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Orthogonal localized wave functions of an electron in a magnetic field
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We prove the existence of a set of two-scale magnetic Wannier orbitals,wmn(r ), in the infinite plane. The
quantum numbers of these states are the positions (m,n) of their centers which form a von Neumann lattice.
Functionw00(r ) localized at the origin has a nearly Gaussian shape of exp(2r2/4l 2)/A2p for r&A2p l , where
l is the magnetic length. This region makes a dominating contribution to the normalization integral. Outside
this region functionw00(r ) is small, oscillates, and falls off with the Thouless critical exponent for magnetic
orbitals,r22. These functions form a complete basis for many-electron problems.@S0163-1829~97!05507-0#
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I. INTRODUCTION

Computational methods for interacting electrons in
strong magnetic field have been developing rapidly in
past decade.1 They employ different geometries which su
gest different sets of single-electron wave functions a
quantum numbers of many-electron states. The toroidal
ometry was advanced by Yoshioka, Halperin, and Lee.2 The
symmetry classification of the many-electron functions
this geometry was proposed by Haldane.3 Afterwards most
of the finite-size computations were performed in the fram
work of the spherical geometry proposed and developed
Haldane and Rezayi.4

Landau functions, eigenfunctions of angular momentu
and localized and Bloch functions based on coher
states5–9 are usually used in the plane geometry. Localiz
functions have obvious advantages as applied to the Wig
crystal theory and also to some systems with strongly in
mogeneous potential distribution. We expect that these fu
tions may also be effective as the basis functions for num
cal diagonalization. Since the matrix size increas
exponentially with the number of particles,N, this number is
strongly restricted by computational facilities, e.g.,
N<10 for the filling factor n51/3. Therefore, it seem
tempting to develop some procedure for a strong reductio
the dimension of the Hilbert space by eliminating functio
which make only small contributions to the low-ener
states. We believe that the prospects for such an approac
promising since the correlation energy,«corr, which can be
evaluated by the magnitude of the Laughlin gap or by
energy difference between the liquid and solid phases
small compared with the characteristic Coulomb ener
«C5e2/e l , wherel5(c\/eB)1/2 is the magnetic length. The
inequality«corr!«C implies that the subspace chosen for
agonalization can be restricted by the electron configurat
with low Hartree-Fock energies. Such an approach has b
recently developed and successfully applied to electrons
lattice.10

As a first step in developing a low-energy states selec
procedure, one should construct a basis of localized, part
550163-1829/97/55~8!/5306~7!/$10.00
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like functions with a characteristic size aboutl . However,
some general requirements exclude the existence of a c
plete system of single-electron states which are both ex
nentially localized and linearly independent. This po
should be explained in more detail.

The coherent states11 on a von Neumann lattice are th
most localized eigenfunctions for an electron in a magne
field. For such a lattice, with a single flux quantum per a u
cell, the area of a unit cell equals 2p l 2. The set of coheren
states,cmn(r ), of the lowest Landau level~LLL ! can be ob-
tained by the magnetic translations of the functi
c00(r )5exp(2r2/4l 2)/A2p from the origin to all lattice sites
(m,n). The setcmn(r ) is complete, i.e., an arbitrary functio
belonging to the LLL can be expanded in functionscmn(r ).
This statement is physically appealing and is supported b
rigorous mathematical proof.12,13 The functionscmn(r ) are
obviously nonorthogonal. A straightforward way to orthog
nalize such a set is to transform it into the Bloch represen
tion, and then go back to the site representation. Wan
applied this procedure to a one-dimensional chain
Gaussians.14 If the functionscmn(r ) were linearly indepen-
dent, this orthogonalization procedure would result in a
of exponentially localized functions. However, Perelomov12

has established a nontrivial fact that the setcmn(r ) is actually
overcomplete by exactly one function and presented the
plicit form of the linear equation relating these functions; s
Eq. ~4! below. The overcompleteness of the setcmn(r ) im-
poses hard restrictions on the localization of Wannier fu
tions. Zak and collaborators15,16 have shown that the expo
nential localization and the orthogonality of magne
orbitals are incompatible. Thouless17 proved even a stronge
result by relating the localization of magnetic orbitals to t
existence of the Hall current. He showed that in syste
supporting a Hall current the orbitals should fall off wit
distance no faster than by the inverse-square law, he
r22 is a critical exponent.

