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Free induction signal from biexcitons and bound excitons
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Department of Physics, University of Utah, Salt Lake City, Utah 84112

and L. D. Landau Institute for Theoretical Physics, Moscow 117940, Russia
~Received 23 December 1996!

A theory of the free induction signal from biexcitons and bound excitons is presented. The simultaneous
existence of the exciton continuum and a bound state is shown to result in a new type of time dependence of
the free induction. The optically detected signal increases in time and oscillates with increasing amplitude until
damped by radiative or dephasing processes. Radiative decay is anomalously fast and can result in strong
picosecond pulses. The expanding area of a coherent exciton polarization~inflating antenna!, produced by the
exciting pulse, is the underlying physical mechanism. The developed formalism can be applied to different
biexciton transients.@S0163-1829~97!03423-1#
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I. INTRODUCTION

Ultrafast spectroscopy of excitons in the time domain1 has
proven to be a powerful tool to probe quantum coherence
exciton states, which was originally studied by polarizati
of the stationary emission.2 Most of the experimental dat
were taken from GaAs quantum wells, however, some
periments were performed with bulk excitons. Quantu
beats in different response functions provide a manifesta
of the coherence driven by external fields. These beats
pear when several states having close energies are ex
simultaneously. Quantum beats were observed with magn
cally split exciton levels,3 bound excitons with different con
finement energies,4 heavy and light hole excitons,5 free and
bound excitons,6 and with biexcitons and a two-excito
continuum.7,8 Two last systems have much in common sin
they possess both a continuous spectrum and a discrete
They will be of principal importance for us in what follows

Experimental data provide convincing evidence of
strong effect of the exciton-exciton and exciton–free-car
interaction on nonlinear response functions.9,10 However,
there exists no universal approach to the theoretical tr
ment of this nonlinear many-electron problem. The physi
patterns are rather different in different ranges of the par
eter values, therefore, the theoretical approaches also sh
be different. When the intensity of a pump is high and t
nonradiative dephasing timet is short, the Hartree-Fock ap
proximation works rather well. This approach was advan
by Schmitt-Rink and Chemla11 and has been developed in
number of papers. It is based on the semiconductor Bl
equations12,13 and allows a generalization accounting f
two-exciton correlations.14 Time evolution of wave packet
produced by the pump also can be followed.15 It is a distinc-
tive feature of this approach that the basis of the exciton
electron-hole pair states is restricted by excitations stron
coupled to the pump, i.e., possessing the momenta of
exciting electromagnetic waves. This restriction is the ba
limitation of the powerful Hartree-Fock method. A differe
approach is used in the opposite limit of low exciton den
ties, when the interaction of biexcitons can be neglected
the dephasing timet is long. In this limit biexcitons can be
considered as noninteracting particles, and the problem
550163-1829/97/55~24!/16198~7!/$10.00
of

-

n
p-
ted
ti-

vel.

r

t-
l
-
uld
e

d

h

d
ly
he
ic

-
d

an

be reduced to the dynamics of exciton molecules in exte
fields. Even a simple four-level biexciton energy scheme16,17

turned out to be very successful. In the framework of t
scheme the biexciton continuum is substituted by a sin
two-exciton state. The four-level scheme allowed one to
plain the existence of beats, having a period of inverse b
citon binding energy, in different nonlinear phenomen
More recently, Wanget al.8 have discussed the effect of th
biexciton continuum on initial biexciton transients. These a
thors neglected the exciton-exciton interaction in the biex
ton continuum and investigated quantum evolution of
relative momentum of two excitons in a molecule. Our pap
is related to the approach advanced in Refs. 16, 17, an
Developing a theory that allows for a consistent account
the biexciton continuum and the exciton-exciton interact
is the main objective of the paper. We show that interact
of excitons and their dynamics are of critical importance
biexciton transients.

