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1 January 9, 2024
Probabilistic modeling is a branch of machine learning which uses probability distributions to describe complex systems.

At the highest level, this course will be about mathematical modeling, which is a fundamental tool in science and

engineering – in a model, we use mathematical objects to represent a system, variables to describe quantities we

care about, and equations to describe their relations. But the problem is that we can rarely make perfect predictions

(because of noise, ambiguity, missing data, and so on), so we often want to assess uncertainty (e.g. make predictions

with some associated confidence), which we can think about as outputting beliefs. So most machine learning models

are inherently probabilistic models, since they’re meant to represent real-world complex systems where we don’t have

full understanding of relationships between variables:

Example 1

We may want to calculate the probability that an image is assigned a particular label (classification), or that some

given speech is speaking some particular string of text, or that a given English text translates to some Chinese

text, or that a system transfers from our current state to some new state given some action that we take. Also,

in generative AI models, we often want to describe the probability of outputting some particular text or image.

This class will tell us how to deal with uncertainty in a principled way, using computer science and mathematical

tools to represent it; this will allow us to derive machine learning algorithms using probability and graph theory. We’ll

find that there are tradeoffs between computational complexity and the richness of the model, and we’ll discuss a

process for picking the right model (given some fixed dataset and computational budget), and we’ll find principled

ways to combine knowledge with observations for our predictions. We’ll also describe some rigorous ways to analyze

causality and make predictions about what would happen if we intervened in a system. Overall, the theme is that

this class will be very broad and applicable to any problem in the general theme of probabilistic forecasting – we’ll see

applications to various problems in our homework.

The key idea of the course is that we will take the following three steps:

1. Represent the world with a collection of random variables X1, · · · , Xn with some joint distribution p(X1, · · · , Xn),

2. Use prior knowledge and given data to learn the distribution,

3. Perform inference by computing the conditional distributions of Xi given the values of some Xjs.

There will be all kinds of challenges as we go through these steps – for example, we want to compactly describe

the joint distribution, and we want a way to figure out how much data and computation is required for learning.
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Nevertheless, this is the process that we go through when solving any new problem in machine learning. And unlike

other AI or ML courses, this is a top-down course where we aren’t starting with any particular problem and refining

our techniques from there – instead, we’re describing key building blocks that will be relevant for lots of problems.

Example 2

Localization is a classic application of these techniques – given noisy GPS measurements of a car, we may want

to know the actual trajectory that it took.

The two sets of variables that matter are the true positions over time zi and the measurements yi . We’ll encode their

relationship using a joint distribution p(z0, z1, · · · , zk , y0, y1, · · · , yk) and using a graph that encodes the transitions

zk−1 → zk and the observations zk → yk ; our overall goal will be to infer z given y . (A sparser graph means we will

have an easier time computationally with the algorithm but also less prediction power.)

Example 3

Generative models for images use neural networks that also involve probabilistic models.

There may be some latent variables describing the content and some other variables encoding each of the pixels of

the image, and our application is to sample from the distribution to get images that occur with high probability in the

model. And if we allow some way of controlling the output (e.g. a text prompt), we can sample from the distribution

of images given some caption and solve the text-to-image problem.

Example 4

Many other applications exist as well, such as speech recognition, language models (like ChatGPT), evolutionary

biology (constructing a phylogentic tree given the DNA sequence of current species), and error-correcting codes

(recovering an image after it goes through a noisy communication channel).

Over the course of this quarter, we’ll start off in the simplest case with discrete variables and fully observed models,

then generalize to partially observed data (e.g. hidden variables) and approximate inference and learning. By the end

of the course, we should be able to understand the different kinds of graphical models out there (and how graphical

properties are associated with statistical ones), implement common inference and learning algorithms and analyze their

runtime, and tackle real-world problems.

All information about the course can be found on the course website, cs228.stanford.edu; discussion will be done

on Ed and homework will be submitted on Gradescope. We’ll follow the textbook Probabilistic Graphical Models:

Principles and Techniques by Koller and Friedman, but there’s a lot of material and it’s not all required – we can

instead consult the lecture notes on the website for a more compact summary. A list of TAs and office hours will also

be available soon.

Prereqs for this class are some understanding of probability and statistics, algorithms, programming, multivariable

calculus, and basic optimization techniques (like gradient descent and convexity). Grading will be based on 5 assign-

ments (70 percent of the grade, a combination of theory and programming), final exam (30 percent), and participation

(3 percent extra credit). The theory questions will require formal proofs, and the programming assignments will be

done in Python and will take substantial time. The course will also have weekly ungraded quizzes which may be useful

for preparation for the final.

For the rest of today, we’ll do a bit of review of probability (random variables, independence, etc.):
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Definition 5

In a random experiment, an outcome space (often denoted Ω) specifies the possible outcomes that we want to

reason about.

For example, when we flip a coin, the outcome space is {heads, tails}, and when we roll a die, the outcome space

is {1, 2, 3, 4, 5, 6}. We specify a probability for each outcome ω ∈ Ω, such that p(ω) ≥ 0 for all ω and
∑
ω p(ω) = 1.

(For example, in a biased coin, we may have p(heads) = 0.6 and p(tails) = 0.4.

Definition 6

An event is a subset of the outcome space.

For example, we may have the set of even die tosses E = {2, 4, 6} or odd die tosses O = {1, 3, 5}, and we can

calculate the probability of an event by adding up the probabilities of all outcomes in that event:

p(E) =
∑
ω∈E

p(ω).

(So if our die is fair, then p(E) = 1
2 .) We also may care about unions and intersections of events, which we can think

of as the operations “or” and “and.” Intersection is particularly useful because it’s how we encode independence:

Definition 7

Two events A and B are independent if p(A ∩ B) = p(A)p(B).

For example, the events A = {1} and B = {6} are not independent because p(A ∩ B) = 0 but p(A)p(B) = 1
36

(intuitively, knowing that we get a 1 changes the probability that we get a 6). However, if we have two different

dice, then the probability that the first one rolls a 1 is independent from the probability that the second one rolls a 6

(because now our outcome space has 36 equally likely possibilities, one of which results in both events happening).

Definition 8

Given two events A,B with p(B) > 0, the conditional probability of A given B is

p(A|B) =
p(A ∩ B)
p(B)

.

Intuitively, we can imagine only taking the fraction of the area inside the part of the outcome space where B occurs

(this can be visualized by drawing a Venn diagram). We can think of “conditioning on an event S” as creating a new

probability distribution, since
∑
ω∈ω p(ω|S) = 1. And if A and B are independent, we have p(A|B) = p(A) from the

definition of independence – think of this as “knowing B doesn’t change our belief about whether A happened.” This

also means that we can rewrite

p(A ∩ B) = p(B)p(A|B),

which we can think of more generally as leading to the “chain rule” for probabilities

p (S1 ∩ · · · ∩ Sn) = p(S1)p(S2|S1)p(S3|S1 ∩ S2) · · · p(Sn|S1 ∩ · · · ∩ Sn−1);

this will be useful in terms of storing probability distributions later on in the course. And we can also use conditional
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probability to get Bayes’ rule:

p(S1|S2) =
p(S1 ∩ S2)
p(S2)

=
p(S2|S1)p(S1)

p(S2)
.

This essentially provides us with a way to update our belief about S1 given that some other event S2 happens: weight

our previous belief p(S1) by this new factor p(S2|S1) and then normalize. This turns out to be surprisingly powerful

despite the simple statement – unfortunately it’s very expensive to calculate these terms exactly, but if we could find

these exactly we’d have a principled way to update beliefs and incorporate data into a model.

Definition 9

A random variable is a mapping X : Ω→ D, where D is some set (like the integers or real numbers).

Random variables are often easier to work with than events, and we can think of random variables as inducing a

partition of outcomes (based on the value of X(ω)). In particular, for any x ∈ D, we can calculate the probability that

X takes on that particular value by adding up the probabilities of all ωs mapping to it:

p(X = x) = p({ω ∈ Ω : X(Ω) = x})

We’ll let Val(X) denote the set of values X takes on (we’ll also call this the set of states).

Example 10

The Bernoulli distribution is a simple case where a random variable only takes on two values (say heads and tails).

This random variable is then specified by the probability p = p(X = heads) (which means 1−p = p(X = tails), and

we write it as X ∼ Ber(p). A natural generalization is the categorical distribution whereD = {1, · · · , m} can take

on m different values, and we need to specify the values pi = p(Y = i). We’ll write this as Y ∼ Cat(p1, · · · , pm).

For example, a die roll is distributed as Cat(1/6, 1/6, 1/6, 1/6, 1/6, 1/6).

Definition 11

Suppose we have a vector of random variables X(ω) = (X1(ω), · · · , Xn(ω)). The joint distribution of these

variables is

p(X1 = x1, · · · , Xn = xn) = p({X1 = x1} ∩ · · · ∩ {Xn = xn}).

In shorthand, we’ll often write this as p(x1, · · · , xn).

Example 12

Suppose we have a situation where students’ intelligence I takes on values i0 (high) or i1 (very high), exam difficulty

D takes on values d0 (easy) or d1 (hard), and students’ grades G take on values A, B, or C. Then to specify the

joint distribution, we need to specify the probabilities of each of the 2 · 2 · 3 possible combinations (e.g. I = i1,

D = d0, G = A).

But we can already see issues here – we need to specify 12 − 1 = 11 parameters to specify the joint distribution

(that’s how many degrees of freedom we have), so for a larger system we will get exponential growth. And one of the

first challenges we’ll have to deal with is compactly representing this kind of distribution when our system size grows.
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2 January 11, 2024
Our first homework assignment was posted on Ed yesterday – they’ll always be due two weeks after they are first

released.

Last time, we introduced the strategy that we’ll be using in this course: represent the world using random variables

with some joint distribution, learn the values of the distribution from data, and then perform inference by computing

conditional distributions. But the first roadblock is often finding efficient ways to store these distributions with a

computer. When we just have a single simple random variable like a Bernoulli biased coin or categorial distribution, we

can completely specify the distribution using a single scalar p or a set of m − 1 probabilities, respectively. But when

we collect random variables together into a random vector and need to capture information about them at once, the

number of parameters needed to specify all values p(x1, x2, · · · , xn) grows exponentially in n, so we’ll need a better

strategy.

Example 13

Suppose we’re building a generative model of images. To specify the color of a single pixel, we can specify the

intensity of the red channel R, green channel G, and blue channel B, each of which are categorical and take on 256

different values (between 0 and 255 inclusive). But this means that if we wanted the joint distribution p(R,G,B)

yielding all possible pixel states, we would need 2563 − 1 parameters just for a single pixel. Similarly, even if we

model an image where every pixel is just black or white (so each pixel’s color is just a Bernoulli random variable)

and are looking at the distribution of images we get for handwritten digits, we would need 2n − 1 parameters for

an n pixel image.

This means that if we want to generate an small binary pixel image such that images similar to handwritten digits

are more likely, we already don’t have enough space to store a table of memory values (and it would be statistically

very difficult to learn what the distribution should be). So this brute-force approach is not good enough, and that’s

what today’s lecture will teach us how to get around. One strategy would be to assume that our random variables are

actually all independent, meaning that we can write the joint distribution as

p(x1, · · · , xn) = p(x1)p(x2) · · · p(xn).

We still have the same number of total states (2n for the binary image), but we now only need to store n parameters

to specify the joint distribution (since we just need to specify each marginal distribution p(Xi = xi), each of which

is Bernoulli). This means that we get a huge computational advantage, but unfortunately pure independence is too

strong for a useful model – knowing the value of some pixels does tell us information about others (for example, nearby

pixels in images often have similar colors). So the strategy will be to instead assume conditional independence:

Definition 14

Two events A and B are conditionally independent given an event C if

p(A ∩ B|C) = p(A|C)p(B|C).

Similarly, random variables X and Y are conditionally independent given a random variable Z if for all x, y , z ,

p(X = x, Y = y |Z = z) = p(X = x |Z = z)p(Y = y |Z = z).

We’ll often write this relation in simplified notation as p(X, Y |Z) = p(X|Z)p(Y |Z); it turns out that it’s equivalent
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to check that p(X|Y, Z) = p(X|Z) (in words, this says that given Z, Y doesn’t tell us anything about X). We will

denote this independence by X ⊥ Y |Z, and we can also make the same definition for collections of random variables.

Example 15

Suppose we want to model the height and reading ability of a person. Then it’s plausible that height and reading

ability are not independent (since infants cannot read), but once we condition on age they are roughly independent.

A Bayesian network will basically specify the conditional independence structure among a set of variables, so that

the model can be represented compactly while still giving us reasonable assumptions. The key building block here

will be the chain rule from last lecture, which tells us that for random variables X1, · · · , Xn, we have (without any

assumptions being placed on the variables)

p(X1 = x1, · · · , Xn = xn) = p(X1 = x1)p(X2 = x2|X1 = x1) · · · p(Xn = xn|X1 = x1, · · · , Xn−1 = xn−1),

which can be more compactly written as p(x1, · · · , xn) = p(x1)p(x2|x1) · · · p(xn|x1, · · · , xn−1). This factorization can

be done with any ordering of our variables, and it’s similar to the independence factorization but with some extra

conditioning. Some of the conditioning is not too bad – p(x1) and p(x2|x1) are rather manageable to represent – but

something like p(xn|x1, · · · , xn−1) is not. (Indeed, if the Xi are all binary, we need 1 parameter for p(x1), 2 for p(x2|x1),
22 for p(x3|x1, x2), and so on, and in total we end up requiring 2n − 1 parameters just like before.) So the key will be

to simplify those more “expensive” distributions by assuming conditional independence.

Example 16

Suppose our random variables are indexed by time, so Xi represents some value of interest at time i . We can

make the Markov assumption
Xi+1 ⊥ X1, · · · , Xi−1|Xi ,

which means that if we know the weather on the ith day, the weather on the (i + 1)th day is independent from

the weather before the ith day (we don’t need any other information from the past).

So if we know that X3 ⊥ X1 given X2, and X4 ⊥ X1, X2 given X3, and so on, then we can simplify our chain rule:

p(x1, · · · , xn) = p(x1)p(x2|x1)p(x3|x2) · · · p(xn|xn−1),

and now we only need to condition on a single random variable at a time! In the case of binary random variables, this

simplifies the number of parameters needed to represent the distribution from 2n − 1 to just 2n − 1. And in general,

the strategy will be similar: for each random variable Xi , we will specify the distribution of Xi given some (typically

small) set of other random variables XAi , and then we’ll get a joint parameterization of the form

p(x1, · · · , xn) =
∏
i

p(xi |XAi ).

As long as these sets are small, this representation will be tractable. But we do need to guarantee the distribution is

legal – specifically, we need to make sure that there is some ordering such that all Ai variables come before i , so that

this corresponds to a factorization of the chain rule.
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Definition 17

A Bayesian network is specified by a directed acyclic graph (DAG) G = (V, E), such that

• the vertices (nodes) i ∈ V correspond to random variables Xi in the model,

• each node i corresponds to a conditional probability distribution p(xi |x⃗Pa(i)), where Pa(i) is the set of parents

of i .

We call G the structure of the Bayesian network, and we can use this to define a joint distribution

p(x1, · · · , xn) =
∏
i∈V

p(xi |x⃗Pa(i)).

The memory required to store this is now exponential in |Pa(i)| instead of |V |, so this will be economical. And

p(x1, · · · , xn) will be a valid probability distribution, since we can always order the graph so that the parents come

before the children. Intuitively, the idea is that each random variable only depends on the value of its parents, and

then this factorization is just the chain rule plus conditional independence assumptions.

Remark 18. A directed acyclic graph (DAG) is a directed graph where there is no directed cycle (meaning that we

can never follow the arrows and get back to where we started). A topological ordering of a graph is an ordering such

that for any edge u → v , u comes before v ; such an ordering exists exactly when the graph is a DAG.

Example 19

Suppose we have a Bayesian network involving five random variables for a student’s performance in a class

(difficulty D, intelligence I, grade G, SAT score S, and letter grade L). Then we could draw the following graph

that describes the relationships between them:

D

I

G

S

L

Then to specify the joint distribution, we just need the distributions of difficulty and intelligence (with no condi-

tioning), as well as the distribution of grade given difficulty and intelligence, of SAT score given intelligence, and letter

grade given grade. In this case, we will have

p(d, i , g, s, ℓ) = p(d)p(i)p(g|i , d)p(s|i)p(ℓ|g).

We perform the chain rule in this order to represent that we first sample d and i , then figure out what g is, then figure

out what s is, then figure out what ℓ is; (d, i , g, s, ℓ) is a topological ordering. And this distribution implies conditional

independence: the ordinary chain rule would tell us that

p(d, i , g, s, ℓ) = p(d)p(i |d)p(g|i , d)p(s|i , d, g)p(ℓ|g, d, i , s),
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and so we actually additionally assume that D ⊥ I, that S ⊥ {D,G}|I, and that L ⊥ {I, D, S}|G. There are others

as well – for example, S and L are independent given I – and we’ll see soon how to use the graph to algorithmically

determine all such relations. But we’ll demonstrate why this actually holds mathematically first:

Proof that D ⊥ I. As a quick reminder, the distributive law tells us that when we have a lot of variables and constants,

we can expand out sums such as ∑
i

∑
j

aixibjyj =
∑
i

aixi
∑
j

bjyj .

The marginal distribution for (D, I) can be written as

p(d, i) =
∑

g∈Val(G)

∑
s∈Val(S)

∑
ℓ∈Val(L)

p(d, i , g, s, ℓ).

Plugging in the factorization for our joint distribution, this can then be written as

=
∑
g,s,ℓ

p(d)p(i)p(g|i , d)p(s|i)p(ℓ|g) = p(d)p(i)
∑
g,s,ℓ

p(g|i , d)p(s|i)p(ℓ, g),

and then the distributive law allows us to further factor as

= p(d)p(i)
∑
g,s

p(g|i , d)p(s|i)
∑
ℓ

p(ℓ|g).

The last sum is just 1, since conditioning still gives us a valid probability distribution. Then we can push the sum over

s inside to simplify that term and then do the same for g, so we end up finding that p(d, i) = p(d)p(i).

Putting this in more general terms, we have the following conditional independence assumptions (called local
independencies):

Proposition 20

For each variable Xv , we have the relation

Xv ⊥ non-descendants of Xv | parents of Xv .

Proof. Let X⃗N denote the vector of non-descendants, X⃗πv denote the parents, and X⃗D denote the descendants of v .

Then the graph structure means that we can factor as

p(x1, · · · , xn) = p(x⃗N)p(x⃗πv |x⃗N)p(xv |x⃗πv )p(x⃗D|xv , x⃗πv , x⃗N) .

Now we can write

p(xv |x⃗πv , x⃗N) =
p(xv , x⃗πv , x⃗N)

p(x⃗πv , x⃗N)

and plug in the boxed factorization into the numerator and denominator, meaning that we marginalize over xD in the

numerator and over both xD and xv in the denominator. Using the same strategy as before (with the distributive law),

this ratio just simplifies to p(xv |xπv ) because all other terms cancel out. So we do have the conditional independence

statement p(xv |xπv , xN) = p(xv |xπv ) as desired.

Proposition 21

Conversely, if this relation Xv ⊥ non-descendants of Xv | parents of Xv holds for all v , then we have a Bayesian

network factorization.
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Proof sketch. Use the general chain rule in the order given by topological variable ordering, and then simplify the

formula using the conditional independence assumptions; we’ll recover the joint distribution in the definition of a

Bayesian network.

So using a Bayesian network is actually equivalent to making conditional independence assumptions, and those

are the ones you can read off directly from the graph.

Example 22

Suppose we want to build a spam classifier which classifies emails as either spam Y = 1 or not spam Y = 0.

Suppose the words in our vocabulary (like English) are indexed from 1 to n, and we let Xi = 1 if the ith word

appears in our email and 0 otherwise.

We can think of the emails as being drawn from a distribution p(Y,X1, · · · , Xn); in general this is a complicated

object which would require exponentially many numbers to store. But we can assume that all words are conditionally
independent given the label Y , which corresponds to a Bayesian network in which there is an edge from Y to each

Xi and no other edges. Under such an assumption, we can factor the joint distribution as

p(y , x1, · · · , xn) = p(y)
n∏
i=1

p(xi |y),

and on the flip side if we can write the distribution in this way we automatically have conditional independence. This

is probably an incorrect assumption in practice (words do have quite a bit of relation to each other), but this model

still turns out to work reasonably well. In other words, we can estimate the parameters using some training data, and

we won’t need too much data because of the simplicity of our model; we then predict using Bayes’ rule

p(Y = 1|x1, · · · , xn) =
p(Y = 1)

∏n
i=1 p(xi |Y = 1)∑

y∈{0,1} p(Y = y)
∏n
i=1 p(xi |Y = y)

=
p(Y = 1)

∏n
i=1 p(xi |Y = 1)

p(Y = 0)
∏n
i=1 p(xi |Y = 0) + p(Y = 1)

∏n
i=1 p(xi |Y = 1)

and classify an email as spam if this is higher than some threshold. So the idea is that even if the model is technically

wrong, it can still be practically useful!

Fact 23

Bayesian networks are fully general – if we use a complete DAG structure where there is an edge from i to j

whenever i < j , then the general chain rule factorization corresponds to this full Bayesian network. But here we

don’t make any conditional independence assumptions, so we don’t get any computational benefits.

3 January 16, 2024

Last lecture, we saw how Bayesian networks (the simplest graphical model with a directed acyclic graph) specify a

model leveraging conditional independence, allowing us to represent probability distributions more compactly. Today’s

lecture will teach us how to use the graph (as a data structure) to discover statistical properties of the model.

Recall from last time that for every variable Xv , we automatically know (from simplifying the expression for the

joint distribution) that Xv is independent from its nondescendants given the values of its parents. It’s important as

a modeler to understand the assumptions and simplifications of our model, so we’re now going to understand what

other claims we can make about our variables.
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Example 24

We’ll start with simple cases for intuition where our networks only have three nodes A,B, C.

A C

B
1.

A B C

2.

A B

C

3.

1. Suppose A and C both have a common parent B. Then knowing B decouples A and C, meaning that A ⊥ C|B
even though A and C are not marginally independent. (For example, A could be height, B could be age, and C

could be reading ability.)

2. Suppose we have a cascade where A tells us information about B, which tells us information about C. Then

knowing B again decouples A and C. (For example, A could be age, B could be intelligence, and C could be

reading ability.)

3. Suppose we have a V-structure where A and B have a common descendant C. Then A and B are marginally

independent, but knowing C can actually couple A and B together. (For example, A and B could be two

independent causes of an event C.) This explaining away phenomenon is actually what makes Bayesian networks

powerful!

Example 25

To elaborate more on this last case, suppose S is the indicator of going to school, I is the indicator of extreme

intelligence, and R is reading ability (where all variables are binary). Assume that S and I are independent with

p = 1
2 , and we have the V-structure S → R← I; also assume that R = I ∨ S deterministically.

Deterministic dependence means that our Bayesian network has all conditional probabilities 0 or 1; for example,

the probability that R = True given that I = False and S = True is 1. We can then calculate

p(I = True|R = True) =
2

3
,

since R = True implies that (I, S) either take the values (False,True), (True,False), or (True,True) with equal

probabilities. However,

p(I = True|R = True, S = True) =
1

2
,

since this means we must either have (False,True) or (True,True). So indeed conditioning on R makes I and S no

longer independent – going to school already “explains the reading ability away,” so our estimated probability of the

other cause goes back down. Thus it is true that I ⊥ S but not true that I ⊥ S|R.

Generalizing this analysis beyond just 3-node Bayesian networks, we want a way to decide if some set of variables is

conditionally independent from some other set, given that some subset is already observed. Doing this check manually

from a set of equations is complicated and error-prone, so we want to use a purely graph-based approach involving

graph separation:
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Definition 26

Let G be a Bayesian network and O be a set of observed variables. An undirected path in G is an active path if

for every consecutive triple of nodes X, Y, Z along the path, we have one of the following:

• (Cascade) X ← Y ← Z or X → Y → Z, and Y is unobserved.

• (Common parent) X ← Y → Z, and Y is unobserved.

• (V-structure) X → Y ← Z, but Y or one of its descendants is observed.

Equivalently, an active path is such that whenever we have a V -structure pointing toward Vi , then either Vi or one

of its descendants is in O, and no other nodes along the path are in O.

Definition 27

If there is no active path between X⃗ and Y⃗ when Z⃗ is the set of observed variables, then we say that X⃗ and Y⃗

are d-separated with respect to Z⃗, and we write d-sep(X⃗; Y⃗ |Z⃗).

The main result is the following:

Theorem 28

If X⃗ and Y⃗ are d-separated with respect to Z⃗, then X⃗ ⊥ Y⃗ |Z⃗. In other words, X⃗ is conditionally independent from

Y⃗ given Z⃗ if there is no active path between any element X ∈ X⃗ and any element Y ∈ Y⃗ for observations Z⃗.

Conditional independence then reduces statistical independencies to evaluating connectivity in graphs.

Example 29

Suppose we have the following graph shown below. Then to check whether d-sep(X1;X6|{X2, X3}) holds, we

need to check the top and bottom path from X1 to X6 – both of those are not active paths, so X1 ⊥ X6|X2, X3
(knowing X6 does not tell us anything more about X1 if we already know X2 and X3).

X1

X2

X4

X6

X3 X5

Here are a few more examples from this network G:

• There is an active path from X5 to X6 (the single edge from X5 to X6 vacuously satisfies the condition),

so X5 and X6 are not d-separated with respect to {X2, X3}. However, that doesn’t necessarily tell us that

X5 ⊥ X6|X2, X3 does not hold (see the theorem below).

• X4 and X5 are d-separated given {X2, X3}, so we can safely claim conditional independence. They are also

d-separated given X1.
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• However, X4 and X5 are not d-separated with respect to {X1, X6} (the path (X4, X2, X6, X5) is active), so we

cannot say anything about whether X4 and X5 are independent given X1, X6.

Example 30

We can in fact take the result from last lecture and state it as

d-sep(Xv ; non-descendants of Xv |parents of Xv );

this is indeed true if we think about the different paths that could take us from Xv to one of its non-descendants

and check that none of them are active paths.

Fact 31

Breadth-first search can check d-separation automatically and efficiently, since this is basically a check of whether

there is a path from one set of vertices to another (except that we must verify that the paths are active paths).

Theorem 32 (Soundness of d-separation)

Suppose I(p) are the set of true conditional independencies that hold for a joint distribution p (for example, if

X, Y are independent Bernoulli random variables of parameter p = 1
2 , then X ⊥ Y would be in I(p)). Let I(G) be

the set of conditional independencies {(X⃗ ⊥ Y⃗ |Z⃗ : d-sep(X⃗; Y⃗ |Z⃗)}. Then if p factorizes according to G (in the

sense of the Bayesian network), then I(G) ⊆ I(p) (that is, all d-separation assumptions hold).

Unfortunately, we do not have completeness – it is not true that I(G) = I(p), so there are additional assumptions

that may not be revealed through d-separation in the graph structure. So sometimes we do need to use the actual

values of the probability distributions.

Example 33

Suppose we have a simple network A → B where A and B are both binary. Then we actually have A ⊥ B if we

specify the values P (B|A = a0) to be identical to P (B|A = a1). Then in this particular case, I(p) = {A ⊥ B},
but I(G) is the empty set (that is, d-separation cannot tell us anything).

But the idea is that we have to craft the probability distribution very carefully for this to hold:

Theorem 34

If X⃗ and Y⃗ are not d-separated given Z⃗, then there is some distribution p factorizing over G in which X⃗ and Y⃗

are dependent. In other words, if X⃗ ⊥ Y⃗ |Z⃗ in all distributions that factor over G, then X⃗ and Y⃗ are d-separated.

Proof sketch. Pick some active path between X⃗ and Y⃗ and choose the conditional probability tables so that we do

actually get dependence (this will be true up to a set of measure zero). Then we can set everything else to be

independent so that we don’t “cancel the dependency” that we just created.

Later on in the course, we’ll be going from p to G instead of the other way around (trying to learn the structure

from some data), and the fact that the graph cannot tell us the whole story has important consequences for what we

can and cannot do from sampled data.
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Example 35

Hidden Markov models are frequently used for models like speech recognition and Kalman filtering. The idea

is that we have a set of hidden variables Y⃗ and a set of observations X⃗, and we can model this as a Bayesian

network where we have edges Yi → Xi , as well as edges Yi → Yi+1, for each i , and all X⃗i are observed.

In other words, we can factor the joint distribution as a product of conditional probabilities

p(y⃗ , x⃗) = p(y1)p(x1|y1)
T∏
t=2

p(yt |yt−1p(xt |yt).

Intuitively, p(y1) is the distribution of initial values Y1 of a robot, and p(yt |yt−1) is the transition probability between

states that it can take on. Then p(xt |yt) is the emission probability, which we can think of as a noisy sensor

measurement Xt of the true value Yt , and p(yt |x1, · · · , xt) can be thought of as the filtering probability.
Looking at the graph now, we can understand the conditional independencies between the variables without looking

too carefully at the form of the distribution. For example, we cannot say that X1 ⊥ X6, since there is an active path

X1 → Y1 → · · · → Y6 → X6 – this means that we do not have independence for most choices of the conditional

distributions. On the other hand, we do have Y1 ⊥ {Y3, Y4, Y5, Y6}|Y2, since the only path connecting those sets of

vertices is not an active path.

So in summary, we can go back to the question of “to what extent can we construct G so that the independencies

I(G) are a reasonable surrogate of the true independencies I(p).” This is the question of structure learning when we

have only partial data from p, and we’ll have lots more about this in the coming lectures.

Definition 36

A directed acyclic graph G is an I-map (independence map) of a distribution p if I(G) ⊆ I(p).

Since d-separation is sound, we know that G is a valid I-map if p factors over G. But a fully connected DAG G is

an I-map for any distribution (since we’re making no conditional independence assumptions), so our goal is not just

to find an I-map – we want I(G) to be as big of a subset as possible, making G as sparse as possible, and capture as

many true independencies as we can. We’ll discuss this more next time!

4 January 18, 2024
Last time, we discussed how to check for conditional independence in graphical representations using d-separation.

At the end, we introduced the concept of an I-map to understand how much a graph tells us about the underlying

distribution – an I-map of a distribution p is a DAG G where the set of conditional independencies implied by the

graph, I(G), is a subset of the conditional independencies that actually exist in a distribution, I(p). We mentioned

that a fully connected DAG always gives us I(G) = ∅, so that always counts as an I-map, but we’d like something

more sparse to give us better efficiency.

Definition 37

A graph G is a minimal I-map for a distribution p if it is an I-map and removing any edge makes it no longer an

I-map.
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Any distribution p always has an I-map – we just start with a fully connected DAG (with no conditional independence

assumed) and repeatedly remove edges as long as I(G) ⊆ I(p). There are finitely many edges, so we can just keep

doing this until we can’t remove any more. But we might get a different result if we remove edges in a different order,

so minimal I-maps are not unique. (This is a bit of a problem, since it means it will be tricky to estimate a graph G

directly from data or establish direction of causation.)

Definition 38

A graph G is a P-map (perfect map) of a distribution p if I(G) = I(p).

Unfortunately, not every distribution has a P-map (we’ll see an example later on where no matter how we choose

the graph, we can’t perfectly capture all conditional independence relations). And even if we have a perfect map, it

still doesn’t need to be unique – for example, the two Bayes structures X → Y and Y → X both have the same set

of independencies I(G) = ∅, but they imply very different causal statements. (Directionality of influence is one of the

key challenges in causal inference, and we’ll see this more later when trying to learn the graph from data.) So there

are limitations with understanding relations with just the structure we’ve introduced here.

Related to this idea, we can think about when different Bayesian networks encode the same conditional indepen-

dencies:

Definition 39

Two graphs G and G′ are I-equivalent if I(G) = I(G′).

For example, the cascades X → Z → Y and Y → Z → X, as well as the common parent structure Z → X,Z → Y

are all I-equivalent, but they’re not equivalent to the V-structure X → Z, Y → Z.

Theorem 40

If two Bayesian networks are I-equivalent, then they must have the same skeleton (of undirected edges).

Having the same skeleton is necessary but not sufficient, as we saw in the V-structure example above. But adding

in that additional condition is enough for equivalence:

Theorem 41

If G and G′ have the same skeleton and the same V-structures, then I(G) = I(G′) (but the converse is not true).

