1 + (f · e2)e2 + · · · + (f · em)em, so we do

indeed have condition (2) of the theorem

L(f ) =

n∑
j=1

ˆ
(f · ek)σekdµ =

ˆ
(f · σ)dµ,

as long as we define σ =
∑

σek ek . So we now need to show condition (1), namely that |σ(x)| = 1 µ-almost-

everywhere. Taking any open set U, we can consider

σ′(x) =

σ(x)/|σ(x)| σ(x) ̸= 0,

0 σ(x) = 0.

By Lusin’s theorem, we can find Kj ⊆ U such that σ′(x) is continuous on Kj with µ(U \ Kj) < 1
j . Furthermore, we

can extend σ′(x) to a continuous function fj on all of Rn such that |fj(x)| ≤ 1 (the norm is not increased). Now take

some “cutoff function” hj which is 1 on Kj and where the support of hj is contained in U (this we can always do), such

that 0 ≤ hj ≤ 1 everywhere. Then the sequence of functions gj = fjhj has |gj | ≤ 1, supp(gj) ⊆ U, and gj · σ only

differs from |σ| is on the set U \Kj , which has vanishing measure. Thus gj · σ → |σ| in probability (the set where the

difference is large goes to zero), so there is a subsequence gjk where we have convergence almost everywhere.

Now
´
|σ|dµ ≤ limk→∞(gjk · σ)dµ, but because gjk is continuous this is just limk→∞ L(gjk). This is at most µ(U)

because gjk ≤ 1 and is supported inside U, which means
´
|σ|dµ ≤ µ(U). But µ(U) is a supremum of

´
f · σdµ over

all f satisfying our conditions, and because |f | ≤ 1 that is always at most |σ|dµ. Putting these inequalities together,

we must actually have µ(U) =
´
U |σ|dµ for all open sets U, which means |σ| = 1 µ-almost-everywhere as desired.

14 November 29, 2022

We’ll discuss the Fourier transform today, first analyzing everything on the circle S1. The idea is the following: if

f (x) is a periodic function (so that it can be defined on S1), we wish to write f (x) =
∑

k∈Z fke
2πikx . We know

that the inner product ⟨e2πikx , e2πimx ⟩ = δkm (we have an orthonormal set), so if the coefficients fk exist, then we

must have fk = ⟨f , e2πikx ⟩ =
ˆ 1
0

f (x)e−2πikxdx . Then there are two separate questions here – we want to ask
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whether
∑

k∈Z fke
2πikx actually converges to f (x), and we also want to know if a function can be approximated by

trigonometric polynomials (for example, approximating sounds in music with pure sounds). We’ll start with the first

of these questions:

Lemma 98 (Riemann-Lebesgue)

Let f ∈ L1(S1). Then fk → 0 as k →∞.

Proof. We know that fk =
´ 1
0 f (x)e

−2πikxdx . An “engineer’s proof” would use integration by parts, saying that´ 1
0 f (x)

(
− 1
2πik

d
dx (e

−2πikx) dx = 1
2πikx

´ 1
0 f
′(x)e−2πikxdx and thus |fk | ≤ 1

2π|k| ||f
′||L1 . But of course this doesn’t work

because we don’t know that f ′ is in L1.

Instead, we can write the coefficient as

fk =

ˆ
f

(
x +

1

2k

)
e−2πik(x+

1
2k
)dx = −

ˆ
f

(
x +

1

2k

)
e−2πikxdx,

where we’ve used that eπi = −1. Thus fk = 1
2

´ (
f (x)− f (x + 1

2k )
)
e−2πikxdx (by averaging the two expressions we

got), but now that means by triangle inequality that

|fk | ≤
1

2

ˆ 1
0

∣∣∣∣f (x)− f (x + 12k
)∣∣∣∣ dx

goes to 0 as k →∞ for any f ∈ L1(S1) as we’ve proved more generally before.

So the decay rate depends on how quickly
´
|f (x) − f (x + ε)|dx goes to 0, which is a question of how quickly f

oscillates. So Fourier coefficients decay faster or slower depending on scales of variation of f .

Corollary 99

As m →∞, we have
´
f (x) sin(2πmx)dx → 0 and

´
f (x) cos(2πmx)dx → 0.

Towards showing convergence, we can now define the partial sums

SN f (x) =

N∑
k=−N

fke
2πikx

for each N, which we can write out explicitly as

ˆ 1
0

f (t)

N∑
k=−N

e−2πik(x−t)dt.

Changing variables, this is the same as

=

ˆ 1
0

f (x − t)
N∑

k=−N
e2iπktdt =

ˆ 1
0

f (x − t)DN(t)dt.

So we are basically doing a convolution of f with the Dini kernel DN(t) =
∑N

k=−N e
2πikt , so in order for this to

converge to f we should have basically an approximation of identity (so DN should approach the delta function,

looking like 1εg
(
x
ε

)
for some function g with

´
gdx = 1). Since the Dini kernel is a geometric series, we can explicitly

calculate and find that

DN(t) =
sin((2N + 1)πt)

sin(πt)
.
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Unfortunately, such a function oscillates between positive and negative values near t = 0, but it is true that´ 1/2
−1/2DN(t)dt = 1 from the original formula for the Dini kernel. On the other hand, the L1 norm of DN is´ 1/2
−1/2 |DN(t)|dt can be calculated by noticing that

sin((2N + 1)πt)

πt
+

(
1

sin(πt)
−
1

πt

)
sin((2N + 1)πt),

where the second term here is bounded, so we roughly have
´ 1/2
−1/2 |DN(t)|dt = O(logN). So that’s not good, because

we’re convolving with something not of L1 norm 1. Instead, having any hope of convergence SN f (x) → f (x) would

rely on having lots of cancellations between the different e2πikts. And if f (x − t) follows the oscillations of the Dini

kernel, then
´ 1
0 f (x − t)DN(t)dt could be huge. So we need a way to prohibit that, ensuring that f is “almost a

constant” near x :

Theorem 100 (Dini criterion)

Let f ∈ L1(S1). Suppose that at some given x and for some δ > 0, we have
´
|t|<δ

|f (x+t)−f (x)|
|t| dt < ∞. (For

example, this holds if f is Lipschitz or even Holder with any exponent.) Then limN→∞ SN f (x) = f (x).

Proof. Since DN integrates to 1, we have

SN f (x)− f (x) =
ˆ 1/2
−1/2

DN(t)(f (x − t)− f (x))dx.

By the explicit form of the Dini kernel, this can be written as

=

ˆ 1/2
−1/2
(f (x − t)− f (x))

sin ((2N + 1)πt)

sin(πt)
dt.