Keeping in mind these restrictions on the falloff of ma
netic orbitals, one can question whether particlelike orbit
suitable for restricted-basis finite-size calculations do exis
is the main result of this paper that a set of two-scale orbi
5306 © 1997 The American Physical Society
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55 5307ORTHOGONAL LOCALIZED WAVE FUNCTIONS OF AN . . .
wmn(r ), which satisfy the above requirements exists.
18 In the

small r region,r&A2p l , the orbitalw00(r ) is very close to
the Gaussianc00(r ), and this region contributes about 95
to the normalization integral. Forr*A2p l , the function
w00(r ) falls off as r22 in exact correspondence with th
Thouless criterion and shows an oscillatory behavior wh
ensures orthogonality to the different orbitalswmn(r ).

The term Wannier functions is usually applied only to t
orbitals which fall off exponentially. Since the function
wmn(r ) are normalizable and have a well localized Gauss
core, we shall term them Wannier functions in what follow

The paper is organized as follows. In Sec. II general eq
tions are presented and the behavior of magnetic Bloch fu
tions near the singular point in the momentum plane is st
ied. It is of importance for establishing the completeness
the sets of Bloch and Wannier functions. The basic res
are discussed in Sec. III where two-scale Wannier functi
wmn(r ) of the infinite plane are derived and studied analy
cally and numerically. In Sec. IV some results for Wann
functions on the finite plaquettes are presented. The res
are summarized in the Conclusion.

II. GENERAL EQUATIONS

Let us choose a rectangular unit cell with sidesa andb
such thatab52p and a normalization plaquette with side
Lx5aa andLy5bb, wherea andb are integers. Here an
below l51. It is convenient to define the functioncmn(r )
centered at a site (m,n) as

cmn~r !5TmaTnbc00~r !, c00~r !5exp~2r 2/4!/A2p,
~1!

whereTma andTnb are operators of magnetic translations19

alonga andb axes, andcmn(r ) are the eigenfunctions of th
Schrödinger equation of an electron in a magnetic field. T

axial gaugeA(r )5 1
2 ẑ3r is used. The general definition o

the operatorTR for a particle with a chargee.0 is

TRc(r )5expH 2
i

2
R•A~R!J exp$ i r•A~R!%c~r2R!. ~2!

Therefore, the explicit form of the functioncmn(r ) is

cmn~r !5~2 !mnexpH 2
1

4
~r2Rmn!

21
i

2
ẑ•~Rmn3r !JYA2p,

(3)

whereRmn5ma1nb.
The set of functionscmn(r ) obeys the Perelomov over

completeness equation12

(
mn52`

`

~2 !m1ncmn~r !50. ~4!

Therefore functionscmn(r ) are linearly dependent.
By definition,20 the outer Kronecker productGa^Gb of

the groupsGa andGb of the integral magnetic translation
alonga andb consists of operatorsTmaTnb . It follows from
Eq. ~2! that TaTb5TbTae

iab5TbTa . Therefore, operators
h

n
.
a-
c-
-
f
ts
s
-
r
lts

e

Tma andTnb also commute for any arbitrary integersm and
n and form the groupGa^Gb . The groupGa^Gb is an
Abelian group of magnetic translations, hence, one can
troduce a two-dimensional momentumk and follow the
Wannier procedure.14 The operatorsTma1nb do not belong to
the groupGa^Gb if both m,nÞ0; they form a projective
~ray! representation of the ordinary translation group.

Transformation of the setcmn(r ) to the momentum repre
sentation results in Bloch functions:

Ck~r !5 (
mn52`

`

cmn~r !exp~ ikRmn!/Aabn~k!. ~5!

FunctionsCk(r ) with different values ofk are orthogonal
since they belong to different irreducible representations
the groupGa^Gb . Values of k can be found from the
boundary conditions forCk(r ). The latter can be chose
either as regular periodic boundary conditions with respec
the magnetic translations with periodsLx and Ly , or from
f-periodic conditions when some twistf5(fx ,fy) is
added.21 Therefore, the components ofk can take values

kx5~2psx1fx!/Lx , ky5~2psy1fy!/Ly ~6!

inside the Brillouin zone. Here componentssx andsy of the
vector s5(sx , sy) are integers,sx , sy50, 61, . . . , taking
a and b values, respectively. Normalization coefficie
n(k) is determined by the equation

n~k!5A2p (
mn52`

`

cmn~0,0!cos~kRmn!. ~7!

The inverse Fourier transformation

Wmn~r !5(
k

Ck~r !exp~2 ikRmn!/Aab ~8!

results in a set of orthonormal Wannier-type functions:

Wmn~r !5 (
m8n852`

`

Kf~m82m, n82n!cm8n8~r !, ~9!

where

Kf~m,n!5
1

ab(
k
exp~ ikRmn!/An~k!. ~10!