Overall, we’ve seen that some types of dependencies cannot be easily captured by Bayesian networks, but it turns

out that certain undirected networks will be more equipped to deal with those:

Example 42

Suppose we have four people A,B, C,D, and suppose we want to model their hair color (each red, green, or blue).

Also, assume that the pairs A and B, B and C, C and D, and D and A are friends, so each pair never has the

same hair color. This defines a distribution p which is uniform over all valid assignments of hair colors.

For example, the probability p(A = red, B = red, C = blue, D = green) is zero, while the probability of some valid

assignment is 1
number of valid assignments . (We can think of this as a constraint satisfaction problem.) This distribution

satisfies A ⊥ C|{B,D} (since A and C must take hair colors different from B and D, but they can choose from the

possibilities independently) and similarly B ⊥ D|{A,C}. These are in fact the only independencies.
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It turns out there is no directed graph which is a P-map for this distribution. (Indeed, we can go through

all possible Bayesian networks with four nodes; no matter how we choose edges and their directions we won’t get

I(G) = I(p). Natural choices of directed graphs end up encoding one of the independencies but not the other, or

they encode additional ones and thus are not I-maps.) So instead we’ll suggest using an undirected graphical model,
which will be a data structure that doesn’t obscure the structure of what’s going on in this example.

Definition 43

In a Markov random field, we have an undirected graph in which each node corresponds to a random variable

and edges between them represent dependencies. A clique of a graph is a complete subgraph (that is, a set of

vertices all adjacent to each other); we now define a joint distribution

p(x1, · · · , xn) =
1

Z

∏
c∈C

φc(x⃗c),

where C is some subset of cliques, φc is a function on the vertices of a clique c ∈ C, and Z is the normalizing

constant, also called the partition function,

Z =
∑
x̂1,··· ,x̂n

∏
c∈C

φ(c(ˆ⃗xc)).

The key difference is that we do not do a topological ordering, and calculating with cliques can be more compu-

tationally intensive than just looking at the parents of each edge. But for example, the pairs of edges in our example

above are exactly the maximal cliques, so we are encoding the hat condition in a more natural way.

Just like with conditional probability distributions, we can represent φc(x⃗c) with a table; the key difference is that

these functions need not be normalized. (But notice that if we scale the values in a table by some constant, that

doesn’t change the underlying probability distribution.) These tables will not be too large if we don’t have too many

variables in a clique – we need 2n parameters for an n-clique.

Example 44

Consider an undirected network on A,B, C, where the relevant cliques are the pairs of vertices. Suppose we specify

that φA,B(a, b) = 10 if a = b and 1 otherwise, φB,C(b, c) = 10 if b = c and 1 otherwise, and φA,C(a, c) = 10 if

a = c and 1 otherwise.

Then this Markov random field is assigning higher probabilities to configurations where adjacent variables are equal;

in this situation we have

p(a, b, c) =
1

Z
φA,B(a, b)φB,C(b, c)φA,C(a, c),

where Z sums φA,B(a, b)φB,C(b, c)φA,C(a, c) over all possible values of (a, b, c); in this case it ends up being 2060, so

p(0, 0, 0) = 1000
2060 . These models are often called energy models (motivated by constructions in statistical physics).

Example 45

For the hair color example above, we can use a MRF with the joint distribution modeled as

p(a, b, c, d) =
1

Z
φAB(a, b)φBC(b, c)φCD(c, d)φAD(a, d)φA(a)φB(b)φC(c)φD(d),

where for example φAB(a, b) = 0 if a = b and 1 otherwise.
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The single-node potentials like φA can be thought of as encoding preferences for a particular color (this is just

giving us more control over the underlying distribution), but again we can scale a given φ however we’d like without

changing the probabilities.

Fact 46

In this model, we cannot represent consistent local conditional or marginal probabilities because we don’t have a

topological ordering. And it turns out this will cause problems for sampling efficiently, and it can make interpretation

more difficult as well.

We’ve described how d-separation encodes independence in Bayes networks; it turns out there is an analog of local

independence in Markov random fields (also called Markov networks) which is actually simpler.

Theorem 47

Conditional independence in a Markov network is given by graph separation. In other words, if there is no path

from any a ∈ A to any c ∈ C after removing the nodes for B, then X⃗A is independent from X⃗C given X⃗B.

We can think of this being similar to common-parent and cascade-structures; there is no V-structure complication

now that we don’t have directionality. Intuitively, if variables in XA and XC can only interact via XB, then cutting off

those edges means there can be no conditional dependence.

Example 48

Markov networks can easily encode the relation D ⊥ B|{A,C} in our hat example; removing A and C from the

graph disconnects B from D. On the other hand, it’s not always true that A ⊥ C|D, since there is still a path

A→ B → C.

Importantly (just like in Bayesian networks), we cannot claim that the existence of a path necessarily implies

dependence, since it ends up depending on the values of the clique functions.

Definition 49

A set of variables U⃗ is a Markov blanket of a variable X if X /∈ U⃗ and U⃗ is a minimal set of nodes such that

X ⊥ (all variables− {X} − U⃗)|U⃗.

In an undirected model, the Markov blanket of X is its set of neighbors – knowing the values of X’s neighbors

makes the value of X independent from the remaining variables. On the other hand, in a Bayesian network, the Markov

blanket of X is a little larger: it consists of X’s parents and children, but also the other parents of X’s children.

Example 50

Let’s see a simple example of independence through separation. Suppose we have a distribution on three variables

p(a, b, c) =
1

Z
φAB(a, b)φBC(b, c)

and we want to show that A ⊥ C|B.
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Notice that we can completely compute the conditional probability

p(a|b) =
p(a, b)

p(b)
=

∑
ĉ p(a, b, ĉ∑
â,ĉ p(â, b, ĉ

=
1
Z

∑
ĉ φAB(a, b)φBC(b, ĉ)

1
Z

∑
â,ĉ φAB(â, b)φBC(b, ĉ)

=
φAB(a, b)

∑
ĉ φBC(b, ĉ)∑

â φAB(â, b)
∑
ĉ φBC(b, ĉ)

=
φAB(a, b)∑
â φAB(â, b)

using only the value of φAB (notice that we basically “locally normalize” this factor to a probability distribution). The

general phenomenon is that the value of some X, conditioned on its Markov blanket, will only depend on factors that

involve X.

But doing a similar calculation for p(a, c |b) will show that it’s actually equal to p(a|b)p(c |b), so we have the desired

conditional independence. And doing this in general, we just group together all of the factors in the joint distribution

as

p(X⃗A, X⃗B, X⃗C) =
1

Z
f (XA⃗, XB⃗)g(X⃗B, X⃗C)

(there is no factor between A and C because that would imply that there is an edge, which we assumed is not true),

and then the above proof works analogously.

Theorem 51 (Soundness of separation)

If a probability distribution p factors over an undirected graph G (we say that it is a Gibbs distribution for G),

then G is an I-map for p.

The converse also holds with an additional assumption:

Theorem 52 (Hammersley-Clifford, 1971)

Suppose p is a positive distribution (meaning that p(x⃗) > 0 for all x⃗). If G is an I-map for p, then p factorizes

over G.

Such a statement means that interactions are local, so we can write down the distribution in terms of these local

factors (this will be useful later on for learning). And results about completeness are analogous to Theorem 34.

Example 53

When we do image denoising, we have a true image Y⃗ and a corrupted model X⃗, where we want to recover Y⃗

given X⃗. We can model this with a Markov random field

p(y⃗ , x⃗) =
1

Z

∏
i

φi(xi , yi)
∏
(i ,j)∈E

φi j(yi , yj).

Such a factorization means that the ith corrupted pixel depends on the ith original pixel, and also adjacent pixels

in the true image have interactions as well (for example, they are likely to have the same value). We can then infer

the image Y⃗ by sampling from p(y⃗ |x⃗); this will be better than separately trying to denoise each pixel.
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So far we’ve only seen pairwise interactions – we can also have higher-order potentials perhaps of the form

φ(x, y , z) =

1 x + y + z ≥ 1,

0 otherwise.

In such a situation we say that the scope of φ is (X, Y, Z). The problem we start running into at that point is that

we can’t really tell from the graph which factors are being counted (for example, a clique of 4 vertices could represent

6 pairwise factors or a single factor for all terms).

Definition 54

A factor graph is a bipartite undirected graph between variable nodes and factor nodes, where edges are only

between variable and factor nodes. (Think of this as taking the original set of vertices and connecting each factor

to the nodes in its scope.) We still end up with the same distribution as in a Markov random field, but we represent

it with a different structure as
1

Z

∏
f ∈Factors

φf (x⃗f ).

(For an example of what this looks like, see Example 101 from a future lecture!)

5 January 19, 2024 (Section)

This is the first of five optional sections held by the TAs – today’s topic is d-separation (and broadly the concept of

independencies in graphical models), taught by Devansh Sharma. We’ll first think about independence and I-equivalence

in Bayesian networks, and then we’ll conclude with a bit on independence in MRFs (which will be easier).

The main utility of Bayesian networks is to be visual – instead of needing to analyze the probability distribution,

we can look at a graph and read off independence using facts like the local Markov property (that each variable is

conditionally independent of its nondescendants, if we’ve observed its parents). Our key test is d-separation – recall

that if there is no “flow of influence” between two variables (that is, there is no active path), then we have conditional

independence. And we check whether a path is active by looking at consecutive triples – if we have a cascade or

common parent, then we need the middle node to be unobserved, and if we have a V-structure, we need the middle

node or one of its descendants to be observed.

Remark 55. Intuitively (but not precisely), we can think of active paths as “dependency paths” where all nodes along

the path are dependent on each other.

Example 56

Consider the diagram below – we’ll consider a few examples of d-separation on this graph.
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I

H

E

B

G

A

D F

C

• F and I are not d-separated, since we have a path (F, C, E,H, I) which is active.

• If B is observed, then F and D are d-separated (there are no active paths, since any path between them has to

go through (E,B,D) or (E,H,D).

• If I and B are observed, then G and E are not d-separated, since we have the active path (G,D,H,E).

This was a pretty small graph to visually work with, but there’s a general algorithm to check whether two sets X

and Y are d-separated given Z. We can’t enumerate all paths from X to Y and check if they’re active (since there

may be exponentially many of them) – instead, the following strategy gives a linear-time procedure:

• Traverse the graph bottom-up from Z, and mark all nodes that are in Z or are ancestors of Z; call this set W .

• Now traverse the graph breadth-first from X to Y , stopping when we encounter a blocked node, meaning that

we are in the middle of a V -structure but not in W or are not in the middle of a V -structure but are in Z.

• If this breadth-first search manages to reach Y without encountering a blocked node, then there is an active

path and thus we do not have d-separation. Otherwise, the two sets are d-separated.

(There are some additional details – we need to mark tuples rather than just individual nodes, for example – but

we can read more about this in the book if we’d like.)

Recall also that we may want to know if two networks G1, G2 contain the same set of independencies (that is,

I(G1) = I(G2)). We’ve seen that if Z is in the middle of a network of 3 nodes X, Y, Z, then common-parent and cascade

structures all give the same independencies, but a V -structure encodes the fact that X and Y are not independent

given Z. To prove this, recall that we can write a Bayesian network X → Z → Y as

p(X, Y, Z) = p(X)p(Z|X)p(Y |Z),

the other cascade Y → Z → X as

p(X, Y, Z) = p(Y )p(Z|Y )p(X|Z),

and the common-parent structure Z → X,Z → Y as

p(X, Y, Z) = p(Z)p(X|Z)p(Y |Z).
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But we can actually get from any of these expressions to any other one using Bayes’ rule, since

p(X)p(Z|X)p(Y |Z) = p(Z)p(X|Z)p(Y |Z) = P (Z)P (Y |Z)p(X|Z) = p(Y )p(Z|Y )p(X|Z)

(where the first and last steps are Bayes’ rule and the middle is just rearranging the factors). On the other hand, we

can check that none of these manipulations will get us to the V -structure X → Z, Y → Z.

One fact is that if two graphs G,G′ are I-equivalent, then they must have the same skeleton – informally,

because if we have an edge present in G′ but not in G′, then we have an extra independence in I(G) but not in I(G′).

On the other hand, having the same skeleton alone isn’t enough (like the V -structure versus a cascade from the

previous example); instead, it’s true that if two graphs have the same skeleton and V -structures, then they are
I-equivalent. (Unfortunately, this last statement is not an if and only if statement either; there are graphs G,G′ with

the same independencies but different V-structures. For example, we can take two fully-connected DAGs.)

Fact 57

We care about I-equivalence for the purposes of structure learning – often we start with a fully-connected Bayesian

network and repeatedly remove edges when we test for independence. Unfortunately, we can’t really distinguish

between A → B and B → A with this strategy, and thus some additional assumptions will be introduced later in

the course to help with this.

On the other hand, Markov random fields are much easier to reason about because we have no directionality and

thus no nuances with V-structures – independence just comes from ordinary graph separation. This gave rise to the

concept of a Markov blanket U of a variable X, which is the minimal set of nodes that need to be observed to make

X independent of everything else. In the case of MRFs, this Markov blanket will just be the set of neighbors to X.

Remark 58. A fire alarm went off, so the rest of the section was done online – the remaining notes are transcribed

from the lecture notes.

As we saw in lectures, MRFs are able to encode certain independencies that Bayesian networks cannot (for example

in the “different hair color” examples); however, they cannot encode unconditional independence without disconnecting

the graph.

Example 59

Finally, we’ll show an example where we go from an MRF to a Bayesian network. Suppose we have the Markov

random field shown below, and we want to construct a minimal I-map for it.

A

B

C

D

E

F

The idea is that even though ordering does not matter for MRFs, it does for Bayesian networks. So what we

can do is pick an ordering, say (A,B, C,D,E, F ), of our vertices. Then for each vertex, we choose its parents in a
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minimal way so that we get the correct set of independencies. In this case, that means we start with A, then have A

as a parent of B, then have both A and B as parents of C (since even conditioned on A, C and B are dependent).

But then we only need B and C to be parents of D (since A and D are independent given B and C), and similarly only

C and D as parents of E, and finally D and E as parents of F .

Fact 60

If we’re interested in a general method for building a minimal I-map, the textbook describes an algorithmic procedure

for that as well. It’s basically the same idea as what we see here – if we’ve already gone through X1 through

Xn, then Xn+1’s parents are some minimal subset S of {X1, · · · , Xn} such that given S, Xn+1 is independent of

{X1, · · · , Xn} \ S.

6 January 23, 2024
Our first topic for today is converting Bayesian networks to Markov random fields – this conversion is particularly

useful for inference, since a lot of algorithms there are easier to represent in terms of undirected models. It turns out

we just need to make a few kinds of changes to do so:

Definition 61

Let G = (V, E) be a Bayesian network. The moral graph M[G] of a Bayesian network is an undirected graph

over V , such that we draw an edge between Xi and Xj if either there is a directed edge between Xi and Xj , or
they are both parents of the same node.

This is thought of as “marrying parents” of a node. For example, if we have a V-structure A→ C,B → C, then the

moralization has an edge between A and B as well. Note however that we lose some independence information by

doing this – for example, in such a V-structure we have A ⊥ B, but the moralization does not capture this information.

Once we have this moralization, we can introduce a potential function for each conditional probability distribution via

φi(xi , x⃗Pa(i)) = p(xi |x⃗Pa(i));

this explains why we need to moralize the graph, since we need to make xi and its parents into a single clique to have

a valid MRF.

Example 62

In a hidden Markov model (like in Example 35), we don’t have any common parents, so we just convert it to

a Markov random field by removing the directionality of edges (and the factors are just from individual edges,

coming from the conditional probability distributions). But when we have multiple parents, it’s often useful to be

more explicit and switch to the factor graph notation.

All of this shows us that undirected and directed models are good in different situations – V-structures do not have

an undirected representation, but the hair color example does not have a directed representation.

Fact 63

In a Markov random field, conditioning on more random variables always creates more indepencies. But this isn’t

always true in Bayesian networks because of the explaining away phenomenon.
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Now that we’ve introduced the different kinds of models that we can use, we can figure out which ones are
suitable to which situations.

Example 64

Suppose we are thinking about a classic machine learning question where we want to go from a set of features X⃗

and get some labels Y .

There are many different ways to do this – we can have a generative model represented by Y → X⃗ (where we

get features from labels), a discriminative model represented by X⃗ → Y (where the labels are obtained in terms of

features, for example if we’re trying to predict them), or an undirected model with an undirected edge between X⃗

and Y . There are tradeoffs between all three representations, and we’ll see how they come up with our next example.

Example 65

Consider the email classification example from Example 22, but now not necessarily with all Xis independent. In

such a situation, we have a generative model where the label Y is a parent of all features Xi .

This Bayesian network does not actually give us the value of p(Y |X⃗) directly – we can use Bayes’ rule to compute

it, but it’s not explicitly calculated in the conditional probability distributions and we need to do inference to find it.

Thus, we could try using a discriminative model for this email classifier instead. That would directly give us the value

p(Y |X⃗) needed for classification – we wouldn’t need to specify or estimate both the values of p(Y ) and p(X⃗|Y ), and

we don’t even need the value of p(X⃗) either. However, this model is only useful specifically for discriminating Y ’s label

– we can’t use it to generate a new email.

Fact 66

Being a bit more explicit here, the chain rules for the two different models look like

p(Y |X⃗) = p(Y )p(X1|Y )p(X2|Y,X1) · · · p(Xn|Y,X1, · · · , Xn−1)

for the generative model and

p(Y |X⃗) = p(X1)p(X2|X1)p(X3|X1, X2) · · · p(Y |X1, · · · , Xn−1, Xn)

for the discriminative model. And the way we make either of these models computationally tractable is by

simplifying with different assumptions.

In the generative case, we need to parameterize p(Xi |X⃗Pa(i), Y ) (because Xn has lots of parents), while in the

discriminative case, we don’t actually care about p(X⃗) (because X⃗ is given to us already in a classification problem)

but we still need to parameterize p(Y |X⃗) efficiently.

As we’ve discussed in a previous lecture, the strategy for the generative case is to use naive Bayes, where we say

that Xi ⊥ X⃗−i |Y (where X⃗−i means all Xs except Xi). But in the discriminative model, we make progress in a different

way using logistic regression. We make the assumption that the entries have a special structure given by a function

p(Y = 1|x⃗ ;α) = f (x⃗ , α⃗),

where α⃗ = (α0, · · · , αn) is some additional set of parameters. So now instead of having a conditional probability table

(which would have too many rows), we have a deterministic function parameterized by α. We want this function to
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depend in a simple way on our variables x⃗ – the simplest thing we can do is to use a linear dependence

z(α⃗, x⃗) = α0 +

n∑
i=1

αixi ,

but this doesn’t get us probabilities between 0 and 1. So the last step is to apply a nonlinearity using the S-shaped

sigmoid function and define

p(Y = 1|x⃗ ; α⃗) = σ(z(α⃗, x⃗)), σ(z) =
1

1 + e−z
.

This is one way to think about a logistic regression classifier – we have some variables x1, · · · , xn, and we assume that

the probability of Y = 1 given these values has a nice deterministic form. Unfortunately, such an assumption has lots

of limitations in terms of the shape of the curve: the decision boundary p(Y = 1|x⃗ ; α⃗) = 0.5 is linear in x , and in

general the equiprobable contours are straight lines. But it’s just another way of simplifying the joint distribution.

Remark 67. We’ll talk more about regularization when we discuss Bayesian learning and interpretation later, but we

can think of it as prior knowledge about how the variables are related – it has to do with the distribution of αs as

random variables as well.

Fact 68

It turns out that under some conditions, the naive Bayes assumption actually implies the functional form given

by a logistic regression classifier. Indeed, if we assume that Y is Bernoulli with some parameter π and Xi |Y is

Gaussian with parameters µiy , σi (in particular, the variance is class-independent for each variable), we’ll find the

logistic form we described above.

So logistic regression performs at least as well as naive Bayes, since any naive Bayes representation (under these

conditions) is some particular instance of a logistic model.

Example 69

In practice, it can be important that the logistic model doesn’t require conditional independence among the Xi .

For example, the occurrence of “bank” and “account” may be very correlated, and thus naive Bayes may be double
counting evidence even if the correlation does not depend on whether or not the email is spam. A logistic

regression classifier would instead just set one of the αs to zero while learning.

However, generative models do still have their use – if some of our features X⃗ are missing, then just having access

of p(Y |X⃗) does not allow us to make a prediction in the logistic model. In such a situation, we can marginalize over

the unseen variables in a generative model. And in general, estimating the generative model using maximum likelihood

is more efficient than training the discriminative model. We’ll return to this in the later half of the course!

Example 70

In a standard machine learning problem, we want to map a sequence of complex inputs X⃗ to some relatively

simple output y ∈ R. But we often have structured output problems where the outputs Y⃗ are also complex and

high-dimensional. For example, suppose we input an image, and we want to output a segmentation mask (for

example distinguishing which parts of an image correspond to a horse versus the background).

If we are dealing with M × N color images, this problem has input space X = [0, 255]3MN and output space

Y = {0, 1}MN . In such a situation, we don’t need to model how the images look like – we just need to discriminate
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by solving for a prediction function
f (x⃗) = argmaxy∈Yp(y⃗ |x⃗),

to figure out what the most likely segmentation mask is. And there is a complicated dependency between the pixels,

but that gets encoded in the conditional distribution.

Example 71

For a more simple example, suppose we are trying to do character recognition: we have a sequence of 5-letter

word images, and we want to map them to some ASCII translation. In other words, we have x⃗ = (x1, · · · , x5) as

input, where xi ∈ {0, 1}300·80, and Y⃗ = (y1, · · · , y5) as output, where yi ∈ {A,B, · · · , Z}.

Again, we don’t need to model what handwritten characters look like – we just need a model which tells us which

character sequence is most likely. But then we need the relationship between each xi and yi , as well as relationships

between the characters yi (since some strings are much more likely to occur in English than other ones – if we see a

handwriting sample that looks either like “QUEST” or “QVEST,” we can guess that it’s very likely to be the former).

Definition 72

A conditional random field (CRF) is an undirected graphical model specifically designed to model conditional

distributions. In a CRF, we have observed variables X⃗ and target variables Y⃗ , and we have a graph with both

Xi and Yj variables. Just like in an MRF, we have potentials associated with cliques in the graph (which involve

both kinds of variables and tell us how compatible different assignments are), which specifies the conditional
distribution

p(y⃗ |x⃗) =
1

Z(x⃗)

∏
c∈C

φc(x⃗c , y⃗c),

where C is some set of cliques and Z(x⃗) =
∑
ŷ

∏
c∈C φc(x⃗c ,

ˆ⃗yc) is the normalizing constant to make this a

probability distribution.

(Notice that this time the partition function Z depends on x⃗ , and we only sum over the Y variables.) Just like for

MRFs, it’s convenient that independence is exactly reflected by graph separation.

Example 73

In the handwriting example above, we can associate a potential φi(xi , yi) to each clique (xi , yi) which is large if

the image xi looks like the character yi , so that P (y⃗ |x⃗) = φ1(x1, y1) · · ·φ5(x5, y5)/Z(x⃗).

If those were the only potentials, the prediction f (x⃗) = argmaxy∈Yp(y⃗ |x⃗) would just be obtained by separately

optimizing each term φi(xi , yi), since we are making independent assumptions at each location. So it’s better to add

some other cliques as well, such as adding some terms of the form φi ,i+1(yi , yi+1) corresponding to frequencies of

adjacent character pairs.

We might want to try representing these factors in a table, but for something like φ1(x1, y1) the variables are too

high-dimensional for that to be practical (in this case we’d need 2300·80 · 26 terms). So instead we will often assume
a specific functional form, such as the logistic regression example described above. A popular choice is the log-linear

function

φc(x⃗c , y⃗c) = exp
(
w⃗c · f⃗c(x⃗c , y⃗c

)
,

where w⃗c ∈ Rd is a (learnable) weight vector and f⃗c(x⃗c , y⃗c) ∈ Rd is a fixed feature vector; here we can choose d to

relatively small, and as long as the features aren’t too complicated this will work quite well. (In this case, we can let
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φi(xi , yi) be a convolutional neural network, and we can let φi ,i+1(yi , yi+1) be represented as a table. And if we have

global information, such as an English dictionary, we could make more connections between all of the yis encoding the

validity of words – it’s just that learning and inference may become more expensive.) But what’s nice is that we can

use very complicated features over x⃗ because we don’t need to model a probability distribution for it.

Example 74

Our logistic regression model can be thought of as a conditional random field of the form

p(y |x1, x2, · · · , xn) =
1

Z(x1, · · · , xn)
r(y)f (x1, x2, · · · , xn, y).

In other words, there are two cliques – the first one is just over the single node y , and the second is over all

variables.

We recover the previous functional form by choosing our functions to be

r(y) = exp (α0 · 1{y = 1})

(meaning that r(0) = 1 and r(1) = exp(α0)) and

f (x1, x2, · · · , xn, y) = exp

((
n∑
i=1

αixi

)
1{y = 1}

)

(meaning that f (x⃗ , 0) = 1 and f (x⃗ , 1) = exp(
∑
i αixi)). Computing the conditional distribution does indeed yield

p(Y = 0|x⃗) =
1

Z(x⃗)
, p(Y = 1|x⃗) =

1

Z(x⃗)
exp

(
α0 +

n∑
i=1

αixi

)
,

so we do get the correct logistic regression formula. And Z turns out to be the denominator of a softmax if we have

a more general categorical (multi-class) classification.

7 January 25, 2024
We’ve finished the first module of the course now, understanding different models for representing probability distribu-

tions. From here, the exciting part begins – we’ll figure out how to solve problems, efficiently computing probabilities

by exploiting the independence properties we’ve set up in our representation. So all of this will be a question of how
to infer.

At a high level, the models we’ve discussed in this class have two different components – the graph structure and

the factors or probability distributions we put on that structure. There’s several ways we can acquire such a model:

perhaps we have some expert prior knowledge and already know the graph or factors, but often we use data or learning

to determine what the graph looks like (we call this structure learning) or what the factors look like (we call this

parameter learning); sometimes we need to do both and that can be particularly difficult.

In practice, though, we often have some dataset that we can work with (for example emails that have already been

classified as spam or not spam), which we can formalize as a set of samples D = {x⃗ (1), · · · , x⃗ (m)} taken from some

underlying distribution p∗ (think of this as an assignment of variables in our model). We usually assume that these

data points are independent and identically distributed (iid for short), meaning that the probability of observing a
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dataset is given by

p∗(D) =
∏
i

p∗(x⃗ (i)).

Furthermore, we are often given a family of modelsM, and we want to learn what the “good model” M̂ ∈ M within

that family is. (For example, M may be the set of all Bayesian networks with some given graph structure, ranging

over the possible choices of conditional probability tables. That would be an example of structure learning, where we

just need to learn the model parameters.) Specifically, we want pM̂ to be as close as possible to the true underlying

data distribution that we sample from. This is a hard problem in general – we have limited data which is itself an

approximation of the true distribution, and it can be too computationally difficult to go through the data.

Example 75

Let’s go back to the email classifier from earlier in the course – suppose every email is represented with a vector of

1000 binary features X⃗, plus a single binary label Y . Then there are more than 10300 possible states in our model,

so even if we have 107 emails to work with, we still have very sparse coverage of the joint probability distribution.

So given that we can’t get p∗ exactly, we resort to making a best approximation.

We do need to quantify what “best” means here, though, and the metric that we use (leading to different loss

functions) depends on the problem we’re trying to solve:

1. The most general task is density estimation, in which we want the full distribution so that we can compute any

conditional probability query that comes up.

2. On the other hand, sometimes we care about specific prediction tasks (like seeing if an email is spam) where

the distribution is used for a particular calculation.

3. Finally, we sometimes are curious mostly about the structure of the model itself – perhaps we want to do causal

inference or see how different variables (like genes) interact with each other.

In case (1), our main goal is to estimate p∗(x⃗) for every x⃗ . This is like a regression problem, except we don’t

actually know what p∗ is (just a bunch of random samples from it). This means that our model distribution pM̂ should

be close to p∗, and one way to measure the closeness of two distributions is the following:

Definition 76

The Kullback-Leibler divergence (KL divergence for short) between two distributions p, q is defined as

D(p||q) =
∑
x⃗

p(x⃗) log
p(x⃗)

q(x⃗)
.

In other words, the KL divergence is the average value of log(p/q) with respect to p; if p and q agree everywhere

then this quantity will be zero, while if p and q are significantly different this quantity will be much larger. So if we

made this our loss function, it would be a reasonable learning goal for incentivizing q to approach p.

Proposition 77

D(p||q) is always nonnegative, with equality only if p = q.

Proof. As mentioned above, we can write

D(p||q) = Ex⃗∼p
[
− log

q(x⃗)

p(x⃗)

]
≥ − log

(
Ex⃗∼p

[
q

(x⃗)
p(x⃗)

])
,
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where we use Jensen’s inequality on the convex function − log. Then expanding the expectation inside the log, we get∑
x⃗ p(x⃗)

q(x⃗)
p(x⃗) =

∑
x⃗ q(x⃗) = 1, so the right-hand side is zero and thus we get our result.

We should be careful not to think of the KL divergence as a distance – in general we have D(p||q) ̸= D(q||p).
But we can think of it as a relative entropy – D(p||q) essentially tells us how many extra bits of information are

required to describe samples from p, if we’re using a code based on q instead of p. For example, Morse code is a

system which encodes letters with dots and dashes, where letters like E or A are given much shorter encodings than

Q (so that messages are as short as possible on average). If we now wanted to design the equivalent of Morse code

for Japanese, it would be useful to know which characters are more frequent than others – KL-divergence measures

how efficient our scheme is if we optimize for some distribution q other than the true one p.

Thus, we can evaluate closeness with the formula

D(p∗||p̂) = Ex⃗∼p∗
[
log

(
p∗(x⃗)

p̂(x)

)]
=
∑
x⃗

p∗(x⃗) log
p∗(x⃗)

p̂(x)

and try using this as an objective to minimize. We can simplify this further as

D(p∗||p̂) = Ex⃗∼p∗ [log p∗(x⃗)]− Ex⃗∼p∗ [log p̂(x⃗)]

and what’s nice is that the first term (this is actually −H(p∗), the negative entropy of the distribution p∗) has nothing
to do with the model, while the second term can be thought of as maximizing the log-likelihood. That is, we want

to choose a model which maximizes log p̂ (assigning high probability to our data for instances sampled from p∗), which

justifies the choice of learning objective.

Unfortunately, if we just think about this in terms of maximum likelihood, ignoring the H(∗p) term means we don’t

know how close we are to the optimal solution – we can only compare two distributions p1 and p2 and see which one

is better. And because we don’t know p∗ in general, we approximate the expected log-likehood Ex⃗∼p∗ [log p̂(x⃗)] with

the empirical log-likelihood
1

|D|
∑
x⃗∈D

log p̂(x⃗);

this is the loss function that we’ll use, since it only involves data and the model and therefore we can build learning

algorithms for it. So this means that when we do maximum likelihood learning, we are computing

max
p̂∈M

1

|D|
∑
x⃗∈D

log p̂(x⃗),

which (because the data points are independent) is equivalent to maximizing the likelihood of the data p̂(x⃗ (1), · · · , x⃗ (m)).

Example 78

Suppose we have a biased coin that we want to model – the coin can take on values H or T , and suppose we

have the data D = {H,H, T,H, T}. Our class of models is just the set of probability distributions over {H,T},
and thus our learning task is “how to choose p̂ given that 3 out of 5 of our tosses came up heads.”

For this example, we represent the model with a parameter θ = p̂(x = H) (meaning that 1 − θ = p̂(x = T )).

Then given any choice of our model, the probability of generating this particular dataset is θ3(1− θ)2 – we then want

to choose θ that maximizes this probability. In this case (perhaps not surprisingly) the answer turns out to be θ = 3
5 .

More generally, if we have a general dataset of h heads and t tails, then the likelihood of our data is

L(θ) = θh(1− θ)t =⇒ logL(θ) = h log θ + t log(1− θ),
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and taking a derivative of the log-likelihood and setting that equal to 0 shows that θ∗ = h
h+t is the optimal solution.

We can do a similar calculation for a die roll or other categorical distribution as well:

Fact 79

For any categorical distribution, the set of models is of the form {(θ1, · · · , θn) :
∑
k θk = 1}; it turns out that

using Lagrange multipliers and doing a similar calculation as before yields

θ∗k =
number of samples of outcome k

total samples
.