Splitting this integral into the part A where |t| < δ and the part B where |t| > δ, the first integral can be written as

A =

ˆ
f (x − t)− f (x)
sin(πt)

1{|t| < δ} sin(π(2N + 1)t)dt.

Calling the blue part gx(t), by the Dini criterion we know that gx(t) ∈ L1 (because sin(πt) and t are basically constantly

related near 0), so by Riemann-Lebesgue (specifically Corollary 99) this goes to zero as t → 0. And for the second

integral, we have

B =

ˆ
|t|>δ

f (x − t)− f (x)
sin(πt)

sin(π(2N + 1)t)dt,

and this also goes to zero by Riemann-Lebesgue because for |t| > δ, f (x−t)−f (x)
sin(πt) is not even singular (it’s bounded

away from 0) and thus is integrable.

Corollary 101

For any δ ∈ (0, 12), we have
´ δ
−δ DN(t)dt → 1 as N →∞.

Proof. The function f = 1{|t| ≤ δ} satisfies the Dini criterion at x = 0, and f (0) = 1.

In particular, this shows that all of the oscillations cancel between the terms in the Dini kernel except at t = 0.

Theorem 102 (Jordan’s criterion)

Let f be a function of bounded variation. Then SN f (x) converges to 1
2(f (x

+) + f (x−)) for all x .

51



(This statement is actually a bit misleading – if we have a jump in our function f at some point x , then representing

the jump as a Fourier series will actually have spikes in the opposite directions from the jump which get closer and

closer to the point of discontinuity but do not decrease in height. This is called the Gibbs phenomenon, and it’s why

Fourier series are not used in approximations for things like photos.)

Proof. Without loss of generality, we may set x = 0 and say that f (x) is increasing near x = 0. We can then write

SN f (0) =

ˆ 1/2
0

[(f (t) + f (−t)]DN(t)dt =
ˆ 1/2
0

f (t)DN(t) +

ˆ 1/2
0

f (−t)DN(t)

(here we use that the Dini kernel is even so D(x) = D(−x)). Denote these two terms by A and B. Since f is

increasing, it has left and right limits, so we can say that f (0+) ≤ f (t) ≤ f (0+) + ε for all 0 ≤ t ≤ δε. We then see

that

A =

ˆ 1/2
0

f (t)DN(t)dt =

ˆ δε

0

f (t)DN(t) +

ˆ 1/2
δε

f (t)DN(t).

For any fixed ε, the second term goes to zero because we’ve cut off the singularity and then can use Riemann-Lebesgue

after moving the sin(πt) to f (t) like before. We can now check (exercise) that if h is increasing and φ is continuous,

then
´ b
a h(x)φ(x)dx = h(a

+)
´ c
a φ(x)dx + h(b

−)
´ b
c φ(x)dx for some intermediate c . So the first term of A is

f (0+)

ˆ cε

0

DN(t)dt + f (δ
−
ε )

ˆ δε

cε

DN(t)dt = f (0
+)

ˆ δε

0

DN(t)dt + ((f (δ
−
ε )− f (0+))

ˆ dε

cε

DN(t)dt.

So as N → ∞ and ε is fixed, the first term goes to 1
2 f (0

+) (because we know the integral from −δε to δε of DN(t)

goes to 1, and we’re taking hal fof that). And now |
´ b
a DN(t)dt| is bounded by a constant C for all N (exercise again),

so the second term goes to 0 by making ε sufficiently small. (So taking ε small to make the second term small, then

taking N large to make the other terms large, gives us the result.) Similarly the f (0−) term comes from T̃N .

Theorem 103 (Localization principle)

Suppose f ∈ L1 with f (x) = 0 for all x ∈ (−δ, δ). Then SN f (0)→ 0.

Proof. Since SN f (0) =
´
f (−t)DN(t)dt and f vanishes near 0, we can rewrite as

´ f (−t)1{|t|≥δ}
sin(πt) sin((2N + 1)πt)dt,

which goes to zero by Riemann-Lebesgue.

This is an interesting result – it tells us that changing f away from 0 does not change the value of the Fourier

series, so the Fourier series is global in its definition but local in the sense that the Fourier series only depends on an

interval around x .

On the other hand, not all Fourier series will converge pointwise:

Theorem 104 (Du Bois-Raymond)

There is a continuous function f ∈ C(S1) whose Fourier series diverges at x = 0.

There are various examples – the idea is to build a function that is continuous but with lots of oscillations “separated

in frequency.” And we’ll use a completely different result to prove it:

Theorem 105 (Banach-Steinhaus)

Let X be a Banach space, and let Tα be a collection of bounded linear operators on X → Y . Then either

supα ||Tα|| <∞, or there is some x0 ∈ X such that supα ||Tα(x0)|| =∞.
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In other words, we can notice that the norms of the operators can blow up by looking at some point x0.

Proof. Fix α, and define φα = ||Tαx ||. Each φα is continuous as a function X → R, and we can define φ(x) =

supα φα(x). Consider the set Vn = {φ(x) > n}, which is the union
⋃
α{φα(x) > n}. Each {φα(x) > n} is open, so

Vn is open. So there are two possibilities: in the first case, there is some N such that VN is not dense, meaning there

is a ball with B(x0, r) ∩ VN = ∅. But then ||Tα(x0 + z)|| ≤ N for all ||z || ≤ r , so ||Tα(z)|| ≤ N + ||Tα(x0)|| ≤ 2N,

meaning that each ||Tα|| has norm at most 2Nr and thus the operator norms are bounded. Otherwise, all VN are dense,

meaning that by Baire category theorem
⋂
VN is nonempty. Thus there is some x0 with supφα(x0) =∞.

Proof of Theorem 104. The operator SN f (0) maps continuous functions to R via f 7→
´
f (x − t)DN(t)dt. Then

|SN f (0)| ≤ ||f ||C(S1)||DN ||L1 , and in fact the norms ||SN ||C[0,1]→R and ||DN ||L1 are equal (because we can take f to

basically be an approximation of sgn(DN(t)) since N is finite, and then the supremum norm of SN f is 1 and the L1

norm of DN is basically the integral of DN , which is 1). But then ||DN ||L1 blows up as O(logN), so the first case of

Banach-Steinhaus does not hold. Thus there is some f where sup |SN f (0)| =∞, meaning the Fourier series does not

converge.

