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Free induction signal from biexcitons and bound excitons
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A theory of the free induction signal from biexcitons and bound excitons is presented. The simultaneous
existence of the exciton continuum and a bound state is shown to result in a new type of time dependence of
the free induction. The optically detected signal increases in time and oscillates with increasing amplitude until
damped by radiative or dephasing processes. Radiative decay is anomalously fast and can result in strong
picosecond pulses. The expanding area of a coherent exciton polari@afiating antenng produced by the
exciting pulse, is the underlying physical mechanism. The developed formalism can be applied to different
biexciton transientd.S0163-182807)03423-1

[. INTRODUCTION be reduced to the dynamics of exciton molecules in external
fields. Even a simple four-level biexciton energy sch&meé

Ultrafast spectroscopy of excitons in the time domdias  turned out to be very successful. In the framework of this
proven to be a powerful tool to probe quantum coherence ofcheme the biexciton continuum is substituted by a single
exciton states, which was originally studied by polarizationtwo-exciton state. The four-level scheme allowed one to ex-
of the stationary emissichMost of the experimental data plain the existence of beats, having a period of inverse biex-
were taken from GaAs quantum wells, however, some exeiton binding energy, in different nonlinear phenomena.
periments were performed with bulk excitons. QuantumMore recently, Wanget al® have discussed the effect of the
beats in different response functions provide a manifestatiohiexciton continuum on initial biexciton transients. These au-
of the coherence driven by external fields. These beats aphors neglected the exciton-exciton interaction in the biexci-
pear when several states having close energies are excitégh continuum and investigated quantum evolution of the
simultaneously. Quantum beats were observed with magnetielative momentum of two excitons in a molecule. Our paper
cally split exciton level$ bound excitons with different con- is related to the approach advanced in Refs. 16, 17, and 8.
finement energiebheavy and light hole excitorisfree and  Developing a theory that allows for a consistent account of
bound exciton$, and with biexcitons and a two-exciton the biexciton continuum and the exciton-exciton interaction
continuum’® Two last systems have much in common sinceis the main objective of the paper. We show that interaction
they possess both a continuous spectrum and a discrete levef.excitons and their dynamics are of critical importance for
They will be of principal importance for us in what follows. biexciton transients.

Experimental data provide convincing evidence of a The traditional approach to quantum beats is based on the
strong effect of the exciton-exciton and exciton—free-carrieenergy spectrum comprising few, usually two, discrete en-
interaction on nonlinear response functidi8.However, ergy levels. This approach can be applied to beats between
there exists no universal approach to the theoretical treatieavy- and light-hole excitons because of the momentum
ment of this nonlinear many-electron problem. The physicakonservation and absence of the interaction between these
patterns are rather different in different ranges of the paramexcitons. However, the biexciton and bound exciton prob-
eter values, therefore, the theoretical approaches also shoukims are more involved. Indeed, energy spectra of these sys-
be different. When the intensity of a pump is high and thetems include the two-exciton and single-exciton continuum,
nonradiative dephasing timeis short, the Hartree-Fock ap- respectively. For example, for a two-exciton system it is the
proximation works rather well. This approach was advancedxciton-exciton interaction that supports the two-photon co-
by Schmitt-Rink and Chemtaand has been developed in a herence, and the lower part of the continuum with the width
number of papers. It is based on the semiconductor Bloclf about several biexciton binding energieg, contributes
equation¥?® and allows a generalization accounting for to the coherent polarization along with the bound biexciton
two-exciton correlation$? Time evolution of wave packets state. In addition to the theoretical arguments, the experi-
produced by the pump also can be followdt is a distinc- mental data provide weighty, although indirect, evidence of
tive feature of this approach that the basis of the exciton anthe role of the two-exciton continuum. Indeed, it was
electron-hole pair states is restricted by excitations stronglghowrt® that the four-level biexciton energy scheme can be
coupled to the pump, i.e., possessing the momenta of therought into agreement with experimental data only if the
exciting electromagnetic waves. This restriction is the basi@nhancement factor typical of giant oscillator strenytr®
limitation of the powerful Hartree-Fock method. A different is invoked. Therefore, frequencies of allowed transitions are
approach is used in the opposite limit of low exciton densi-distributed continuously and the spread of the frequencies is
ties, when the interaction of biexcitons can be neglected andboute,,. Naive consideration suggests that such an energy
the dephasing time is long. In this limit biexcitons can be spectrum should result in beats having a frequency of about
considered as noninteracting particles, and the problem cas}, and showing fast nondissipative decay because of accu-
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mulating phase differences between different modes. It turns V(g 1) =M/ o)Ay qt)
) ; ) S alds q’a\ )
out that the actual physical picture is quite different.
In this paper we present an exact solution for a free in- —
duction signal excited by a single-side exponential pulse, Avc(t)=S ¥i(q") ¥i(q) RN ©
t<0, in a nondissipative system with a biexciton nonlinear- a'ait T w—Ejtia '
ity. This signal can be observed, e.g., as a resonance fluores-