The traditional approach to quantum beats is based on
energy spectrum comprising few, usually two, discrete
ergy levels. This approach can be applied to beats betw
heavy- and light-hole excitons because of the momen
conservation and absence of the interaction between t
excitons. However, the biexciton and bound exciton pro
lems are more involved. Indeed, energy spectra of these
tems include the two-exciton and single-exciton continuu
respectively. For example, for a two-exciton system it is
exciton-exciton interaction that supports the two-photon
herence, and the lower part of the continuum with the wid
of about several biexciton binding energies,«b , contributes
to the coherent polarization along with the bound biexcit
state. In addition to the theoretical arguments, the exp
mental data provide weighty, although indirect, evidence
the role of the two-exciton continuum. Indeed, it w
shown16 that the four-level biexciton energy scheme can
brought into agreement with experimental data only if t
enhancement factor typical of giant oscillator strengths18–20

is invoked. Therefore, frequencies of allowed transitions
distributed continuously and the spread of the frequencie
about«b . Naive consideration suggests that such an ene
spectrum should result in beats having a frequency of ab
«b and showing fast nondissipative decay because of a
16 198 © 1997 The American Physical Society
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55 16 199FREE INDUCTION SIGNAL FROM BIEXCITONS AND . . .
mulating phase differences between different modes. It tu
out that the actual physical picture is quite different.

In this paper we present an exact solution for a free
duction signal excited by a single-side exponential pu
t,0, in a nondissipative system with a biexciton nonline
ity. This signal can be observed, e.g., as a resonance fluo
cence at positive times,t.0. The special shape of the puls
simplifies calculations but does not influence the basic
sults. The contribution of the two-exciton continuum is co
sistently taken into account.21 With such an approach, fre
induction, i.e., free oscillations of a two-exciton wave fun
tion C(t) for t.0, includes two modes. There existsa beat-
ing modedescribingundamped beats whose frequency
equal to «b . Damping of this mode is controlled by th
mechanisms other than the exciton dispersion~radiative de-
cay, dephasing, polariton effects, etc.!. There exists alsoa
growing modewhose amplitude increases linearly with tim
t and whose carrier frequency equals the energy of the
tom of the two-exciton continuum. The growing mode
inherent in interacting systems possessing a continuous s
trum. It is the inflation in a real space of the wave pac
created by the pulse that manifests itself in this mode. T
packet is termed aninflating antennain what follows. The
two modes result in an optically detected free induction s
nal that~i! increases witht, ~ii ! has monotonic and oscillat
ing parts, and~iii ! results in ultrafast radiative decay. Th
same modes exist for excitons bound to impurities. B
modes originate from the analytical structure of the tw
exciton Green function, which is specific for Hamiltonia
with a continuous spectrum and violated momentum con
vation. We expect that these modes contribute also to dif
ent nonlinear processes, including multiple-impulse p
cesses, and that the developed technique is of gen
applicability.

II. BOUND EXCITONS: GENERAL FORMALISM

To make clear the basic idea and account rigorously
analytical properties of the exciton Green functions, we
velop an exactly soluble model. To this end we neglect
lariton effects,22 which will be briefly discussed in Sec. V
and dephasing. We also neglect the dependence of the
tering amplitude on the light polarization because it is sen
tive to the band structure, geometry, etc.10,23 Excitons are
considered stable particles without internal degrees of f
dom. It is convenient to start with the bound exciton pro
lem. The free induction signal from bound excitons can
found in the framework of the linear response approa
Therefore, the specific spectral properties of the inflating
tenna can be completely disentangled from nonlinear p
nomena.

If the electromagnetic wave,

Eq~r ,t !}exp$ i ~q•r2vt !1at%, a.0, ~1!

is incident upon a crystal at2`,t,0, the exciton wave
functionCq(q8,t50) can be calculated as a linear respon
to this perturbation. Free evolution ofCq(q8,t50) deter-
mines the wave functionCq(q8,t) at any instantt, t.0:
s
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Cq~q8,t !5~ iM /Av !Aq8q~ t !,

Aq8q~ t !5(
j

c j~q8!c̄ j~q!

v2Ej1 ia
e2 iE j t. ~2!