The point is that the Dini kernel has some problems because of its oscillations, and there is a well-established way

to get rid of those oscillations. This is related to the idea of summing the divergent series 1− 1+ 1− 1+ · · · ; we can

either taking the limit of 1 + r + r2 + · · · = 1
1−r as r → −1 or we can look at the Cesaro sums CN = S1+···+SN

N (that

is, averaging the partial sums 1, 0, 1, 0, · · · , which also converges to 1
2). This latter approach turns out to work well if

we try taking Cesaro averages of the Fourier series

S1f (x) + · · ·+ SN f (x)
N

=

ˆ 1/2
−1/2

f (x − t)
1

N

N∑
k=−N

Dk(t)dt.

By working with some trigonometric identities, it turns out that the Fejer kernel

FN(t) =
1

N + 1

N∑
k=0

Dk(t) =
1

N + 1

sin2(π(N + 1)t)

sin2(πt)

is much more well-behaved –
´ 1/2
−1/2 f (x − t)FN(t)dt is now convolution of f against a nonnegative function, and it’s

also a trigonometric polynomial because Dk is. And we’ll see that it does, and while it’s not the Fourier series, it’s still

a good approximation of f by trigonometric polynomials.

15 December 1, 2022
We’ll start today by going into more detail about Cesaro summmation and the Fejer kernel. Recall that the Fourier

series on a torus are defined via

fk =

ˆ 1
0

f (x)e−2πikxdx,

and we found that the partial sums SN f =
∑N

k=−N fke
2πikx can be written as convolution of f with the Dini kernel

DN . This kernel has the nice property that
´ 1/2
−1/2DN(t)dt = 1, but unfortunately its oscillation means that its L1

norm grows as logN, and thus there is a continuous function whose Fourier series diverges at a point. So instead, we

now consider

σN f (x) =
1

N + 1

n∑
k=0

Sk f (x),
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which we can write again as convolution over the whole circle
´ 1/2
−1/2 FN(t)f (x − t)dt, where this time we’re convolving

with the Fejer kernel

FN(t) =
1

N + 1

sin2(π(N + 1)t)

sin2(πt)
.

This is a better kernel because we still have
´ 1/2
−1/2 FN(t)dt = 1 (it’s an average of D0, D1, · · · , DN), but FN is

nonnegative and goes to zero as N → ∞ uniformly on any interval |δ| < t < 1/2 for δ > 0 (that is, any interval not

containing 1). Therefore
´
δ<|t|<1/2 FN(t)dt → 0 as N →∞, giving us the following result:

Theorem 106

If f ∈ Lp(S1) for some 1 ≤ p <∞, then limN→∞ ||σN f −f ||p = 0. Additionally, if f ∈ C(S1), then limN→∞ ||σN f −
f ||C(S1) = 0.

(Here, the C(S1) norm is the supremum norm.)

Proof. We may write (using that
´
FN(t)dt = 1)

σN f (x)− f (x) =
ˆ 1/2
−1/2

FN(t)[f (x − t)− f (x)]dt.

By the Minkowski inequality, we then have

||σN f − f ||p ≤
ˆ 1/2
−1/2

FN(t)||f (· − t), f (·)||Lpdt.

We can now split up this integral into the parts where |t| < δ and δ < |t| < 1/2. The latter of those terms is bounded

by 2||f ||p
´
δ<|t|<1/2 FN(t)dt, which we’ve already shown goes to 0 as N → ∞ by uniform convergence. And for the

first term, we use the fact that ||f (·− t)− f (t)||Lp = 0 for any function f ∈ Lp (as we’ve proven in various situations).

Thus the first term is at most
´
|t|<δε FN(t)dt · ε < ε for all N (and here notice that it’s important we’re using FN

instead of DN , because the latter would have required an absolute value in the integrand and we’d grow with N). So

basically we choose δ small enough to make the first term small, then choose N to make the second term small. The

continuous norm case is basically the same argument verbatim.

Corollary 107

Trigonometric polynomials are dense in Lp(S1) and C(S1) for any 1 ≤ p <∞.

Corollary 108 (Parseval’s identity)

The Fourier transform is an isometry from L2 to ℓ2.

Proof. If we define ek(x) = e2πikx for each integer k , then the span of all ek are dense in L2([0, 1]) (we don’t need

to impose periodicity at x = 0 because we’re defined up to a set of measure zero anyway), so we get a basis for L2.

Then for any f , we have f =
∑

k⟨f , ek⟩ek , meaning that

||f ||L2 =
∑
|⟨f , ek⟩|2 =

∑
|fk |2

as desired.
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Corollary 109

For all f ∈ L2([0, 1]), we have SN f → f in L2[0, 1]).

In other words, the Fourier series always converges in L2.

Proof. We have

⟨SN f − f , SN f − f ⟩ = ⟨SN f , SN f ⟩ − 2⟨f , SN f ⟩+ ||f ||2

and now by orthogonality of the basis ⟨f , SN f ⟩ = ⟨SN f , SN f ⟩ (the subsequent terms are all zero after the Nth partial

sum) and thus this is

= ||f ||2 − 2⟨SN f , SN f ⟩+ ||f ||2 = 2(||f ||2 − ||SN f ||2) = 2
∑
k>n

||fk ||2,

which goes to zero because we’re taking a tail sum.

Corollary 110

If f ∈ L1([0, 1]), and fk = 0 for all k , then f = 0.

Proof. If all Fourier series are zero, then all Cesaro sums are zero, and thus σN f = 0 for all f meaning ||f ||1 = 0.

We can apply these results to ergodicity of irrational rotations: for any irrational α, consider the map Tα(x) =

(x +α) mod 1 on [0, 1] (or equivalentl S1). We may ask if there are any invariant sets for Tα – suppose that R is such

a set. Then if we define f (x) = 1{x ∈ R}, then f (x + α) = f (x) by definition. But then the Fourier coefficient fk is

fk =

ˆ
f (x + α)e−2πikxdx =

ˆ
f (x)e−2πik(x−α) = e2πikαfk ,

and α is irrational so e2πikα is not 1 whenever k ̸= 0, so fk = 0 for all nonzero k . By the above corollary, that means

fk is constant, so µ(R) is either 1 (if f = 1 almost everywhere) or 0 (if f = 0 almost everywhere).

Remark 111. However, there are invariant sets that are not just the empty set or the whole set – for example, the

orbit of any single point will be countable, thus of measure zero, and it will be invariant under Tα.

With that, we’re now ready to talk about Fourier transforms:

Definition 112

For any f ∈ L1(Rn), define the Fourier transform

f̂ (ξ) =

ˆ
Rn
f (x)e−2πix ·ξdx.