cence at positive time$>0. The special shape of the pulse Here W4(q’,t) and ¢;(q) are, respectively, time-dependent
simplifies calculations but does not influence the basic rez,q stationary exciton wave functions in the momentum rep-
sults. The contribution of the two-exciton continuum is coNn- acantation. The subscriit=1 numerates single-exciton

sistently taken into acqouﬁ’t.With such an approach, free giates hound and free ones. The ground-state energy of the
induction, i.e., free oscillations of a two-exciton wave func- crystal is chosen as the origiE,=0; #=1. The coefficient

tion W(t) for t>0, includes two modes. There existbeat- \1"is the matrix element, per unit cell, of the perturbation
ing mode describingundamped beats whose frequency isy g ced by the fielEEy(r,t), andv is the unit cell volume.

equal toe,. Damping of this mode is controlled by the e momentay andg’, which are of importance for optical
mechanisms other than the exciton dispersiauliative de- oy neriments, are small and will be neglected in the final re-

cay, .dephasmg, polarlton_effec'.[s, elcTherg exists glsqn_ sults. Equation(2) does not take into account the radiative
growing modewhose amplitude increases linearly with time decay of the wave packet. The role of this process will be
t and whose carrier frequency equals the energy of the boliscussed in Sec. 11l below.

tom of the_two-ex_mton continuum. Th_e growing mode is  The amplitude Ag o(t) describes free precession of
inherent in interacting systems possessing a continuous speg- (q'.t) for positive times. Fot=0, Ay (t=0) coincides
trum. It is the inflation in a real space of the wave packetwi‘t‘h the retarded exciton Green funct?o%

created by the pulse that manifests itself in this mode. The

packet is termed ainflating antennain what follows. The

two modes result in an optically detected free induction sig- - AN =g

nal that(i) increases with, (i) has monotonic and oscillat- Cqral@) ; ¥i(a)¥;(a)/(w—E;+i0) ©
ing parts, and(iii) results in ultrafast radiative decay. The

same modes exist for excitons bound to impurities. Bothf the argumentw is substituted byw+ia. For arbitratyt,

modes originate from the analytical structure of the tWwo-functionsAg 4(t) and Gy (w) are related by the equation
exciton Green function, which is specific for Hamiltonians

with a continuous spectrum and violated momentum conser- . .,

vation. We expect that these modes contribute also to differ- A (t):ij dwrwe (@), (4

ent nonlinear processes, including multiple-impulse pro- 4 2mi ) o o' —o—ia 79

cesses, and that the developed technique is of general

applicability. Equation(4) can be checked by employing E@), closing
the integration path in the lower complex half-plane, and
calculating residues in the poles Gf; 4(»").