However, notice that if we never see some particular variable occur, this process would choose θ∗k = 0. Thus we

often do a process called Laplace smoothing (which we’ll learn more about when we talk about Bayesian learning)

and instead choose

θ∗k =
number of samples of outcome k + α

total samples+ 6α
.

for some real number α.

Example 80

So now we understand how to do this process with a single random variable (just one node), and now we must

think about how to extend this MLE principle to a Bayesian network.

Our model family is now given by a fixed Bayesian network structure with the factorization

p̂(x⃗) =

n∏
i=1

θxi |Pa(xi ),

and again we have some training data {x⃗ (1), · · · , x⃗ (m)}. Our goal will be to select probability tables given some dataset

of samples, where each sample is a value of all of the variables in our BN. And what’s tricky is that we want to do a

maximum likelihood estimate of all parameters at the same time. The good news is that our BN factorization lets

us decompose our likelihood function: we have

L(θ,D) =
m∏
j=1

p̂(x⃗ (j)) =

m∏
j=1

n∏
i=1

θ
x
(j)
i |Pa(x (j)i

,

so we can swap the order and rewrite this as

L(θ,D) =
n∏
i=1

m∏
j=1

θ
x
(j)
i |Pa(x (j)i

,

where our goal is to maximize L (over θ) given that θxi |Pa(xi ) ≥ 0, and for each possible choice of values of the parents

Pa(xi), we have
∑
xi
θxi |Pa(xi ) = 1. This is done with the same machinery as in our coin flip example: let N(xi ,Pa(xi))

be the number of times the tuple of values (xi ,Pa(xi)) appears in our data set. Grouping those together (so now we

don’t sum over our different data points j , just like how we grouped together all of the heads and tails), we can now

write

L(θ,D) =
n∏
i=1

∏
Pa(xi )

∏
xi

θ
N(xi ,Pa(xi )
xi |Pa(xi )

.

But now our optimization problem is

max
θ
L(θ,D) =

m∏
i=1

max
θi

∏
Pa(xi )

∏
xi

θ
N(xi ,Pa(xi )
xi |Pa(xi )

;
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notice that the term inside for each i only depends on the conditional probability distribution for Xi ! So we can

go through every variable and separately choose its local probability table to maximize the likelihood, and that will

give us the best solution overall. And the only constraint we have on θ now is that for each “row of the conditional

probability distribution” (that is, for each choice of the parent values), we need the sum of those entries (the conditional

probabilities of xi) to sum to 1. And thus this ends up being the problem from Fact 79: we fill in the conditional

probability tables, choosing large θs for entries that show up often in our data. Summarizing everything, if we have
fully observed data D, then our optimal choice is

θ∗xi |Pa(xi =
N(xi ,Pa(xi)
N(Pa(xi)

.

In other words, a potentially complicated problem has been simplified significantly to just doing everything locally –

there’s nothing mathematically better because of the structure of a BN. (But when we talk about undirected models

later, things get more complicated.)

Example 81

Suppose we have a Bayesian network with three true/false variables H,S,E (being health-aware, smoking, and

exercising) such that the network structure is given by H → S,H → E. Also, suppose we have a survey of 16

people, such that we take on the values (T, T, T ) twice, (T, F, T ) nine times, (T, F, F ) once, (F, T, F ) once, and

(F, F, T ) twice, and (F, F, F ) once (and (T, T, F ) and (F, T, T ) zero times).

Our goal is to estimate the conditional probability tables – that is, we want the distribution of H, of S given H,

and of E given H. Since 12 of these data points have H = T (health-aware) and the other 4 have H = F , we estimate

θml
H =

3
4 . Similarly, out of the 12 health-aware people, 2 smoke and 10 do not, so θml

S|H=T =
1
6 ; however out of the 4

non-health-aware people we have 1 smoker, so θml
S|H=F =

1
4 . A similar process gives us the distribution of E.

Remembering now that we don’t always want the full density estimation question, we can generalize these ideas:

Definition 82

A loss function loss(x⃗ ,M) is a function that measures some loss made by the model on some instance of the

variables x⃗ .

Our goal is then to minimize loss (also called risk) Ex⃗∼p∗ [loss(x⃗ ,M)] over our class of models – in the cases so

far, we’ve been setting our loss function to be log-loss loss(x⃗ ,M̂) = − log p̂(x⃗). And because we still don’t know p∗,

we try to approximate by minimizing empirical risk

ED
[
loss(x⃗ , M̂)

]
=
1

|D|
∑
x⃗∈D

loss(x⃗ , M̂).

Example 83

In the spam email classification example (in general, in a discriminative model), our goal has been to predict a set

of variables Y⃗ given some other ones X⃗. In such a setting, we don’t need the whole joint distribution – our loss

function is instead the conditional loss

loss(x⃗ , y⃗ ,M̂) = − log p̂(y⃗ |x⃗),

and thus we only need to estimate the conditional distribution (we don’t need to model or estimate p(x⃗)).
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This is indeed what we use to train conditional random fields and logistic regression classifiers. Recall that in a

logistic regression classifier, we assume the functional form p(Y = 1|x⃗ ;α) = σ(z(α, x⃗)) and we want to pick the model

with the smallest loss. Rephrased in our notation, our goal is optimize the coefficients α: we try to solve the problem

min
α
E(x⃗ ,y⃗)∼p∗ [− log p̂(y⃗ |x⃗ ;α)] .

This strategy generalizes to continuous random variables as well – we often represent such a variable X with

a probability density function pX : R → R+, and we do so usually with parameterized densities like a Gaussian

X ∼ N(µ, σ) ⇐⇒ pX(x) =
1

σ
√
2π
e−(x−µ)

2/2σ2 or uniform distribution X ∼ U(a, b) ⇐⇒ pX(x) =
1
b−a1{a ≤ x ≤ b}.

The chain rule, Bayes’ rule, and other probability laws still apply, and thus we can still use Bayesian networks if we

have some or all continuous random variables.

Example 84

Consider a network Z → X, where Z is Bernoulli with parameter p and X is distributed as a Gaussian N(µ0, σ0)

when Z = 0 and as a different Gaussian N(µ1, σ1) when Z = 1. Then the only parameters we have here are

p, µ0, σ0, µ1, σ1.

Example 85

In linear regression, we want to model the relationship between some “covariate” inputs and some “response”

outputs. If we have some training data D = {(x1, y1), · · · , (xm, ym)} and want to predict Y given X, then it’s

easier to model p(Y |X) instead of p(X, Y ).

We can model this by assuming that p(Y |X = x) is Gaussian with mean α + βx and some known fixed variance

σ2 (so basically we have Gaussians centered around some best-fit line). More generally if we have multiple covariates,

we can assume p(Y |X⃗ = x⃗) is Gaussian with some mean θX⃗ and fixed variance σ2; our conditional likelihood of seeing

a particular data point is then

p(y1, · · · , ym|x⃗1, · · · , x⃗m, θ) =
m∏
i=1

1√
2πσ2

exp

(
−
1

2σ2
(yi − θx⃗i)2

)
.

Doing some algebra shows that we actually end up reducing problem to the usual least-squares regression loss. But

even if we have different, more complicated regression models, our machinery here applies to them as well.

8 January 30, 2024
We’ll dive fully into inference today – we know everything we need about representation, and our goal is now to solve

tasks of interest and compute conditional probabilities. The idea now is that we have some probabilistic model given

to us over a set of variables X , and we want to answer conditional probability queries of the form

p(Y⃗ |E⃗ = e⃗) =
p(Y⃗ , e⃗)

p(e⃗)
.

(For example, E⃗ may be a set of observed votes, and Y⃗ may be whether a Congressman is a Democrat or Republican.)

There will often be some set W⃗ = X \ (Y⃗ ∪ E⃗) of other variables which are neither part of the query nor the evidence,
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so we end up having to marginalize over these other variables:

p(Y⃗ , e⃗) =
∑
w⃗

= p(Y⃗ , e⃗, w⃗), p(e⃗) =
∑
y⃗

p(y⃗ , e⃗),

where our sums (or integrals if we have continuous random variables) are over all possible values that the variables

W⃗ or Y⃗ can take, respectively. Such a sum is expensive but sometimes needed, even though it’s not something we

explicitly get from a Bayesian network or MRF without computation.

A similar query we may see in inference is the maximum a posteriori or most probable explanation, known as

MAP inference. In such a question, we may have Y⃗ = X \ E⃗, and our goal is to calculate

MAP(Y⃗ |E⃗ = e⃗) = argmaxy⃗p(y⃗ |e⃗).

So instead of summing, we just find the most likely assignment to the non-evidence variables (this is an optimization

problem). Additionally, we may combine these two into a marginal MAP problem where we have to calculate both

with summation and optimization:

MMAP(Y⃗ |E⃗ = e⃗) = argmaxy
∑
z⃗

p(y⃗ , z⃗ |e⃗).

In the next couple of lectures, we’ll see how these queries can be intractable in general but efficient under some

assumptions, and the different situations we’ll encounter will require different algorithms.

Proposition 86

Probabilistic inference is hard in the worst-case. Specifically, there does not exist an efficient algorithm in general

unless P = NP.

Intuitively, even a simple BN or MRF is “too powerful” in that it can describe a very general set of probability

distributions.

Proof. We’ll take a canonical NP-complete problem (SAT) and encode it into probabilistic inference in a graphical

model. As a reminder, SAT (the satisfiability problem) is a situation where we’re given a logical formula defined on n

binary variables X1, · · · , Xn

(¬X3 ∨ ¬X2 ∨X3) ∧ (X2 ∨ ¬X4 ∨ ¬X5) ∧ (X1 ∨X2 ∨X3) ∧ · · · ,

where each disjunction term is called a clause (consisting only of logical ORs) and the disjunctions are combined with

logical ANDs. Our goal is to make this formula satisfied, meaning that we want to assign each Xi either “true” or

“false” and make the whole statement true.

The simplest case is 3-SAT, where each clause is defined on at most 3 variables; this is a canonical NP-complete

problem. In other words, if we can find an efficient algorithm for this, then we would also have an efficient algorithm

for many other problems; we don’t expect that this will be the case. (What’s expected is that the best way is basically

brute-force over all exponentially many assignments of truth values.)

But we can reduce satisfiability to MAP inference in the following way: construct a Markov random field where

we have one variable Xi ∈ {0, 1} for each variable in the original SAT formula. Then for each clause Ci , we assign a

factor fi which is 1 if and only if Ci is satisfied. For example, the clause X2 ∨ ¬X3 takes value f (X2, X3) = 1 if that

statement is true, meaning that f (0, 1) = 0 but f (1, 1) = f (1, 0) = f (0, 0) = 1. Then the joint distribution defined

by this graphical model assigns p(X1, · · · , Xn) a positive value if and only if all clauses are satisfied (since we multiply
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indicators of all satisfiability conditions). Thus in summary, the MAP assignment

argmaxX1,··· ,Xnp(X1, · · · , Xn)

is at least as hard as 3-SAT for a general probability distribution; in other words, it is NP-hard. A similar reasoning

works for Bayesian networks as well (exercise).

Remark 87. Notice also that the normalization constant Z in the in the above MRF is the total number of satisfying

assignments, so similarly the ability to calculate Z efficiently is hard (because the check of “whether Z ≥ 0” is what

3-SAT is asking for).

However, do note that NP-hardness only tells us that there are difficult inference problems where these queries

are computationally intensive. Often real-world problems will not be as hard as these examples, and in fact doing

inference in something like a hidden Markov model is easy – we can use dynamic programming and other techniques

to do inference in linear time if there is a tree-structured graph.

More generally, the trick we’ll use for something like a Bayesian network is to cache computations so that we

don’t have to do them exponentially many times, which will make the queries much more efficient. Recalling the

strategy with “pushing the sums inward” using the distributive law from the discussion after Example 19, we can now

come up with an algorithm which works for any graphical model but has better running time depending on the graph
structure.

Example 88

We’ll start with the Bayesian network case, understanding how to compute marginal probabilities p(Xi). (From

there, we’ll generalize to our other graph structures.) Suppose in the simplest case that our BN looks like

A→ B → C → D, and we want to calculate p(D) (that is, the values of p(D = d) for all d ∈ Val(D)).

Recall that the Bayesian network only gives us p(A), p(B|A), p(C|B), and p(D|C), so we need to marginalize and

find

p(D) =
∑
a,b,c

p(A = a,B = b, C = c,D).

In general this can take a long time to compute because we have Val(A)Val(B)Val(C) possibilities to sum over just

to find a single number, but because of our BN structure we can make use of the distributive law: the above sum

simplifies to ∑
a,b,c

p(a)p(b|a)p(c |b)p(D|c) =
∑
c

∑
b

∑
a

p(D|c)p(c |b)p(b|a)p(a),

and now pushing in the sums further simplifies this to∑
c

p(D|c)
∑
b

p(c |b)
∑
a

p(b|a)p(a).

So now instead of repeatedly having to do the inner computations, we will store the inner value p(b|a)p(a) as some

function ψ1(a, b), and we’ll store the sum over a as some function τ1(b). Then we can store p(c |b)τ1(b) as a function

ψ2(b, c) and the sum over b as a function τ2(c), and so on; this caching is where dynamic programming comes in.

Notice that the size of ψ1(A,B) only requires Val(A)Val(B) entries, and τ1(B) similarly only requires Val(B)

entries; thus all of this is more efficient than requiring the full table. Indeed, in a general chain where we have a

n variables X1 → X2 → · · · → Xn where each variable has k possible states, our algorithm is as follows. First set
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τ1(x1) = p(X1 = x1) (which is given to us by the BN), and now for each i we compute and cache

τi+1(xi+1) =
∑
xi

p(Xi+1|xi)τi(xi).

(Here τi is the probability distribution of Xi .) Each step takes O(k2) time here (since we have k values to calculate,

and each involves a sum over k terms), so the total running time is O(nk2). This is much more efficient than doing a

naive sum over all variables, which would have complexity O(kn). And notice that this process didn’t ever require us

to construct the joint distribution – we used the conditional independence structure to our benefit!

Example 89

Now suppose we have a Bayesian network with n variables X⃗ = (Y⃗ , Z⃗), and our goal is to do a marginalization of

the form

p(y⃗) =
∑
z⃗

p(y⃗ , z⃗) =
∑
z⃗

∏
xi∈X⃗

p(xi |x⃗Pa(xi ))

for all y⃗ ∈ Val(Y⃗ ).

We’ll think of the conditional probability distributions as factors – our algorithm will end up not caring about

normalization, so we might as well describe everything in terms of MRFs so that we have more generality. So we can

rephrase our goal as completing the sum-product inference task

τ(y⃗) =
∑
z⃗

∏
φi∈Φ

φi(xi , x⃗Pa(xi )),

where φi is exactly the conditional probability distribution for Xi (remembering that this involves “marrying the parents”

and creating a clique, so the scope of φi is Xi and its parents). For example, if we have a Bayes net A← B → C ← D,

then we can think of wanting to compute

p(c) =
∑
a,b,d

φ1(b)φ2(d)φ3(a, b)φ4(c, b, d),

since we want to marginalize over all variables except C and each factor corresponds to a node and its parents. Our

algorithm (variable elimination) will do two types of operations – we’ll multiply factors and marginalize variables. We

think of conditional distributions or factors as tables, where summing over a variable x produces a new factor where the

table “doesn’t depend on x .” If we have a factor φ involving X⃗ and another variable B, then factor marginalization
of φ over B gives us a factor

τ(X⃗) =
∑
B

φ(X⃗, B).

(For example, if we have a table of values for a factor φ(a, b, c) and want to marginalize over b, then we add up all

terms with the same a and c over all possible values of b. This can be thought of as taking a 3D array and “squashing”

along one dimension.) Also, if we have two factors, we can also find the factor product by creating a new factor where

we multiply the values together: for example φ1(a, b) and φ2(b, c) can be combined as φ3(a, b, c) = φ1(a, b)φ2(b, c).

(But for tractability, we want relatively small factors so that these tables stay small.)

These two factor operations are enough for us to describe our algorithm for computing τ(Y⃗ ) =
∑
Z⃗

∏
φc∈Φ φc(X⃗c):

• Order the variables Z⃗ in some order Z1, Z2, · · · , Zk which we call the elimination ordering. (This ordering

matters significantly for runtime.)

• For each i , we “eliminate Zi ” by “pushing the sum over Zi ’ inward as much as we can.” We do this by taking
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the factor product of all factors with Zi in their scope, which generates a new product factor (which we hope

is relatively small). Then do factor marginalization over Zi .

• Add this new factor to the set of factors and remove all factors that had Zi in their scope originally.

If we keep repeating this, we’ll end up with the output τ(Y⃗ ) that we’re looking for.

Example 90

Suppose we have a joint distribution given by a Bayesian network as

p(C,D, I, G, S, L,H, J) = p(C)p(D|C)p(I)p(G|D, I)p(L|G)P (S|I)p(J|S, L)p(H|J, G).

Our goal is to compute τ(J), which is the sum of p(C,D, I, G, S, L,H, J) over all variables besides J.

Converting conditional probabilities to factors (for example p(G|D, I) is now φG(G,D, I)), we need to compute∑
c,d,i ,g,s,ℓ,h

φC(C)φD(D,C)φI(I)φG(G,D, I)φL(L,G)φS(S, I)φJ(J, S, L)φH(H, J, G).

We do so by picking some ordering – if we eliminate variable C, we would only need to multiply together the factors

φC(C) and φD(D,C) into a single factor and then marginalize to get τ1(D). (So we replace those two previous factors

with just this one factor τ1.) Now, we can eliminate variable D by multiplying together φG(G,D, I) and τ1(D) and

then marginalizing over D; this replaces those two factors with just the new factor τ2(G, I). We continue on in this

process, repeatedly replacing some set of factors with a new one τi and getting rid of one variable at a time, until we

just have a factor τ7(J) which is our desired answer.

Fact 91

In this case, we can check that (C,D, I, H, G, S, L) is a pretty good elimination ordering, but (G, I, S, L,H, C,D)

does a much worse job because we have to multiply together more factors and thus create very large factors τi
(storing and clearing tables takes lots of time and memory). And if we can’t find a good elimination ordering, we

won’t get computational savings – this is consistent with our observation that this problem is hard in the worst

case.

Remember now that we often want to calculate conditional probability queries – if our goal is to find p(Y⃗ |E⃗ = e⃗),
what we can do is apply variable elimination to the task p(Y⃗ , e⃗), but we “clamp” the factors on the observed values

of E by only taking the corresponding slices in the table. So instead of having a factor φ ∈ Φ, we instead define the

factor abstractly as

φ′
(
x⃗scope(φ)\E⃗

)
= φ

(
x⃗scope(φ)\E⃗ , e⃗Scope(φ)∩E⃗

)
(intuitively, all the variables in E⃗ are treated as known constants, and all variables not in E⃗ are still variables in the

factors) and then eliminate all variables other than Y ∪E to get p(Y⃗ , E⃗). Then finally we do a second round of variable

elimination to sum over Y and get p(e⃗), which is the denominator required for our conditional probability.
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Example 92

Suppose from the previous example that we want to compute the distribution p(J|G = 2). Just like before, we

do variable elimination, but our factors are now simplified by removing the dependence on G:

Φ = {φC(C)φD(D,C)φI(I)φG(G = 2, D, I)φL(L,G = 2)φS(S, I)φJ(J, S, L)φH(H, J, G = 2)}

(In other words, the blue factors come from only taking the rows of the table where G takes the correct value.)

So now we can do variable elimination over everything except J and G (G isn’t even showing up in the factors),

which allows us to find p(J, G = 2). Then marginalizing yields p(G = 2), and dividing those two quantities gives us

the conditional probability we want. (And this algorithm works for undirected models too – we just skip the first step

of converting CPDs to factors.) In particular, this is a nice algorithm for computing the normalization constant

Z =
∑
x̂1,··· ,x̂n

∏
c∈C

φc(x̂c)

in an MRF, since it’s of the sum-product inference form.

To understand the running time of this algorithm, suppose we have n variables and m initial factors in our set Φ.

(For a Bayesian network, we have m = n, since we get a factor for each node.) At every step of our algorithm, we

pick some Xi , multiply all factors together, and get a single factor ψi . The complexity is then bottlenecked by the

largest number of variables we ever have in a single factor ψi ; if we call this number Nmax, then we can bound the

runtime by O(nvNmax), where v is the maximum number of values that any Xi takes on. So if Nmax is comparable to

n, we have an expensive computation, but if we can keep Nmax small using a good elimination ordering, then this gives

us an efficient strategy.

Fact 93

It is actually NP-hard to find the most efficient elimination ordering; we’ll talk about this more in the next lecture.

Luckily, there are some heuristics that give us good strategies, such as locally avoiding choices that give us big

factors.

We can state all of this in terms of the graph structure as well: we start with an undirected graph GΦ with an edge

(Xi , Xj) if the two variables both appear together in the scope of some factor. (So if we don’t have any evidence

to condition on, this is the moralized Bayesian network or the MRF that we started with.) And during the process of

variable elimination, creating factors ψ forces us to add edges between different variables that were merged together

(called fill edges), but then we remove a variable and its incident edges. So the hope is to avoid adding too many of

these edges and keeping the graph relatively sparse.

9 February 1, 2024
Today, we’ll continue our discussion of exact inference methods – last time, we discussed variable elimination, a method

for computing marginal or conditional probabilities or evaluating a normalization constant for an undirected model (or

the moralization of a directed one). The idea is that instead of summing over all exponentially many possibilities,

we make use of the compact representation as a product of factors and “push in the sums” as much as possible one

variable at a time.
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But the tricky part is that we need to pick a nice elimination ordering to avoid having our factor products be too

large (we end up with larger scopes). With something like a hidden Markov model, there’s a natural efficient ordering

to use, but in general it’s hard to see whether there’s a way to keep Nmax (the number of factors that arise in a ψi)

small. At the end of last lecture, we thought about this in terms of graphs – at each step, we eliminate a variable X

by creating a new factor containing all other variables Y⃗ that X was also involved in. So if we remove a leaf from a

graph (only connected to one other vertex), we don’t have to add any new edges, but if we remove a node connected

to 10 other nodes, then our graph now has a clique of 10 vertices, where we may have added in some extra fill edges.
To summarize the computation cost, we can thus use a single graph which is the union of all graphs that were

created during the elimination process; we call this the induced graph IΦ,≺ (which depends both on the set of

factors Φ and on the elimination ordering ≺). In other words, there is an edge between Xi and Xj if the two variables

appeared in a common factor at some point. Then the complexity of VE (variable elimination) is captured in the

following way:

Theorem 94

Every factor generated during variable elimination has a scope which is a clique in IΦ,≺; conversely, every maximal
clique in IΦ,≺ is the scope of some intermediate factor formed during VE. Therefore Nmax (the maximum number

of variables involved in any factor) is exactly the size of the largest clique in IΦ,≺, and the running time of the

algorithm is O(mvNmax) (where v is the maximum number of values that a variable can take on).

Definition 95

The width of an induced graph is the number of nodes in the largest clique minus 1. For a graph G and ordering

≺, the induced width wG,≺ is the width of the induced graph IG,≺, and the treewidth of a graph G is the minimal

possible induced width over all orderings:

w ∗G = min≺
wG,≺.

We call this “treewidth” because it tells us “how much the graph looks like a tree,” since graphs without cycles are

easiest to do inference with. This is a well-defined quantity that just depends on the graph, though it is computationally

difficult to compute (finding the treewidth is NP-hard). However, we can still generally aim to find good elimination

orderings in practice by doing a min-neighbor strategy (picking nodes with few neighbors) or min-fill (introducing few

new fill edges).

Example 96

The treewidth of a star graph (with a central node and a bunch of other nodes only connected to that central

node) is 1. Indeed, we choose an elimination ordering where we remove all nodes besides the central node first

(so that we don’t create new edges); this never introduces any new fill edges so the largest clique in the induced

graph has size 2.

Example 97

Next, consider the following diagram which is “almost like a chain graph:”
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A

B

C

D

E

F

We can think of this as almost being a “tree of width 2” (we have a tree on the top and the bottom), and indeed

if we remove the variables in the order (A,B, C,D,E, F ), we only add two new edges (from B to C, then from D to

E). This means the largest clique has size 3 and thus the treewidth is 2. And this process works even if we extend

the graph horizontally – we are basically using the same dynamic programming trick.

We’ll now generalize to trying to solve multiple inference tasks on the same graph, such as computing both

p(X) and p(Y ). One naive strategy is to do the two tasks separately, but often we can get some savings by caching

intermediate computations – we can think about this in terms of message passing or belief propagation. It turns out

that in the special-case of tree-structured graphs, we can efficiently compute all single-variable marginals (using the

sum-product algorithm), and then we’ll generalize this in a future lecture to larger cliques using the junction-tree
algorithm.

Example 98

Consider the simple graphical model A→ B → C → D from Example 88. Remember that the calculation in that

case corresponded to the elimination ordering (A,B, C,D), but now we can think about marginalizing over A as

using the factor τ1(b) as “passing on a message” that tells us how we should modify our belief about what states

B should take. Then when we marginalize over B, we pass on a message to variable C.

Even when we have a different tree structure, this reasoning holds as well. If we do variable elimination on the

graph A → C,B → C,C → D, then marginalizing over A passes on mAC(c) and marginalizing over B passes on

mBC(c), so that when we eliminate C we need to do the computation

mCD(d) =
∑
c

φC(c)φDC(D, c)mAC(c)mBC(c)

where we factor in the local factors and also the information passed on from previous variables. (And we could account

for these terms in this way because conditioned on C, the previous variables A,B are independent of the “new
effect” that D has on C – this wouldn’t be exact if we had additional edges that create cycles.) So letting N (j)
denote the neighbors of a node j , we can think of variable elimination as passing on messages of the form

mj i(xi) =
∑
xj

φj(xj)φi j(xi , xj)
∏

ℓ∈N (j)\i

mℓj(xj).

(that is, send a message to the parent which combines the information from your neighbors), and it tells us that we

should always eliminate variables from leaves to root – something like mkj(xj) encodes the entire subtree rooted at k .

Fact 99

A note of warning is that these messages m do not generally encode probability distributions, because they are

not normalized in general.

And finally, our final marginal at some node is computed via

p(xf ) ∝ φf (xf )
∏

ℓ∈N (xf )

mℓf (xf )
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(we just need to figure out the normalization at the end by summing this over all xf ). The reason this is nice is that

if we tried to compute marginal probabilities for each node, we repeatedly generate the same messages.

Example 100

If we have a star graph with central node A and other nodes B,C,D, then the message mBA(a) will be gen-

erated when we’re trying to find the marginal distribution for any of the nodes A,C,D. So even though we

need to compute 3 messages for each of the 4 marginal distributions, we actually only need 6 messages overall

(mAB, mBA, mAC , mCA, mAD, mDA). In general for a tree with n nodes, this means we only need to compute

2(n − 1) instead of n(n − 1) messages.

In other words, this message passing protocol just requires the set of incoming messages. But if we are trying to

compute some message mj i(xi) from j to i , we can only send this message if we already have all of the incoming

messages into j . This can be thought of as a distributed parallel algorithm – each node has a processor that polls its

neighbors, and it only sends its message to some neighbor when messages from all other neighbors have been
received. So if we start off with a tree, then the only nodes that can start sending messages are the leaves, and

then from there we propagate until all messages have been sent. This process will only take O(|E|) steps, but again

remember it’s only for trees (because otherwise we don’t have conditional independence).

This process works very similarly if we have a factor graph representation as well: for a tree, this means we have a

factor node connected to each node, as well as a factor node for each edge of the tree (connected to both vertices).

In this representation, we can think of factor nodes as sending messages to variable nodes and variable nodes as

sending messages to factor modes; nodes again only send messages when messages have been received from all other

neighbors.

Example 101

Consider the following factor graph (where squares denote factors and circles denote variables), and suppose we

want to marginalize over the variables A,B, C.

f1 A f2 B

C f4

f5

D

f3

We must do the computation ∑
a,b,c

f1(a)f2(a, b)f3(b)f4(c)f5(b, c, d),

and in this new context we can think of f1(a) as being a message µf1→A(a) that is “sent from f1 to A” (and similarly

the unary factors f3, f4 being ready to send their messages to B and C). So now A can send a message to f2

νA→f2(a) = µf1→A(a)

and then f2 sends a message to B by taking all incoming messages

µf2→B(b) =
∑
a

νA→f2(a)f2(a, b).
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Now B is ready to send a message by multiplying its incoming messages

νB→f5(b) = µf3→B(b)µf2→B(b),

and we continue on until we have sent a message up to D of the form

µf5→D(d) =
∑
b,c

νC→f5(c)νB→f5(b)f5(b, c, d).

So there are basically messages from variables to factors (which we denote ν) and messages from factors to variables

(which we denote µ), corresponding to different update rules. When we send a message of the first type, we multiply

messages together (except from the recipient)

νvar(i)→fac(s)(xi) =
∏

t∈N (i)\s

µfac(t)→var(i)(xi),

and when we send a message of the second type, we multiply the incoming messages with the local factor, and then

we sum out all variables except the recipient to get

µfac(s)→var(i)(xi) =
∑
x⃗N (s)\i

fs(x⃗N (s))
′
∏

j∈N (s)\i

νvar(j)→fac(s)(xj).

So information is propagating in basically the same way as variable elimination or the previous description we had, but

this is just a more general way of describing things at the level of factors and messages. And we’ll see how this applies

beyond trees next time!

10 February 2, 2024 (Section)
Today’s section is on variable elimination, taught by Garrett Thomas. We’ll first explain broadly what we mean by

“inference,” and then we’ll discuss the algorithm and work through some examples.

In the first few weeks of the class, we’ve largely discussed representation (encoding things as Bayesian networks

or Markov networks, understanding the independencies encoded by them). Our next topic is to take a given graph

and answer interesting probabilistic queries. For example, if we have a joint distribution between Y and some random

variables X⃗, then we might be interested in marginal inference, trying to figure out the probabilities for a single given

variable

p(y) =
∑
x1,··· ,xn

p(y , x1, x2, · · · , xn).

We may also be interested in conditional probability queries of the form p(y |x1, · · · , xn) (for example, trying to

classify into one of a set of labels given some features or evidence), or maximum a posteriori (MAP) inference, in

which we want to find the values of x1, · · · , xn which maximize that conditional probability. Finally, we may marginalize

over some variables and be interested in MAP inference on the remaining ones.

The problem is that (as we saw in lecture) inference is tough in the worst case. We saw this by reducing to 3-SAT

(which is NP-complete); this means that in general we need to use useful properties of our graph structure to make

progress. Variable elimination is one such method for doing exact inference. (And later on in the course, we’ll discuss

some approximate methods as well, which may be more efficient but not exact.)
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Example 102

Recall from lecture that in a chain Bayesian net with variables X1, · · · , Xn where Xi only depends directly on Xi−1.

Then the naive method for computing the marginal probability p(xn) (which always works) is to sum over all other

variables, which takes O(dn) time.

The way to improve our calculation is to “push the sums in” as deep as possible after decomposing the joint

distribution: algebraically, this looks like

p(xn) =
∑
xn−1

p(xn|xn−1)
∑
xn−2

p(xn−1|xn−2) · · ·
∑
x1

p(x2|x1)p(x1).

(We can also think of this as “factoring out terms” by pulling them to the left as much as possible.) But now if we

compute the factors one by one, we can first calculate

τ(x2) =
∑
x1

p(x2|x1)p(x1)

in O(d2) time (since we need to sum over d products for each value of x2, and there are d values), and that lets us

calculate the “next innermost sum”
∑
x2
p(x3|x2)τ(x2) again in O(d2) time. Repeating this until we finish computing

all sums (that is, eliminating variables one at a time) means that we can finish the whole inference query in O(nd2)

time, which is linear instead of exponential in n.

More generally, we can do this exact algorithm for a Markov network too. The idea is to take our decomposition

as a product of factors

p(x1, · · · , xn) =
1

Z

∏
c∈C

φc(x⃗c),

where a factor is basically a big table assigning values to all possible variables in its scope (which requires d |C| entries).

Remember that Bayesian networks can be thought of in this way as well, where we convert each conditional probability

table to a factor with normalization constant Z = 1. So the process of multiplying terms together generalizes to the

idea of a “factor product”

φ3(x⃗c) = φ1(x⃗
(1)
c )φ2(x⃗

(2)
c ),

and summing over the values for a given variable is the “elimination process” that yields a new factor

τ(x⃗) =
∑
y

φ(x⃗ , y).