For any ξ, we have |f̂ (ξ)| ≤ ||f ||L1 by the triangle inequality for integrals, so ||f̂ ||L∞ ≤ ||f ||L1 . Also,

|f̂ (ξ)− f̂ (ξ′)| ≤
ˆ
Rn
|f (x)||e−2πixξ − e−2πixξ′ |dx,

and the integrand is bounded by 2|f (x)| and converges pointwise, so it goes to zero as ξ′ → ξ by the dominated

convergence theorem. Thus f̂ is continuous (in other words, the Fourier transform is a bounded map into continuous

functions).
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One of the most useful properties of the Fourier transform is algebraic, and to understand that we must define a

class of functions called the Schwartz class. For some motivation, notice that if f ∈ C∞c (Rn), then we can write the

Fourier transform of its derivative

∂̂f

∂xk
(ξ) =

ˆ
∂f

∂xk
(x)e−2πiξ·xdx = 2πiξk f̂ (ξ)

by integration by parts (the negative sign from integration by parts and the exponent cancel out). On the other hand,

the integration by parts in the reverse direction yields

x̂k f (ξ) =

ˆ
xk f (x)e

−2πiξxdx =

ˆ
f (x)

(
−
1

2πi

)
∂

∂ξk
e−2πiξ·x

and because f behaves nicely we can pull the derivative out of the integral to find that

x̂k f (ξ) = −
1

2πi

∂

∂ξk
f̂ (ξ).

So there is a duality between multiplication in one space (regular function space and Fourier space) and differentiation

in the other, and we want to make sure that we can repeatedly apply these operations without any issues.

Definition 113

A function f is in the Schwartz class S(Rn) if for any multi-indices α, β , we have |x |α
∣∣∣ ∂β f∂xβ

∣∣∣ bounded by some

constant pαβ(f ) (more precise definition below).

In other words, all derivatives of f must decay faster than any polynomial in the Schwartz class – more properly,

we actually define

pαβ(f ) = sup
x
⟨x⟩α

∣∣∣∣∂βf∂xβ

∣∣∣∣ , ⟨x⟩α = (1 + x21 )α1/2 · · · (1 + x2n )αn/2

to avoid having issues with singularity at x = 0. (And this is not a normed space, but we can define a topology on it.)

We say that fn → 0 in S(Rn) if for all α, β fixed, pαβ(fn) → 0 as n → ∞. And it turns out that fn converge to zero

in the Schwartz class if and only if the Fourier transforms f̂n converge to zero, so the Fourier transform F is actually

a continuous linear operator S(Rn)→ S(Rn).

Theorem 114

For all f , g ∈ S(Rn), we have
´
Rn f (x)ĝ(x)dx =

´
Rn f̂ (x)g(x)dx and f (x) =

´
Rn f̂ (ξ)e

2πiξ·xdξ.

The first statement here is another statement of Parseval, and the second is the Fourier inversion theorem.

Proof. By Fubini’s theorem, ˆ
f (x)ĝ(x)dx =

ˆ ˆ
f (x)g(ξ)e2πiξ·xdxdξ

and now because all of these functions decay we are integrable and we can change the order of integration to

=

ˆ ˆ
f (x)g(ξ)e2πiξ·xdξdx =

ˆ
f̂ (x)g(x)dx.

The second result is more interesting – we start by proving it for just a single function:

Lemma 115

If f (x) = e−π|x |
2
, then f̂ (ξ) = e−π|ξ|

2
.
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Proof of lemma. Since f is the product of the functions e−πx
2
i for 1 ≤ i ≤ n, it suffices to prove this for n = 1. We

know that f̂ (0) =
´
R f (x)dx = 1 by multivariable calculus arguments, and ∂f

∂x = −2πxf , meaning that we have the

differential equation

f ′(x) = 2πxf = 0, f (0) = 1.

Taking the Fourier transform of this equation, we see that

2πiξf f̂ (ξ) + (2π)

(
−
1

2πi

)
df̂ (ξ)

∂ξ
= 0 =⇒ 2πiξf̂ (ξ) +

∂f̂

∂ξ
= 0,

and we also know that f̂ (0) = 1. Thus the first-order ODEs for f and f̂ are identical, including the initial condition,

and thus f and f̂ are the same function.

(The lemma can also be proved with direct computation, but that does require some calculation with contour

integrals.) Returning to the proof, we essentially want to choose ĝ to be a delta function, but that requires some work

with distributions and so on, and the idea is to scale g so that it looks more and more peaked. We know that
ˆ
f (x)ĝ(λx)dx =

ˆ ˆ
f (x)g(ξ)e−2πiξλxdξdx

again by the same trick, and now we can integrate in x first to get

=

ˆ
f̂ (λξ)g(ξ)dξ =

1

λn

ˆ
f̂ (ξ)g

(
ξ

λ

)
dξ.

Multiplying by λn and making λx our new variable, we see that
ˆ
f
( x
λ

)
ĝ(x)dx =

ˆ
f̂ (ξ)g

(
ξ

λ

)
dξ.

Taking λ → ∞, because f is continuous and ĝ is integrable the left-hand side becomes f (0)
´
ĝ(x)dx , and similarly

the right-hand side becomes ĝ(0)
´
f̂ (ξ)dξ. Moving all the terms involving f to one side and those involving g to the

other, this means that
´
f̂ (ξ)

f (0) is a constant independent of f , and if we plug in f = e−π|x |
2
, we know that f (0) = 1 and´

f̂ (x) =
´
f (x)dx = 1, so f (0) = f̂ (ξ)dξ for any function f . Finally, if we define fy (x) = f (x + y), then fy (0) = f (y)

and f̂y (ξ) = e−2πiξy f (ξ), so replacing f with fy above gives us the desired inversion formula.

Since the characteristic function of a random variable is the Fourier transform of its associated probability measure,

we can prove the central limit theorem and law of large numbers using Fourier transforms. But that’ll be left to a

probability theory class, and here our next step is to try to extend the Fourier transform beyond the definition on L1 or

L2. The idea is to try to define actions on the “intermediate” spaces in between two Lp spaces if we have an operator

defined on the extremes, and this is the Riesz-Thorin interpolation theorem.

Example 116

Suppose f ∈ Lp0(Rn) and f ∈ Lp−1(Rn), and consider some p0 ≤ p ≤ p1. Then we can write p = (1− t)p0+ tp1
for some t ∈ [0, 1], meaning that

ˆ
|f |pdµ =

ˆ
|f |(1−t)p0+tp1 ≤

(ˆ
|f |(1−t)αp0

)1/α(ˆ
|f |tp1β

)1/β
by Holder’s inequality whenever 1α +

1
β = 1.