Il. BOUND EXCITONS: GENERAL FORMALISM Subsequent transformations &f;4(t) are based on the

To make clear the basic idea and account rigorously fo}ntroduction of the scattering operatb{«)

analytical properties of the exciton Green functions, we de-

velop an exactly soluble model. To this end we neglect po- Gq,q(w)=Gg(w)5q,q+ Gg,(w)Tq,q(w)Gg(w), (5
lariton effects?? which will be briefly discussed in Sec. V,

and dephasing. We also neglect the dependence of the scifpare G
tering amplitude on the light polarization because it is sensi
tive to the band structure, geometry, &¢é3 Excitons are
considered stable particles without internal degrees of fre
dom. It is convenient to start with the bound exciton prob-
lem. The free induction signal from bound excitons can b

o e Tyt of e It e ot st cperns s s
, 1 SP P prop 9 AN w)=T.+T(w), where T.=T(w=%). The function

tenna can be completely disentangled from nonlinear phequ/(w) is analytical in the upper half-plane, hence, the fol-

nomena. . ; "
If the electromagnetic wave, lowing Lehmann representatiorholds for it:

g(w)z[m—g(q)+i0]‘l is a free-exciton Green
function. Only the second term of E@5) contributes to
Agrq(t) for g’ #q and will be retained below. It is an impor-
fant property of this term that it includes a product of two
G° functions. Their poles nearly coincide fop=q’. This
roperty strongly influences the subsequent results. It is con-

. 1(= . - .
Eq(r,t)yxexpli(q-r—ot)+at}, a>0, (1) T(“’):_;f,md“"T"(“")’(“’_“"+'0)' ©

is incident upon a crystal at ©<t<0, the exciton wave whereT”(w)=Im{T(w)}. Substituting Eqs(5) and(6) into
function¥,(q’,t=0) can be calculated as a linear responseEq. (4) and performing integration ovep’ by closing the

to this perturbation. Free evolution of,(q’,t=0) deter- integration path in the lower half-plane, one gets after some
mines the wave functio¥ (q’,t) at any instant, t>0: algebra
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1 - exp(—ie(q’)t) 100 ————F————T———T
A‘*"‘“)‘e(q')—e<q)[”°° Yo e(@) Hia ~
wn
exp(—ie(q)t)] 1 (= ) st
_w—s(q)-l-ia —;f_deT'q,q(X) g
1 /exp(—ixt) exp(—ieg(q’)t) o
X—s(q')\ wo—Xt+tia ow—e(q)tia 5(6'
N’
1 /exp(—ixt) exp(—ie(q)t) .
x—e()| o—x+tia ow—e(q)+tial| ™ —~
z
Equation (7) provides an exact expression for the exciton =
wave function in the momentum representation. The wave ol
function in the coordinate representation can be found by th 0 5 10 15 -1 20 25
Fourier transformation in the variabbf . This transforma- Time t (ab )

tion can be performed only numerically and depends on the

exciton _dlspersmn Iayv anq the interaction pote_ntlal betv_veen FIG. 1. Time dependence of the amplitudh(t)| for a=¢,,,

the exciton and the impurity. However, for optical appllca—E —10e. . Momentumk=0 is at the bottom of the exciton band
tions this transformation is not needed. The photon scatteringy. ™ g lnes, 2D: dotted lines.(1) w—e=0, (2)
amphtugje is completely/ det_ermlned by the am_p!ltudew_sz_o&bl 3) w—s=—z,. For t=2mle, the amplitude
Aqrq(t) in the smallq andq’ region. Under these conditions ghoys a linear growth and undamped oscillations with a period
the energiez(q) ande(q’) are nearly equal. Fay’',q—0 27ley .