Example 103

If we imagine actually implementing these two operations (creating new tables out of old factor tables), the only

complication is that we need “common variables” between the two cliques that we’re multiplying to match up. So

if we multiply φ1(A,B) with φ2(B,C), we only multiply together entries where B takes the same value in the two

factor tables.

To specify how the variable elimination process works, we are removing one variable at a time, and we need to

describe the order in which the variables are removed. The runtime depends significantly on the ordering, and figuring

out the best one is NP-hard. Instead, we may use one of a set of greedy algorithms (which have some heuristic

function that we want to minimize when we choose the next variable): min-neighbors tells us to choose a variable

with the fewest number of neighbors, min-weight minimizes the product of the cardinalities (number of values) of its
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dependent variables, and min-fill minimizes the size of the new factor that we add to our graph. (Empirically, min-fill

turns out to work best on average, but this won’t be universally true.)

So to summarize, our algorithm works as follows: given some ordering O, we proceed iteratively through the

variables in the ordering and eliminate. To eliminate Xi , we find all factors that contain Xi and multiply them together

into an intermediate product factor φ, then marginalize over Xi to get τ . This factor τ is what we use to replace the

factors that originally contained Xi , so now we have a factor graph on one fewer vertex.

Example 104

One reasonable strategy for VE in a Bayesian network is to use the topological ordering (so that we eliminate all

parents of a node before the node itself). However, do note that this can still create additional “fill edges” when a

node has multiple children (because we need to draw edges between all pairs of them when we perform the factor

product step), and it’s not always going to be the most efficient ordering.

In general, the runtime of variable elimination is O(mvNmax), where m is the number of variables we need to eliminate

(the number of steps we take overall), Nmax is the largest size of any factor (at any point during the process), and v is

a bound on the number of values that any eliminated variable takes on. So this explains the ideas behind the heuristics

we mentioned earlier – each of them is trying to keep this quantity small in a different way.

11 February 6, 2024

Last lecture, we introduced the ideas of belief propagation and message passing on a tree (for answering multiple
inference queries at once without needing to do the calculation from scratch), and today’s goal is to generalize that

strategy to structures that aren’t just trees. We’ll start with loopy belief propagation, a good heuristic (approximation)

strategy that works well in practice, and then we’ll talk about junction trees, which are another useful data structure

for exact inference.

Recall that belief propagation is the computation coming from variable elimination, in which we pass messages

mkj(xj) from k to j of the form

mj i(xi) =
∑
xj

ψj(xj)ψi j(xi , xj)
∏

ℓ∈N (j)\i

mℓj(xj)

once all incoming messages from other nodes have been received. The idea is that if we think of passing information

up from the leaves to the root, then the information passed from k to j encodes everything in the subtree of k . (So

this is a parallel protocol because the nodes send information when prompted.)

We now might ask what happens if we apply belief propagation to a high treewidth graph with loops. It’s now

not clear that the message-passing idea is principled, but we can still try the same idea. We no longer have a natural

ordering for the vertices (since we can’t define what “leaves” and “roots” are anymore), so instead we try something

different in the spirit of “local optimization.” First, we initialize all messages – for example, we can start by choosing

a uniform distribution

δ0i→j(Xj) =
1

|Val(Xj)|
to send from each node to its neighbors. Then we repeatedly perform BP until the algorithm converges, calculating

δt+1i→j (Xj) =
∑
xi

φi j(xi , Xj)φi(xi)
∏

k∈N (i)\{j}

δtk→i(xi)
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until δt+1i→j − δti→j is sufficiently small for all i , j . (We can think of this as “repeatedly updating our beliefs” until they

stop changing significantly.)

Fact 105

In general, this loopy belief propagation procedure will not always converge. And even if we do have convergence,

we may not necessarily get the correct marginals (depending on our initializations of messages). But this still

works extremely well in practice, and it’s because these updates are basically solving an optimization problem (we’ll

learn more about this in a later lecture). For some empirical data, we can see this paper.

Remark 106. Note that the strategy we introduced at the end of last lecture with factor graphs involved summing over

more than one factor at a time, so that corresponds to doing variable elimination and that was an exact algorithm.

Here loopy belief propagation is not exact.

There are some practical issues we may run into when running this algorithm as well. While computing each step

is relatively quick (the update is simple and only depends on the neighbors, and we only need to marginalize over a

single variable), there can be numerical stability issues because of the repeated multiplication of factors. So one thing

we can do is to normalize so our messages always sum to one: at each step we instead compute

δi→j(Xj) =
1

Zi→j

∑
xi

φi j(xi , Xj)φi(xi)
∏

k∈N (i)\{j}

δtk→i(xi),

which doesn’t change the outputs or the estimated marginals because we always normalize at the end anyway. And it

can also be sensible to work in the “log-space” ai = log δi and use the logsumexp function instead of taking sums.

Example 107

Since loopy belief propagation multiplies potentials multiple times, it can often be overconfident. For example,

suppose we have a graph which is a cycle on 4 vertices A,B, C,D in that order, and the factors between each

pair of vertices encourages them to take the same value. Then if we have evidence that B takes value 0 more

frequently than 1, then the message δB→A encourages A = 0, but then δB→C also encourages C = 0, and then

when we continue passing messages we will “double-count” the encouragement when we cycle back around, thus

believing that the probability of 0 is far larger than the probability of 1 for all variables than in practice.

Fact 108

There are certain kinds of graphs where we can prove convergence of loopy belief propagation, such as trees or

single-loop graphs or certain other classes of random graphs. But accuracy guarantees often require additional

assumptions (such as conditions on the potentials) – this is still an active area of research.

We’ll now move to the junction tree algorithm, which is again trying to calculate marginal probabilities over a

loopy graph but is now yielding an exact answer. Recall from variable elimination that the difficulty with cycles is that

additional “fill edges” emerge when we eliminate variables. Junction tree basically deals with this by thinking of a
graph as a tree of cliques – once we have such a structure, we can basically apply message passing in the same way,

yielding exact computation of all marginals and guaranteeing “two-pass convergence.”
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Example 109

For some intuition, imagine a graph which is a path of six vertices A,B, C, E, F, G, but then we have an additional

vertex D connected to both C and E, shown below. This is “almost a tree” – if we think of C,D,E as a single

“super-variable” W⃗ , then we do indeed have a tree and can think of the equivalent model p′(A,B, W⃗ , F, G).

A B C E F G

D

Our goal would be to make the cliques as small as possible, since larger cliques take on many more possible values

and are thus less computationally efficient. But then the formalism looks similar to what we’ve seen before for trees:

we now have new factors such as

φ′BW (b, w⃗) = φ
′
BW (b, (c, d, e)),

and looking at the original structure of the graph we can choose this to be φBC(b, c). Similarly we have φ′WF (w⃗ , f ) =

φ′WF ((c, d, e), f ) = φEF (e, f ), and finally the potential at W⃗ itself is

φ′W (w⃗) = φCD(c, d)φDE(d, e)φCE(c, e).

We can notice that this accounts for all factors that were originally in the MRF definition. (And of course, we could

also do things like put the factor φCD(c, d) into φWF .)

Example 110

Next, suppose we also add another vertex H that is connected to E and F , as shown below:

A B C E F G

D H

One strategy would be to group all of C,D,E, F,H into a single node, but we can also use smaller clusters and

define W⃗ = (C,D,E), V⃗ = (E, F,H), so that we only have to reason about three variables at a time. The only

trouble is that the variable E is “in two different nodes at once,” so now we need to make sure that the values assigned
to W⃗ and V⃗ are consistent.

Definition 111

A cluster tree T is an undirected tree graph, where each node i is associated to some subset of variables Ci
(which we call a cluster). Each edge between Ci and Cj is associated with a sep-set (separator set) Si j = Ci ∩Cj
(used to enforce consistency).

We must choose a cluster tree that is big enough to encode the information about our joint distribution (since we

need to be able to account for all factors):

Definition 112

A cluster tree is family-preserving for a set of factors Φ if for all φ ∈ Φ, there is some cluster C that contains

scope[φ].
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(The idea is that if we have a clique on three vertices, we need to be able to jointly reason about them in arbitrary

ways, so we need to be able to encode without any additional consistency assumptions.) So now assume we have a

model defined by a set of factors Φ of the form

p(x⃗) =
1

Z

∏
φi∈Φ

φi(x⃗i),

and we have a family-preserving cluster tree T for φ. Then on our junction tree, we can define

p(x⃗) =
1

Z

∏
C∈T

ψC(x⃗C),

where the factor for a cluster is basically the product of the local factors. We do this by initializing ψC = 1 for each

cluster and then (one by one) multiplying in each potential φi into some cluster potential ψC (such that scope(φi) ⊆ C).

Definition 113

A cluster tree T is a junction tree if it is a tree, it is family-preserving, and it has the running intersection
property, meaning that for any clusters V,W , all clusters on the path between V and W contain V ∩W .

In other words, if a variable x appears in two different clusters V and W we need to be able to “pass the assumption

of consistency” along any path connecting them, meaning that x must appear in all clusters between V and W as well.

We can always come up with a (useless) junction tree for any model, since we can always use a single cluster for

all variables (it’s a tree because there’s just one node, it’s family-preserving because any scope is contained in that

one cluster, and it has the running intersection property because there is only one cluster and no paths). But that

doesn’t leverage any conditional independence and thus gives us no savings. On the other hand, for a tree, we can

easily obtain a small-clique junction tree by defining a cluster for each edge of the original tree.

Fact 114

It’s not always immediately obvious how to construct a junction tree, though. If we have a cycle on three vertices

A,B, C, then we cannot construct a junction tree by forming pairwise clusters (A,B), (B,C), and (C,A) (since

we won’t satisfy running intersection). But see Proposition 116 below.

But once we have our junction tree T , we get a natural ordering (with a notion of leaves and roots); since we

have no loops, we can combine information in the natural way via message passing. Just like in belief propagation for

trees, clusters send a message to each neighbor, and we can only send a message from cluster I to cluster J once I

has received messages from all neighbors except J. Then at the end, we can compute the marginal probability over all
vertices in a cluster I combining the local potential at I with the messages that it received from all of its neighbors.

Our message is slightly more complicated, since we need to send it over the variables in the sep-set:

δi→j(Ci ∩ Cj) =
∑
Ci\Cj

(Ci)
∏

k∈N (i)\{j}

δk→i(Ck ∩ Ci).

(We can think of the outside sum as “marginalizing over all variables in Ci that aren’t in Cj .) In words, we compute

the product of the local potential with the other messages, marginalize everything not in j , and then send the result to

j . (Remember that δk→i(Ck ∩ Ci) only depends on variables that are already in Ci , so the whole expression inside the

sum does indeed only depend on variables in Ci .) As a sanity check, this is indeed the same thing that we did on trees:

in a tree-structured model, the intersection between any two clusters is a single variable, so the messages depend only

on a single variable and do take the form δj→i(xi).
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Remark 115. Intuitively, this algorithm is just variable elimination but now keeping track of a dynamic programming

table for each cluster. If we send a message from one cluster C1 to another C2 over the sepset S, we’re basically

passing over the unnormalized marginal distribution where we’ve eliminated all variables on C1’s side of the junction

tree except those in S.

We now have a good reasoning for the three assumptions we place on our junction tree: being a tree allows us

to have a natural order (via choosing a root and passing from leaves to root), being family-preserving allows us to

represent the same distribution as our original mdoel, and satisfying running intersection tells us “when it is safe to

eliminate a variable,” since the clusters containing a variable form a connected component.

Once this process terminates, beliefs will all be consistent with each other – we say the junction tree is calibrated.

Then we can do inference easily: we compute cluster belief (the marginal probability over the variables in the cluster)

by calculating

p(Cr ) ∝ ψCr
∏
k∈N (r)

δk→r .

And if we want the individual marginal probabilities after that, we just further marginalize over the other variables in

a given cluster. (Notice that variables may appear in multiple clusters, and because our junction tree is calibrated we

can compute this marginal with any cluster we’d like.)

Proposition 116

We can always get a junction tree “for free” from variable elimination – once we choose an elimination order,

variable elimination creates a sequence of cliques coming from combining factors together. So we can choose one
cluster for each product factor produced by variable elimination, adding an edge between two clusters if the

intermediate factor during elimination of one is used when we find the product factor for the other.

This does yield a tree, since every intermediate factor is only used once and thus we cannot have loops. Furthermore,

every original factor is multiplied in at some point so this is family-preserving, and running intersection works because

variables appear from the moment they are introduced until the moment they are marginalized out. This means that

we can choose heuristically good junction trees using our heuristics for choosing elimination orderings.

Example 117

Suppose we eliminate a variable X6 and create a product factor with scope (X2, X5, X6) and an intermediate factor

with scope (X2, X5). We would then add (X2, X5, X6) to our junction tree. If we eliminate X5 next and create

a new product factor with scope (X2, X3, X5), that makes use of the factor (X2, X5) and thus we have an edge

between the two clusters (X2, X5, X6) and (X2, X3, X5).

12 February 8, 2024
We’ll discuss approximate inference methods, namely sampling algorithms, today – instead of variational methods

like belief propagation, we’ll be thinking about a different class of algorithms to avoid issues with computational in-

tractability. We know that if we have a small treewidth (for example, less than 25) graphical model, then dynamic

programming strategies with variable elimination or junction tree methods. But in many applications, maybe approx-

imating a true probability p(Xi = xi |E⃗ = e⃗) = 0.29292 with some approximate inference method and finding that

p̂(Xi = xi |E⃗ = e⃗) = 0.3 is good enough. So that opens up the ideas of Monte-Carlo sampling methods such as

importance sampling or MCMC (Markov Chain Monte Carlo).
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The key idea is that instead of working with the full joint distribution of a set of variables, we work with a

representative sample which allows us to approximate computations with less data. There are many different ways

to do this, and in the next few lectures we’ll describe some of them.

Definition 118

Let X⃗ = (X1, · · · , Xn) be a set of variables. A sample from X⃗ is an assignment (x1, · · · , xn) of values to all

variables.

We also sometimes call samples instantiations or states. Our goal is to randomly generate a sample x⃗ according

to the probabilities given by the joint distribution P , which we write as x⃗ ∼ P .

Example 119

If we have a univariate distribution P (X), meaning we have a discrete random variable with domain {a1, · · · , ak},
then there is an easy algorithm to sample from X. Specifically, divide up [0, 1] into k intervals, such that the ith

interval has length P (X = ai). Then choose a uniform real number r between 0 and 1, and choose aj such that r

lands in the jth region.

(For example, if we have a random variable which takes on the values a, b, c, d with probabilities 0.3, 0.25, 0.27, 0.18

and our real number r is 0.5209, then our sample is b.) We can do the same process with a continuous random

variable as well – if X has CDF FX , then our output is F−1X (r) (where r is uniform on [0, 1]); notice that this is actually

the same as the description above for a discrete random variable because the CDF is just a step function.

But sampling from a joint distribution can be more difficult depending on how the variables depend on each other.

In a BN, we can do forward sampling:

Example 120

A Bayesian network is a generative model in which we can sample the variables one by one in some topological

ordering. This way, we can always generate the values of the parents of a node before the values of the node

itself, so we can just sample from each conditional probability table using Example 119.

Each sample is then indeed chosen from the distribution P , so the more samples we draw, the more representative

of “typical results” our data will look. So the main idea of Monte Carlo estimation is to express our quantities as
expectations

Ex⃗∼P [g(x⃗)] =
∑
x⃗

g(x⃗)P (x⃗) .

For example, if we have a joint distribution between variables (A,B, C,D), then we may write the marginal probability

for B as

P (B = b) =
∑
a,c,d

P (a,B = b, c, d) =
∑
a,c,d

∑
b

P (a, b, c, d)1{B = b}.

Thus, we’ve written the marginal probability as an expectation

E(a,b,c,d)∼P [g(a, b, c, d)],

where g is the indicator 1{B = b}. And the point is that our x⃗s are being sampled, so we don’t need an explicit

formula for P (x⃗) if we want an estimate of this expectation. Instead, we generate T samples x⃗ (1), · · · x⃗ (T ) from the
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distribution P , so we can approximate the boxed quantity above as

Ex⃗∼P [g(x⃗)] ≈ ĝ(x⃗ (1), · · · , x⃗ (T )) =
1

T

T∑
t=1

g(x⃗ (t)).

Note that ĝ is a random variable, so the result that this algorithm will produce will be different every time!

Example 121

If we want to estimate the probability of some event E⃗ = e⃗ occurring, we can write that probability as

P (E⃗ = e⃗) =
∑
x⃗

δe⃗(x⃗)P (x⃗) = EP [δe⃗(x⃗)],

where δe⃗(x⃗) is 1 if x⃗ is consistent with the evidence and 0 otherwise.

We then estimate this probability with the Monte Carlo estimate

P̂ (E = e) =
1

T

T∑
t=1

δe(x
(t));

in words, this is just saying that we take the number of samples with E = e divided by the total number of samples T .

Such a computation can be much more efficient, as long as there actually is an efficient sampling algorithm and we’re

okay with approximate answers (our estimate gets better as the number of samples increases).

Proposition 122

This Monte Carlo estimate is unbiased, meaning that

Ex⃗ (1),··· ,x⃗ (T )∼P [ĝ(x (1), · · · , x (T ))] = Ex⃗∼P [g(x⃗)].

Furthermore, by the law of large numbers, we have (almost surely) the convergence

ĝ =
1

T

T∑
t=1

g(x⃗ (t))→ EP [g(x⃗)] as T →∞.

In particular, the variance of ĝ is given by VarP [ĝ] =
VarP [g(x⃗)]

T .

In other words, our average error is zero – we have the correct expected value. So “in the limit” of infinitely many

samples, we do indeed get the right answer for the true marginal probability or other quantity of interest; because our

samples are independent, we get this 1T behavior for the variance of our estimator.

Refining this variance statement, we can get various concentration estimates (understanding the probability that

our Monte Carlo estimator is off by at most some error). There are two different probabilistic guarantees we have,

one additive and one multiplicative.

Proposition 123 (Hoeffding bound)

Suppose the function g we’re trying to estimate only takes on the values {0, 1}. Then

Px⃗ (i)∼P

[
EP [g(x⃗)]− ε ≤ ĝ(x⃗ (1), · · · , x⃗ (T )) ≤ EP [g(x⃗)] + ε

]
≥ 1− 2e−2Tε2 .
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Proposition 124 (Chernoff bound)

Similarly if g only takes on values {0, 1}, then

Px⃗ (i)∼P

[
EP [g(x⃗)](1− ε) ≤ ĝ(x⃗ (1), · · · , x⃗ (T )) ≤ EP [g(x⃗)](1 + ε)

]
≥ 1− 2e−T

ε2

3
EP [g(x)].

In either case, the idea is that for any given error ε, our error probability decreases exponentially fast in T . For

example, if ε = 0.2 and T = 20, then 1 − 2e−2Tε2 ≈ 0.6, but with T = 40 that quantity grows to 0.92. So we

can bound our error with high probability just by taking enough samples, and this means that it’s easy to estimate

marginals for a BN (by forward sampling).

We often also care about conditional queries, though – we may want to know about conditional distributions of the

form p(Z⃗|E⃗ = e⃗). If we have samples from this distribution, we can still use Monte Carlo to estimate the probabilities:

for example we can rewrite this conditional probability as an indicator

P (Z1 = 0|E⃗ = e⃗) =
∑
z2,··· ,zk

P (Z1 = 0, Z2 = z2, · · · , Zk = zk |E⃗ = e⃗) =
∑
z1,··· ,zk

P (z1, · · · , zk |E⃗ = e⃗)1{Z1 = 0}

=
∑
z1,··· ,zk

P (Z⃗|E⃗ = e⃗)g(Z⃗)

where g(Z⃗) is the indicator of Z1 = 0. So again we estimate with a sample average as long as we have access to
samples from the conditional distribution, and the problem now becomes “how to sample.”

Definition 125

One simple idea is rejection sampling, in which we generate from the original distribution and reject anything not

consistent with the evidence.

For example, if we want to sample points uniformly in the unit disk and only have a uniform generator [−1, 1], we

can generate x, y independently and uniform on [−1, 1] and only accept a sample if x2 + y2 ≤ 1. So if we have a

Bayesian network where we condition on some random variables taking on certain values, we just repeatedly use our

topological ordering sampling method and only take the sample if we get the correct values for the conditioned random

variables.

This works, but efficiency depends on how frequently we expect to get a sample that is consistent with our evidence

– if the probability of the evidence is p, we’ll need 1
p trials on average to get a single sample that is consistent. So

conditioning on very unlikely events may not be a good idea – remember that the conditional probability itself can still

be quite large even if the event has small probability.

So the other strategy is called importance sampling, and it essentially comes down to fixing the evidence variables

E⃗ and sampling over the non-evidence variables Z⃗. What we do is use a different proposal distribution Q on X \ E
that we can efficiently sample from, such that whenever P (Z⃗ = z⃗ , E⃗ = e⃗) > 0, we have Q(Z⃗ = z⃗) > 0. Then

P (E⃗ = e⃗) =
∑
z⃗

P (E⃗ = e⃗, Z⃗ = z⃗)

=
∑
z⃗

P (E⃗ = e⃗, Z⃗ = z⃗)
Q(Z⃗ = z)

Q(Z⃗ = z)

= EQ

[
P (Z⃗ = z⃗ , E⃗ = e⃗)

Q(Z⃗ = z⃗)

]
= EQ[w(z⃗)],
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where because the variables in E are fixed, w only depends on the variables in Z, meaning we can now just sample

z (1), · · · , z (T ) and use Monte Carlo to estimate that

P̂ (E⃗ = e⃗) =
1

T

T∑
t=1

w(z⃗ (t)).

In words, there is a mismatch between samples from P and samples from Q, so we have to reweight our samples
by this factor w to correct for its effect in the Monte Carlo calculation. And since this is a Monte Carlo estimator,

we have all of the same facts as before – the only problem is that our variance depends on how good our proposal

distribution is.

Example 126

Suppose we have variables (A,B, C,D) and we want to condition on two of the variables B = b, C = c . If we

let Q be the uniform proposal distribution over A and D, then we are generating samples (A,D) uniformly and

calculating the sample average of P (sample, evidence)
Q(sample) , where this numerator and denominator can be easily computed

if we have a BN.

But it’s possible that PQ will be very large or very small for different samples, because even though A and D are

uniform, some values will be much more weighted than others for the fixed B and C that we observe. So that would

make the variance large – to make the variance small, optimally we would choose Q to be close to P (Z⃗|E⃗ = e⃗). If

we chose Q to exactly be that posterior distribution P (Z⃗|E⃗ = e⃗), then all importance weights will be constant – in

fact the weights will all be

w(z⃗) =
P (Z⃗ = z⃗ , E⃗ = e⃗)

Q(Z⃗ = z⃗)
= P (E⃗ = e⃗)

by the chain rule. Unfortunately, this is just a thought experiment – sampling from a conditional distribution is NP-hard

in general, so all it does is tell us what we are aiming for.

Example 127

If we visualize our prior p as being some probability contour, and we think of conditioning on E as restricting to

some area, then we should rescale the contour p over the new area. But that’s difficult to do, since we would

need to know how much total probability mass there is in E.

One strategy we can use here is likelihood weighting, in which we do forward sampling like in a normal BN but

clamp the evidence. In other words, we go in the usual order, and if we already have a value assigned by evidence

then we just skip that variable. We then have

Q(x⃗) =
∏
v ̸∈E

P (xv |x⃗Pa(v));

notice that Xv only pays attention to the evidence in its ancestors (not its descendants), so this is somewhere in

between the prior and posterior distribution. This means that as long as the evidence is relatively towards the top of

our BN, this will work pretty well in practice. What’s nice is that the importance weight is easy to compute as well:

we have

w(x) =

∏
v∈Z∪E P (xv |x⃗Pa(v))∏
v ̸∈E P (xv |x⃗Pa(v))

=
∏
v∈E

P (xv |x⃗Pa(v)),

which can be efficiently computed.
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Remark 128. Notice that if our evidence is only in the “leaves” of a Bayesian network, then likelihood weighting isn’t

a great idea, since we would be ignoring the evidence altogether. So this weighting performs poorly when our evidence

is at the leaves and is also unlikely (we would basically be doing rejection sampling).

With this, we can go back to our original question and estimate our conditional probability P(Zi = zi |E⃗ = e⃗). One

option is to separately estimate both terms of the conditional probability using importance sampling and compute

P̂ (Zi = zi |E⃗ = e⃗) =
P̂ (Zi = zi , E⃗ = e⃗)

P̂ (E⃗ = e⃗)
,

but this can go wrong because we’re using a ratio of two estimators and the errors can accumulate (for example if the

numerator is underestimated while the denominator is overestimated). Instead, we’ll use the same samples for both

the numerator and denominator, and that’s called normalized importance sampling. Specifically, we can write our

conditional probability as summing over all other variables Zj :

P (Zi = zi |E⃗ = e⃗) =
∑
z⃗ δzi (z⃗)P (Z⃗ = z⃗ , E⃗ = e⃗)∑
z⃗ P (Z⃗ = z⃗ , E⃗ = e⃗)

,

and now we can use the same proposal distribution Q and the same samples to estimate

P̂ (Zi = zi |E⃗ = e⃗) =
1
T

∑T
t=1 δzi (z⃗

(t))w(z⃗ (t))
1
T

∑T
t=1 w(z⃗

(t))
=

∑T
t=1 δzi (z⃗

(t))w(z⃗ (t))∑T
t=1 w(z⃗

(t))
.

And this way, we’ll likely overestimate or underestimate the numerator and denominator in the same direction, which

will give us a better estimate for the ratio. This actually gives us a biased estimator – if T = 1, then

Ez⃗ (1)∼Q[P̂ ] = EQ
[
δzi (z⃗

(1))w(z⃗ (1)

w(z⃗ (1)

]
= EQ[δzi (z⃗ (1))]

is the marginal probability on Q – it doesn’t even depend on P at all, so it’s definitely not the conditional probability

P (Zi = zi |E⃗ = e⃗). But it will be asymptotically unbiased, meaning that limT→∞ EQ
[
P̂ (Xi = xi |E⃗ = e⃗)

]
= P(Xi =

xi |E⃗ = e). So we can again trust the result in the limit, and it does behave better than independently performing IS

on the numerator and denominator in practice.

Next time, we’ll discuss MCMC sampling, which will create a Markov chain that allows us to sample from undirected

models as well.

13 February 9, 2024 (Section)
Today’s section is on the junction tree algorithm, taught by Chaitanya Patel. We’ll start with some material from

lecture and the syllabus, and then we might say a bit about some additional content as well.

The motivation for caring about this algorithm is that we have an algorithm for calculating marginals on trees –

belief propagation – which doesn’t work on general loopy graphs (since it will multiply the same potentials multiple

times, leading to numerical instability, and it may not even converge). So we need to come up with a new data

structure, and that’s going to be the cluster tree (which is a tree which basically “groups together” nodes of the

original graph into clusters). Specifically, we want each factor in our original distribution to have scope contained

within some cluster, and we want the running intersection property, which ensures that the clusters in which a

variable shows up form a connected component – together, these conditions give us a junction tree.

There are many ways to find a junction tree, but the idea is that variable elimination always gives us (as a byproduct)
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a junction tree. Here are the general steps:

1. If we have a Bayesian network, first moralize into an undirected graph.

2. Choose some elimination ordering.

3. Remember that when each variable X is eliminated, we first create a factor with X and all other variables that

appear in some factor with X. All of these variables (including X) together form a cluster node.

4. Also, each cluster’s factor τ may be used at most once when calculating another intermediate potential φ

(corresponding to some other cluster) later in the process. (In other words, τ may show up as one of the factors

multiplied together to form a later φ.) If so, draw an edge between those two clusters.

We can check that this does indeed satisfy running intersection (because once a variable is eliminated, we won’t

see any more appearance of it in clusters afterward) and that each factor is contained in some cluster (just by the way

variable elimination creates its factors). Furthermore, it will be a tree because every factor except the last one is used

exactly once.

Fact 129

Notice that different elimination orderings can yield junction trees, and sometimes when we create junction trees

we can collapse other clusters into a larger one (because if we have a factor on A,B, C,D, we don’t need another

factor on A,B if we just incorporate the expression of the latter into the former).

The idea is that once we have a junction tree, we can do variable elimination on it – it’s very similar to the process

for factor graphs, where messages are sent from a cluster Ci to a cluster Cj if we’ve already received messages from

all other neighboring clusters to Ci . Furthermore, remember that the message is now not just a function of a single

variable – it’s a function of the sep-set Ci ∩ Cj . Here’s the process:

1. First initialize all potentials based on the potentials from our original MRF. The idea is that our original joint

probability distribution is a product of a bunch of local factors, and we choose each local factor to be arbitrarily
included in one of the local ψ0i factors. In this way, we get new ψ “single-cluster” potentials that encode the

original potentials. For example, we can think of first initializing all single-cluster potentials to 1, and then if

our joint distribution is P (A)P (B|A)P (C)P (D|A,C) from a Bayes net, then P (B|A) can go into any cluster

including A and B, P (C) can go into any cluster that includes C, and so on.

2. From here, we send messages of the form δi→j as follows: compute product of our local potential ψ0i with

messages from all other neighbors N (i)\ j , and then we marginalize over all variables except those in the sep-set

Ci ∩Cj . Since we have a tree, we will always have a message that is available to send, until all messages in both

directions along each edge have been sent.

This process is called the Shafer-Shenoy clique tree algorithm – it caches computations so that we can compute

all marginals at different modes eventually after some pre-computation, and it’s exact. Indeed, if we now want to

calculate the marginal of some X, we can now pick any cluster Ci containing X, do the local computation required

to get the joint distribution on Ci (multiplying the potential with all incoming messages), and then marginalize over

Ci \X.
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Fact 130

An alternative approach to directly using VE to find junction trees is to consider chordal graphs, which are graphs

where all cycles of length 4 or larger have a chord between two of its vertices (meaning we have smaller cycles

too).

The benefit of not having large cycles is that we won’t create huge cliques, and we can create these chordal graphs

using triangulation (adding extra edges). In this way, we can form a cluster tree where each cluster has only 3 or fewer

vertices. Unfortunately, finding the minimum triangulation is NP-hard, so we often need to observe some structure for

this to be useful.

14 February 13, 2024
Today, we’ll continue our discussion of sampling methods using the general strategy of Markov chain Monte Carlo.

The main idea we described last time is to express a quantity EP [g(x⃗)] as the expected value of a random variable and

get an estimate from sampled data via

ĝ(x(1), · · · , x(T )) =
1

T

T∑
t=1

g(x⃗ (t)).

The question then becomes “how to get samples from the distribution” especially when we condition on some evidence

E. We mentioned that rejection sampling is sometimes a poor strategy if we’re conditioning on a very rare event,

so the idea is to instead use importance sampling by using some other proposal distribution Q on the non-evidence

variables and then reweighting using importance weights. The idea is that sampling from posterior distributions is hard

in general, but this intermediate Q which can be efficiently sampled can help us get “close” to it.

What we’ll do today is some kind of adaptive proposal instead of being forced to fix our distribution Q at the

beginning – the idea is to adjust the distribution given the quality of our samples. Intuitively, if our true distribution

P has two different “peaks” of likely events and our proposal distribution Q only concentrates on the first one, then

importance sampling would give us most samples from the first peak and very few from the second one. This means

we’d have to weight until we see a sample from the second peak, which may take a very long time. So instead, we’ll try

to construct some distribution Q(x⃗ ′|x⃗) which (as a function of x⃗ ′) depends on the previous sample x⃗ . For example,

if Q is a Gaussian, we may choose the mean of the Gaussian to be whatever sample value was drawn last.

Example 131

We’ll first see an example of how MCMC is used in practice, and the “why it actually works” will come later. The

first class we’ll consider is called the Metropolis-Hastings algorithm, which is a general-purpose technique for

drawing samples from some target distribution.