The point is that we want to apply this when 1
α = 1− t, which automatically makes 1β = t, because we then have
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an inequality of the form

ˆ
|f |pdµ ≤

(ˆ
|f |p0

)1−t (ˆ
|f |p1

)t
=⇒ ||f ||pp ≤ ||f ||(1−t)p0p0 ||f ||tp1p1

So we can bound a function’s Lp norm by its p0 and p1 norms. So now we may ask a more general question: if

A : Lp0(M,µ) → Lq0(N, ν) and A : Lp1(M,µ) → Lq1(N, ν), and we have some p with p0 ≤ p ≤ p1, we may want to

ask if A maps Lp(M,µ) to some Lq(N, ν) with q0 ≤ q ≤ q1. Specifically, we wish to get a bound of the form

||A||Lp→Lq
?−→ ≤||A||sLp0→Lq0 ||A||tLp1→Lq1

for some powers s, t depending on the ps and qs. First of all, by scaling of A we know that we must have s+ t = 1 (or

else we could multiply A by some large or small λ), but there is also a scaling invariance associated with the “dimension”

of the measures µ and ν. If we assume f has no dimension, which we denote [f ] = 1, then the dimension of the Lp

norm of our function is [
||f ||Lp(M,µ)

]
=

[ˆ
|f (x)|pdµ

]1/p
= [µ]1/p,

and thus the dimension of A has units of ||A||Lq||A||Lp =
[ν]1/q

[µ]1/p
. Thus we must actually have

[ν]1/q

[µ]1/p
=

(
[ν]1/q0

[µ]1/p0

)s (
[ν]1/q1

[µ]1/p0

)t
,

Thus we must actually have
1

q
=

s

q0
+
t

q1
,
1

p
=

s

p0
+
t

p1
, s + t = 1.

In other words, we can only hope to have an interpolation result if 1p =
1−t
p0
+ t

p1
and 1

q =
1−t
q0
+ t

q1
– for any value of

p we can determine t and there is only one possible value of q for which we can get a bound on the operator. And it

turns out that such a bound does always hold, and in fact there is no additional constant required:

Theorem 117 (Riesz-Thorin)

Let A be a bounded operator Lp0(M,µ) → Lq0(N, ν) of norm k0 and also a bounded operator Lp1(M,µ) →
Lq1(N, ν) of norm k1. Let p be such that 1p =

1−t
p0
+ t

p1
and q such that 1q =

1−t
q0
+ t

q1
for some 00 ≤ t ≤ 1. Then

A is a bounded operator with

||A||Lp→Lq ≤ k1−t0 k t1.

(And indeed, when t = 0 this bound is k0, and when t = 1 this bound is k1, so this is the best we can hope the

inequality to be.) We’ll discuss some corollaries and the proof next time – even though the statement is functional

analysis, we’ll prove it using complex analysis.

16 December 6, 2022
We’ll continue discussing Riesz-Thorin interpolation today – recall the motivation that any function f ∈ Lp1∩Lp2 is also

in Lp for all p1 ≤ p ≤ p2 by Holder’s inequality. We then want to see whether an operator A : Lp0(M,µ)→ Lq0(N, ν)

which also maps Lp1(M,µ) → Lq1(N, ν) also maps Lp → Lq for p ∈ [p0, p1] and q ∈ [q0, q1]. By some dimensional

analysis arguments, we showed last time that this could only hold if 1
qt
= 1−t

q0
+ t

q1
and 1

pt
= 1−t

p0
= t

p1
for some

0 ≤ t ≤ 1, and Theorem 117 asserts that in fact this does happen. Specifically, if A : Lp0(M,µ) → Lq0(N, ν) has

norm k0 and A : Lp1(M,µ)→ Lq1(N, ν) has norm k1, then A : Lpt (M,µ)→ Lqt (N, ν) will have norm k1−t0 k t1.
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Corollary 118

The Fourier transform maps Lp(Rn)→ Lp
′
(Rn), where 1p +

1
p′ = 1, for all 1 ≤ p ≤ 2.

Proof. We know F maps L1 → L∞, since ||f̂ ||L∞ ≤
´
|f (x)|dx = ||f ||L1 by definition. Also, F maps L2 → L2 – in

fact it is an isometry on L2 by Parseval’s identity. So p0 = 1, p1 = 2, q0 =∞, q1 = 2, meaning that

1

pt
=
1− t
1
+
t

2
,
1

qt
=
1− t
∞ +

t

2

and we see that these indeed always add to 1 and pt ranges from 1 to 2, meaning Riesz-Thorin applies automatically.

Corollary 119

Suppose f ∈ Lp(Rn), and g ∈ Lq(Rn). Then f ∗ g ∈ Lr (Rn), where 1r + 1 =
1
p +

1
q .

Proof. Notice that

||f ∗ g||L1 ≤
ˆ
|f (x)||g(x − y)|dydx = ∥f ||L1 ||g||L1 ,

and on the other hand

||f ∗ g||L∞ ≤ sup
x

∣∣∣∣ˆ f (y)g(x − y)dy
∣∣∣∣ ≤ ||f ||L∞ ||g||L1 .

So for any g ∈ L1, the map f 7→ f ∗ g is bounded in norm by ||g||1 as a map L1 → L1 and also as a map L∞ → L∞.

Thus by Riesz-Thorin, this means that (notice pt = qt for all t here) ||f ∗ g||Lp ≤ ||g||L1 ||f ||Lp , which proves the case

q = 1.

For the general case, notice that

||f ∗ g||L∞ ≤ ||f ||Lp ||g||Lp′

where 1p +
1
p′ = 1, by applying Holder’s inequality on

´
f (y)g(x − y)dy for some fixed x . So g 7→ f ∗ g is bounded as

a map Lp
′ → L∞ and as a map L1 → Lp, with both norms given by ||f ||p. Thus by Riesz-Thorin again, for

1

pt
=
1− t
p′
+
t

1
,
1

qt
=
1− t
∞ +

t

p
,

we have ||f ∗ g||Lqt ≤ ||f ||Lp ||g||Lpt . Setting pt = r and qt = s, we find 1
r =

1−t
p′ + t = (1− t)−

1−t
p + t = 1−

1−t
p =

1− 1
p +

1
s (by definition of p′), so we indeed have 1p +

1
q = 1 +

1
r .

The point is that in practice, estimating L1, L2, L∞ norms are the easiest to do, and the rest are a lot trickier. But

this gives us a tool to analyze the spaces in between.

For proving Riesz-Thorin, we’ll use a complex analytic fact:

Theorem 120 (Three lines theorem)

Let F (z) be a bounded analytic function in the infinite strip S = {0 ≤ Re(z) ≤ 1}, and suppose that |F (iy)| ≤ m0
and |F (1 + iy)| ≤ m1 for all y ∈ R (with m0, m1 > 0). Then |F (x + iy)| ≤ m1−x0 mx

1 for all x + iy ∈ S.