HereCq(q8,t) andc j (q… are, respectively, time-depende
and stationary exciton wave functions in the momentum r
resentation. The subscriptj>1 numerates single-excito
states, bound and free ones. The ground-state energy o
crystal is chosen as the origin,E050; \51. The coefficient
M is the matrix element, per unit cell, of the perturbati
produced by the fieldEq(r ,t), andv is the unit cell volume.
The momentaq andq8, which are of importance for optica
experiments, are small and will be neglected in the final
sults. Equation~2! does not take into account the radiativ
decay of the wave packet. The role of this process will
discussed in Sec. III below.

The amplitude Aq8q(t) describes free precession o
Cq(q8,t) for positive times. Fort50, Aq8q(t50) coincides
with the retarded exciton Green function

Gq8q~v!5(
j

c j~q8!c̄ j~q!/~v2Ej1 i0! ~3!

if the argumentv is substituted byv1 ia. For arbitratyt,
functionsAq8q(t) andGq8q(v) are related by the equation

Aq8q~ t !5
1

2p i E2`

`

dv8
exp~2 iv8t !

v82v2 ia
Gq8q~v8!. ~4!

Equation~4! can be checked by employing Eq.~3!, closing
the integration path in the lower complex half-plane, a
calculating residues in the poles ofGq8q(v8).

Subsequent transformations ofAq8q(t) are based on the
introduction of the scattering operator24 T̂(v)

Gq8q~v!5Gq
0~v!dq8q1Gq8

0
~v!Tq8q~v!Gq

0~v!, ~5!

where Gq
0(v)5@v2«(q)1 i0#21 is a free-exciton Green

function. Only the second term of Eq.~5! contributes to
Aq8q(t) for q8Þq and will be retained below. It is an impor
tant property of this term that it includes a product of tw
G0 functions. Their poles nearly coincide forq'q8. This
property strongly influences the subsequent results. It is c
venient to split the scattering operatorT̂ into two terms as
T̂(v)5T̂`1T̂(v), where T̂`5T̂(v5`). The function
Tqq8(v) is analytical in the upper half-plane, hence, the f
lowing Lehmann representation25 holds for it:

T̂~v!52
1

pE2`

`

dv8T̂9~v8!/~v2v81 i0!, ~6!

whereT̂9(v)5Im$T̂(v)%. Substituting Eqs.~5! and ~6! into
Eq. ~4! and performing integration overv8 by closing the
integration path in the lower half-plane, one gets after so
algebra
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16 200 55EMMANUEL I. RASHBA
Aq8q~ t !5
1

«~q8!2«~q!H ~ T̂`!q8qFexp„2 i«~q8!t…

v2«~q8!1 ia

2
exp„2 i«~q!t…

v2«~q!1 ia G2
1

pE2`

`

dxTq8q
9 ~x!

3F 1

x2«~q8!S exp~2 ixt !

v2x1 ia
2
exp„2 i«~q8!t…

v2«~q8!1 ia D
2

1

x2«~q!S exp~2 ixt !

v2x1 ia
2
exp„2 i«~q!t…

v2«~q!1 ia D G . ~7!

Equation ~7! provides an exact expression for the excit
wave function in the momentum representation. The w
function in the coordinate representation can be found by
Fourier transformation in the variableq8. This transforma-
tion can be performed only numerically and depends on
exciton dispersion law and the interaction potential betw
the exciton and the impurity. However, for optical applic
tions this transformation is not needed. The photon scatte
amplitude is completely determined by the amplitu
Aq8q(t) in the smallq andq8 region. Under these condition
the energies«(q) and«(q8) are nearly equal. Forq8,q→0
both the numerator and denominator vanish and Eq.~7! takes
the form

A~ t !5T`

d

d« S exp~2 i«t !

v2«1 ia D2
1

p E
2`

`

dv8T9~v8!
d

d«

3F 1

v82« S exp~2 iv8t !

v2v81 ia
2
exp~2 i«t !

v2«1 ia D G . ~8!