The idea is that after drawing a sample from Q(x⃗ ′|x⃗), we have some acceptance probability

A(x⃗ ′|x⃗) = min
(
1,
P (x ′)Q(x⃗ |x⃗ ′)
P (x⃗)Q(x⃗ ′|x⃗)

)
which is meant to represent the quality of our sample. This complicated fraction is the ratio of the importance
weights for x⃗ and x⃗ ′, so we’re saying that if x⃗ ′ has a lower importance weight than x⃗ , there is a chance that we reject

the sample. And this quantity is tractable to compute because we can calculate the ratio of the probabilities P (x⃗
′)

P (x⃗)
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and not the actual probabilities explicitly, so we don’t need full knowledge of the distribution for this to be doable –

for example, this means we do not need knowledge of the partition function Z in a Markov random field.

Remark 132. We’ll learn about this later in the lecture, but it turns out that this “accept/reject” step is what ensures

our samples will actually be coming from P (x⃗) in the limit. (We have to compare our Q to P in some way so that we

go from an arbitrary distribution to the correct one.)

So the algorithm works as follows: choose some starting state x⃗ (0) at time t = 0. Now repeat the following

process (which we call the burn-in phase): sample from our distribution x∗ ∼ Q(x⃗∗|x⃗), sample a uniform variable

u ∼ Unif(0, 1). Now either transition if u < A(x⃗∗|x⃗), meaning that x⃗ (t+1) = x⃗∗, or don’t, meaning that x⃗ (t+1) =

x⃗ (t). Once the burn-in phase is complete (detecting convergence), we continue to repeat this process (including the

acceptance/rejection) but actually note down for Monte Carlo averages. (So we don’t worry about the first few

samples which could be very far off – we wait until the convergence to good samples has already happened.)

Fact 133

Notice that the samples are highly correlated now, and whenever we reject a new sample we are repeating the

previous value again. But the point is that the total dataset will be from something close to the correct distribution.

Example 134

Continuing on our discussion from before, consider the following situation with one-dimensional distributions. Then

suppose Q(x ′|x) is a one-dimensional Gaussian centered at x with some fixed variance, and P (x) is a bimodal

distribution.

Notice that Q(x ′|x) = Q(x |x ′), so in the expression for the acceptance probability we simplify to just

A(x ′|x) = min
(
1,
P (x ′)

P (x)

)
.

(This is the advantage of a symmetric proposal.) So we can initialize x (0) to be any value, and now repeatedly

perform the following process. Draw a sample x (t+1) which is x (t) plus some Gaussian noise, and now compare how

likely this new sample is to the previous one – accept the new sample if it’s an more likely than before (an “uphill

move”), otherwise accept it with some smaller probability (where the more downhill we move, the less likely for the

transition to happen).

If we start with x0 inside one of the two peaks of the target distribution P , we’ll have a decent chance of rejecting

transitions out of the peak, meaning that the algorithm will stay in the first peak for a while. But eventually, our

position x (t) may exit the peak by random chance and travel to the other peak, which means it will now sample values

within that other peak for a while. What’s nice is that even if Q is not a good fit for P (here P is not Gaussian at

all), this is still enabling us to sample from both modes!

Example 135

When we work on a graphical model, there is a generic powerful method for sampling the random variables one

at a time called Gibbs sampling.

Gibbs sampling is a special case of Metropolis-Hastings where we can actually make use of the graph structure to

choose good proposal distributions; what’s nice is that they are often easy to derive and only involve local changes.
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The algorithm works as follows: if we have an MRF or Bayesian network with non-evidence variables (X1, · · · , Xn), we

first initialize (typically random) starting values for all of them. Then for each i in order, we sample the conditional

distribution

x ∼ P (xi |x1, · · · , xi−1, xi+1, · · · , xn),

and now there is no rejection of transitions – we just update xi to x . Then this new value of xi is used for the sampling

of other variables xj . Luckily, this conditional distribution only depends on the Markov blanket of Xi (neighbors for an

MRF, parents, children, and co-parents for a BN), so it’s actually tractable to sample this conditional distribution.

The picture to have in mind is that we visit each variable in turn and (while keeping everything else fixed) resample

from its conditional distribution. For example, recall the distribution given from the hair color example, Example 42.

Then we could imagine that when we resample from A, we choose a random color among those that are not B and

D’s colors, while keeping all other hair colors fixed. Then we do the same for B among colors not in their neighbors,

and so on. Once we’ve resampled all of A,B, C,D, we have a new sample. Repeating this repeatedly will eventually

end the burn-in phase, and then we can use the subsequent samples for Monte Carlo.

Fact 136

There is flexibility in choosing ordering – we can do it in a fixed or random order, and in practice that may change

the burn-in time. The point is that we are updating variables to be consistent with the joint ones, so we want

to choose the ordering so that information “propagates quickly.” For example, the topological order might make

sense for BNs, but it’s pretty hard to prove how long the burn-in phase is in general.

Notice that this process is kind of a “local search” in the case where our MRF is encoding a satisfiability problem,

and in those cases the convergence is in fact very slow – it’s a little better than a random walk because we’re doing a

“coordinated ascent” towards the correct answer, but we may still run into problems.

Proposition 137

Gibbs sampling is a special case of Metropolis-Hastings with proposal distribution

Q(x ′i , x⃗−i |xi , x⃗−i) = P (x ′i |x⃗−i)

(where x⃗−i denotes all variables except i). In particular, this probability is zero unless all variables except xi are

kept the same.

We can check that the acceptance probability ends up always being 1 with this proposal (the factors in the

complicated fraction all cancel out after using the chain rule). And what’s actually going on is that we are sampling

from a Markov chain:

Definition 138

A Markov chain is a sequence of random variables X1, X2, X3, · · · which satisfy the Markov property

P (Xt = x⃗ |x⃗1, · · · , x⃗t−1) = P (Xt = x⃗ |x⃗t−1).

In other words, what happens at any given step only depends on what happened at the previous step, similar to

the hidden Markov models we’ve described before.

We call P (Xt = x⃗ |x⃗t−1) the transition kernel, and we’ll be considering the case where this transition kernel is

fixed with time (homogeneous Markov chain) and is therefore of the form T (x⃗ ′|x⃗) for some fixed T . The idea is
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that the states of our Markov chain are the possible instantiations of our random variables in the graphical
model – for example if we have an MRF with two binary variables X1, X2, then Gibbs sampling is a Markov chain on

(0, 0), (0, 1), (1, 0), (1, 1), since if we’re at (0, 1) at one step, the probability of ending up at (1, 1) after we’ve “rerolled

all variables” doesn’t depend on what the variables looked like at any other previous steps, and in fact the probability

of transition is the same (we have a homogeneous chain) since the functional form of Q doesn’t change. This Markov

structure is what makes it a good idea to only have Q(x⃗ ′|x⃗) depend on the immediately previous sample, but it also

points out why convergence may take a long time – there are exponentially many states and getting to the correct

distribution over all of them can take a long time.

In probability language, we can define π(t)(x⃗) to be the distribution over states x⃗ (possible variable instantiations)

at time t. The Markov transition kernel then tells us that

π(t+1)(x⃗ ′) =
∑
x

π(t)(x⃗)T (x⃗ ′|x⃗)

(casework over all possible values at time t, weighted by the transition probabilities), so over time we will use the

transition kernel T to spread out the mass until it converges to the stationary distribution of the Markov chain, which

is some distribution π satisfying

π(x⃗ ′) =
∑
x⃗

π(x⃗)T (x⃗ ′|x⃗).

The point is that π for this chain is actually going to be the distribution P (x⃗).

Definition 139

A Markov chain is irreducible if we can get from any state x⃗ to any other state x⃗ ′ in a finite number of steps, and

it is aperiodic if for all sufficiently large n, we have P (x (n) = i |x⃗ (0) = i) = 0 for all i (that is, we can eventually

always return to our starting point – this avoids cycles or other oscillatory behavior). We call a Markov chain

ergodic if both of these conditions are satisfied.

(An example of a reducible chain is where we have two states but one of them is a sink which stays at its current

position with proabbility 1, and an example of an aperiodic chain is where we have two states and we always transition

to the other one with probability 1 – both of these examples are bad because the limiting distribution depends on our

initial condition in the first case and doesn’t even exist in the second.)

We want these conditions because ergodic chains always converge to a unique stationary distribution, so if

our MCMC algorithm is ergodic and our joint distribution P is the stationary distribution, we will eventually converge

correctly. And now we can see the reason for choosing T as in Metropolis-Hastings:

Proposition 140

For the Metropolis-Hastings the detailed balance or reversibility equations

π(x⃗ ′)T (x⃗ |x⃗ ′) = π(x⃗)T (x⃗ ′|x⃗)

(meaning that the probability of seeing x⃗ ′, then x⃗ is the same as the probability of seeing x⃗ , then x⃗ ′).

Reversibility automatically implies that we have a stationary distribution π (if we sum over x⃗ on both sides, we end

up with π(x⃗ ′) =
∑
x π(x⃗)T (x⃗

′|x⃗)), so if π is exactly our joint distribution P , this would show that assuming ergodicity

assumptions we will indeed converge to the correct P .
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Proof. The transition kernel for Metropolis-Hastings is given by

T (x⃗ ′|x⃗) = Q(x⃗ ′|x⃗)A(x⃗ ′|x⃗),

and recall that A(x⃗ ′|x⃗) < 1 (resp. = 1) implies A(x⃗ |x⃗ ′) = 1 (resp < 1). In words, if the transition in one direction is

uphill, then the transition in the other direction is downhill. So without loss of generality we can assume A(x⃗ |x⃗ ′) = 1
and plug in all of our definitions to check that we indeed have

P (x⃗)T (x⃗ ′|x⃗) = P (x⃗ ′)T (x⃗ |x⃗ ′),

meaning P is indeed the stationary distribution that makes T satisfy detailed balance.

So the big picture is that the burn-in phase is converting our distribution from π(0) to π(T ), where π(T ) has gotten

sufficiently close to the true π = P stationary distribution. And once that’s done, we can do (approximate) Markov

chain Monte Carlo to estimate sample averages. Unfortunately, the mixing time (how long it actually takes to get

there) can be very long and also difficult to generally compute. So in practice, knowing when to halt burn-in is an art,

and we have heuristics but no general method for detecting convergence.

15 February 15, 2024
Today’s our last lecture on inference – we’ll discuss MPE and MAP inference today, where instead of computing

marginal probabilities or sampling from some posterior or marginal distribution, we think about how to find the most
likely assignment of variables. The inference task looks formally like

argmaxx⃗p(x⃗), p(x⃗) =
1

Z

∏
c∈C

φc(x⃗c),

where we assume that the evidence variables have already been clamped so we’re just looking at the non-evidence

ones. What’s nice is that the normalization constant is an overall constant, so we can ignore the Z here and just solve

the max-product inference task

argmaxx⃗
∏
c∈C

φc(x⃗c).

We can also apply log to everything, since log is a monotonic function, and thus we may instead be trying to solve the

max-sum problem

argmaxx⃗
∑
c∈C

θc(x⃗c), θc(x⃗c) = logφc(x⃗c).

One way to approach this problem is to use the Metropolis-Hastings algorithm from last lecture – we can use it to

sample from any distribution, and in particular we can do so from our model p(x⃗) ∝ exp
(∑

c∈C θc(x⃗c)
)
. But to bias

the model towards sampling likely events, we can instead sample from the rescaled function

pT (x⃗) ∝ exp

(
1

T

∑
c∈C

θc(x⃗c)

)
,

where T is a parameter that we call temperature. In the high-temperature regime where T → ∞, the argument of

the exponential goes to 0 regardless of the factors that we began with, so we end up sampling from a distribution close

to the uniform distribution. But as T → 0, then the argument of the exponential is much larger when
∑
c∈C θc(x⃗c)

is larger, so the probability mass will concentrate on assignments with highest probability (even more than the

default T = 1).
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In general, this kind of problem is provably NP-hard in the worst case, and Metropolis-Hastings can take a long

time to converge. But the idea is that if we slowly decrease the temperature T , we can transition from an easier

optimization problem to a harder one. This is the idea of simulated annealing: start running the algorithm from

some initial guess with high T , and anneal (slowly decreasing T ) as we continue. And in particular, the effect of the

temperature is to affect the acceptance probability – the algorithm becomes “greedier” as we decrease the temperature,

because

A(x⃗ ′|x⃗) = min
(
1,
pT (x⃗

′)Q(x⃗ |x⃗ ′)
pT (x⃗)Q(x⃗ ′|x⃗)

)
and if our proposal distribution Q is symmetric (for example if we randomly pick a variable and pick a new value for

it), substituting in the form of our distribution pT yields

min

(
1, exp

(
1

T

∑
c∈C

θc(x⃗
′
c)− θc(x⃗c)

))
.

In particular, for T → ∞ we will basically always accept a new state x⃗ ′, but for T → 0 it will basically only accept

uphill moves.

Fact 141

It turns out that for sufficiently slow cooling, this algorithm is guaranteed to find the mode (the most likely

outcome). However, it’s impractical in general to practically meet this “sufficient slowness” for the theoretical

guarantee.

This procedure is very general and can in fact be used for any function – we don’t ever use the fact that our

distribution is defined by a set of factors. But that means we aren’t taking advantage of the structure of conditional

independencies, and next we’ll see strategies where that structure can actually be exploited. This is often the case if we

have a structure prediction problem, such as when we have a conditional random field for the handwriting recognition

problem in Example 71.

The key idea is that just like in variable elimination, there is some dynamic programming we can do. The function

max distributes over multiplication, just like summation did when we were “pushing in sums:”

sum(ab, ac) = asum(b, c), max(ab, ac) = amax(b, c)

as long as a ≥ 0 (which is the setting we care about because all entries of factors are nonngative). This distributivity

works if we have more than 2 terms as well, and it works for variables or constants. Furthermore, max is also

commutative and associative (just like addition), so we can think of max and multiplication and forming a commutative
semi-ring, and we can translate all of the ideas from variable elimination over directly to this new setting: we can

“push max in” or “factor out terms from inner optimizations” to get

max
x1∈{0,1}

max
x2∈{0,1}

f (x1)g(x1, x2) = max
x1∈{0,1}

f (x1) max
x2∈{0,1}

g(x1, x2).

This way, we can again cache intermediate computations (as long as all of our functions are nonnegative), and instead of

trying to solve the sum-product problem
∑
x⃗

∏
c∈C φc(x⃗c), we instead solve the max-product problemmaxx⃗

∏
c∈C φc(x⃗c)

with the exact same algorithm, just replacing + with max everywhere! So we do have max-product variable elimination,

max-product belief propagation, and max-product junction tree – everything comes down to picking an ordering and

doing dynamic programming.

57



Fact 142

The only additional subtlety is that if we care about argmax, not max, we should also keep track of which

assignment is achieving this maximum via back pointers.

Example 143

Suppose we have a simple chain with nodes A,B, C,D in a row, and we want to find the most probable (MPE)

assignment

max
a,b,c,d

φAB(a, b)φBC(b, c)φCD(c, d).

Pushing the maximizations in yields

max
a,b

φAB(a, b)max
c
φBC(b, c)max

d
φCD(c, d),

and now we can do the inner operation first, replacing it with a dynamic programming table or intermediate factor,

and repeating this until we have completed the whole task. (And like before, doing things in log space is generally

more stable numerically.)

We’ll next discuss some other optimization techniques coming from combinatorial or convex optimization to deal

with this kind of setting; it turns out there are some connections between standard techniques and message-passing

or loopy BP.

Definition 144

A linear program (LP) is an optimization problem of the form

min c⃗ x⃗ subject to Ax⃗ ≤ b⃗.

For example, we may have a problem like

min(2x1 + x2) such that x1 + x2 ≤ 6, x1 − x2 ≤ 4, x1 ≥ 0, x2 ≥ 0.

Such problems have a linear objective function with linear constraints, and these can always be solved in polynomial

time. And if we have linear equality constraints, those are okay as well, since we can encode them via Ax⃗ ≤ b and

Ax⃗ ≥ b.

Definition 145

An integer linear program (ILP) is an optimization problem of the same form as a linear program, but we further

require integrality constraints x⃗ ∈ {0, 1}N .

Integrality constraints give us something combinatorial, and thus they are generally NP-hard to solve. But there

are approximation methods for them, and our goal is going to be writing MPE as an integer linear program. For

simplicity, let’s consider the case with only unary and pairwise potentials. As a discrete optimization problem, our goal

is then to compute

argmaxx⃗
∑
i∈V

θi(xi) +
∑
i j∈E

θi j(xi , xj).

To convert this to an ILP, introduce indicator variables µi(xi) ∈ {0, 1} for each i and each xi (For example, if the

first variable can take on three states, we have three binary indicators that encode which value it’s taking on.) We
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also introduce indicators µi(xi , xj) for each pair of states xi , xj for each edge (i , j) ∈ E. We then actually have a linear

objective function over the xs given by

MPE(θ) = maxµi ,µi j
∑
i∈V

∑
xi

θi(xi)µi(xi) +
∑
(i ,j)∈E

∑
xi ,xj

θi j(xi , xj)µi j(xi , xj),

which we can write as maxµ⃗ θ⃗ · µ⃗ if we stack all of our variables into single vectors.

Example 146

Suppose we have an MRF with three binary variables all pairwise connected. Then we need 2 variables µi for each

assignment of the Xis, and we also need 4 variables µi j for each pairwise assignment (Xi , Xj), so in total we will

need 18 indicator variables (not particularly efficient, but still written in a form which fits is for linear optimization).

Of course, there are a bunch of constraints that these variables must satisfy. We can’t have µ(x1 = 1) =

µ(x1 = 0) = 1 (a variable can only take on one value at a time), and we also can’t have µ(x1 = 1) = 1 and

µ(x1 = 0, x3 = 0) = 1 (we need consistency between our variable and edge assignments). But we’re in luck that we

can write these as linear constraints:

µi(xi) ∈ {0, 1} ∀i ∈ V, xi ,
∑
xi

µi(xi) = 1 ∀i ∈ V,

and similarly

µi j(xi , xj) ∈ {0, 1} ∀(i , j) ∈ E, xi , xj ,
∑
xi ,xj

µi j(xi , xj) = 1 ∀(i , j) ∈ E,

and finally we want consistent local assignments∑
xj

µi j(xi , xj) = µi(xi) ∀(i , j) ∈ E, xi ,
∑
xi

µi j(xi , xj) = µj(xj) ∀(i , j) ∈ E, xj .

(This behaves a lot like a marginal probaiblity if we think of µi j as a marginal probability over xi , xj .) So all constraints

are either linear or enforce integrality, meaning we’ve indeed written down our inference problem as an ILP. And then

there is lots of software we can use (like CPLEX and Gurobi) to try to solve this.

Remark 147. Geometrically, we have a big space of possible distributions that we’re optimizing over – it’s a polytope

that we can call the marginal polytope. The corners of this polytope is the set of µ⃗ assignments (there may be

exponentially many of them), and then convex combinations of them correspond to the set of valid marginal
probabilities. This will show up again when we talk about variational inference later in the course.

The fact that we require hard choices µi(xi), µi j(xi , xj) ∈ {0, 1} in this problem is what is making the problem

NP-hard; it would be nice if we can remove those combinatorial constraints. So that’s the basic idea of relaxing
integrality constraints – we can instead ask only for

µi(xi), µi j(xi , xj) ∈ {0, 1},

meaning that we’re choosing a probability distribution over values instead of a “hard value.” Then we end up with a

true LP whose objective function we write as LP(θ), which can be solved efficiently (as long as the number of variables

is small – it’s basically the number of entries in our tables for graphical models). Furthermore, since we are maximizing

over a strict superset of our original set, we have

MPE(θ) ≤ LP(θ),
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and in fact we have equality for tree-structured MRFs, meaning that LP relaxation is actually tight.

Fact 148

We have some polytope M that defines the combinatorial optimization; by relaxing our constraints so that the

µs are within [0, 1] we get the local consistency polytope ML, which is an outer bound for M. And what we’re

saying is that M = ML for trees (since the local consistencies imply global consistencies).

Remark 149. Once we have our “fractional assignment” for each µi , µi j , we could choose the µs by “rounding to the

nearest integer solution,” though we have to be more careful with this to ensure the constraints are still satisfied. In

practice this is pretty good (this is a good heuristic and is pretty similar to what we get if we do loopy max propagation),

but in general it isn’t guaranteed to give the best solution.

There are other classes of strategies for solving MAP – local search similar to Metropolis-Hastings, or branch-and-
bound where we do an exhaustic search and prune branches of the search space to find bounds (using LP relaxation).

But we won’t talk much more about those in this class.

16 February 16, 2024 (Section)

Today’s section, taught by Sofian Zalouk, will cover MCMC sampling methods (in particular Metropolis-Hastings and

Gibbs sampling). The overview is to go over what each “MC” means (Monte Carlo and Markov Chain), why the

algorithms work, and some practical aspects that we might need to know about for diagnosis in practice.

The idea of Monte Carlo estimation is that we are trying to understand some quantity of interest, and by writing

it as the expectation of some random variable we can estimate our quantity via empirical means. For example, we may

want to model uncertainty in a model over parameters θ, and we can do this by writing our expression as integrating

over θ and modeling that by sampling. What’s nice is that linearity means our estimator is unbiased and independence

implies that our “error bars” shrink as 1√
T

.

Example 150

If we want to use Monte Carlo to sample π, we can sample (x, y) uniformly from the unit square and approximate

π ≈
4

T

T∑
i=1

1
{
(x (i))2 + (y (i))2 < 1

}
,

since the probability of each point landing within x2 + y2 ≤ 1 is π4 . However, we will often notice in practice that

the convergence rate isn’t so good, and often estimating analytically is a better option if it’s at all tractable.

This is connected to the idea of rejection sampling, in which we estimate the probability of some event E by

generating samples from a Bayesian network and estimating the expectation of the function f (x⃗) = 1 {E = e}. (So

we accept samples that pass in the indicator, and divide by the total number of samples.) Unfortunately, this is not

tractable if the probability of E is very small, meaning that we need to sample a very large number of samples to get

any acceptance at all.

Instead, we make use of a proposal distribution over non-evidence variables, such that Q can be efficiently sampled

from and has support matching our original distribution P (meaning that if P (Z = z, E = e) > 0, then Q(Z = z) > 0).

Then we can do some algebraic manipulation to rewrite P (E = e) as an expectation in terms of Q instead of P ; this

is called importance sampling because we’re essentially weighting our samples by how “important” they are.
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The main limitations with these sampling methods are that forward sampling is bad with small-probability events

and is infeasible for MRFs where we don’t know the normalization constant Z, and for importance sampling it can be

very difficult to construct a good Q similar to P (because if we knew the analytic form of P we wouldn’t need Monte

Carlo in the first place).

Thus, we want to make our Q adaptive, and we do this by making use of the concept of a Markov chain, in

which “the state today only depends on yesterday.” Specifically, we’ll consider a Markov chain on the set of states
of all variables, and our goal will be that the distribution of our Markov chain at time t converges to the stationary

distribution given by the true joint distribution P as t →∞.

The main problem is that we may have multiple different limiting distributions, so we want to make sure the

dynamics we set up on our chain yield an ergodic (also called regular) Markov chain, which means we can always

eventually return to any state for large enough times and that we can reach any state from any other state in a finite

number of steps.

The idea with the Metropolis-Hastings and Gibbs sampling algorithms is to set up a Markov chain whose stationary

distribution is indeed P . Specifically, one way to do so is to make the chain reversible with respect to P , meaning

that for any two states x, x ′, we have the detailed balance equation

P (x ′)T (x |x ′) = P (x)T (x ′|x),

where T is the transition kernel. So our T will actually be dictated by our adaptive proposal Q(x ′|x), and specifically

we’ll derive what we want from first principles. We’ll specifically add in an acceptance probability A(x ′|x), so that

T (x ′|x) = Q(x ′|x)A(x ′|x),

choosing A so that we have an ergodic, reversible transition kernel. (Ergodicity would ensure that long-enough

simulation guarantees convergence to stationary, and reversibility is the easiest way to ensure the stationary distribution

actually is P .) If we plug this formula for T into the detailed balance equation, we see that

A(x ′|x)
A(x |x ′) =

P (x ′)Q(x |x ′)
P (x)Q(x ′|x) ,

so the Metropolis choice is to choose

A(x ′|x) = min
(
1,
P (x ′)Q(x |x ′)
P (x)Q(x ′|x)

)
,

which always works because either A(x ′|x) or A(x |x ′) will be 1 and the other will be smaller and thus their ratio is

indeed correct. And to ensure ergodicity, we just make sure Q(x ′|x) is never zero (for example, it might be Gaussian).

So in practice, the transition operator does the following: we propose a move from x to x ′, accept it with some

probability A(x ′|x), and either go to that state or stay where we are. What’s nice is that our expression for acceptance

probability only requires the use of unnormalized factor terms in an MRF (since we’re dividing two terms of P s), so

it can often actually be computed in practice. And if we choose Q to be symmetric in x and x ′, there are no terms

involving Q in the acceptance probability at all.

Fact 151

The main complication is that Metropolis-Hastings requires a burn-in period, since the mixing time to reach

something close to the stationary distribution can be very long. This means that we throw away the initial samples

during this burn-in phase and only start counting at some later point.
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Gibbs sampling is another MCMC method similar to Metropolis-Hastings (in fact it’s a special case), but it’s not

written out in terms of an acceptance probability. Instead, we just pick one variable at a time (in turn or randomly) and

resample it given the conditional values of all other variables. What’s nice is that we only need to sample one random

variable at a time, so for graphical models like a BN it is often very efficient to resample from “local information.”

In words, we can think of this as saying that we pretend xi was never sampled, and given the other initializations we

do it again – this will keep us at the true “equilibrium” stationary distribution P (x) if we were already there. And we

can check that if we use P (xi |x⃗−i) as our proposal distribution Q(x ′|x), plugging this into Metropolis-Hastings indeed

makes A(x ′|x) always 1.

Fact 152

In practice, we can tell if Q(x ′|x) is actually good by looking at the acceptance rate and studying the autocorrelation

function, and we can understand how long to make the burn-in period by visualizing our samples and log-likelihood

over time.

As in similar problems, there is an “exploitation versus exploration” tradoeff in picking Q. If we choose it to have low

variance, we’ll sample things close to our current x , which results in a higher acceptance rate but slower exploration.

On the other hand, a high variance proposal may have low acceptance rate (because we are likely to sample proposals

on the tails with low values of P ) but a high capability for exploring P . So our goal is to propose distant samples

which still have a decent chance of being accepted. The concept here is that all MCMC chains show autocorrelation
(meaning that adjacent samples in time are correlated), and since we want to simulate sampling from P our goal

should be to choose something with low autocorrelation.

And to keep track of burn-in, we can look at whether samples from different MCMC runs look like they are well-

mixed. Specifically, we can imagine overlaying the values of x across different runs on the same graph – if they look

like they are still taking different paths, we may have a misspecified proposal and aren’t converging to the stationary

distribution yet, meaning we should continue burn-in. But as mentioned in lecture, it really is still a bit of an art.

Example 153

We’ll close with a few words on more advanced techniques which are particularly well-suited for high-dimensional

distributions, Hamiltonian Monte Carlo and annealed importance sampling.

The basic idea of Hamiltonian Monte Carlo is that we can think of our probability distribution as being dictated by

a potential energy function

P (x) ∝ e−E(x), E(x) = − logP ∗(x).

Motivated by physics, we can then think about a velocity v which carries kinetic energy K(v) = 1
2 ⟨v , v⟩, and we

imagine having a ball rolling along with velocity. We can then define a joint distribution

P (x, v) ∝ e−E(x)e−K(v) = e−H(x,v),

where H(x, v) is the “sum of the potential and kinetic energy” and velocity is independent of position. What HMC

does is Gibbs sample the velocity to yield the next direction of movement, simulating the resulting dynamics in a

way which is deterministic and reversible. (The idea is that the velocity tells us how to “leapfrog” and accept new

positions based on how we travel, and we can “reverse the velocity” and resample if things are not going well in a certain

direction.) However, Hamiltonian dynamics can be hard to model, so we usually do a discretization – the details can

be found if we search up the idea of hybrid Monte Carlo.

62



Finally, annealed importance sampling is motivated by the following idea: if we’re in a boat on a body of water and

want to model the volume, perhaps the only information we have is to sample directly below our position at any time.

We could try to model our lakebed as being initially flat, and over time as we progress we may incorporate the sharper

bumps and peaks and some more extreme events as we go on. So in annealing in general, we consider a probability

distribution dependent on the inverse temperature β given by

P (x ;β) ∝ P ∗(x)βπ(x)1−β).

As the temperature decreases (that is, as β increases), this will allow us to incorporate sharper details and have features

“peak out” more noticeably. What’s nice here is that if we start with a low β, mixing is easier, and we get this “chain”

between the posterior and prior

P (θ;β) =
1

Z(β)
P (D|θ)βP (θ).

So the high-level idea is that these are powerful for high-dimensional distributions; annealed importance sampling

turns a known simple distribution P T gradually into a target one P ∗, and Hamiltonian Monte Carlo lets us travel past

local modes by making use of velocity. So these turn out to have connections to score-based diffusion models – they

can both be used as samplers, and if we’re interested, we can take a look at the paper found here.

17 February 20, 2024
Today begins the learning portion of the course, in which we develop tools for acquiring the model from data. We saw

previously that learning the parameters of a Bayesian network is rather simple, but unfortunately undirected models

will give us a harder time computationally (we will see that it requires some challenging inference problems).

Recall that the setup is as follows: our domain is governed by some underlying distribution p∗, we have a dataset

of m samples {x⃗ (1), · · · , x⃗ (m)} from p∗ which we’ll assume to be iid, and we’re given some family of candidate models

M. Our goal is then to pick a “good” model M̂ within this family that fits p∗ well. (For example, M may be the set

of all Bayes nets with some given (fixed) graph structure.) Notably, we can just learn the model parameters for some

fixed structure, or we can also try to learn the structure (which we’ll talk about in a later lecture).

A first step to solving a learning problem is some kind of loss function which encodes how well we’re fitting the

data – in a previous lecture, we showed that minimizing KL divergence is equivalent to maximizing the expected log-

likelihood Ex⃗∼p∗ [log p̂(x⃗)]. (In information theoretic terms, “achieving perfect compression is like learning the model

exactly.”) So if we’re trying to do learning in this setting, we can do the same thing but approximate the expected
log-likelihood with the empirical one from our data

Ex⃗∼p∗ [log p̂(x⃗)] ≈ ED[log p̂(x⃗)] =
1

|D|
∑
x⃗∈D

log p̂(x⃗).

If we try to maximize this right-hand side over all p̂, we are then doing what we call maximum likelihood learning –

it’s equivalent to saying that we want to maximize the likelihood of our data
∏
x⃗∈D p̂(x⃗), where notably the 1

|D| scaling

doesn’t change our solution.

In the case of Bayesian networks, we just needed to figure out how to assign values in our conditional probability

tables θ. Since the joint distribution is defined as a product of these conditional probabilities, we were able to rewrite

the likelihood into an expression that decomposes across variables (see Example 80 for the details of our calculations),

meaning that we can estimate CPDs independently because our objective decomposes.
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Example 154

Today’s task will be to do the same problem in the same setting, except that we want to start now with an MRF

model of the form p(x⃗) = 1
Z

∏
c∈C φc(x⃗c), where our factors are now nonnegative functions which only have a

probabilistic interpretation because of the normalization constant Z.

It will be convenient to think of φc(x⃗c) in the “log characterization” as exp (θc(x⃗c)), just to make our expression

simpler. This means in particular that we have

p(x⃗) = exp

(∑
c∈C

θc(x⃗c)− lnZ

)
,

where Z can be expressed in the log parameterization as

Z =
∑
x⃗

exp

(∑
c∈C

θc(x⃗c)

)
.

We know that computing this Z is expensive in general (it’s the sum-product inference task we’ve previously talked

about). Our question today is to see if we can learn the parameters θc if we fix the graph structure (that is, choose

our fixed set of cliques C). Formally, imagine defining our family of distributions as parameterized by θ⃗ (the set of all

entries of our factors in log space)

p(x⃗ ; θ⃗) =
1

Z(θ⃗)

∏
c∈C

φc(x⃗c) = exp

(∑
c∈C

θc(x⃗c)− lnZ(θ⃗)

)
,

where the tricky part is now that the partition function Z also depends on θ. We can rewrite this (similar to how we

casted inference as linear program) as

p(x⃗ ; θ⃗) = exp

∑
c∈C

∑
x⃗c

θc(x⃗c)1{x⃗c = x⃗c − lnZ(θ⃗)

 ,
which we can write as exp

(
θ⃗T f⃗ (x⃗)− lnZ(θ⃗

)
so that most of the expression is linear in our parameters.