Basically, if our analytic function is bounded on the left and right line, then it’s bounded in the middle in an

interpolated way.

Proof. Define F (z) = m1−z0 mz
1G(z), so that (letting z+x+iy) |G(z)| = |F (z)|

m1−x0 mx
1

, meaning |G(iy)| ≤ 1 and |G(1+iy)| ≤
1 for all y . Then we just need to show that |G(z)| ≤ 1 for all z ∈ S. This looks a lot like the maximum modulus

principle, but that result only applies to bounded domains.
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So instead, first assume that G(z) → 0 as y → ∞, uniformly in x . If this happens, then we can find some large

enough R such that we can restrict to the rectangle where |Im(z)| ≤ R, and then the maximum modulus principle

tells us G is less than 1 inside the rectangle, and above or below this rectangle uniform convergence to zero already

tells us the result. Otherwise, define Gn(z) = G(z)e(z
2−1)/n. Then

|Gn(iy)| ≤ e(−y
2−1)/n ≤ 1, |Gn(1 + iy)| ≤ e−(1−y

2−1)/n ≤ 1,

and |Gn(x + iy)| is bounded by a constant because F was bounded by a constant C and m1−x0 , mx
1 are also bounded

by constants from below. More specifically

|Gn(x + iy)| ≤ Ce(x
2−1−y2)/n ≤ Ce−y2/n,

which goes to zero as |y | → ∞, and thus by the previous case |Gn(z)| ≤ 1 for all n. Since Gn(z)→ G(z) for each z ,

this means |G(z)| ≤ 1 as well, as desired.

Proof of Theorem 117. We first want to show that A maps Lpt into Lqt . For any f ∈ Lpt (M,µ), we can write

f = f0 + f1 = f 1{|f (x)| ≥ 1}+ f 1{|f (x)| < 1}.

We know that |f0|p0 ≤ |f0|p1 (because both sides are nonzero only when f ≥ 1), so
´
|f0|p0 ≤

´
|f0|p1 ≤

´
|f |p1 , which

is finite. Similarly we see that
´
|f1|p1 ≤

´
|f1|p0 ≤

´
|f |p0 <∞. This means that any function f ∈ Lpt can be written

as a sum of a function in Lp0 and a function on Lp1 , and we can define Af = Af0 + Af1. This makes A defined on

Lp0 ∩ Lp1 , which is dense in Lpt .

Now recall by the Riesz representation theorem (this is the other Riesz from the one in Riesz-Thorin) that the

operator Lf defined by Lf (g) =
´
f gdµ is an operator Lq

′ → R with norm ||f ||Lq . The definition of the operator norm

of A can thus be thought of as

||A||Lp(µ)→Lq(N) = sup
||f ||Lp=1

||Af ||Lq = sup
||f ||Lp (M)=1
||g||

Lq
′
(N)
=1

ˆ
(Af )gdν.

Since simple functions are dense in Lp(M) and Lq
′
(N) (notice that we only care about the “intermediate” spaces, so

we can assume p, q′ are not ∞), we can just take the supremum over simple functions f and g of appropriate norm

1. Letting aj , αj , bj , βj be arbitrary real numbers, we can write

f (x) =

n∑
j=1

aje
iαj1{x ∈ Aj}, g(y) =

m∑
j=1

bje
iβj1{y ∈ Bj}.

If we then define 1
p(ζ) =

1−ζ
p0
+ ζ

p1
and 1

q(ζ) =
1−ζ
q0
+ ζ

q1
, then consider the function

u(x, ζ) =
∑

a
pt/p(ζ)
j e iαj1{x ∈ Aj}, v(y , ζ) =

∑
b
qt/q(ζ)
j e iβj1{x ∈ Bj}.

Then u(x, t) = f (x) and v(y , t) = g(x) (because p(ζ) = pt and q(ζ) = qt by definition), and both u and v are a sum

of things that are bounded and supported in finite measure, so they’re in all Lp spaces. Thus we can define

F (ζ) =

ˆ
Au(y , ζ)v(y , ζ)dν(y).

We are really only interested in this function when ζ = t, because then we are in fact computing
´
(Af )gdν. But we
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can look at the whole strip Re(ζ) ∈ [0, 1] and notice that

F (ζ) =

n∑
j=1

m∑
k=1

a
pt/p(ζ)
j b

qt/q(ζ)
j

ˆ
N

(Aψj)(y)e
iβk (y)1{y ∈ Bk}dy,

where we define ψj(x) = e iαj1{x ∈ Aj}. And the point is that

|apt/(p(ζ)j | =
∣∣∣aptξ/p1+pt(1−ξ)/p0j

∣∣∣ ,
which is uniformly bounded over the range of ζs (but depending on aj) by some constant C. Then

||u(·, iξ)||Lp0 =

ˆ
M

m∑
j=1

∣∣∣apt(iξ)/p1+pt(1−iξ)/p0j

∣∣∣p0 1{x ∈ Aj}dµ
1/p0 ,

which is just

=

 n∑
j=1

ˆ
M

|aj |pt1{x ∈ Aj}dµ

1/p0 = ||f ||pt/p0Lpt = 1,

since ||f ||Lpt = 1 (from the definition of the simple function to begin with). Similarly ||v(·, iξ)||
Lq
′
0
= 1, and that tells

us that |F (iξ)| ≤ k0. (This was the key computation!) Similarly we can calculate and find that ||u(·, 1 + iξ)||Lp1 =
||v(·, 1 + iξ)||

Lq
′
1
= 1 so |F (1 + iξ)| ≤ k1. So we have an analytic function in ζ and by the three-lines lemma we have

|F (x + iy)| ≤ k1−x0 kx1 , and thus |F (t)| ≤ k1−t0 k t1. Plugging this back in, we get the same bound for A itself.

There’s another interpolation theorem due to Marcinkiewicz, where we can weaken the assumptions to weak L1

bounds on the boundary p0 → q0 and p1 → q1 and still get strong bounds in the middle, but we lose some constants.

(We might discuss this next lecture if we have time.)

We’ll finish this class by discussing the Hilbert transform. There are two ways to define it:

Definition 121

For any f ∈ S(Rn), we can define

u(x, t) =

ˆ
e−2πt|ξ| f̂ (ξ)e2πix ·ξdξ

where x ∈ Rn and t ≥ 0.