Here «5«(0) is the energy of long-wavelength exciton
and A(t), T`, and T9(v8) are the limits of Aq8q(t),
(T`)q8q, andTq8q(v), respectively, forq,q8→0. Equation
~8! is the final equation for the time-dependent amplitu
A(t). It is completely determined byT` and the imaginary
part of the operatorT̂(v).

III. FREE INDUCTION SIGNAL

Equation~8! determines the time dependence of the f
induction signal. Two basic properties of this equation f
low from general arguments.

First, the derivativesd/d« result in a contribution to
A(t) proportional totexp(2i«t). This property is obvious as
applied to the first and third terms of Eq.~8!. A similar
contribution from the second term can be found by using
identity d(v82«)21/d«52d(v82«)21/dv8 and trans-
forming the integral by parts. The term in the amplitu
A(t) increasing witht will be termed below asthe growing
mode.26 It originates from the product of twoG0 functions
with coinciding poles, Eq.~5!. The growing mode is remi-
niscent of the growing solutions of differential equatio
with degenerate characteristic numbers. This mode desc
the global evolution of the wave packet prepared by
pulse. As t increases, the packet expands inr space. For
translationally invariant systems this expansion is accom
e
e

e
n

g

e

e
-

e

es
e

a-

nied by changes in the phases of different Fourier comp
nents, whereas their moduli remain unchanged. The impu
potential, attractive or repulsive, violates the momentu
conservation. Consequently, the amplitude of theq50 mode
grows. It indicates that the volume of the coherence ar
around the impurity increases witht. The giant oscillator
strengths observed in stationary experiments were ascri
by Thomas and Hopfield toexciton antennas.27 In these
terms the growing mode is generated by aninflating exciton
antenna. This picture explains why the growing mode is spe
cific for systems possessing a continuous spectrum a
hence, extended states. Mathematically this mode origina
from the integration ofGq8q(v) along the cut in the complex
plane passing across the exciton band.

Second, the bound state is a pole ofT̂(v). Therefore,
T9(v8) includes a term proportional tod(v82«1«b),
where«b is the binding energy of an exciton to the impurit
center. This term contributes into Eq.~8! an oscillating ex-
ponent exp@2i(«2«b)t#. The exciton bandwidth is suppose
to be large as compared with«b . Under these conditions the
integration along the cut in the complex plane contributes t
factor exp(2i«t). Two oscillating terms in Eq. ~8!,
exp@2i(«2«b)t# and exp(2i«t), result in beats at the fre-
quency of«b with a time-independent amplitude. It is re
markable that the oscillations remain undamped despite
fact that« belongs to a continuous spectrum. The oscillatin
contribution toA(v) will be termedthe beating mode.

The scattering operatorT̂(v) can be easily found for a
Frenkel exciton when the impurity potential is described by
degenerate perturbationUmn5Udm0d0n , U,0.28 Here m
andn denote lattice sites, and the impurity resides at the s
m5n50. Under these conditionsTq8q(v) does not depend
on the momentaq andq8 and equals

T~v!5
U

12UG0~v!
, G0~v!5E r~v8!

v2v81 i0
dv8, ~9!

FIG. 1. Time dependence of the amplitudeuA(t)u for a5«b ,
EB510«b . Momentumk50 is at the bottom of the exciton band
3D: solid lines, 2D: dotted lines. ~1! v2«50, ~2!
v2«520.5«b , ~3! v2«52«b . For t*2p/«b the amplitude
shows a linear growth and undamped oscillations with a peri
2p/«b .
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whereG0(v) denotes the free Green functionGq
0(v) inte-

grated over the momentumq, and r(v) is the density of
states inside the exciton band. It is easily seen thatT`5U.
Binding energy«b is related to the potentialU by the equa-
tion G0(«2«b)5U21. For a two-dimensional~2D! system
the densityr(v) can be modeled asr(v)51/EB , where
EB is the bandwidth, and the integral in Eq.~8! can be per-
formed. Finally

T~v!5EBY H lnF«b~EB2v!

v~EB1«b!
G1 ipJ . ~10!