Example 155

Suppose we have a joint distribution over two random variables given by

p(X, Y ) =
1

Z
b(X)g(X, Y )h(Y ) = exp(log b(X) + log g(X, Y ) + log h(Y )− lnZ),

where X takes values in {red, green, blue} and Y takes values in {0, 1}.

We can then rewrite the expression for h as

h(Y ) = h(0)1{Y = 0}+ h(1)1{Y = 1} =⇒ log h(Y ) = log h(0)1{Y = 0}+ log h(1)1{Y = 1}

= θh(0)1{Y = 0}+ θh(1)1{Y = 1}

=
[
θh(0) θh(1)

] [1{Y = 0}
1{Y = 1}

]
,

where the parameters we are trying to learn are θh(0) and θh(1). Similarly, log b(X) would be written as a dot product

which involves θb(red), θb(green), θb(blue), and log g(X, Y ) involves six other θ parameters. So if we concatenate all
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of the 3 + 6 + 2 together into a single vector θ, we indeed get an expression

p(X, Y ; θ⃗) = exp
(
θ⃗T f⃗ (X, Y )− lnZ(θ⃗)

)
,

where for discrete MRFs f⃗ is the concatenation of indicator functions much like in the integer LP problem we’ve set

up in previous lectures.

Fact 156

This is called the overcomplete representation because we do have redundancy – we’ll talk about how to get a

more compact representation (using exponential families) in a future lecture. For now, this works and captures

what we want in our model.

Returning now to the learning problem, we have some iid data D and our goal is to maximize the average log-

likelihood of our data points. That means our goal is to find

θML = argmaxθ log
∏
x⃗∈D

p(x⃗ ; θ) = argmaxθ
∑
x⃗∈D

(
θ⃗T f⃗ (x⃗)− logZ(θ⃗)

)
.

(So for each data point x⃗ , we evaluate f⃗ on x⃗ , take the dot product with our vector of parameters θ⃗, and subtract off

the log partition function.) Writing this out explicitly, we wish to find

argmaxθ
∑
x⃗∈D

∑
c∈C

∑
x⃗c

θc(x⃗c)1{x⃗c = x⃗c} − |D| logZ(θ),

where unfortunately we cannot decompose the objective into clique potential terms because of the global normalization

and thus it is much harder to solve for optimal parameters (since the first term is linear in θ while the second is not –

even computing our likelihood requires sum-product inference, which is exponential in treewidth). Remembering that

the parameters θ are unbounded, we see that the log-normalization constant is there so that we can’t just increase

our objective function by scaling up θ – our goal is to increase the weight of data points in D, while not increasing the

total weight of all x⃗ (not just those in D) by too much.

Instead, we’ll dig deeper into how the partition function term actually depends on θ. We can compute the gradient

of logZ(θ) = log
∑
x⃗ exp

(
θ⃗T f⃗ (x⃗)

)
as follows:

∂ logZ(θ⃗)

∂θi
=
1

Z(θ⃗)

∂
∑
x⃗ exp

(
⃗theta

T
f⃗ (x⃗)

)
∂θi

=
1

Z(θ⃗)

∑
x⃗

∂ exp
(
θ⃗T f⃗ (x⃗)

)
∂θi

=
1

Z(θ⃗)

∑
x⃗

fi(x⃗) exp
(
θ⃗T f⃗ (x⃗)

)
.

But now we can push the Z back inside the sum and find that this expression is actually∑
x⃗

fi(x⃗)p(x⃗ ; θ⃗) = Ep(x⃗ ;θ)[fi ],

which means that the full gradient takes on a nice form:

∇θ⃗ logZ(θ⃗) = Ep(x⃗ ;θ) f⃗ (x⃗) .
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So again, we can compute the gradient if we can solve an inference problem. Since the vector f⃗ is a collection of

indicators in this case, we are actually calculating a vector of marginal probabilities (for example, the probability that

Y = 1 is the marginal probability under p). And we can do a similar calculation to show that the second derivative of

the log-partition function gives second-order moments – that is, the Hessian is

(∇2 logZ(θ⃗))i j =
(
Cov(f⃗ (x⃗))i j

)
,

and since covariance matrices are positive semidefinite, this means logZ(θ⃗) is convex (and thus − logZ(θ⃗) is concave).

Furthermore, the first term in our objective function is linear (so in particular concave). This is good because it means

our function has only a “single peak” – it’s easy to optimize with gradient ascent, since local maximizers are global

maximizers. Gradient ascent is a simple optimization approach in which we maximize a function h via

x⃗t+1 = x⃗t + ηt∇h(x⃗t),

where ηt is some small stepsize. In this case, this means we initialize our parameters in some way, and then we

repeatedly evaluate

∇θℓ(θ;D) =

(
1

|D|
∑
x⃗∈D

f (x⃗)

)
−∇θ logZ(θ⃗)θ=θt

and take a step in the direction of that gradient. We know that at the maximum likelihood solution, the gradient is

zero, and notice also that the expression above is actually the difference between the empirical data average of f⃗
and the model expectation! So there is a natural interpretation of what’s actually happening here – we’re predicting

how frequently we expect x⃗c = x⃗c in our data, versus how frequently the model marginals expect this to happen.

Remark 157. This is a special case of a what happens generally in maximum likelihood learning – we’ll see when we

study exponential families that moment matching between empirical data and the distribution is a general phenomenon.

The main problem is that inference is complex and thus doing it repeatedly can be very computationally intensive

– instead, we often need to do learning with approximate inference instead. All we actually need for learning is

a good estimate of marginal distributions, so we can use Gibbs sampling or any other approximate techniques we’ve

established so far to get savings. (So now we contrast the empirical “real samples” to the synthetic “fake samples” we

generate via MCMC.)

Example 158

An alternative strategy is to change our learning objective completely – instead of minimizing KL divergence, we

use a different estimator which lets us succeed at learning without needing inference. One such approach is called

pseudo-likelihood, where we approximate the true likelihood with some other expression that’s easier to work

with in undirected models.

Remember that we can always write down any joint distribution as a product of conditional probabilities via the

chain rule. We thus make the approximation

p(x⃗ ; θ⃗) ≈ pL(x⃗ ; θ⃗) =
∏
i

p(xi |x1, · · · , xi−1, xi+1, · · · , xn; θ⃗) =
∏
i

p(xi , x⃗−i ; θ⃗);

that is, we condition not just on the variables that come before but also the variables that come after. The reason

this is a good idea is that for undirected models, this expression can be written as
∏
i p(xi |x⃗N(i); θ), where N(i) is the

Markov blanket of i . So the new task is to replace the average log-likelihood with the average pseudo-likelihood, and
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we can now locally normalize instead of having a global partition function: our objective function is

ℓPL(θ⃗;D) =
1

|D|

|D|∑
m=1

n∑
i=1

log p
(
x
(m)
i |x⃗

(m)
N(i); θ⃗

)
.

For example, for a pairwise MRF, the conditional probability here is just

p
(
x
(m)
i |x⃗

(m)
N(i); θ⃗

)
=

1

Z
(m)
i (θ)

exp

 ∑
j∈N(i)

θi j(x
(m)
i , x

(m)
j )

 ,
where Z(m)i only requires summing over a single variable (we now have many small partition functions instead of a

large one).

Theorem 159

This new objective function is still concave, meaning we can again optimize it via gradient ascent. Call the

maximizer θ⃗PL, and assume that data is drawn from an MRF with parameters θ⃗∗. Under some conditions (which

are true in practice). Then θ⃗PL → θ⃗∗ as the dataset gets large.

Intuitively, pseudo-likelihood matches conditional distributions based on local information. And we can imagine that

if we run a Gibbs sampler on the model distribution and the data distribution using such local data, then we will get

the same invariant distributions in both cases.

Example 160

Finally, we’ll see how to extend all of this to conditional models – recall that conditional random fields are like

Markov networks but only specify the conditional distribution p(y⃗ |x⃗) = 1
Z(x⃗)

∏
c∈C φc(x⃗ , y⃗c).

This time, our partition function takes the form

Z(x⃗ ; θ) =
∑
ˆ⃗y

∏
c∈C

φc(x⃗ ; ˆ⃗yc),

and if Y⃗ is simple (like in logistic regression where each Yi only takes on values in {0, 1}) this can indeed be computed

easily. Just like in the unconditioned MRF case, we can write this out this joint distribution as

p(y⃗ |x⃗) =
1

Z(x⃗)
exp

(
θ⃗ · f⃗ (x⃗ , y⃗)

)
,

just that our normalization constant is different based on the observed value of x⃗ and our feature functions f⃗ now

depend on x⃗ (in potentially arbitrarily complicated ways).

Example 161

A setting in which we may want to find θ⃗ would be segmentation, where we want to do a binary prediction task to

find the “boundary” of some item in an image. Specifically, we may be given some images X along with associated

segmentation masks Y , and we want to choose parameters that maximize
∑M
i=1 log p(y⃗

(i)|x⃗ (i); θ⃗).

By definition, the log-likelihood of a single a data point is given by

log p(y⃗ (i)|x⃗ (i); θ⃗) = log

(
1

Z(x⃗ (i); θ)

∏
c∈C
exp

(
θc · fc(x (i), y (i)c

))
,
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where now instead of having |D| times the partition function Z(θ⃗), we have a different partition function for each data

point and have to add them up:

θML = argmaxθ

 ∑
(x⃗ (i),y⃗ (i))∈D

∑
c

θc · fc(x⃗ (i), y⃗ (i)c )

− ∑
(x⃗ (i),y⃗ (i))∈D

logZ(x⃗ (i); θ⃗).

So we can still do gradient ascent because we have a concave function, but now we need to do one inference per
training data point, not just one per step! So it becomes increasingly important to have a graphical model where

inference can be done efficiently while still taking into account some local interactions.

18 February 22, 2024
Today we’ll discuss the expectation maximization algorithm and how to learn with missing data – specifically, we’ll

start on this with the Bayesian network case. Our setting is as follows: we have a joint probability distribution

p(X⃗, Z⃗; θ), where in our data D the variables X⃗ are observed but the Z⃗ are not. For example, our data might look

like (0, 1, 0, ?, ?, ?), (1, 1, 1, ?, ?, ?), and so on, or (in a more concrete example) we might have some emails which are

labeled as spam or not spam while others remain unlabeled. These unlabeled emails may still be useful for determining

our parameters, though – they may tell us something about how words tend to appear together.

We’ll approach this problem by thinking about maximum likelihood again – again our goal is to maximize the

objective

ℓ(θ;D) = log
∏
x⃗∈D

p(x⃗ ; θ) =
∑
x⃗∈D

log p(x⃗ ; θ) =
∑
x⃗∈D

log

(∑
z⃗

p(x⃗ ; z⃗ ; θ)

)
,

where we’re now summing out over the unobserved variables. The challenge now is that because of this inner sum,

we do not have a closed-form solution for θ∗ anymore. Even if we have a BN, we can’t just count frequencies because

marginal probabilities don’t factor in a simple way – finding
∑
z⃗ p(x⃗ ; z⃗) requires inference, and furthermore the likelihood

function is no longer necessarily unimodal as a function of θ, since we may be adding together different unimodal

distributions together.

Thus, we’ll need a different strategy which takes an iterative approach – we’ll connect the partially observed case

to the fully observed case by inferring the missing components, and this leads us to the expectation maximization
algorithm. The algorithm works as follows: we start with some initial guess θ(0) for our parameters. Then we

repeatedly iterate the following two steps until we get convergence:

1. (E-step) Complete the incomplete data with our current guess of parameters θ(t).

2. (M-step) Update the parameters (finding the best fit) based on the completed (fully observed) dataset that we

now have, yielding a new guess θ(t+1).

Example 162

Recall that in a Bayesian network, our parameters θ are exactly the values appearing in our conditional probability

tables. Suppose we have a BN on binary variables with directed edges A→ C, B → C, and C → D, and we have

a data instance (a, b, c, d) = (1, ?, ?, 0).

In step 1 above, what we do is that for each possible completion of values b, c , we can compute how likely

the completion is given a = 1 and d = 0 and our current guess of θs. For example, we can calculate w1 =

p(b = 1, c = 1|a = 1, d = 0) by writing out the definition of conditional probability and using the BN structure
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to calculate both the numerator and denominator; similarly, we can calculate w2 = p(b = 1, c = 0|a = 1, d = 0),
w3 = p(b = 0, c = 1|a = 1, d = 0), and w4 = p(b = 0, c = 10|a = 1, d = 0).

What we do now is think of the single incomplete data point as four separate weighted data samples (1, 1, 1, 0),

(1, 1, 0, 0), (1, 0, 1, 0), and (1, 0, 0, 0) of weights w1, w2, w3, w4 respectively, and we maximize the probability of the

parameters on this larger, weighted data set using the methods we talked about in previous lectures. And this M-step

is pretty simple – it’s similar to the unweighted MLE estimate, but now we need to weight the samples instead of just

counting the configurations. For example, instead of θML
d=1|c=0 just being the number of samples with d = 1, c = 0

divided by the number with c = 0, we now have

θML
d=1|c=0 =

weighted count(d = 1, c = 0)
weighted count(c = 0)

=

∑m
j=1

∑
ˆ⃗z 1{data point consistent with d = 1, c = 0} · p(ˆ⃗z |x⃗ (j), θ(t))∑m

j=1

∑
ˆ⃗z 1{data point consistent with c = 0} · p(ˆ⃗z |x⃗ (j), θ(t))

.

But now we have new θ values, so we will end up with different weights when we do the E-step the next time.

Fact 163

Notice that this still requires us to do the same computation as marginalizing where we sum over all possible

values of z⃗ – the point is just to have an algorithm for actually computing this expectation while avoiding gradient

ascent on something that isn’t unimodal. There are variants which can be more efficient – we’ll see in a future

lecture that approximate inference or variational inference gives us estimates of the posterior if we can’t afford to

compute it exactly, and we can also further simplify by just taking samples.

More formally, in the E-step, we’re letting x⃗ denote our observed data and z⃗ our hidden data. We then “hallucinate

missing values” by computing a distribution over our hidden variables using θ(t), computing

Q(t+1)(z⃗ |x⃗ (j)) = p(z⃗ |x⃗ (j), θ(t))

for each training example x⃗ (j) and each possible value of z⃗ . Then in the M-step, we know that our marginal likelihood

does not decompose when we sum over z⃗ inside the log, so we’ll use Jensen’s inequality (much like we did with KL

divergence) to write

log

(∑
z⃗

P (z⃗)f (z⃗)

)
≥
∑
z⃗

P (z⃗) log f (z⃗),

giving us a lower bound because of the concavity of log. (And the idea is that we’re choosing a particular choice of

P in the E-step so that this bound is quite tight, not just some arbitrary inequality.) So if we do the same trick as in

importance sampling to write our sum as an expectation over Q, we have

ℓ(θ;D) =
∑
x⃗∈D

log
∑
z⃗

p(x⃗ , z⃗ ; θ)

=
∑
x⃗∈D

log
∑
z⃗

Q(t+1)(z⃗ |x⃗)
p(x⃗ , z⃗ ; θ)

Q(t+1)(z⃗ |x⃗)

≥
∑
x⃗∈D

∑
z⃗

Q(t+1)(z⃗ |x⃗) log
p(x⃗ , z⃗ ; θ)

Q(t+1)(z⃗ |x⃗)
.

Now we’re trying to optimize over θ, and Q logQ doesn’t depend on it, so we can write this further as

ℓ(θ;D) ≥
∑
x⃗∈D

∑
z⃗

Q(t+1)(z⃗ |x⃗) log p(x⃗ , z⃗ ; θ) + constant.

So in words, we go through our data set, look at all possible completions, and we weight by this weighting term Q(t+1)
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that we computed in the E-step. (For comparison, the fully observed case has objective function where all data points

are equally weighted and we instead have the expression
∑
(x⃗ ,z⃗)∈D log p(x⃗ , z⃗ ; θ).) So the lower bound that we are

optimizing in the M-step can be thought of as the “likelihood of a fully-observed dataset,” where we weight each term

by the probability of seeing those z⃗s given the x⃗s.

Because maximum likelihood maximizes this right-hand side, which is a lower bound for the true objective function,

what we’re doing is a sensible strategy. And then we’re choosing

θ(t+1) = argmaxθ
∑
x⃗∈D

∑
z⃗

Q(t+1)(z⃗ |x⃗) log p(x⃗ , z⃗ ; θ)

to be our parameters we feed into the next step of our algorithm! And in a BN, just like in the calculations in

Example 162, we can optimize each CPT independently. Specifically, we choose each θ to be the ratio of the weighted

counts of (xi , x⃗Pa(i)) to (x⃗Pa(i)) when we have hidden variables.

Example 164

The whole argument we did above with Jensen’s inequality works for any choice of Q, just like in importance

sampling, so now we’re going to explain why our particular choice is a particularly tight lower bound.

The point is that our objective function takes the form ℓ(θ;D), and at the point θ = θ(t) (the choice of parameters

we’re currently using), the lower bound is actually tight – we have exactly

ℓ(θ(t);D) =
∑
x⃗∈D

∑
z⃗

Q(t+1)(z⃗ |x⃗) log p(x⃗ , z⃗ ; θ(t)) + constant.

(We can see this by plugging in p(z⃗ |x⃗ ; θ) in for Q(t+1)(z⃗ |x⃗); the log term inside just becomes log p(x⃗ ; θ), which doesn’t

depend on z⃗ . And that’s exactly the equality case for Jensen’s inequality.) So while we do the M-step, any increase in

this objective function has to actually increase the true marginal likelihood, which is what we care about!

For a picture to have in mind, think about having two “curves” in our parameter space, (1) the true marginal

likelihood L(θ) (potentially nonconcave), and (2) its lower bound from Jensen’s inequality ℓ(θ|θ(t)) (always concave).

Importantly, we’ve chosen our weighting function so that these two curves touch at θ = θ(t). Then in the M step we

ignore curve (1) and globally maximize the lower bound (2); whatever θ(t+1) we end up with has a higher value for

curve (2), so the true marginal likelihood in curve (1) cannot get worse! (And then using θ(t+1), we do another E

step, which corresponds to finding a different lower bound curve (2) which is below (1) but touching at θ = θ(t+1).)

Fact 165

Notice that this procedure may get stuck in local optima – this is related to the idea of confirmation bias and not

finding the best possible marginal likelihood. But at least it’s guaranteed to make progress at each step.

So this EM algorithm searches for estimates that maximize expected log-likelihood (hence the name), and each

iteration we perform always increases the likelihood. However, this algorithm does depend on the estimated parameters

we begin with (so it might be good to start with a few guesses for θ(0) for inferring missing values). And the issue

that we’ve discussed is that this doesn’t get around still needing to do inference on a Bayesian network, which may be

expensive in general. (The alternative is to do gradient ascent directly on the nonconcave objective function, and EM

or some hybrid method tends to do better in practice.)
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Example 166

We’ll look at an application of this to a particular type of Bayesian network, the Gaussian mixture model (where

we often use the algorithm for unsupervised learning). Consider a simple Bayesian network Y → X, where Y

is a categorical variable that can take k values and X is a continuous random variable such that p(X|Y ) is a

multivariate Gaussian with mean µi and covariance matrix σi . (So we first pick some Y = i with probability

P (Y = i), and then we generate a datapoint with mean and covariance given by (µi ,Σi).)

Intuitively, multivariate Gaussians can be visualized roughly as ovals in Rn, and a mixture of Gaussians is overlaying

these ovals in space. Such a model allows us to cluster data points – it’s a useful way of defining complex generative

models in terms of simple components. (For example, a real dataset which describes (duration of eruption, time since

last eruption) for eruptions of Old Faithful may not be fitted well to a 2-dimensional Gaussian – it may fit better to a

mixture of two Gaussians corresponding to “small eruptions” and “big eruptions.”) Formally, this means we have

p(x⃗) =

K∑
k=1

πkN (x⃗ |µk ,Σk),

where πk are nonnegative real numbers summing to 1. (Adding together such Gaussians gives us a much more flexible

way to represent general distribution shapes.) In unsupervised learning, it’s often the case that when modeling a

dataset, we have different classes of datasets behaving in different ways (but where the behavior within each class is

relatively similar). So we may want to determine where these clusters are without having any labeling of the data in

the first place, and we can do so by calculating the posterior probabilities p(Y = i |x⃗) that a point was generated

from the ith Gaussian.

The first simple building block is to figure out how to do this in the fully supervised setting where we see everything:

for a univariate Gaussian, the maximum likelihood estimates are just

µML =
1

N

N∑
i=1

x (i), σ2ML =
1

N

N∑
i=1

(x (i) − µ̂)2,

the empirical mean and sample variance, and if we have a mixture of multivariate Gaussians, we similarly get

µk,ML =
1

n

n∑
j=1

x⃗ (j), Σk,ML =
1

n

n∑
j=1

(x⃗ (j) − µk,ML)(x⃗ (j) − µk,ML)T ,

where we’re only summing over the points where we label with color k . What we’re curious about is now the

unobserved case, where we have missing data (the label of which Gaussian we’re from), and this is where we can use

EM. Our goal is now to find argmaxθ
∏
j p(yj , x⃗j) even though we don’t know the yjs, meaning we want to instead

maximize the marginal likelihood

argmaxθ
∏
j

p(x⃗j) = argmaxθ
∏
j

k∑
k=1

p(Yj = k, x⃗
(j)).

So let’s translate what the EM algorithm means in this case. We know how to do the M-step – if we have both the

values of X⃗ and Y , then we do know how to compute the (weighted) MLE estimators explicitly. So in the E-step, we

fill in the missing y -values, calculating the conditional probabilities that a point X⃗(j) comes from each of the Gaussians

given our parameters θ. And in this case, both the E and M steps are simple and have closed form solutions because

of the simple form of the Gaussian.
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Put in different words, at each step, we have a guess for the means and covariance matrices for each of the k

Gaussians, and the E-step computes the expected class of each datapoint by looking at how far we are from the means.

Then given these class expectations – thinking of a data point as now being 80 percent of a data point in the first

Gaussian and 20 percent of one in the second Gaussian – we adjust our mean and covariance to best fit these weighted

points like in the boxed equation above, except we now take a weighted average weighted by P (Y (j) = k |X(j)) instead

of a simple one.

Remark 167. If we want to “push the means apart” because we have some prior knowledge, we can do so by adjusting

our Bayesian network, treating the means themselves as random variables with certain priors. But we can still apply

the same machinery and approach the problem in a principled way.

19 February 23, 2024 (Section)
Today’s section, taught by Charlie Marx, will cover expectation maximization. Specifically, we’ll contextualize the

algorithm relative to other optimization algorithms in ML like gradient descent.

We’ll think about inference in latent variable models like we did in lecture – suppose we have two sets of variables

X⃗ and Z⃗ where we never actually get to see Z⃗, and we want to estimate our parameters θ going into the model. (For

example, we may have a Gaussian mixture model where the joint distribution is a mix of Gaussians each with their own

mean and variance, and the latent variable is which Gaussian our data was drawn from.)

Our goal overall will be to maximize the marginal likelihood, but the issue here is that our parameters specify a

distribution over both X⃗ and Z⃗. So we basically marginalize out over Z⃗, and what’s tricky is that even with a friendly

density this marginalization may not give us something with nice global structure (like concavity) – we’re now taking

the log of a sum of probabilities. So the philosophy we go with is one that comes up a lot in modern optimization

methods: we use the local structure to get a hint for where the location might be (via a surrogate), and then we

perform better on the surrogate in hopes of performing better on the original optimization problem too.

Usually we do Taylor methods for optimizing nonconvex functions like this: we may use gradient descent (think-

ing about the linear approximation, or equivalently the first order approximation), but this requires the inner sum∑
z⃗i
p(x⃗i , z⃗i |θ⃗) to be tractable, and it requires us to be able to compute the gradient efficiently too. Another method

is Newton’s method, where we do a parabolic (second order approximation) approximation to hope that we have a

slightly better surrogate. The main problem is that we then need a way to compute the Hessian instead of just the

gradient.

Fact 168

If we think about the landscape of optimization problems we may want to solve, some problems have a lot of

structure (like a concave objection function), meaning that we can even find the global optima in closed form or

at least nice solvers that approach at some proven rate. However, there are some more complex, non-concave

objective functions, and for those there often isn’t much we can do besides Taylor methods.

The idea of EM is that we do something between these two extremes – we can get more guarantee than just

hoping gradient descent will work. The EM algorithm finds a surrogate function that is easy to maximize, and then it

maximizes that instead of our original marginal log-likelihood objective. We saw in lecture that we do an approximation

using Jensen’s inequality

ℓ(θ) ≥
∑
i

∑
z⃗i

qi(z⃗i) log
p(x⃗i , z⃗i |θ⃗
qi(z⃗I)

,

72



so that we can move the sum past the log, and then we can more tractably optimize this new expression instead.

In this case we actually have a global relation between our approximator and the original objective – we get a global

lower bound using our new function, which is better than what we get with Taylor methods. And if p(x⃗i , z⃗i |θ⃗) takes

some nice structure (like an exponential family or linear function), then the Jensen lower bound is actually nice as well

(because perhaps we have concavity or something else that we can work with). So that gives us more guarantees when

working with EM than we would from a Taylor approximation.

But we didn’t get this for free – this only works because we’re in some particular settings where the Jensen lower

bound is actually easier to optimize. So the requirements for using EM are that the inner sum over z should again be

tractable so that p(z⃗ |x⃗) can be computed, and we should be in a setting like latent variable models where the Jensen

bound is tractable.

As a review, the EM algorithm has two steps: we have a Jensen lower bound which is basically what we get if

we plug in our proposed distribution over latents, and this is actually a tight bound (exactly equal to the objective

function) at our current value of θ⃗. The point is that X⃗, θ⃗ give us Z⃗, and X⃗, Z⃗ give us θ⃗ via inference, but we don’t

actually have either the values of θ⃗ or Z⃗. So we’ll “flip back and forth” between our guesses for the two and successively

optimize in that way. Our E step fixes θ⃗ and determines a distribution over Z⃗, and once we’ve fixed Z⃗ to be distributed

from our guess θ⃗, we can optimize over θ⃗ to increase the log-likelihood from there.

Example 169

We can draw an analogy to Newton’s method – in Newton’s method we have an “E-step” where we compute

the coefficients of a parabolic approximation to the function (so we fit a quadratic locally), and then we have an

“M-step” where we maximize the parabola. But the key difference is that the parabola isn’t always underneath

the true function, so it’s possible that we get unlucky and by moving to the new maximum of the surrogate we’ve

actually decreased the function we care about.

20 February 27, 2024
Today’s topic is Bayesian learning – we’ll be formulating learning as an inference problem by thinking of parameters as

random variables themselves, which will allow us to reduce learning to inference. This will have several advantages,

such as incorporating prior knowledge and modeling uncertainty on the estimates that we’ve made (we don’t just care

about the weights but also some distribution for them).

Example 170

We’ll start with some motivation: let X be a Bernoulli random variable with some single unknown parameter

θ = p(X = Heads).

We might imagine three scenarios: one with a dataset of 1 head and 2 tails, another with 10 heads and 20 tails,

and a third with 100 heads and 200 tails. In all three cases, our MLE estimate is θ̂ = 1
3 , but somehow the situation

should be different in that we’re a lot more confident about our answer in the third case versus the first one. So what

we really want is some distribution of the form p(θ|D) rather than just this single number, and this is useful because

we can use this to give more detailed predictions without being too confident in a particular parameter.
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Example 171

Suppose we want to predict whether or not a swan can be black. If we’ve seen N = 10 white swans so far, then

we may ask about the probability that the 11th swan XN+1 is black. Using the maximum likelihood estimate, we

would say that the probability θ̂ of seeing a black swan is 0. But this might just be because we don’t have enough

data, and we should be a little more careful with these predictions.

What we’ll do is treat θ as a random variable, and we do so with the beta-Bernoulli model. Specifically, we can

imagine the following Bayesian network: let θ be the probability of heads, and let X1, · · · , XN be the observations in

our dataset. We then have a (naive Bayes) Bayesian network where we have directed edges θ → Xi for each i , where

the conditional probability table for Xi is that given θ, Xi is Bernoulli with that parameter θ. In such a setting, we have

P (D|θ) = P (X1, · · · , XN |θ) =
N∏
j=1

θXj (1− θ)1−Xj

(since the Xis are independent given the value of θ), which can be equivalently written as θNH(1− θ)NT , where NH is

the number of heads and NT is the number of tails. Thus, we can use Bayes’ rule to update our belief about θ:

P (θ|D) =
P (θ)P (D(θ)

P (D) ∝ P (θ)P (D|θ).

So all we need to calculate this is to specify some prior P (θ), and then we can plug in the expression for P (D|θ) from

above. The idea is that P (θ|D) will generally concentrate as our dataset gets larger, becoming more similar to the

maximum likelihood learning we previously performed.

Given that θ is continuous in this problem, we’ll want to think about how best to specify the prior P (θ). We could

discretize it over [0, 1] and use a table, or we can use some “computationally simple” continuous prior that is flexible

enough to be updated and yet work well with the inference algorithms we’ve discussed so far (since most of what

we’ve said so far only necessarily works with discrete random variables – things like variable elimination may not be

so sensible anymore in general for the continuous case).

Definition 172

In the beta-Bernoulli model, we choose the prior to be the beta distribution

P (θ|αH, αT ) = Beta(θ|αH, αT ) =
1

B(αH, αT )
θαH−1(1− θ)αT−1

on [0, 1], where the normalizing constant B(αH, αT ) =
∫ 1
0 θ
αH−1(1− θ)αT−1dθ is called the beta function.

We call the parameters α hyperparameters (also shape parameters), and this is a nice form because having the

prior take the same form as the conditional probability P (D|θ) means that their product also has this same form. For

example, a Beta(1, 1) random variable is just the uniform distribution on [0, 1], Beta(30, 20) is quite sharply peaked

around 0.6, and Beta(0.3, 0.2) is peaked near x = 0 and x = 1 (so we do have flexibility in the shape of the distribution

that can be modeled). It turns out that for the beta distribution, we have

E[θ] =
αH

αH + αT
,

so this is very reminiscent of the MLE estimate from before, but we can now think of αH + αT as a measure of
confidence for our expectation (since the larger it is, the more peaked our distribution is around that mean). One
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way to interpret αH, αT is as some “number of virtual heads and tails we see before looking at our current data;” the

larger they are, the more strongly we believe the initial shape of θ values.

Looking now at the distribution of the posterior, if our likelihood is P (D|θ) = θNH(1 − θ)NT and the prior is

P (θ|αH, αT ) = Beta(θ|αH, αT ) = 1
B(αH ,αT )

θαH−1(1− θ)αT−1, then we basically add together real and virtual heads
and tails: the posterior is also Beta with the updated counts

P (θ|D, αH, αT ) ∝ θαH+NH−1(1− θ)αT+NT−1.

We call this situation where the posterior is in the same family as the prior conjugacy.

Fact 173

We’ll notice that this looks very similar to the heuristic of Laplace smoothing – in general, we can justify Laplace

smoothing by using a beta prior over θ. If we assume that the prior takes the form Beta(αH, αT ), then the prior
mean of θ is αH

αH+αT
, and the posterior mean is αH+NH

αH+NH+αT+NT
, which is a convex combination of the prior mean

and the max-likelihood mean NH
NH+NT

; specifically we can write

E[θ|D] =
M

N +M
·

αH
αH + αT

+
N

N +M
·

NH
NH + NT

,

where the weights depend on the relative number of virtual data points M and real data points N. So we are

shrinking our estimate away from the MLE towards prior, which can be thought of as a smoothing effect, but as

N →∞ that effect goes away.

Previously in maximum likelihood learning, we would just give a single best guess for θ∗, meaning that in our model

the probability of our next coin flip being heads would just be θ∗. The question in the Bayesian prediction setting is

to find the probability that the next flip X is heads, given the observed data D, where θ is now a random variable.

So we’ll compute the probability is heads by assuming X is drawn independently from the same distribution as the

dataset so far, given θ (so imagine adding a new node and edge in our Bayesian network θ → X). We then have to

marginalize out over θ by integrating and accordingly weighting:

p(X = H|D) =
∫ 1
0

P (X = H, θ|D)dθ =
∫ 1
0

P (X = H|θ)P (θ|D)dθ.

