Optimizing Neural Networks with
Gradient Lexicase Selection

Aggregated Performance Measure

The potential drawback of seeking compromises.

Modern data-driven learning algorithms are usually optimized by computing
the aggregate performance on the training data.
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One potential drawback for aggregated performance measurement is that
the model may learn to seek “compromises” and getting stuck at local
optima.
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A method for uncompromising problems.
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Such problems have been recently explored in genetic programming (GP)
and genetic algorithms (GAs) for tasks such as program synthesis.

Instead of using aggregated fitness functions, lexicase selection gradually
eliminates candidates by evaluating on each individual training case.

Lexicase selection has also been used in rule-based learning, symbolic
regression, constraint satisfaction problems, machine learning, and
evolutionary robotics to improve model generalization.
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This Work: Gradient Lexicase Selection

Our method has two main components: subset gradient descent (SubGD)
and lexicase selection.
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Overview of the proposed Gradient Lexicase Selection method

Mutation by Subset Gradient Descent

We propose a gradient-based mutation method: the training set is randomly
divided into subsets. Each model instance is then trained on one of the
subsets using stochastic gradient descent.

There are several advantages:

« All the candidates are trained with different non-overlapping training
samples, so they are more likely to evolve diversely.

« Each candidate is trained using gradient descent for efficiency.

« Candidates can be trained in parallel to further reduce computation time.

Lexicase Selection for DNNs

After mutation, the offspring become candidates and we use lexicase
selection to select a parent from them for the next generation.

First, a randomly shuffled sequence of training data points is used for
selection. Starting from the first data point, we evaluate all the candidates on
each case individually and remove the candidate from the selection pool if it
does not make the correct prediction.

This process is repeated until if:
1) there is only one candidate left, which will be selected as the parent

2) all the training samples are exhausted, in which case we randomly pick a

candidate from the remaining pool.
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Experimental Results

We test our method with six popular DNN architectures on three image
classification benchmarks. Our method outperforms SGD consistently
under most of the settings.

Table 1: Image classification results. We report the mean percentage accuracy (acc.) with standard
deviation (std.) obtained by running the same experiment with three different random seeds. The
last column (acc. 1) calculates the difference of accuracy by using our method compared to baseline,
where positive numbers indicate improvement.

Dataset Architecture Baseline Lexicase
acc. std. acc. std. acc.
VGG16 92.85 0.10 9340 0.13 0.55
ResNet18 94.82 0.10 9535 0.06 0.53
e i ResNet50 94.63 046 9498 0.18 0.34

® CIFAR-10 DenseNetl21  95.06 0.31 9538 0.04 0.32

Y MobileNetV2 9437 0.19 9397 0.2 -039
f SENet18 9469 0.14 9537 023 0.68

H EfficientNetBO 92.60 0.18 93.00 0.22 0.40
@ ' VGG16 72.09 052 7253 020 0.44
| ResNet18 7633 029 76.68 0.40 0.35
u g ResNet50 76.82 096 7744 0.25 0.63
s W CIFAR-100 DenseNetl121 78.72 0.82 79.08 0.26 0.36
‘.‘ ‘n MobileNetV2  75.87 028 75.57 030 -0.30

SENet18 76.97 006 7722 029 0.25
EfficientNetBO 71.03 086 71.36 0.87 0.33
VGG16 9627 0.06 9629 0.08 0.02
U'. ResNet18 9643 0.14 96.62 0.08 0.19
)4 ResNet50 96.69 021 96.74 0.07 0.04
. 9 SVHN DenseNet12]  96.82 0.16 9687 003 0.05
MobileNetV2 9623 0.13 9626 0.07 0.03
AN m SENet18 96.62 0.19 9659 0.11 -0.03

EfficientNetBO 96.14 0.12 9594 0.10 -0.20

Qualitative Analysis

We visualize the feature activations in ResNet-18 trained using normal SGD
and the proposed gradient lexicase selection. Our method produce more
diverse and normalized representations.
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