The amplitudeA(t) is shown in Fig. 1 for three values o
v. Both the linear-in-t growth and the oscillations with a
time-independent amplitude are distinctly seen in t
asymptotic regiont*2p«b

21. Actually, they are seen even
for small values oft.0, but the shape of the first oscillatio
is somewhat distorted. The data for a 3D system with
model densityr(v)58Av(EB2v)/pEB

2 are also shown in
Fig. 1. One can see that the dependence ofA(t) on dimen-
sionality is rather weak. The linear-in-t growth ofA(t) in the
large t region originates from the exciton dynamics. It di
appears in theEB→0 limit when the exciton effective mass
tends to infinity.

Therefore, after a short transient the growing and beat
modes dominate the amplitudeA(t). The optically detected
free induction signalI (t) is related to the zero-momentum
component of the wave function,I (t)}uC0(0,t)u2. In the
asymptotic region

A~ t !}H t1 b

2
exp@ i ~«bt1f!#J e2 i«t, ~11!

whereb andf are real parameters, andI (t) obeys the fol-
lowing law:

I ~ t !}$t21btcos~«bt1f!%. ~12!

FIG. 2. Time dependence of the amplitudeuA(t)u for a 3D sys-
tem excited by a spectrally narrow pulse;a50.03«b , EB510«b .
Momentumk50 is at the bottom of the exciton band. Solid line
v2«52«b ; dotted line:v2«520.5«b .
e

a

g

Interference of the two modes results in an unusual shap
the signalI (t). It consists of the monotonic and oscillator
contributions, and both of them growing~rather than decay-
ing.! with t.29

Figure 1 displays the typical shape of the responseA(t). It
is instructive to consider also a special case when a spect
narrow pulse is in resonance with the bound-exciton st
The data are shown in Fig. 2. Fort!a21 the the amplitude
uA(t)u is nearly constant and describes a bound exciton.
t increases, the admixture of the continuum grows and
shape of amplitude described by Eq.~11!, linear growth and
strong undamped oscillations, sets in fort*3a21. If the
pulse is out of resonance with the bound exciton, the sh
of the response similar to that of Fig. 1 is recovered.

The above theory does not take into account the radia
decay of the exciton wave packet. It is this approximati
that results in the unlimited increase in the amplitudeA(t),
Eq. ~11!. If one neglects the oscillating part of Eq.~12!, the
radiative lifetimetR(t) decreases witht astR(t)}t

22. This
rapid increase in the emission probability implies a no
Lorentzian shape of the emission signal and establishes
applicability limit for Eq. ~12!. A rigorous approach should
include a generalization of the Weisskopf-Wigner theory
applied to the exciton antenna. We restrict ourselves t
phenomenological approach, which allows us to estimate
duration of the emitted pulse.

One can infer from Fig. 1 that ifa;«b and the carrier
frequencyv of the exciting pulse is not far from the excito
band bottom«, the radiative lifetimetR(t) can be evaluated
as

tR
21~ t !'~tR

0 !21~11b«bt !
2, ~13!

where the coefficientb;1. The wave packet size att50 is
approximately equal to the bound-exciton radius, hence,tR

0

can be estimated as the bound-exciton radiative lifetim
Since a single light quantum should be radiated in the em
ted pulse, the durationtem of this pulse can be estimate
from the equation

E
0

1

dn5E
0

tem
dt/tR~ t !51. ~14!

Equations~13! and ~14! result in the following formula for
tem:

tem'~tR
0/«b

2!1/3, ~15!

which is correct with the accuracy to a numerical fact
which hopefully is approximately equal to unity. The numb
of oscillations within the emitted pulse is

N'tem«b/2p'~tR
0«b!

1/3/2p. ~16!

It is remarkable that, as distinct from the radiative lifetim
of atomic systems,tem is proportional toc rather than to
c3; herec is the speed of light. This observation implies th
tem is shorter than the atomic radiative lifetimes by the fac
(1/137)2, i.e., tem;10212 s.