So this is very similar to the sum-product computations we’ve previously had to do, except now we integrate instead

of summing. (We can think of this as averaging over a big ensemble of different models with different values of

θ, instead of using a single one with a particular θ – if it were discrete, this would look something like 0.5P (X =

H|θ1) + 0.2P (X = H|θ2) + 0.3P (X = H|θ).) Such a task can be very expensive, but making forecasts in this case is

pretty easy, because in beta-Bernoulli we have∫ 1
0

P (X = H|θ)P (θ|D)dθ =
∫ 1
0

θP (θ|D)dθ

and this is exactly the expression for the posterior mean E[θ|D] (which we know how to compute because we have a

Beta posterior distribution).
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Example 174

This solves the black swan event problem – if we start with a Beta(1, 1) uniform prior for θ, then our posterior

prediction is of the form

P (XN+1 = black|Nwhite, Nblack) =
Nblack + 1

Nwhite + Nblack + 2
,

which will always be strictly between 0 and 1 even if we haven’t observed any swans of one type or the other.

Fact 175

It’s often easier to compute the posterior mode than to compute the posterior mean (since the latter requires

us to integrate over all possible models, but the former is just an optimization problem). So often in practice we

will compute θ̂ = argmaxθP (θ|D), where we still look at the posterior but instead of integrating we just take the

most likely value.

In such a situation we are trying to find

argmaxθP (θ|D) = argmaxθ
P (D|θ)P (θ)
P (D) = argmaxθP (D|θ)P (θ),

and we call this maximum a posteriori estimation. We can think of this as doing a regularized MLE

θ̂ = argmaxθ logP (D|θ) + logP (θ),

where we now have an extra term coming from the prior distribution which acts as a regularizer. This is often done

in practice, and we can often think about regularizers in problems like this as being priors even if they’re not usually

phrased in terms of Bayesian learning! For example, when doing linear regression, we may view it as a conditional

model where P (Y |X⃗ = x⃗) is Gaussian with mean θx⃗ and some fixed variance 1. Then the MLE estimate corresponds

to a least-squares objective function, but if we assume a Gaussian prior of the form

P (θ|λ) ∝ exp
(
−
λ

2
θT θ

)
,

which corresponds to assuming that the weight vector has mean 0 and covariance matrix λ−1I (saying that big

coefficients are unlikely to occur a priori), then the maximum a posteriori estimation now has an extra term logP (θ|λ) =
−λ2 ||θ||

2. So this yields the ridge regression model, encouraging us to find solutions with small coefficient vectors.

Example 176

Suppose now that we want to model a categorical random variable with k possible outcomes instead of just a

Bernoulli random variable with 2 outcomes. Now we have a vector θ = (p1, · · · , pK) encoding the probabilities of

the various outcomes, where
∑
k pk = 1.

In this case, the likelihood of our data is given by

P (D|θ) =
N∏
j=1

K∏
k=1

p
1{Xj=k}
k =

K∏
k=1

p
#{Xj=k}
k .

In this case, the conjugate prior to use is the Dirichlet distribution

P (θ|α⃗) = Dirichlet(p1, · · · , pK |α) =
1

B(α)

K∏
k=1

pαk−1k ,
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supported on the set of points (p1, · · · , pK) where pk > 0 for all k and
∑
k pk = 1. Multiplying those expressions

gives us something with the same functional form (just that the exponent αk − 1 becomes αk + #{Xj = k} − 1),
which makes this setting tractable – we just end up with a Dirichlet distribution with α′k equal to the number of virtual

counts αk plus the number of real data counts #{Xj = k}.
We may now want to think about more general Bayesian networks – so far, we’ve only considered the case with

a single categorical random variable (that is, a single vector of parameters), but we may want to apply this to a more

complicated graph structure with many more conditional probability tables. It turns out the machinery is very similar

– if we have a fully observed dataset, we can again reduce to an inference problem.

Example 177

Suppose we have binary random variables A,B, C with the BN structure A→ B, A→ C (call this BN G), and we

have a dataset of five data points for (A,B, C):

D = {(0, 0, 1), (1, 0, 1), (1, 0, 1), (0, 0, 0), (0, 1, 0)}.

In this setting, we need to estimate five different parameters, namely θA, θB|A=0, θB|A=1, θC|A=0, and θC|A=1. In a

Bayesian framework, we need to treat all of these as random variables, and we do so by first specifying some prior for

all of them. For simplicity, we can discretize θ, and suppose we have a prior of the following form: we know for sure
that θB|A=1 = 0.1, θC|A=1 = 0.8, but a priori we think θA is either 0.75 or 0.9 with equal probability, and similarly we

have a distribution for θB|A=0 (it’s either 0.25 or 0.5) and θC|A=0 (it’s either 0.5 or 0.75).

In such a setting, we can follow the structure of the naive Bayes BN θ → Xi from above, thinking of each Xi as

being itself a collection of random variables in a Bayesian network and θ as the collection of all CPTs. We call this a

meta network – we have a joint distribution over data and network parameters, where each training data point gives

us a copy of the original Bayesian network G (so we would have Ai , Bi , Ci nodes corresponding to the instantiations of

A,B, C in the ith data point). We then have random variables θA, θB|A=0, θC|A=0 which represent unknown parameters

– these have no parents, and their CPTs are where we specify the priors from the previous paragraph. (So θA would

have probability 0.5 of being 0.75 and probability 0.5 of being 0.9.) But once we condition on these θs, we make each

individual BN behave like G but with the specified parameters θ. (So for example, the distribution of B3 is specified

conditioned on the value of A3 and also the value of θB|A=0 in the meta network.) The diagram below shows what the

meta-network looks like if we have three data points:

B1 C1

A1

B2 C2

A2

B3 C3

A3

θA

θB|A=0 θC|A=0

Thus conditioned on some realization of the parameters θ, each model behaves like the original G with that
particular realization. We’ll then let the dataset be the evidence on our meta network, and then we can use this to
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compute the posterior distribution on the network parameters: that is, in this setting we would compute

P (θA, θB|A=0, θC|A=0|D).

So everything falls out automatically to the extent that we can do inference – since all θs are d-separated when we

condition on data, we can do the inference separately for each one. So Bayes’ rule has given us a way to update

beliefs, reducing learning to a process of computing posterior distributions.

Fact 178

The setting above assumed that our random variables θA, θB|A=0, θC|A=0 were discretized, so that we can use

inference algorithms from our discrete BNs from earlier in the course. But we can also use continuous priors and

posteriors, and a natural way to do this is to use a Beta or Dirichlet prior for these θs (depending on how many

outcomes we’re dealing with); we’ll again end up in the same family of variables. For example, we can encode the

belief that θA ≈ 0.75 by starting with a Beta(75, 25) distribution, and then our predictions will integrate over all

BNs over choices of our paramteres.

In particular, we estimate probabilities via equations like

P (B = b, C = c) =
∑
θ

Pθ(b, c)P (θ|D)

or an integration if we have a continuous ensemble of possible distributions. And just like in the black swan example,

this is more robust than MLE but also more computationally expensive.

21 February 29, 2024
We’ll discuss structure learning today – so far, we’ve assumed a graphical model with some fixed set of conditional

independencies and computed the parameters θ from that, but today we’ll see how to use data to infer what indepen-

dencies exist (that is, how to construct our network for the graphical model). We’ll learn the Chow-Liu algorithm for

structure search, and then we’ll think about how to view structure learning as a search problem (via optimization).

Remark 179. Network structure gives us a lot of information about how our random variables are related, and in many

situations with scientific data this relation is actually what we care about (for example understanding if some variables

are correlated or seeing the “directions of causality” (is smoking causing cancer, or is cancer causing smoking).

There are two main methods that we’ll discuss today for structure learning: the first is constraint-based (where

we check for independence and add edges accordingly), and the other is score-based (search for network structures

that maximize the probability of our particular data set via a loss function).

First of all, recall from earlier in the course that for a directed acyclic graph G we defined I(G) to be the set of

independencies implies by G (via d-separation), and we defined I(p) to be the set of conditional independencies that

actually occur from the joint distribution. Our goal is to find some G such that I(G) = I(p) (a P-map), but this is

not always possible and we can only find a minimal I-map (where I(G) ⊆ I(p) and removing any edges in G would

make this no longer true). The algorithm we discussed for finding minimal I-maps was to pick an ordering of variables

X1, · · · , Xn (corresponding to a chain factorization for the joint distribution) and then repeatedly simplifying each term

as much as possible, pruning parents that are not necessary. In other words, for each Xi , we find the minimal subset

A⃗i ⊆ {X1, · · · , Xi−1} such that

p(Xi |X1, · · · , Xi−1) = p(Xi |A⃗i).
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Then once we have this subset of variables, we can use standard learning methods to learn the relevant conditional

probability table. So this will give us a minimal I-map, but it’s not unique (it depends on the order that we choose).

The idea is that we can use this same algorithm to learn the BN structure from data, even if we don’t have a
method for testing conditional independence like we did before! Supposing now that we only have data D (rather than

the distribution specified via probability tables), we can try using empirical probabilities and doing hypothesis testing.

We know that if X and Y are independent, then p(X, Y ) = p(X)p(Y ), which implies that in our empirical distribution

we will have p̂(X, Y ) ≈ p̂(X)p̂(Y ). So for every possible value of X and Y , we can see how frequently those occur

together and how close the independence equation is to holding – we don’t expect perfect equality, but the larger our

data set is the closer the empirical frequencies should match. We can do this via the chi-square distance (think of

this as squared loss)

dχ2(D) = |D|
∑
x,y

(p̂(x, y)− p̂(x)p̂(y))2

p̂(x)p̂(y)
;

if this quantity is small, then we can conclude that X and Y are independent. And alternatively we can consider the

mutual information (think of this as a different loss function)

MI(X, Y ) = DKL(p(x, y)||p(x)p(y)) =
∑
x,y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
≈
∑
x,y

p̂(x, y) log

(
p̂(x, y)

p̂(x)p̂(y)

)
;

we know that if X and Y are independent then the mutual information should be zero, and thus if our approximation

from p̂ is small then we can conclude that we do have independence. So in both of these cases, we can use this as

our “test for the minimal parent set” A⃗i , and then we get a minimal I-map by doing this over some particular ordering.

Fact 180

The cons of this strategy are that we are likely to make mistakes when we have to do repeated conditional

independence tests at every stage – it’s especially big of a problem when our dataset is small. And if we are doing

tests for independence with more than two variables, we will need more and more data to estimate the entries

accurately. But if we impose some constraints on the maximum number of allowed parents, then it does a pretty

good job.

Instead, thinking about this structure learning problem as an optimization problem often works better. We can

start with a dataset D and a set of possible graphs (for example Bayesian networks) over our variables, and we can set

up a performance metric that tells us how well each graph does for representing our data. Then we can go through

our set of possible graphs and pick the one with the best performance. If we have BNs, we know that we can find the

optimal parameters very easily via maximum likelihood estimation, and this means we can calculate the log-likelihood

of data for each potential graph quickly. (Then a higher log-likelihood would mean that we fit the data better.)

The problem here is that if we just want to find a graph G that maximizes argmaxGLL(D|G), but the optimal

solution is always a complete DAG G which tells us nothing about the structure (we showed in our homework that

adding edges always increases the log-likelihood). So one strategy is to regularize to penalize graphs that are too
complex, adding another term besides the log-likelihood, and the other is to just have a hard constraint where we only

consider some subset of simpler graphs G (this is analogous to only considering linear models in machine learning).
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Example 181

One strategy is to only consider tree-structured Bayesian networks in which each node only has at most one

parent. There are still (exponentially) many tree networks to enumerate over, but there is a clever algorithm called

the Chow-Liu algorithm which lets us find the best tree in complexity that is only quadratic in the number of

variables.

This algorithm makes use of the mutual information we defined earlier in the lecture – for each pair of variables X,U,

the mutual information MI(X,U) tells us how much one variable helps us predict the other one. Like we mentioned

before, we will approximate the true mutual information by the one coming from the empirical distribution: for all
X,U, compute

MIp̂(X,U) =
∑
x,u

p̂(x, u) log
p̂(x, u)

p̂(x)p̂(u)
,

where remember that p̂(xi , xj) is the fraction of all data points which have Xi = xi , Xj = Xj . This will then give us a

mutual information graph, where between each pair of variables we label with some real number (here we use that

mutual information is symmetric). We can then select a skeleton for the Bayesian network which chooses edges with

large mutual information: that is, we find the maximum spanning tree (a tree with maximal sum of weights along

the edges) via the Kruskal or Prim algorithm, where we just greedily add edges while making sure that we have a tree

at each step.

Once we have our undirected edges, we need to pick a directed acyclic graph, and we can do this by picking any

node as the root and assigning all arrows to point away from that root. (The idea is that if we want a tree-structured

Bayesian network, we must avoid V-structures.) This gives us an overall Bayesian network; computing the MI pairs

takes O(n2) time and the maximum spanning tree computation also takes O(n2) time, so our total complexity is

O(n2).

Example 182

The key fact we’re using here is that log-likelihood is essentially dictated by sum of mutual information, and

we’ll go through the derivation now!

Recall that if we have some fixed graph structure, our data log-likelihood

log p(D|θ, G) =
∑
i

∑
xi

∑
x⃗Pa(i)

Count(xi , x⃗Pa(i) log p(xi |x⃗Pa(i); θ),

so that when we plug in the MLE parameters θML, we get the maximum likelihood score

log p(D|θML, G) = |D|
∑
i

∑
xi

∑
x⃗Pa(i)

p̂(xi , x⃗Pa(i)) log p̂(xi |x⃗Pa(i)).

If we do a bit of algebra, we can rewrite this as

|D|
∑
i

∑
xi

∑
x⃗Pa(i)

p̂(xi , x⃗Pa(i)) log

(
p̂(xi , x⃗Pa(i))

p̂(x⃗Pa(i))

p̂(xi)

p̂(xi)

)
,

but then rearranging this (and applying the definitions of entropy and mutual information) simplifies the log-likelihood

to

|D|
∑
i

MIp̂(Xi , X⃗Pa(i))− |D|
∑
i

Hp̂(Xi) ,
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where Hp̂(Xi) is the empirical entropy for the random variable Xi – in particular, it doesn’t depend on the structure of

the graph and is just some measurement of individual randomness! So maximum likelihood likes graphs where parents

of a node are informative of the node (meaning we have high predictive power). If we’re assuming that G has to be

a tree where each node has at most one parent, then each term MIp̂(Xi , X⃗Pa(i)) simplifies to just adding the mutual

information over the edges (i , j), and thus we’ve justified that our max spanning tree problem is actually doing the

correct thing.

Fact 183

Notice however that we are still not doing causal inference – the directionality of the tree does not affect the

log-likelihood or mutual information, and that’s a fundamental limitation we have here.

We may ask whether we can use this same machinery to optimize over all graphs G, but again complete DAGs

give us the optimal solution and often they are overfitting the data (doing well against the training data doesn’t

mean we have a good model of the world). So again, we must add either a soft (regularization) or hard constraint to

prefer simpler models (in the spirit of Occam’s razor). To turn this in to an algorithm, we need a way to specify the
complexity of a model and also a way to balance that complexity with how well we fit the data.

Definition 184

In Bayesian networks, we measure model complexity by using the number of independent parameters in the model

(essentially the number of entries in the conditional probability tables, minus one per row because probabilities

must sum to one). We call the number of independent parameters the dimension of G and denote it ||G||.

For example, if we have binary random variables A,B, C,D, we need 1 + 2 + 2 + 2 = 7 parameters if we have a

tree-structured Bayesian network, and we need 1+ 2+ 4+ 8 = 15 parameters if we have a fully connected DAG. Our

new score function then takes the form

Score(G : D) = LL(D|G)− ψ(|D|)||G||,

where we have a term for the data fit, but we also get a penalty for complexity proportional to the dimension of G.

The extra degree of freedom ψ(|D)| here is governed by the size of our dataset; recall that the log-likelihood expression

boxed above scales linearly in |D|.

• One choice is to set ψ(|D|) = 1 to get the Akaike information criterion (AIC), in which model complexity is

a secondary issue and only used when different models have very similar log-likelihoods.

• Another choice of ψ(|D|) = 1
2 log(|D|) yields the Bayesian information criterion (BIC), where again the

influence of model complexity is less relevant than the log-likelihood term. The idea is that we do penalize for

complexity, but we do so correctly from a Bayesian treatment if we use Dirichlet priors – in the limit of infinite

data there is no overfitting, so it makes sense for log-likelihood to eventually dominate. (This also has some

relation to the “shortest way to describe a dataset.”)

Theorem 185

BIC is consistent. Specifically, if our data is generated from a distribution p∗ and G∗ is a perfect map for p∗, then

as |D| → ∞, our scoring function satisfies Score(G : D) ≤ Score(G∗ : D) for all G, and if G′ is not I-equivalent

to G∗, then we have a strict inequality.
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Remember that the models A→ B and B → A are I-equivalent, and indeed this whole framework does not give us

a way to distinguish between them. But other than that, we’ll have the “correct structure of p∗” up to I-equivalence.

And note that if we only have likelihood score, G∗ will maximize the score, but so will the fully-connected DAG (which

is not I-equivalent to G∗ in general), so not having a penalty on model complexity doesn’t give us this consistency

property that we want.

Example 186

However, notice that we are still searching for a network structure that achieves the highest score, and there’s an

exponentially large number of graphs to search through (we can’t do gradient-style methods because we have to

do every DAG separately).

So this can be intractable in general (we could only do it for trees with a clever algorithm), and the way we have

to do things in general is to do local search, picking the best solution in a greedy way. For example, we can start with

a good graph structure that we think may maximize the score, and we have some local procedure for making small

changes and seeing if we get a better score for each of them (for example adding edges, removing edges, or flipping

their direction). This process is more efficient because score decomposes additively over conditional probability tables,

meaning that we can evaluate these local changes efficiently.

Alternatively, we can again constrain our search space by doing the generation step-by-step (like the way we found

our I-map). Specifically, we choose some ordering of variables, and then for each Xi we find some good set of previous

variables U⃗i that maximize local score. This doesn’t force us to worry about creating cycles and lets us decompose

into optimization problems, and as long as we bound the number of maximum parents d we can brute-force this

computation. But this can still be hard for large d , and again the final outcome depends on what particular variable

ordering we have chosen.

Fact 187

While we don’t have much time to talk about it in lecture, we can look up further discussion about evaluating

causality in the textbook!

22 March 5, 2024
We’ll talk today about exponential families and introduce a bit of informtion geometry as well. The idea is just to

develop a framework for the ideas we’ve talked about so far in learning and inference, showing some connections to

statistics and optimization. (There won’t be any new algorithms today.)

As a recap, when doing parameter learning in a Markov random field, we have some joint distribution p(x⃗) =

exp
(∑

c∈C θc(x⃗c)− lnZ
)

(here the θcs are the logs of the entries in the factors φc), where the normalization constant

Z is given by a sum of exponentials
∑
x⃗ exp

(∑
c∈C θc(x⃗c)

)
. In particular, in the learning setting, we get a family of

probability distributions parameterized by θ of the form

p(x⃗ ; θ) = exp

(∑
c∈C

θc(x⃗c)− lnZ(θ⃗)

)
,

where the tricky thing is that this joint probability distribution depends simply on θ in the first term but not the second.

Such a distribution can be expressed in the log-linear form p(x⃗ ; θ) = exp
(
θ⃗T f⃗ (x⃗)− lnZ(θ)

)
, where in the discrete

case the function f⃗ is a concatenation of indicator functions for various realizations of our variables in a clique x⃗c .
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Writing it in this form is nice because it means the log-likelihood has a linear term in addition to some other nice

convex term.

Definition 188

Distributions in the exponential family take the form

p(x⃗ ; w⃗) = h(x⃗) exp
(
w⃗T f⃗ (x⃗)− A(w⃗)

)
,

where h(x⃗) is some base measure (often a constant), w⃗ ∈ Rd are natural parameters, the function f⃗ (x⃗) is

called the sufficient statistic, and A(w⃗) is the log-partition function which normalizes the distribution.

In particular, we have the expression (note that x⃗ can be continuous now, and in many settings it often is)

A(w⃗) = log

(∫
h(x⃗) exp[w⃗T f⃗ (x⃗)]dx⃗

)
.

We can think of f⃗ as constructing some set of properties (features) which are the only ones that affect how likely x⃗

is in the model. And w⃗ takes the role of θ⃗ that we had before.

Example 189

A Bernoulli distribution with parameter π = P (X = 1) takes the form p(x |π) = πx(1 − π)1−x , where x takes

either value 0 or 1. In particular, this means

p(x |π) =
(

π

1− π

)x
(1− π) = exp

(
log

(
π

1− π

)
x + log(1− π)

)
.

Pulling out the constant, this means we can pattern-match to the form of an exponential family: we have

h(x) = 1 , f (x) = x , w = log

(
π

1− π

)
, and A(w) = − log(1− π) = log(1 + ew ) (using the expression for w we

just found). Importantly, notice that we don’t want to pull that log(1− π) term out of the exponential – it depends

on our parameters, so we shouldn’t treat it as the “base measure.”

Example 190

The density for a Gaussian takes the form

p(x |µ, σ2) =
1√
2πσ2

exp

(
−
1

2σ2
(x − µ)2

)
.

We can do some algebra here to rewrite this in the same form as above as well.

Specifically, we have

p(x |µ, σ2) =
1√
2π
exp

(
µ

σ2
x −

1

2σ2
x2 −

1

2σ2
µ2 − logσ

)
.

Thus this time we want our sufficient statistic to be f⃗ (x) =

[
x

x2

]
, meaning that w⃗ =

[
µ/σ2

−1/2σ2

]
. Then the log-

normalizing constant is A(w⃗) = µ2

2σ2 + logσ; again we want to rewrite this in terms of the parameters w1, w2 and we

find that A(w⃗) = −
w21
4w2
−
1

2
log(−2w2) and h(x) =

1√
2π

.
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Remark 191. Many other probabilistic models that are widely used also happen to be exponential families, such as

log-linear models, multinomial distributions, as well as Poisson, exponential, Gamma, Weibull, chi-square, Dirichlet,

and geometric distributions.

Thus, it’s interesting to study the properties of such distributions that can be written in this functional form –

many of the properties we found for MRF will turn out to hold in general too! As mentioned above, the sufficient

statistic is a function that summarizes our data in the sense that for any dataset of iid samples {x⃗1, · · · , x⃗M}, the

likelihood can be written as

p(x⃗1, · · · , x⃗M) = h(x⃗1) · · · h(x⃗M) exp
(
w⃗T f⃗ (x⃗1)− A(w⃗)

)
· · · exp

(
w⃗T f⃗ (x⃗M)− A(w⃗)

)
= h(x⃗1) · · · h(x⃗M) exp

(
w⃗T

M∑
m=1

f⃗ (x⃗m)−MA(w⃗)

)
.

So if we want to estimate w⃗ via MLE (or see how good a parameter is for a particular dataset), we just need

to sum the sufficient statistic function over all data points, regardless of how big the set is – we always condense all

the information into a single Rd vector. And a similar calculation shows that the sufficient statistic is also all that is

required for a Bayesian approach where we compute the posterior p(w⃗ |D).

Definition 192

Suppose X1, · · · , XM are random samples taken from some distribution p(X|w⃗) depending on some unknown

parameter w⃗ . A statistic is a real-valued function T (X1, · · · , XM) of our sample (for example the sum, maximum,

or median); in particular this is some random variable. We say that a statistic is sufficient if the conditional

distribution of w⃗ given T = t does not depend on the dataset; that is,

(X1, · · · , XM) ⊥ w⃗ |T (X1, · · · , XM).

The point is that knowing T is enough – knowing the exact values of the data points won’t give us any more

information about our parameters, so inference only depends on T . It’s difficult to find sufficient statistics in general,

but for exponential families the point is that f⃗ is sufficient because of the functional form. To do this we must show

that x⃗ ⊥ w⃗ |f (x⃗), and we show this by computing (for any fixed value f⃗ for f⃗ )

p(f⃗ = f⃗ |w⃗) =
∑

x⃗ :f (x⃗)=f

h(x⃗) exp
(
w⃗T f⃗ (x⃗)− A(w⃗)

)
,

and now because the density only depends on x⃗ through f⃗ we can simplify this to∑
x⃗ :f (x⃗)=f

h(x⃗) exp
(
w⃗T f⃗ − A(w⃗)

)
= exp

(
w⃗T f⃗ − A(w⃗)

) ∑
x⃗ :f (x⃗)=f

h(x⃗).

But then evaluating p(x⃗ |f⃗ = f , w⃗) via the definition of conditional probability, the expression simplifies because the

exp
(
w⃗T f⃗ − A(w⃗)

)
s cancel out: we just have

p(x⃗ |f⃗ = f , w⃗) =
h(x⃗)∑

x⃗ :f (x⃗)=f⃗
h(x⃗)

,

which doesn’t depend on w⃗ , so we get the desired conditional independence. And the same proof shows that the sum

of the sufficient statistic function T (x⃗1, · · · , x⃗M) =
∑M
m=1 f⃗ (x⃗m) is sufficient for w⃗ if we have M iid samples as well.

(So if we want to estimate a Gaussian from a dataset, we just need the sum of xi and sum of x2i across all data points.
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We’ll now turn to the log-normalization term A(w⃗); recall that this log-partition function has some nice properties

in the MRF case. To recover them here, we’ll look at the moments of this function. Like before, we have

∂A(w⃗)

∂wi
=
∂ log

(∫
h(x⃗) exp[w⃗T f⃗ (x⃗)]dx⃗

)
∂wi

=

∫
h(x⃗)fi(x⃗) exp[w⃗

T f⃗ (x⃗)]dx⃗∫
h(x⃗) exp[w⃗T f⃗ (x⃗)]dx⃗

by moving the partial derivative inside the integral, and we can interpret this as the expectation∫
h(x⃗) exp

[
w⃗T f⃗ (x⃗)− A(w⃗)

]
fi(x⃗)dx⃗ = Ep(x⃗ |w⃗)[fi ],

so we again get the moments of the sufficient statistics via derivatives of the log normalizer – we find an integral

by just calculating a derivative. We can similarly show that the second derivatives give the second-order moments as

well:

Proposition 193

We have (∇A)i = E[fi ] and (∇2A(w⃗))i j =
(
cov(f⃗ (x⃗))

)
i j
; in particular, since covariance matrices are positive

semidefinite, A(w⃗) is a convex function of w⃗ .

Doing further calculations shows that we recover higher moments with more derivatives too.

Example 194

Returning to the Gaussian case, we know that A(w⃗) = − w
2
1

4w2
− 1
2 log(−2w2), where w1 =

µ
σ2 and w2 = −1

2σ2 . If

we compute ∂A
∂w1

, we get − 2w14w2 = µ, so we indeed get back the first feature f1 = x (which is the non-central

moment). Similarly, taking the other derivative gives the expectation of x2; from these we can recover µ and σ.

Recall that the parameterization f⃗ we used for an MRF felt redundant in some way, because our representation

encoded realizations of cliques in repeated ways:

Definition 195

An exponential family is minimal if the components of the sufficient statistic f⃗ are linearly independent, in the

sense that there is no nonzero vector a⃗ with a⃗ · f⃗ (x⃗) is constant for all x⃗ . If an exponential family is not minimal,

we call it overcomplete.

If we had such a vector a⃗, then we would have p(x⃗ |w⃗ + a⃗) ∝ p(x⃗ |w⃗) (since we get an a⃗T f⃗ (x⃗) term), so we’d

be recovering the same distribution from two different vectors of parameters. We don’t want that situation from a

learning perspective (trying to fit our model without a minimal exponential family would yield multiple equally good

solutions), and indeed our previous feature vectors f⃗ were overcomplete.

Example 196

In addition to the description given in Example 189, we could also write a Bernoulli random variable with distribution

w x(1 − w)1−x as exp

([
logw log(1− w)

]
·

[
x

1− x

])
, but this would be an overcomplete parameterization

because x + (1− x) = 1 for all x .
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Proposition 197

The log-partition function A(w⃗) is convex, and if the family is minimal then it is strictly convex (meaning there

is a single global optimum for the log-likelihood).

And in such a minimal exponential family, the expected sufficient statistics, also called the mean parameters

µ⃗ = Ep(x⃗ |w⃗)
[
f⃗ (X)

]
are an equivalent way to parameterize our distribution, meaning that we have a one-to-one mapping between w⃗

and µ⃗. (Intuitively in one dimension, a strictly convex function has A′ strictly increasing, meaning the map to the

mean parameters is invertible.) And that’s why many of our distributions are indeed parameterized in terms of mean

parameters (like the mean and variance in a Gaussian – we have E[x ] = µ and E[x2] = µ2 + σ2). So if we want to

compute the “forward mapping” µ⃗ = ∇A(w⃗), we basically need to do the inference problem

∂A(w⃗)

∂w⃗c(xc)
= Ep(x⃗ |w⃗)[1{x⃗c = xc}]p(x⃗c = xc |w⃗).

On the other hand, the “inverse map” ∇A−1 corresponds to a learning problem! The idea here is that exponential
families play well with KL divergence, since an expression like log pq simplifies nicely. In particular, in the maximum

likelihood learning problem where we have an empirical distribution p̃(x⃗) and some family of parametric distributions

Q = {q(x⃗ |w⃗) : w⃗ ∈ Ω) that we’re trying to fit p̃ to, we want to minimize the KL divergence, which is equivalent to

maximizing log-likelihood of the data

argminq∈QD(p̃||q) = argmaxw⃗
∑
w⃗

p̃(x⃗) log q(x⃗ |w⃗).

We call this an M-projection of our empirical distribution p̃ onto a model family Q. If p is an arbitrary distribution,

the M-projection of p onto Q looks like

q∗ = argminq∈Q
∑
x⃗

p(x⃗) log
p(x⃗)

q(x⃗)
, .

Theorem 198

Suppose there is some w⃗ ∗ with Eq(x⃗ |w⃗ ∗)[f⃗ (x⃗)] = Ep[f⃗ (x⃗)] = µ⃗ (that is, we’ve “matched moments” between p and

q for the sufficient statistics). Then q(x⃗ |w⃗ ∗) is actually the M-projection of p onto Q.

The point is that M-projection preserves marginals, and the best way to approximate the distribution is to choose

the one with the same expected sufficient statistics (often marginal probabilities or moments). We’ve actually seen

this before in the language of maximum likelihood learning – evaluating the probability of our data given w⃗ simplifies

to something that only depends on
∑
f⃗ , and taking the log yields

log q(x⃗1, · · · , x⃗N |w⃗) = w⃗T
N∑
m=1

f⃗ (x⃗m)− NA(w⃗) + constant,

which is a concave optimization problem. So we can solve it by setting the gradient equal to zero, which indeed gives

us the correct moment matching condition. That is, the process of inverting the gradient mapping (going from a given

value of µ⃗ and trying to find the corresponding w⃗) is indeed a (maximum likelihood) learning problem – in exponential

families “learning and inference are inverses of each other.”
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Remark 199. We can think of exponential families in terms of an entropy interpretation: suppose we want a

distribution which satisfies Ep(x)[fi(x)] = ti for all features fi , and we also want p(x) to have the maximum entropy
−
∫
p(x) log p(x)dx . (For example, we might specify a particular mean and variance, but otherwise we want p to have

the “most randomness otherwise.”) It turns out exponential families maximize the entropy – the optimal solution is

always to pick something with that set of sufficient statistics. This can be proved by Lagrange multipliers using the

Lagrangian L = −
∫
p(x) log p(x)dx +

∑
i θi(Ep(x)[fi(x)]− ti); we find that

0 =
∂L

∂p
= −1− log p(x) +

∑
i

θi fi(x),

and this is exactly specifying that p ∝ exp(θ⃗T f⃗ (x)) (where we’re given t and we want to find w⃗ ∗ such that (∇A)w⃗ ∗ = t⃗,
so we need to invert ∇A to solve the problem).

23 March 7, 2024
In today’s lecture, we’ll discuss variational inference – we’ll go back to the idea of computing marginal or conditional

probabilities in an approximate way, thinking about algorithms that let us solve this computational problem efficiently but

not exactly. This will all relate to the idea of exponential families and coming up with a closest tractable approximation

to some intractable distribution. (And in next lecture, we’ll see that we can justify loopy BP, as well as many other

algorithms, in this setting as well.)

Example 200

The setting we’ll be considering is the following: we have joint probability distribution p(x1, · · · , xn) represented

as a graphical model, and our goal is to compute p(x1|e) (that is, do marginal inference).