both the numerator and denominator vanish and(Bgakes

the form nied by changes in the phases of different Fourier compo-
nents, whereas their moduli remain unchanged. The impurity
potential, attractive or repulsive, violates the momentum
conservation. Consequently, the amplitude ofdked mode
grows. It indicates that the volume of the coherence area
around the impurity increases with The giant oscillator
strengths observed in stationary experiments were ascribed
by Thomas and Hopfield t@xciton antenna$’ In these
terms the growing mode is generated byimffating exciton
antenna This picture explains why the growing mode is spe-
- ' cific for systems possessing a continuous spectrum and,
and A(t), T., and T"(«’) are the limits of Aq/q(t), hence, extended states. Mathematically this mode originates

(Tw)qq @nd Tgrg(@), respectively, forg,q’—0. Equation ¢ the integration 06, along the cut in the comple
(8) is the final equation for the time-dependent amplitude, nmegrat 'q(©) d H piex

A(t). It is completely determined by., and the imaginar plane passing across the exciton band,
' pletely Y- ginary Second, the bound state is a pole ©fw). Therefore,
part of the operatof (w).

T"(w') includes a term proportional td(w'—e+ep),
wheregy, is the binding energy of an exciton to the impurity
center. This term contributes into E) an oscillating ex-
ponent exp—i(e—ep)t]. The exciton bandwidth is supposed
Equation(8) determines the time dependence of the freeto be large as compared witly . Under these conditions the
induction signal. Two basic properties of this equation fol-integration along the cut in the complex plane contributes the
low from general arguments. factor exp(ist). Two oscillating terms in Eq.(8),
First, the derivativesd/de result in a contribution to exd—i(e—gy)t] and exptiet), result in beats at the fre-
A(t) proportional totexp(—iet). This property is obvious as duency ofe, with a time-independent amplitude. It is re-
applied to the first and third terms of E¢8). A similar markable that the oscillations remain undamped despite the
contribution from the second term can be found by using thdact thate belongs to a continuous spectrum. The oscillating
identity d(o’—¢) Yde=—d(w'—¢) Y/dw’ and trans- contribution toA(w) will be termedthe beating mode
forming the integral by parts. The term in the amplitude The scattering operatdf{w) can be easily found for a
A(t) increasing witht will be termed below ashe growing  Frenkel exciton when the impurity potential is described by a
mode?® It originates from the product of twG° functions  degenerate perturbatiod ,,,=U 8,,080,, U<0.2® Here m
with coinciding poles, Eq(5). The growing mode is remi- andn denote lattice sites, and the impurity resides at the site
niscent of the growing solutions of differential equationsm=n=0. Under these conditior&, ,(w) does not depend
with degenerate characteristic numbers. This mode describes the momentag andq’ and equals
the global evolution of the wave packet prepared by the )
pulse. Ast increases, the packet expandsrirspace. For (0)= G (“’):J plo’) do’. (9)
translationally invariant systems this expansion is accompa- 1-UGy(w)’ ~° w—w'+i0 ’

exp —iet)

w—e+tia

A—Td 1fmd’T"’d
O=T- g E IR

1

o' —¢

exp—iw't) B exp—iet)

wo—w'+tia ow—cetia

. (8

Here e=¢(0) is the energy of long-wavelength excitons

Ill. FREE INDUCTION SIGNAL
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FIG. 2. Time dependence of the amplituat)| for a 3D sys-
tem excited by a spectrally narrow pulse=0.0%, Eg=10¢y,.
Momentumk=0 is at the bottom of the exciton band. Solid line:
w—e=—¢gy; dotted line:w—e=—0.5y,.

where Gy(w) denotes the free Green functi@ﬁ(w) inte-

grated over the momentum, and p(w) is the density of
states inside the exciton band. It is easily seen That U.