Notice that u(x, 0) = f (x). Furthermore, if we look at the Laplacian ∆x,tu, we can differentiate under the integral

because the integral converges in every sense we care about, and we get ∆x,tu = 0 (because we get a |ξ|2 from

the t-derivative and a −|ξ|2 from the x-derivative). In other words, any function f can be extended to a harmonic
function in the upper half-plane.

Specializing to the case n = 1, a function in the upper half-plane has a corresponding conjugate harmonic function

η(x + i t) = u(x + i t) + iv(x + i t) which is analytic and thus ∆x,tv = 0. If we then restrict v to {t = 0}, we get a

function of x again, and that’s what we call the Hilbert transform

Hf (x) = v(x, 0).

In other words, extend from the real line to get a harmonic function, find the dual, and restrict again – we’ll write

down the formula for it next time. It sounds plausible that this is fine if f is Schwartz, and the question is how nice this

operator actually is – it turns out to appear in fluid mechanics, and it’s the most basic example of a singular integral
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operator, satisfying

Ĥf (ξ) = ±isgn(ξ)f̂ (ξ).

So because of the discontinuity at zero, the Fourier transform is never going to give something in the Schwartz class

because it won’t decay fast enough. But ||Hf ||L2 = ||f ||L2 (by Parseval, since other than the sign the Fourier transforms

are the same), so this is still a bounded operator. And by interpolation, even though we only have the single point

p = 2, we can actually show that H is a bounded linear operator on Lp for all 1 < p <∞. This bound in fact extends

to all singular operators, and we’ll need the Marcinkiewicz theorem to do it more generally.

17 December 8, 2022
We’ll continue our discussion of the Hilbert transform which we defined last time. Basically, we start with a Schwartz

function f ∈ S(R) and define

u(x, t) =

ˆ
R
e−2πt|ξ|e2πixξ f̂ (ξ)dξ

for all t > 0. Then differentiating under the integral, we find that ∆x,tu = 0, so we have a solution to the Laplace

equation in the upper half-plane with the prescribed boundary condition u(x, 0) = f (x). But we know that û(ξ, t) =

e−2πt|ξ| f̂ (ξ), so on the Fourier side we are just multiplying by the function e−2πt|ξ| and thus we can write u(x, t) as a

convolution Pt ∗ f (x), where P̂t(ξ) = e−2πt|ξ| (since convolution is multiplication on the Fourier side). Specifically, by

the inverse Fourier transform we have

Pt(x) =

ˆ
R
e−2πt|ξ|+2πiξxdξ =

1

π

t

x2 + t2
=
1

πt

1

1 + x2

t2

.

Since 1π
´

dx
1+x2 = 1, we see that Pt(x) is in fact an approximation of identity as t → 0, known as the Poisson kernel.

And we can look at all of this in a slightly different way: write z = x + i t and u(z) =
´
e−2πt|ξ|+2πixξ f̂ (ξ)dξ, so that

(splitting up the integral into the two regions for ξ)

u(z) =

ˆ ∞
0

e−2πtξ+2πixξ f̂ (ξ)dξ +

ˆ ∞
0

e2πtξ+2πixξ f̂ (ξ)dξ

=

ˆ ∞
0

f̂ (ξ)e2πiξ(x+it) +

ˆ 0
−∞

f̂ (ξ)e2πiξ(x−it)

=

ˆ ∞
0

f̂ (ξ)e2πizξ +

ˆ 0
−∞

f̂ (ξ)e2πizξdξ.

If we then define the function v(z) via

iv(z) =

ˆ ∞
0

f̂ (ξ)e2πizξ −
ˆ 0
−∞

f̂ (ξ)e2πizξdξ

(just switching the sign for the second term), then G(z) = u(z) + iv(z) is analytic in z (in the region Im(z) > 0)

because the z-dependence has gone away, as long as f is in the Schwartz class. And we see that v(z) is real-valued,

with

v(z) =

ˆ
(−isgn(ξ))e−2πt|ξ|e2πixξ f̂ (ξ)dξ.

We then have

v̂(ξ, t) = (−isgn(ξ))e−2πt|ξ| f̂ (ξ),

so just like before we can define Qt so that Q̂t(ξ) = (−isgn(ξ))e−2πt|ξ| and say that v(x, t) = Qt ∗ f (x). By Fourier
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inversion, we find that

Qt(x) =
1

π

x

t2 + x2
.

This turns out to be totally different from the Poisson kernel – this is not even in L1 as a function of x , corresponding

to the discontinuous Fourier transform. So we’re curious what happens to v(x, t) as t → 0. We can indeed integrate

the expression for v(z) and everything will be integrable, but Qt(x) converges to 1
πx , so this in fact has something to

do with principal values:

Definition 122

The principal value of 1x , denoted p.v. 1x , is a distribution defined by setting

p.v.
1

x
(φ) = lim

ε→0

ˆ
|x |>ε

φ(x)

x
dx.

for any Schwartz function φ.

To check that this is well-defined, we can write

p.v.
1

x
(φ) = lim

ε→0

ˆ
ε<|x |<1

φ(x)− φ(0)
x

dx +

ˆ
|x |>1

φ(x)dx

x

(since the integral of φ(0)
x is zero on the region ε < |x | < 1) and now in fact there is no problem having the integral

include the origin in the first term as well:

p.v.
1

x
(φ) =

ˆ
|x |<1

φ(x)− φ(0)
x

dx +

ˆ
|x |>1

φ(x)dx

x
.

Proposition 123

We have
1

π
p.v.
1

x
(φ) = lim

t→0
Qt ∗ φ(0) = lim

t→0

ˆ
Qt(x)φ(x)dx

Proof. We know that
1

π
p.v.
1

x
(φ) = lim

t→0
ψt(x)φ(x)dx,

where ψt(x) = 1
x 1{|x | ≥ t}. But then we can write

1

π
p.v.
1

x
(φ)−Qt ∗ φ(0) = lim

t→0

ˆ
(ψt(x)−Qt(x))φ(x)dx

= lim
t→0

1

π

ˆ
|x |>t

φ(x)

x
dx −

1

π

ˆ
x

t2 + x2
φ(x)dx

= lim
t→0

1

π

ˆ
|x |<t

xφ(x)

t2 + x2
dx + lim

t→0

1

π

ˆ
|x |>t

(
1

x
−

x

x2 + t2

)
φ(x)dx.