We know that this problem is NP-hard in general, so we don’t expect to have a general strategy. But instead, we’ll

try to approximate the posterior distribution with something simple but as close to p(x1|e) as possible. Intuitively,

this is a reasonable strategy because even though the prior distribution p(x⃗) can be very complicated, the posterior

distribution p(x⃗ |e⃗) is often a lot simpler. Two reasons for this are (1) we’ve made more observations and thus have less

uncertainty, and (2) as we’ve seen in undirected graphical models, we can sometimes remove conditional independence

via conditioning. So we’ll represent the posterior as an undirected model of the form

p(x⃗ |e⃗) =
p(x⃗ , e⃗)

p(e⃗)
=

∏
i p(xi |Pa(Xi)
p(e⃗)

=
1

Z

∏
c∈C

φc(x⃗c),

where just like in variable elimination, we clamp the evidence variables to their particular observations e⃗. We’ll then

approximate this with some new distribution q(x⃗) which is easy to do computations on – think of q as a graphical model

with low treewidth – and gauge how close we are to the true posterior via the KL divergenceD(p||q) =
∑
x⃗ p(x⃗) log

p(x⃗)
q(x⃗) .

Recall that even though this is asymmetric in p and q, D(p||q) ≥ 0 for all p, q with equality only when p = q, so

smaller KL divergence means our distributions are more similar in some sense. If we want to do inference with some

true distribution p(x⃗) (we assume we’ve clamped the e⃗ variables already so we omit it from the notation), then we may

be curious about the difference between argminqD(p||q) (recall this is the M-projection of p) and argminqD(q||p) (we

call this the I-projection. In general, these will be different if we restrict q to only take values over some restricted
set of distributions; in particular, if our true p is not actually in Q, then we can’t exactly represent the posterior with

our approximation, and the answers here will be different.
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Example 201

Suppose that p(x⃗) is a 2-dimensional Gaussian with non-diagonal covariance, which means we can represent its

general shape (its level curves) by a skewed ellipse in the xy-plane. Meanwhile, let Q be the set of Gaussians with

diagonal covariance matrices. (This means our level curves will be ellipses aligned with the axes, and in Q the

two variables are uncorrelated.)

In words, we can choose our center and spread arbitrarily, and our goal is to find the choice q that minimizes

D(p||q) – that would give us the M-projection of p onto Q. It turns out the answer is to choose the mean vector

of Q to be the same as that of p and then spread out the variance somewhat so that q “covers” p. On the other
hand, if we do the reverse KL divergence and try to minimize D(q||p) to get the I-projection, we again choose the

correct mean but now choose the variance so that p “covers” q instead, which in general means we get a much more

concentrated Gaussian. The point is that when we optimize for D(p||q), we weight the log factor by p, so we need to

make the distributions match as much as possible along p. But when we optimize for D(q||p), we weight by q instead,

so we end up getting more “mode-seeking behavior.”

Example 202

Next suppose p(x⃗) is a mixture of two 2-dimensional Gaussians, and Q is a set of all single Gaussians (now

allowing arbitrary covariance matrices). If we try to find the M-projection of the mixture p onto Q, we get a

Gaussian which puts the mean of the Gaussian between the two peaks of p, with covariance chosen to “support”

p. On the other hand, the I-projection will essentially match one of the two Gaussians while ignoring the other

one – there are two equivalently good solutions, but both of them are “overconfident” about where the mass goes.

Put another way, M-projection specifies that if p(x) > 0, then we should choose q(x) > 0, while I-projection

specifies the reverse condition. So both choices make sense but there are tradeoffs, and the question now turns to how

we can choose a class of distributions Q that are simple. The simplest choice is called the mean field approximation,

where we assume q fully factorizes as a product of marginals

q(X1, · · · , Xn) = q1(X1)q2(X2) · · · qn(Xn).

(This naming comes from statistical physics, where we use this kind of approach to understand behavior of systems

with high treewidth.) So if Q is the family of all such fully-factored distributions on n variables (for example when n = 2

and our variables are binary, this is the set of all distributions of the form qφ(x1, x2) = φ
x1
1 (1−φ1)1−x1φ

x2
2 (1−φ2)1−x2)),

we can now try to find the M-projection or the I-projection of p onto q. Recall that we can write the KL divergence

as a difference of two pieces

D(p||q) =
∑
x⃗

p(x⃗) log p(x⃗)−
∑
x⃗

p(x⃗) log q(x⃗),

and now we can rewrite using the simple factored form by adding and subtracting some terms to get

D(p||q) =
∑
x⃗

p(x⃗) log
p(x⃗)∏
i p(xi)

+
∑
x⃗

p(x⃗) log
∏
i

p(xi)

qi(xi)

=
∑
x⃗

p(x⃗) log
p(x⃗)∏
i p(xi)

+
∑
x⃗

p(x⃗)
∑
i

log
p(xi)

qi(xi)
.

88



If we let qM(x) =
∏
i p(xi), then this means we actually have

D(p||q) = D(p||qM) +
∑
i

D(p(xi)||qi(xi)),

and in particular because KL divergence is always positive this is bounded from below by D(p||qM). Therefore, the

optimal solution from the class Q is actually qM , where we factor using the true marginals from p. So this recovers

the fact from last lecture that M-projection is really just matching moments – a fully factored distribution is a special

case of an exponential family where we just have isolated cliques, so the vector of sufficient statistics is just a bunch of

indicators for each variable. And matching the moments of those statistics is then exactly recovering the probabilities

of each individual variable taking on particular values.

Unfortunately, this shows that M-projection would require us to find expectations with respect to p in general,

and thus this is too expensive computational. So in practice, variational inference algorithms instead use the
I-projection, since we then only need to do expectations over q.

Example 203

Turning now to I-projections, we let p(x⃗ |e⃗) = exp
(∑

c∈C θc(x⃗c)− lnZ(θ)
)

be some unnormalized distribution that

we want to approximate. We know that Z(θ) = p(e⃗) is generally intractable, but this won’t be a problem when

we try to do the I-projection.

Specifically, we can compute

D(q||p) =
∑
x⃗

q(x⃗) log
q(x⃗)

p(x⃗)
= −

∑
x⃗

q(x⃗) log p(x⃗) +
∑
x⃗

q(x⃗) log q(x⃗).

Plugging in our expression for p from above, this simplifies to

D(q||p) = −
∑
x⃗

q(x⃗)

(∑
c∈C

θc(x⃗c)− lnZ(θ)

)
−H(q(x⃗)

= −
∑
c∈C

∑
x⃗

q(x⃗)θc(x⃗c) +
∑
x⃗

q(x⃗) lnZ(θ)−H(q(x⃗)),

where H(q) is the entropy of the distribution q. But now the log partition function doesn’t depend on q, so the second

term simplifies to just lnZ, and the first term can also be rewritten more compactly:

D(q||p) = −
∑
c∈C
Eq[θc(x⃗c)] + lnZ(θ)−H(q(x⃗)).

We know that this whole expression is always nonnegative by definition of KL divergence, but that means we can

rearrange to find

lnZ(θ) ≥
∑
c∈C
Eq[θc(x⃗c)] +H(q(x⃗)).

The point now is that on the right-hand side, we have unnormalized log-probabilities, so as long as q is simple we

can evaluate that tractably. And for any such choice of approximating distribution q, we get a lower bound on the

log-partition function, so if we are doing this process on a BN, this gives us a bound on the probability p(e⃗). We also

know that if Q is sufficiently flexible so that p is in Q, then we can have D(q||p) = 0 and thus the inequality is actually

an equality – the closer q is to p, the better our estimate of the log partition function. So now our game in variational
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inference is that if q can range over all distributions

lnZ(θ) = max
q

∑
c∈C
Eq[θc(x⃗c)] +H(q(x⃗)),

and now we are doing an optimization problem over some set of functions, hence the name “variational.” Interpreting

this equation, we want to find a distribution q with high entropy and also high p-probability in expectation over q.

(In machine learning and other disciplines, this is a good strategy in general – we have tricks for solving optimization

problems and ways to get bounds.) The main trouble is that q may take exponentially many parameters to specify, so

we do need to adequately restrict to simpler families Q.

Example 204

One reasonable choice is to choose the value of x⃗∗ that maximizes the unnormalized probability, yielding the most

likely state under p:

x⃗∗ = argmaxx⃗
∑
c∈C

θc(x⃗c).

If we then choose q to put all the probability mass on x⃗∗, then our entropy H(q(x⃗)) is zero, and the bound we

get is lnZ(θ) ≥
∑
c∈C θc(x⃗

∗
c ).

Remembering that the partition function is a sum of exponentials of terms that look like the right-hand side, and

here we’re just choosing the largest such term. So if p is sharply peaked around x⃗∗, then this is a good approximation,

but if p is relatively flat (near uniform), it will be quite poor. In fact, the first term in the optimization problem does

not vary much, and we instead want to choose q to be flatter to maximize the entropy term instead. So in either case,

this optimization problem does intuitively try to make q look similar to p.

So now we need to know how we can actually solve the variational inference problem we’ve set up. Today we’ll

discuss the mean-field solution – we first define some parameterization of the functions we’re optimizing over, and in

the mean-field case we consider distributions of the form q(x⃗) =
∏
i∈V qi(xi). Plugging this into the objective function,

we can decompose the joint entropy H(q) into sums of local entropies

H(q) = −
∑
x⃗

q(x⃗)
∑
i∈V
ln qi(x⃗i) = −

∑
i∈V

∑
x⃗

q(x⃗) ln qi(xi) = −
∑
i∈V

qi(xi) ln qi(xi)
∑
x⃗V \i

q(x⃗V \i |xi) =
∑
i∈V

H(qi),

(the blue part just sums to 1), and the q(x⃗c) factors also factor into terms from individual variables. So our variational

objective is now

max
q∈Q

∑
c∈C

∑
x⃗c

θc(x⃗c)
∏
i∈c
qi(xi) +

∑
i∈V

H(qi) ,

subject to the constraints that qi(xi) ≥ 0 for all i , xi and
∑
xi
qi(xi) = 1. And again, any choice of q will give us a

lower bound on the true partition function lnZ(θ).

Fact 205

In statistical physics and other models, our true probability distribution p(x⃗ ; θ) is often a pairwise MRF (for

example imagine a graph on a lattice grid with energy terms coming from edge interactions). Then the mean-field

approximation calculates the marginals that increases the objective function above as much as possible using a

fully factored q, which means we are trying to solve

max
q

∑
i j∈E

∑
xi ,xj

θi j(xi , xj)qi(xi)qj(xj)−
∑
i∈V

∑
xi

qi(xi) ln qi(xi).

90



This means we are trying to choose configurations where xi , xj adjacent have distributions that align well under

the θi j table, while also spreading out the distribution values to increase entropy. Unfortunately, this is a nonconcave

optimization problem with many local maxima, meaning it’s not obvious how to solve the problem globally. But we

can greedily maximize using block coordinate ascent. In this approach, we initialize the qs in some arbitrary way, and

then we go through each variable and try to find the optimal choice for that variable while everything else is fixed –

this can be done efficiently and in closed form. Specifically, we just construct the Lagrangian, take a derivative and

set it to zero, and calculate that (if we consider the variable Xi and fix everything else)

q(xi) =
1

Zi
exp

 ∑
j∈N(i)

∑
xj

qj(xj)θi j(xi , xj)

 .
We may notice that this is essentially the same update as in the Gibbs sampling algorithm, except now we specify the

whole distribution rather than a particular instantiation! (We’re basically computing the conditional probabilities given

the Markov blanket, averaging over the neighbor’s value.) Then similar to loopy belief propagation, we do a bunch of

updates until we converge, and that will give us a reasonable guess for the answer to the optimization problem. (The

picture to have in mind is that we’re in a high-dimensional space, but we maximize the function along one direction at

a time.)

At each step, our objective will keep improving – we keep iterating to get the distributions to be consistent with

each other – and we’re guaranteed to converge to some local maximum. This final value then gives us both an

approximating distribution Q (in the form of the approximate marginals Q(xi)) and a lower bound on lnZ, and we can

do this multiple times from different starting points. But there’s no guarantee of the quality of our final estimate in

general – to improve mean-field, we can assume a more structured approximation like a spanning tree, which gives us

a bigger space of Q distributions to work with.

24 March 12, 2024
Today’s lecture is taught by Charlie Marx. We’ll continue discussing variational inference today, analyzing some different

strategies and focusing specifically on the geometric perspective. The point is to cast loopy belief propagation as a

variational inference problem to understand why it works so well in practice.

Remark 206. This week’s material won’t be on the final exam, but it’s meant to be a nice way to connect concepts

across the course.

Recall that the setup we have is as follows: we have a difficult distribution p(x⃗ |e⃗) to work with, and we want to

approximate it with some “close” distribution q(x⃗) where computation is simple and p(x⃗ |e⃗) is close to q(x⃗). Last time,

we mentioned that we measure our distance between distributions using the KL-divergence, but there’s a difference

between minimizing D(p||q) (the M-projection) and D(q||p) (the I-projection), and in particular the optimal q will

be different in the two cases. We use the I-projection for computational reasons (since computing expectations with

respect to q is easier), and we stated last time that one way to cast our problem in this setting is to assume p is a

member of an exponential family (like in an MRF) and then expand out the definitions to rewrite

D(q||p) = −θ⃗T
∑
x⃗

q(x⃗)f⃗ (x⃗) + lnZ(θ⃗)−H(q(x⃗)) ≥ 0,
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meaning that we get a variational lower bound

lnZ(θ⃗) ≥ θ⃗T
∑
x⃗

q(x⃗)f⃗ (x⃗) +H(q(x⃗))

for any approximating distribution q. So our goal is to find the approximating distribution over some family which

maximizes this right-hand side (since if we plug in p for q, we get the exact value of lnZ(θ⃗)). Unfortunately, doing

this is hard in general (we haven’t made any simplifications), so we must choose a the family of distributions q that

can be represented compactly and we need a way to find the maximum efficiently.

Last time, we talked about one such strategy, which is the mean-field approximation. Specifically, we assumed q

is fully factored as a product of marginals (this is a very strong assumption), which is an extremely strong assumption.

Today’s goal is instead to approximate in a less strong way while still maintaining tractability, and in particular we’ll

see that loopy BP is an example of this. We’ll let f⃗ (x⃗) be the sufficient statistic vector, so that

lnZ(θ⃗) = max
q
θ⃗T
∑
x⃗

q(x⃗)f⃗ (x⃗) +H(q(x⃗)).

We can let µq = Eq[f⃗ (x⃗)] be our marginals (we call these the mean parameters), and now instead of optimizing over

all distributions q, we can optimize over marginal vectors µ⃗, writing

lnZ(θ⃗) = max
µ∈M

max
q:Eq [f⃗ (x⃗)]=µ

θ⃗Tµ+H(q(x⃗)).

So the idea is that within each µ in the marginal polytope M, there could be multiple distributions q1, q2 that achieve

this µ, and we’ll pick the one with the highest entropy among them.

Example 207

Suppose we have binary random variables. Then the marginal polytope takes the form

M =

{
µ⃗ : µ⃗ =

∑
x

q(x⃗)f⃗ (x⃗) for some q(x) ≥ 0,
∑
x

q(x) = 1

}
,

which is the convex hull of the points f⃗ (x⃗) for each x⃗ ∈ {0, 1}n.

The idea is that we have a bunch of vectors µ⃗ corresponding to specific instantiations of 1s and 0s for our

variables, and then we can take any convex combination of such vectors. And now rewriting our variational problem

again, we have

lnZ(θ⃗) = max
µ⃗∈M

θ⃗T µ⃗+H(µ⃗),

where H(µ⃗) is defined to be the maximum entropy over all distributions with the correct mean parameters.

We’ve still not done any approximations, so our problem is still hard – indeed, the marginal polytope M is still

a convex hull over possibly exponentially many vertices and facets. And even if we could pick a µ⃗ in this set, we still

have the problem that H(µ⃗) can be very difficult to compute (it requires inference), so in fact both terms are hard.

To solve these two problems, we make two approximations:

1. ReplaceM with some relaxation of the marginal polytope – for example we can only consider the local consistency

constraints ML.

2. Replace H(µ⃗) with some other easier-to-compute function H̃(µ⃗) (we’ll be more specific soon).
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Example 208

Returning to the pairwise MRF example as in Fact 205, our goal is to maximize

lnZ(θ⃗) = max
µ⃗∈M

∑
i∈V

∑
xi

θi(xi)µi(xi)
∑
i j∈E

∑
xi ,xj

θi j(xi , xj)µi j(xi , xj) +H(µ⃗),

and our goal is to simplify the constraint µ⃗ ∈ M.

We know some of our constraints for being in the marginal polytope: we must satisfy µi(xi) ≥ 0 and
∑
xi
µ(xi) = 1

for each marginal, and furthermore along each edge µi j(xi , xj) ≥ 0 and
∑
xi ,xj

µij(xi , xj) = 1. We must also enforce how

the local assignments are locally consistent – specifically, marginalizing µi j(xi , xj) must match with the marginals µi(xi)

and µj(xj) if we marginalize over xj , xi , respectively. We should enforce other – for example, there may be a chain of

implications across the graph – but there are so many such interactions that this is what gives us the exponentially-

faceted shape, and our simplification is to ignore that and only consider the local consistency polytope defined by

the constraints above.

This is a strictly larger set than M, so if µ⃗ ∈ M then µ⃗ ∈ ML as well. In the case where p is tree-structured,

it turns out it’s sufficient to assume local consistency everywhere – this is related to why calibration of tree-shaped

graphs and variable elimination are simpler on trees. The point is that ML can be defined compactly with relatively

few constraints, and thus we make the approximation

lnZ(θ⃗) ≈ max
µ⃗∈ML

θ⃗T µ⃗+H(µ⃗).

For trees, this is all easy to compute – max entropy and optimizing over the set of constraints are both easy. For

a bit of intuition for why entropy is actually easy to compute, recall that exponential families are exactly maximizing

entropy given some sufficient statistics – there’s a relation between the gradient of the log partition function and the

sufficient statistics. So if we have some set of valid marginal distributions M and take some particular µ⃗ ∈ M, there

are multiple distributions q1, q2 that map to that marginal vctor, but the one with the highest entropy will be from the

exponential family. So it suffices to just search over the exponential family, which is an MLE learning problem – we’ve

actually done this before with the Chow-Liu algorithm. Indeed, our entropy for trees decomposes as

H(µ⃗) =
∑
i∈V

H(µi)−
∑
i j∈T

I(µi j),

where H is the entropy and I the mutual information (this is the same formula as for Chow-Liu, but now using µ⃗

instead of the empirical marginals). The key step now is to also use the Bethe entropy approximation on a general
graph (not necessarily a tree) and approximate

H(µ⃗) ≈ HBethe(µ⃗) =
∑
i∈V

H(µi)−
∑
i j∈E

I(µi j)

(note that this can be an overestimate or underestimate). We thus have an easier variational approximation problem

of the form

max
µ⃗∈ML

∑
c∈C

∑
x⃗c

θc(x⃗c)µc(x⃗c) +HBethe(µ⃗).

This is a non-concave function in general, so it’s hard to maximize, but if loopy BP converges it will approach some
extremum or saddle point. In general, it turns out there is an exact correspondence between fixed points of the loopy

BP algorithm and stationary points of the Bethe variational objective.
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Fact 209

If we do Lagrange multipliers for our approximation for lnZ(θ⃗) (using the Bethe free energy approximation and

our local consistency constraint polytope ML), we actually exactly recover the loopy BP updates.

We can now compare this to the naive mean-field approximation – remember that there we imposed a strong

constraint on our factorization, adding more conditions for µ⃗. So in that case, we actually optimize and get an inner
bound on the true marginal polytope. What’s nice is that in mean-field we actually get a lower bound on the partition

function, since we’re optimizing over a smaller subset of the allowed distributions M. Then it seems that the relaxation

with local consistency constraints should give an upper bound on the partition function, but unfortunately we need to

make the Bethe entropy approximation and thus can’t say that in general.

Fact 210

However, we do get an upper bound if we have some upper bound H̃(µ⃗) on our true entropy H(µ⃗). Then we

would get an upper bound

lnZ(θ⃗) ≤ max
µ⃗∈ML

∑
c∈C

∑
x⃗c

θc(x⃗c)µc(x⃗c) + H̃(µ⃗).

One such example is called the tree-weighted approximation – this is a concave relaxation where we specify the

distribution over spanning trees of the graph.

So the point overall is that we can get both a lower and an upper bound on our true value of lnZ(θ⃗) using our

different variational approaches – in both cases we cast inference as an optimization problem, and then we use certain

tools that already exist in the optimization world that make the problem more tractable. People are still interested in

improving these techniques – it’s an active research area to find more accurate approximations in alternative ways or

find stable algorithms for solving the optimization problems.

25 March 14, 2024
We’ll revisit the EM algorithm today, seeing how to combine EM ideas with variational inference and connect the dots

towards training deep generative models with latent variables.

Example 211

As usual, we’re in a setting where we have some joint distribution p(X⃗, Z⃗; θ), where the random variables X⃗ are

observed but Z⃗ are not (for example a mixture of Gaussians where Z is a categorical variable representing the

component). But this problem can still be approached with maximum likelihood learning if we “marginalize over

the unknown components,” integrating out over uncertainty by looking at all completions of the data.

Specifically, we try to maximize the loglikelihood
∑
x⃗∈D log p(x⃗ ; θ), and the challenge is that in our latent variable

model we instead have

ℓ(θ;D) =
∑
x⃗∈D

log
∑
z⃗

p(x⃗ , z⃗ ; θ).

The fact that we have a log of a sum then makes things more complicated (we no longer have a closed-form decom-

position even if p is just a Bayesian network), and it in particular requires us to evaluate the posterior p(z⃗ |x⃗ ; θ), which

can be expensive. But today we’ll see a variational formulation of how the EM algorithm works, which will allow us

to generalize the ideas we previously saw.
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Specifically, let q(z⃗) now be some probability distribution over the hidden variables Z⃗. Then the KL-divergence

(here we want to take expectation with respect to q, which makes the calculations more tractable) is

D (q(z⃗)||p(z⃗ |x⃗ ; θ)) =
∑
z⃗

q(z⃗) log
q(z⃗)

p(z⃗ |x⃗ ; θ)

= −
∑
z⃗

q(z⃗) log p(z⃗ |x⃗ ; θ)−H(q)

= −
∑
z⃗

q(z⃗) log
p(z⃗ , x⃗ ; θ)

p(x⃗ ; θ)
−H(q)

(this form of the expression should look similar to the derivations we’ve been doing recently), and now since the

denominator of the log doesn’t depend on z , we can write out

D (q(z⃗)||p(z⃗ |x⃗ ; θ)) = −
∑
z⃗

q(z⃗) log p(z⃗ , x⃗ ; θ) +
∑
z⃗

q(z⃗) log p(x⃗ ; θ)−H(q)

= −
∑
z⃗

q(z⃗) log p(z⃗ , x⃗ ; θ) + log p(x⃗ ; θ)−H(q),

where the red term is the log partition function. So now because KL-divergence is nonnegative, for any q we have the

variational bound

log p(x⃗ ; θ) ≥
∑
z⃗

q(z⃗) log p(z⃗ , x⃗ ; θ) +H(q) .

Like before, if the posterior is concentrated on a particular value for z⃗ , we would want to make q concentrated on

that as well to maximize the first term on the right. But if the posterior is spread out, we’d want to spread out q to

maximize the entropy term again. And if q is exactly the posterior, then the KL divergence is exactly zero, so this

lower bound becomes an equality instead (and thus we can indeed hope to get near the true value).

Turning now to a derivation of EM, another way to rewrite the equation we have above is

H(q) +
∑
z⃗

q(z⃗) log p(z⃗ , x⃗ ; θ) = log p(x⃗ ; θ)−D(q||p(z⃗ |x⃗ ; θ).

Proposition 212

Call the quantity above F [q, θ] (it depends on both the parameters θ and the distribution q). Then the EM

algorithm is equivalent to performing coordinate ascent on q and θ.

Indeed, the algorithm has us perform alternating E steps and M steps, and our E steps involve computing

q(t) = argmaxqF [q, θ
(t)]

(since if we look at the right-hand definition of F , we’re trying to minimize the KL divergence), while our M steps

involve computing

θ(t+1) = argmaxθF [q
(t), θ]

(since now if we look at the left-hand definition of F , we are choosing the parameters that optimize the log-likelihood

of a fully-observed data point). So we alternately optimize the function F while keeping θ or q fixed, and that’s exactly

doing ascent on alternating axes. And this means the log-likelihood of the data (that is, p(x⃗ ; θ(t+1) = F [q(t+1), q(t+1)])

is always at least as big as it was at the previous step (namely log p(x⃗ ; θ(t)) = F [q(t), θ(t)]).
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Remark 213. We’ve made this kind of argument from a different perspective already – each choice of q gives us a

lower bound for the true log-likelihood, but we get a tight lower bound at our current value θ(t) at our E-step. Then

in the M-step, we maximize our estimate instead, which can also only increase the true value at θ(t+1).

But we know that inference in general is hard, and computing posteriors in the E-step can be intractable. So based

on this intuition that we’re optimizing over q and θ separately, we can define a set of tractable probability distributions

q(z⃗ |x⃗ , φ) that we can actually work with and still use the same strategy. (For example, we may consider the set of fully

factored probability distributions and make the mean-field approximation.) Then the same machinery goes through –

it’s still true that we have the evidence lower bound (we often call the right hand side an ELBO for short)

log p(x⃗ ; θ) ≥
∑
z⃗

q(z⃗ |x⃗ , φ) log p(z⃗ , x⃗ ; θ) +H(q(z⃗ |x⃗ ;φ)),

just that we can no longer necessarily reach equality (because there may not be any q that is very similar to the

posterior). Call the right-hand side L(x⃗ ; θ, φ) – we can then use that to approximate the log-likelihood

ℓ(θ;D) =
∑
x⃗ (i)∈D

log p(x⃗ (i); θ) ≥
∑
x⃗ (i)

L(x⃗ (i); θ, φ(i)),

where crucially we use a different set of variational parameters φ(i) for every data point, because different data points

will require different φs to match the posterior q(z⃗ |x⃗ ; θ). And this inequality goes in a good direction – if we want to

make the left-hand side large, it’s good to make the right-hand side large. We have an incentive both to choose θ so

that the true log-likelihood is large and to choose φ so that the simple q matches the posterior quite well.

Remark 214. Upper bounding KL divergence is very difficult in general – there are bounds, but they tend to be very

loose. So it does mean that we never know exactly how close we are to the true distribution.

So the quantity we now want to maximize (which gives us a lower bound for maxθ ℓ(θ;D)) is

max
θ,φ(1),··· ,φ(M)

∑
x⃗ (i)∈D

L(x⃗ (i), θ, φ(i)).

In the variational EM algorithm, each qφ(i) = q(z⃗ |x⃗ (i), φ(i)) is some distribution over z⃗ , and we can rewrite the previous

equation as

H(qφ(i)) +
∑
z⃗

qφ(i)(z⃗) log p(z⃗ , x⃗
(i); θ) = log p(x⃗ (i); θ)−D(qφ(i) ||p(z⃗ |x⃗ (i); θ)).

Calling this quantity F (i)[φ(i), θ] and summing across all data points, we then can view variational EM as coordinate

assent on F [φ(1), · · · , φ(M), θ]. (Note that φ(i) and x⃗ (i) here denote the ith data point, not the ith iteration of the

algorithm.) At each iteration t, our “E step” involves maximizing F (i)[φ(i), θ(t)] over all possible φ(i)s, and then in the

“M step” we choose the θ which maximizes
∑
i F
(i)[φ(i), θ] for our current values of φ. But the key point is that here

the marginal likelihood might decrease because our bounds are not tight – since we’re not weighting with respect

to the true posterior, we’re not guaranteed to reach a local maximum.

Example 215

This is the type of machinery that is actually used in deep generative models – posteriors can be very intractable

to compute in situations where we sample a latent variable z (like a standard normal) and then p(x |z) is very

complicated (like a normal where the mean and covariance are neural networks). For such models, we may have

a dataset D where z variables are latent (not observed), and we may want to maximize the likelihood of that

dataset with respect to θ without inverting the neural network.
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The difference now is that we cannot use a different variational parameter φ(i) for each data point x⃗ (i), since

that’s not scalable for large datasets. Instead, we’ll specify the variational parameters via a single parametric function

fφ, mapping data points x⃗ to good variational parameters (think of this as a regression function or another neural

network). We then get an approximated posterior qφ(z⃗ |x⃗) where the φs are determined in a shared way across all data

points, and then our goal is to solve the more tractable variational EM optimization problem

max
θ
ℓ(θ;D) ≥ max

θ,φ

∑
x⃗ (i)∈D

L(x⃗ (i), θ, φ).

To do this problem, we’ll no longer alternatingly optimize θ and φ – we can now optimize this function via gradient

ascent. Looking at the expression for the ELBO, we have

L(x⃗ ; θ, φ) =
∑
z⃗

qφ(z⃗ |x⃗) log p(z⃗ , x⃗ ; θ) +H(qφ(z⃗ |x⃗)) = Eqφ(z⃗ |x⃗) [log p(z⃗ , x⃗ ; θ)− log qφ(z⃗ |x⃗)] .

We can then initialize θ, φ, repeatedly sample data points from D, and update θ and φ in the gradient direction. (So

we’re trying to adjust our φ so our probability mass is on z⃗s likely under the joint distribution, while still capturing

posterior.)

The question is then how to compute gradients – we now have distributions that are complicated, so we use Monte
Carlo sampling to estimate the gradients instead. Let z⃗ (1), · · · , z⃗ (K) be samples from qφ(z⃗ |x⃗), and then we can

approximate

Eqφ(z⃗ |x⃗) [log p(z⃗ , x⃗ ; θ)− log qφ(z⃗ |x⃗)] ≈
1

K

K∑
k=1

log p(z⃗ (k), x⃗ ; θ)− log qφ(z⃗ (k)|x⃗).

By doing this, we don’t need to worry about the whole distribution of z⃗s, and we can now use this to compute gradients.

The θ one is easy because we just have the term corresponding to fully observed data – we have

∇θEqφ(z⃗ |x⃗) [log p(z⃗ , x⃗ ; θ)− log qφ(z⃗ |x⃗)] ≈
1

K

∑
k

∇θ log p(z⃗ (k), x⃗ ; θ).

The trickier one is the φ-gradient, since the expectation we’re taking itself depends on φ. We’d still like to estimate

with a Monte Carlo average, but we’d have to understand how that sampling changes along with φ. The idea here

is that we can use the REINFORCE idea from reinforcement learning – we choose some set of possible actions with

various rewards r(z⃗), and we then set up a randomized policy for choosing our actions parameterized by φ. Then if we

want to compute a gradient of the expected reward Eqφ(z⃗)[r(z⃗)], and our policy qφ(z⃗) can be written as exp(f⃗ (z⃗) · φ)
for some feature vector f⃗ , we can use the importance sampling trick and write

∂

∂φi
Eqφ(z⃗)[r(z⃗)] =

∑
z⃗

qφ(z⃗)
∂ log qφ(z⃗)

∂φi
r(z⃗)

= Eqφ(z⃗)
[
∂ log qφ(z⃗)

∂φi
r(z⃗)

]
.

So we can actually rewrite this gradient itself as an expectation, meaning we can approximate with samples from

qφ(z⃗) (yielding an unbiased estimator of the true value). Applying this to the ELBO (scoring with the reward function

log p(z⃗ , x⃗ ; θ)− log qφ(z⃗ |x⃗)) then allows us to get the φ-gradient as well, making the gradient ascent algorithm tractable

via Monte Carlo.
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Definition 216

Such a structure keeping track of both p(x⃗ |z⃗) and q(z⃗ |x⃗) is called a variational autoencoder – it contains a

decoder (using the θ parameters which help us determine x⃗ from z⃗) and an encoder ( using the variational

parameters φ defining the distribution q to describe the posterior). Both sets of parameters are usually encoded

by neural networks.

Models trained on large image dataset do indeed fit data quite well. So in particular, latent variable models are

used in practice, and the ideas of probabilistic modeling, inference, and sampling do fundamentally show up in lots of

different problems. Much of this is still a very active area of research! And if we’re interested in learning more about

deep generative models, we can take a look at CS 236.
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