Binding energye,, is related to the potentid) by the equa-
tion Gy(e —e,)=U 1. For a two-dimensional2D) system
the densityp(w) can be modeled ap(w)=1/Eg, where
Eg is the bandwidth, and the integral in E®) can be per-
formed. Finally

’ZZw)=EB/ {In

The amplitudeA(t) is shown in Fig. 1 for three values of

ep(Eg—w)|
m +ia. (10)
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Interference of the two modes results in an unusual shape of
the signall (t). It consists of the monotonic and oscillatory
contributions, and both of them growirigather than decay-
ing.) with t.2°

Figure 1 displays the typical shape of the respoh@¢. It
is instructive to consider also a special case when a spectrally
narrow pulse is in resonance with the bound-exciton state.
The data are shown in Fig. 2. For e~ ! the the amplitude
|A(t)] is nearly constant and describes a bound exciton. As
t increases, the admixture of the continuum grows and the
shape of amplitude described by Ef1), linear growth and
strong undamped oscillations, sets in fee3a 1. If the
pulse is out of resonance with the bound exciton, the shape
of the response similar to that of Fig. 1 is recovered.

The above theory does not take into account the radiative
decay of the exciton wave packet. It is this approximation
that results in the unlimited increase in the amplitukie),

Eqg. (12). If one neglects the oscillating part of E4.2), the
radiative lifetimerg(t) decreases with as rx(t) <t ~2. This
rapid increase in the emission probability implies a non-
Lorentzian shape of the emission signal and establishes the
applicability limit for Eq. (12). A rigorous approach should
include a generalization of the Weisskopf-Wigner theory as
applied to the exciton antenna. We restrict ourselves to a
phenomenological approach, which allows us to estimate the
duration of the emitted pulse.

One can infer from Fig. 1 that ift~e&,, and the carrier
frequencyw of the exciting pulse is not far from the exciton
band bottome, the radiative lifetimerg(t) can be evaluated
as

T (D)=~ (7)1 (1+ Begt)?, (13)
where the coefficienB~1. The wave packet size &0 is
approximately equal to the bound-exciton radius, henﬁe,
can be estimated as the bound-exciton radiative lifetime.
Since a single light quantum should be radiated in the emit-

. Both the linear-int growth and the oscillations with a ted pulse, the duratiom,, of this pulse can be estimated
time-independent amplitude are distinctly seen in the&rom the equation

asymptotic regiortzZTrsgl. Actually, they are seen even
for small values ot>0, but the shape of the first oscillation

is somewhat distorted. The data for a 3D system with a

model density(w) =8 w(Eg— w)/ 7Eg? are also shown in
Fig. 1. One can see that the dependencé(@j on dimen-
sionality is rather weak. The linear-ingrowth of A(t) in the

larget region originates from the exciton dynamics. It dis-

appears in th&z—0 limit when the exciton effective mass
tends to infinity.

1 Tem
f dn= f dt/ 7a(t) = 1. (14)
0 0

Equations(13) and (14) result in the following formula for
Temr
eV (15)

Tem™ (

Therefore, after a short transient the growing and beatingvhich is correct with the accuracy to a numerical factor,

modes dominate the amplitudgt). The optically detected
free induction signal (t) is related to the zero-momentum
component of the wave function(t)e=|¥4(0t)|2. In the
asymptotic region

A(t)x t+gexp:i(sbt+ d) e e, (11

whereb and ¢ are real parameters, amt) obeys the fol-
lowing law:

|(t)<{t?>+btcog et + ¢)}. (12

which hopefully is approximately equal to unity. The number
of oscillations within the emitted pulse is
N=~ Tenep/27~( Tgs p) Y327, (16)
It is remarkable that, as distinct from the radiative lifetimes
of atomic systemsg,,, is proportional toc rather than to
¢ herec is the speed of light. This observation implies that
Tem IS shorter than the atomic radiative lifetimes by the factor
(1/137%, i.e., Tem~ 10712 s,
It follows from Eg. (15) that the pulse is much shorter