For the first term, we can do a change of variables x = ty to get
ˆ
|x |<t

xφ(x)

t2 + x2
=

ˆ
|y |<1

tyφ(ty)

t2 + t2y2
tdy =

ˆ
|y |<1

yφ(ty)dy

1 + y2
,

which converges to
´
|y |<1

yφ(0)dy
1+y2 = 0 by the dominated convergence theorem. On the other hand,

ˆ
|x |>t

(
1

x
−

x

x2 + t2

)
φ(x)dx =

ˆ
|x |>t

t2

x(x2 + t2)
φ(x)dx
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and now doing the same change-of-variables yields

=

ˆ
|y |>1

t2φ(ty)tdy

t3(1 + y2)
=

ˆ
|y |>1

φ(ty)

y(1 + y2)
dy

which is also zero by the dominated convergence theorem. So we indeed have the desired equality, and what we’ve

basically used is that we have odd functions so their integrals over symmetric intervals is zero.

We can thus define the Hilbert transform this way:

Definition 124

For any Schwartz function f , we define the Hilbert transform

Hf (x) =
1

π
lim
ε→0

ˆ
|y |>ε

f (x − y)
y

dy =
1

π
lim
ε→0

ˆ
|x−y |>ε

f (y)

x − y dy .

There are two reasons for studying this operator – one is that

Hf (x) = lim
t→0

Qt ∗ f (x),

so (as discussed last lecture) we take a function f , get a harmonic function u, compute the analytic function G(z) =

u(z) + iv(z) that is analytic, and then restrict v(x, t) as t → 0. But on the other hand, we now also have a formula

for it coming from the principal value distribution, and it’s a singular integral operator. Integral operators look like

Af (x) =
´
g(x, y)f (y)dy for some kernel g(x, y), and we usually require g to be well-behaved. But here our kernel

is not integrable, and it’s “barely” singular (on the order of 1y ) and it is odd. So there is a lot of cancellation in the

integral defining Hf (x), giving us some hope to work with it and deduce some regularity. The Fourier transform of

Hf is then

Ĥf (ξ) = (−isgn(ξ))f̂ (ξ),

so by Parseval’s identity we see that ||Hf ||L2 = ||f ||L2 . Additionally, because (−isgn(ξ))2 = −1 we have H2f = −f ,
and we get the antisymmetry (Hf , f ) = −(f , Hf ). And the big result is that we can get boundedness of the Hilbert

transform not just on L2:

Theorem 125

For any 1 < p <∞, we have ||Hf ||p ≤ Cp||f |p for some constant p.

Proof. We wish to use Riesz-Thorin, but manifestly there is only one point for which we already have a bound. So

the strategy is to consider the class of Schwartz functions vanishing around the origin:

S0 = {f ∈ S(Rn) : ∃ ε0 > 0 such that f̂ (ξ) = 0 for |ξ| ≤ ε0}.

We see that H maps S0 → S0 (because of the formula for Ĥf ), and we claim S0 is dense in Lp for all 2 ≤ p < ∞.

Indeed, we know that S is dense in each Lp, and now if we define the smooth cutoff function χn(ξ) which is 1 for

|ξ| > 2
n and 0 for |ξ| < 1

n and define f̂n(ξ) = f̂ (ξ)χn(ξ), we see that each f̂n is in S0. By Parseval, we have

||fn − f ||L2 ≤
ˆ
|ξ|≤ 2

n

|f̂ (ξ)|2ξ,
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which goes to zero as n →∞. Also, because fn(x) =
´
f̂n(ξ)e

2πiξxdξ and f (x) = f̂ (ξ)e2πiξxdξ,

||fn − f ||L∞ ≤
ˆ
|ξ|≤ 2

n

|f̂ (ξ)|dξ

which also goes to zero because we have a Schwartz function and we can use absolute continuity of the integral. This

means that ||fn − f ||Lp → 0 as n → ∞, so we’ve approximated f ∈ S by elements of S0 and shown that S0 is dense

in Lp as desired. So it suffices to prove the result for functions f ∈ S0.
Now we can define G(z) = u(z) + iv(z) as before, but the advantage of having f ∈ S0 is that Hf ∈ S0 (in

particular, Hf ∈ S). If we then consider
´
C G

4(z)dz over the semicircular contour of radius R in the upper half-plane,

we have G(z) = 2
´∞
0 2πe

iξz f̂ (ξ)dξ and f̂ (ξ) = 0 for all sufficiently small |ξ| ≤ ε0. Thus |G(x + iy)| ≤ Ce−2πε0y

for some constant C (because the iy in the exponent gives us exponential decay), and thus we get a similar bound

for G4. But
´
C G

4(z)dz = 0 because G4 is analytic, and the standard contour integral calculations tell us that the

integral over the semicircular arc part goes to zero as R → ∞. Thus looking at the real part and noting that u = f

and v = Hf on the real line

lim
R→∞

ˆ R

−R
(u4(x) + v4(x)− 6u2(x)v2(x))dx = 0

means that (we can drop the
´
v4(x)dx term)

ˆ ∞
−∞
(Hf )4(x) ≤ 6

ˆ
f 2(x)(Hf )2(x)dx ≤

6

1000

ˆ
(Hf )4(x)dx + 6 · 1000

ˆ
f 4(x)dx,

and now we can move the first term on the right-hand side to the left-hand side and find that
´
(Hf )4dx ≤ C

´
f 4(x)dx ,

meaning that ||Hf ||L4 ≤ C4||f ||L4 . Since we also have a bound in L2, we see that H is a bounded operator in Lp for

all 2 ≤ p ≤ 4. But we can repeat this trick with any even power in place of 4 by doing the same type of expansion of´
C G

p(z)dz = 0 (for example next we can do p = 8, then p = 16, and so on) – this shows the result for all 2 ≤ p <∞.

Finally, we use duality: notice that H∗ = −H (because the adjoint operator turns the i into a −i), and H∗ = −H
is a bounded operator from Lp → Lp for 2 ≤ p < ∞. But this means H will be bounded from Lp

′ → Lp
′
for all

2 ≤ p ≤ ∞, meaning it is bounded for all 1 < p ≤ 2.

We may ask about the endpoints p = 1,∞ – it is easy to see that we do not have bounded operators in those

cases, because we can compute the Hilbert transform of f (x) = χ[0,1](x) and we get a logarithmic singularity:

Hf (x) =
1

π
log

x

1− x for 0 < x < 1.

So H does not map L∞ to L∞ – we in fact map into a space of “bounded mean oscillation” – and in general this

argument extends to operators of the form (these are what we call singular integral operators in Rn)
ˆ
K(x − y)
|x − y |n f (y)dy

for any K odd on the unit sphere. Unfortunately the trick in the previous proof (by M. Riesz) only works for the

Hilbert transform, and the argument in general requires more machinery with harmonic analysis. And singular integral

operators appear in a variety of applied problems (like studying compressable fluids in 3-dimensional fluid mechanics,

studying vorticity and other physical phenomena).
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