It follows from Eq. ~15! that the pulse is much shorte
than tR

0 . For example iftR
0'1 ns and«b'10 meV, the
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number of oscillations equalsN'4 and the pulse duration i
tem'1.5 ps in reasonable agreement with the above e
mate.

Therefore, the inflating antenna shows an ultrashort ra
tive decay timetem having a picosecond scale. Iftem!t, all
scattered photons are emitted as a single burst, a short p
having the shape of a train of oscillations. Iftem@t, only a
small number of photons are radiated in a short pulse of
duration aboutt, and the emission should show a rather lo
tail.

In all of the above a somewhat artificial shape of t
exciting pulse, Eq.~1!, was used. Nevertheless, the resu
are quite general. Indeed, the theory is linear inEq(r ,t), and
a single-side exponential pulse can be considered a
Laplace component of a real pulse. Therefore, the free ind
tion signal generated by an arbitrary pulse can be found
integration of Eq.~8! overa with a corresponding weighting
factor. This integration does not change the general shap
the signal. The effect of smearing the sharply pointed pu
edge can be evaluated in a somewhat different way. If
termination pointst0 of exponential pulses are distribute
according the Gaussian law (g/Ap)exp(2g2t0

2), the first
term in Eq.~11! remains unchanged, while the second te
acquires the factor exp(2«b

2/4g2). If g*«b/2, this factor
results in the renormalization of the coefficientb by a factor
of about unity. It is of importance that the shape of the e
citing pulse enters into the theory only as the initial con
tion, while the exotic behavior of the signal establish
above originates from the free evolution of the wave pac
in the field of a defect.

IV. FREE INDUCTION FROM BIEXCITONS

In this section we generalize the above results for biex
tons. There exist two processes that result in optical prod
tion of biexcitons.7,19,20,30The first process is two-step ab
sorption with an exciton level as a real intermediate state
this process an exciton produced at the first step acts a
‘‘impurity.’’ All above results are applicable to this proces
without any serious changes. The second process is
phonon absorption from the ground state. The theory of
process is more cumbersome than for impurity absorpt
Nevertheless, the final results are nearly identical.

Biexciton eigenfunctions can be written in the opera
form as

uK j &5
1

A2
E dk

~2p!3
c j~k!cK /21k

† cK /22k
† , ~17!

wherecK /26k
† are exciton creation operators, andK is the

center-of-mass momentum of a biexciton. Functionsc j (k)
are biexciton eigenfunctions in the momentum represe
tion. The wave function of a biexciton wave packet at po
tive times can be found in the second order of the pertur
tion theory in the fieldEq(r ,t), Eq. ~1!. In the momentum
representation, the wave function of the biexciton wa
packet with a total momentumK52q equals
ti-

a-

lse

e
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a
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e
e
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-

t

i-
c-
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Cq~k,t !5
2M2AV/v

v2«~q!1 ia
,

Ak0~ t !5(
j

c j~k!c̄ j~0!

2v2Ej12ia
e2 iE j t. ~18!

HereEj are energy levels of a two-exciton system, andV is
the normalization volume. If biexcitons are excited by tw

light beams with momentaq1 andq2, function c̄ j (0) in Eq.
~18! should be substituted byc̄ j„(q12q2)/2….

Equation~18! differs from Eq.~2! only in the coefficient
and in the change in variables,v→V52v and a→2a.
Therefore, the transformations that led us from Eq.~2! to Eq.
~8! can be repeated for biexcitons step by step. The equa
for the scattering operatorTk8k(V) depends on the interac
tion between excitons. The zero-radius potential provide
satisfactory approximation for an exciton molecule. W
this potential, the operatorT̂(V) for a three-dimensional sys
tem has the form24

T`50, T~V!5
a/4p2m

11 iaA2m~V1 i0!
. ~19!