than 7%. For example if73~1 ns ande,~10 meV, the
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number of oscillations equaN~4 and the pulse duration is 2M2N/v
Ten=1.5 ps in reasonable agreement with the above esti- ‘Pq(k,t)ZW,
mate.
Therefore, the inflating antenna shows an ultrashort radia- lﬂ'(k)I(O)
tive decay timer,,, having a picosecond scale.4{,,<, all A(t)= > LT oiEt (18
7 20— Ej+2ia

scattered photons are emitted as a single burst, a short pulse

having the shape of a train of oscillations.7if,> 7, only a  pere E; are energy levels of a two-exciton system, ahi

small number of photons are radiated in a short pulse of thghe normalization volume. If biexcitons are excited by two
duration aboutr, and the emission should show a rather long

tail.
In all of the above a somewhat artificial shape of the
exciting pulse, Eq(1l), was used. Nevertheless, the results

are _qw|te g.(e;neral. Indeeq,lthe ;[heory IS ll;”eaEW,’;)’ agd Therefore, the transformations that led us from &jto Eq.

a single-side exponential pulse can be considere 85 @) can be repeated for biexcitons step by step. The equation
L_apla.ce component of a real pul;e. Therefore, the free indugy, he scattering operatdF, () depends on the interac-
tion signal generated by an arbitrary pulse can be found by, hetween excitons. The zero-radius potential provides a
integration of Eq(8) over « with a corresponding weighting  satisfactory approximation for an exciton molecule. With

factor. This integration does not change the general shape gf;o potential, the operat@{Q) for a three-dimensional sys-
the signal. The effect of smearing the sharply pointed pulsgsm has the fordf

edge can be evaluated in a somewhat different way. If the

light beams with momentg, andq,, function ¢;(0) in Eq.
(18) should be substituted by;((q;—0d,)/2).

Equation(18) differs from Eq.(2) only in the coefficient
and in the change in variablesy— Q=20 and a—2a.

termination pointst, of exponential pulses are distributed aldm?m
according the Gaussian lawy{y/7)exp(=y*?d), the first T.=0, TQ)=—o0 —, (19
term in Eq.(11) remains unchanged, while the second term 1+iay2m(Q+i0)

acquires the factor exp(ey?4y?). If y=ey/2, this factor are m is the exciton mass, andQ+i0 has a positive
results in the renormalization of the coefficidnby a factor

imaginary part. Biexcitons exist whef{(()) has a pole, i.e.,
of about unity. It is of importance that the shape of the ex- ginary p €f() p

. I ) He th I he initial cond for a>0; the scattering lengtla equalsa=(2me,) 2,
citing pu'se enters into the theory only as the initial condi-, 0o g, IS the biexciton binding energy. Similarly to

tion, while the exotic behavior of the signal establishedT(w) of Eq. (10), the operatorT{Q) of Eq. (19) does not
above originates from the free evolution of the wave paCkeHepend on .mom,enta Finall(t) shows aétually the same
in the field of a defect. behavior as for bound excitons.

One can infer from Eq(17) that the quantum staté#

decays into two photons with momerd2+ k. Intensity of
IV. FREE INDUCTION FROM BIEXCITONS the free induction signal is proportional to

In this section we generalize the above results for biexcil ¥ a(K,0)[*~[¥o(0)[%. In the asymptotic regionA(t)
tons. There exist two processes that result in optical produc®{t+ (b/2)exi(ect+ #)Jiexp(-2ist), and Eq. (12) de-
tion of biexcitons”192039The first process is two-step ab- SCTibes the optically detected signal. _ _
sorption with an exciton level as a real intermediate state. In 1herefore, the existence of the growing and beating
this process an exciton produced at the first step acts as &°des in the free induction amplitude is a common property
“impurity.” All above results are applicable to this process Of biexcitons and bound excitoris Estimates for the pulse
without any serious changes. The second process is M(g_urgtlon,rem, dgnvgd in Sec. Ill for bound excitons, are also
phonon absorption from the ground state. The theory of thig@Pplicable to biexcitons.
process is more cumbersome than for impurity absorption.

Nevertheless, the final results are nearly identical. V. DISCUSSION
Biexciton eigenfunctions can be written in the operator . . L
form as g P In this paper a theory of transients for biexcitdheund

excitong is developed. It is a distinctive feature of the theory
that the continuous spectrum and the exciton-exciton
1 dk (exciton-impurity interaction were consistently taken into
N _ T + account. Equation(8) for the amplitude A(t) and the
D) \/Ej (2m)° iR -k an asymptotic expansion, E¢L1), were found by exact solution
of a well-established model. These equations reveal the be-
havior of the free induction signal described in Sec. Ill. The
where . are exciton creation operators, akdis the theory is reliable while time is small as compared with the
center-of-mass momentum of a biexciton. Functignék) duration of the emitted pulséx< . Under these conditions
are biexciton eigenfunctions in the momentum representathe theory describes the basic dynamics of exciton wave
tion. The wave function of a biexciton wave packet at posi-packets. The larger the number of oscillations inside the
tive times can be found in the second order of the perturbaemitted pulseN, the wider the applicability region of the
tion theory in the fieldEy(r,t), Eq. (1). In the momentum  theory.
representation, the wave function of the biexciton wave It is the main restriction of the theory that the radiative
packet with a total momentud =2qg equals decay of wave packets was taken into account in a phenom-
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enological way. Numerical coefficients in Eq45) and(16)  pends on dimensionality, and in lower dimensionalities their
for 7.m and N, respectively, were evaluated only approxi- effect increase®> For such systems the application on the
mately. Actually, the values of these coefficients depend ompolariton concept might be of special importance.
the number of parametefsarrier frequency of the exciting  In conclusion, the coexistence of the continuous spectrum
pulse, its spectral width, ejc.Therefore, the above restric- and a bound state results in growing and beating modes in
tion does not influence the specific predictions of the theoryihe free induction signal following the exciting pulse, for
but impedes establishing rigorous criteria of its applicability. hoth biexcitons and bound excitons. The duration of the free
The problem of the radiative decay is also closely relateqnqyction signal is controlled by the radiative decay rate and
to the polariton concept. It is known that in 3D polariton gephasing. If the first mechanism dominates, the signal is
effects do not change the results critically if the longitudinal-gmitted as a short burst and the radiative yield is close to
transverse splittingd;, and the size of the coherence region unity.
are small in comparison witle, and the light wavelength Note added in proofThe basic results of this paper, both
A, respectively. We do not know of any experimental data oRor biexcitons and bound excitons, are related to the radiative
the gigantic oscillator strengths of bound excitons that revealesponse in the late-time region. Fast early-time evolution of
deviations from the elementary thedtyieglecting polariton  the Rayleigh signal from inhomogeneously broadened exci-
effects. Apparently, the polariton theory of this effédtas  ton levels has been investigated recently theoreticeRly
never been applied for treating experimental data. The polatzimmermann, Nuovo Cimentd7D, 1801(1995; D. S. Cit-
iton theory of the biexciton spectra was also devoloped, rin, Phys. Rev. B54, 14 572(1996] and experimentallyS.

and it was only recently that the detection of the polaritonygakeet al, Phys. Rev. Lett78, 2228(1997)].
contribution to the giant two-photon biexciton absorption in

CuCl has been claimel.Polariton contribution to the inflat-
ing antenna theory should become of critical importance for
large values oft when the size of the antenrd(t) ap-
proachesx. Apparently, the criterial(t) <A andt<rg,, im- | am grateful to M. D. Sturge and J. M. Worlock for
pose similar restrictions on Therefore, a consistent theory suggestive discussions and critical reading of the manuscript.
of the radiative decay of the inflating antenna should beThe support of the Office of Naval Research under Contract
based on the polariton concept. The role of polaritons deNo. N000149410853 is acknowledged.
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