Here m is the exciton mass, andAV1 i0 has a positive
imaginary part. Biexcitons exist whenT(V) has a pole, i.e.,
for a.0; the scattering lengtha equalsa5(2m«b)

21/2,
where «b is the biexciton binding energy. Similarly to
T(v) of Eq. ~10!, the operatorT(V) of Eq. ~19! does not
depend on momenta. Finally,A(t) shows actually the sam
behavior as for bound excitons.

One can infer from Eq.~17! that the quantum stateCq
decays into two photons with momentaK /26k. Intensity of
the free induction signal is proportional t
uCq(k,t)u2'uC0(0,t)u2. In the asymptotic regionA(t)
}$t1(b/2)exp@i(«bt1f)#%exp(22i«t), and Eq. ~12! de-
scribes the optically detected signal.

Therefore, the existence of the growing and beat
modes in the free induction amplitude is a common prope
of biexcitons and bound excitons.31 Estimates for the pulse
duration,tem, derived in Sec. III for bound excitons, are als
applicable to biexcitons.

V. DISCUSSION

In this paper a theory of transients for biexcitons~bound
excitons! is developed. It is a distinctive feature of the theo
that the continuous spectrum and the exciton-exci
~exciton-impurity! interaction were consistently taken int
account. Equation~8! for the amplitudeA(t) and the
asymptotic expansion, Eq.~11!, were found by exact solution
of a well-established model. These equations reveal the
havior of the free induction signal described in Sec. III. T
theory is reliable while timet is small as compared with th
duration of the emitted pulse,t,tem. Under these conditions
the theory describes the basic dynamics of exciton w
packets. The larger the number of oscillations inside
emitted pulse,N, the wider the applicability region of the
theory.

It is the main restriction of the theory that the radiati
decay of wave packets was taken into account in a phen
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enological way. Numerical coefficients in Eqs.~15! and~16!
for tem and N, respectively, were evaluated only approx
mately. Actually, the values of these coefficients depend
the number of parameters~carrier frequency of the exciting
pulse, its spectral width, etc.!. Therefore, the above restric
tion does not influence the specific predictions of the theo
but impedes establishing rigorous criteria of its applicabili

The problem of the radiative decay is also closely rela
to the polariton concept. It is known that in 3D polarito
effects do not change the results critically if the longitudin
transverse splitting,D lt , and the size of the coherence regi
are small in comparison with«b and the light wavelength
|, respectively. We do not know of any experimental data
the gigantic oscillator strengths of bound excitons that rev
deviations from the elementary theory18 neglecting polariton
effects. Apparently, the polariton theory of this effect32 has
never been applied for treating experimental data. The po
iton theory of the biexciton spectra was also devoloped,33,34

and it was only recently that the detection of the polarit
contribution to the giant two-photon biexciton absorption
CuCl has been claimed.34 Polariton contribution to the inflat
ing antenna theory should become of critical importance
large values oft when the size of the antennad(t) ap-
proaches|. Apparently, the criteriad(t),| and t,tem im-
pose similar restrictions ont. Therefore, a consistent theor
of the radiative decay of the inflating antenna should
based on the polariton concept. The role of polaritons
e
y,

oli

at
n

y,
.
d

-

n
al

r-

r

e
-

pends on dimensionality, and in lower dimensionalities th
effect increases.35 For such systems the application on t
polariton concept might be of special importance.

In conclusion, the coexistence of the continuous spectr
and a bound state results in growing and beating mode
the free induction signal following the exciting pulse, fo
both biexcitons and bound excitons. The duration of the f
induction signal is controlled by the radiative decay rate a
dephasing. If the first mechanism dominates, the signa
emitted as a short burst and the radiative yield is close
unity.

Note added in proof.The basic results of this paper, bo
for biexcitons and bound excitons, are related to the radia
response in the late-time region. Fast early-time evolution
the Rayleigh signal from inhomogeneously broadened e
ton levels has been investigated recently theoretically@R.
Zimmermann, Nuovo Cimento17D, 1801~1995!; D. S. Cit-
rin, Phys. Rev. B54, 14 572~1996!# and experimentally@S.
Haakeet al., Phys. Rev. Lett.78, 2228~1997!#.
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