The functionsKf(m,n) and Wmn(r ) obey the equations
Kf(m1Ma, n1Nb)5Kf(m,n)exp$if(M,N)%, and

Wm1Ma,n1Nb~r !5Wmn~r !exp$2 if~M ,N!%, ~11!

wheref(M ,N)5Mfx1Nfy , andM andN are integers.
Therefore,uWmn(r )u is periodic with periodsLx andLy for
any value of the fluxf.

The above equation for the Bloch functionsCk(r ) is
known both in Landau22–24 and coherent function25 bases,
and the equation forWmn(r ) was discussed more recently a
applied to finite plaquettes.6 These equations have their an
logs in the mixedkq representation.16

FunctionsCk(r ) are orthogonal and, therefore, linear
independent. If they exist for any momentak5(kx , ky), de-
fined by Eq.~6!, then the setCk(r ) is complete. Hence, the
setWmn(r ) is complete, too. However, the properties of o
of the functionsCk(r ), namely, the functionCk0

(r ), where
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FIG. 1. Normalization factor
n(k) for a square lattice.
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k0 is the corner of the Brillouin zone, need a special del
eration. At this pointkxa56kyb56p, and the exponent in
Eq. ~5! equals (2)m1n. Therefore, the numerator o
Ck0

(r ) turns into zero because of Eq.~4!. If one puts

Ck0
(r )50 and excludes this function from the setCk(r ),

the set becomes incomplete since it lacks a function of
translation symmetry ofk0. This problem was emphasize
by Thouless.17

Since functionsCk(r ) are normalized, the denominator o
Ck0

(r ) also turns into zero,n(k0)50. Indeed, fork5k0 the
cosine in Eq.~7! equals cos(k0Rmn)5(2)m1n, and therefore
n(k0)50 due to Eq.~4!. Functionn(k) is shown in Fig. 1
for a square lattice,a5b5A2p. One can see thatn(k) is
positive,n(k).0, inside the Brillouin zone and reaches
minima, n(k0)50, in the corners of it. Both the numerato
and denominator ofCk(r ) have the order of magnitude o
uzu whenz[k2k0→0. The leading term in the numerator o
Ck(r ) depends onwz , the azimuth ofz, as it is shown be-
low; cf. Eq.~16!. On the contrary, the functionAn(k), which
is the denominator ofCk(r ), is isotropic neark0 for a square
lattice. Therefore, the functionCk(r ) retains the dependenc
on wz even in the limitz→0. Hence, it is singular at the
point k5k0, and the limitCk→k0

does not exist.

To find the form ofCk(r ) in the limit k→k0 , one can
expand the numerator ofCk01z(r ) in z and take into accoun
Eq. ~4!. Then

Ck01z~r !5
i

@abn~k!#1/2 (
mn52`

`

~2 !m1nz•Rmncmn~r !. ~12!

If one introduces complex variablesz5x1 iy and
Zmn5Xm1 iYn , the condition~4! takes the form:

(
mn52`

`

~2 !mn1m1nexp$2 1
4Rmn

2 1 1
2zZ̄mn%50. ~13!

Here and below complex conjugate variables are design
by bars. Since this equation is valid for arbitrary values
z and the sum converges exponentially, one can take
derivative overz:

(
mn52`

`

~2 !m1nZ̄mncmn~r !50. ~14!
-

e

ed
f
he

If one takes advantage of the relationz•Rmn

5(Zmnz̄1Z̄mnz)/2, wherez5zx1 i zy , and plugs Eq.~14!
into Eq. ~12!, the latter takes the form

Ck01z~r !'
i /2

@abn~k!#1/2
z̄ (
mn52`

`

~2 !m1nZmncmn~r !. ~15!

Sincen(k)1/2}uzu for uzu→0, Eq. ~15! can be rewritten as

Ck01z~r !'e2 iwzFk0
~r !, ~16!

whereFk0
(r ) is a regular function ofr possessing the sym

metry of the pointk0.
Therefore, nonanalytic functionCk01z(r ) factors near the

singular point into the product of two functions,e2 iwz and
Fk0

(r ). The first factor absorbs the nonanalytic depende

of Ck01z(r ) on z, whereas the second factor does not depe

on z and possesses the translational symmetry of the p
k0. FunctionFk0

(r ), taken with an arbitrary phase facto

can be used as a Bloch function with thek0 symmetry.
Therefore, Bloch functions are defined for allk values. This
statement concludes the proof of the completeness of the
Ck(r ). The setWmn(r ) obtained from it by the orthogona
transformation of Eq.~8! is also complete.

There exists another way to construct the functi
Fk0

(r ). It is based on the properties of Bloch functions co
structed from different sets of localized orbitals. Instead
c00(r ), one can use the functionc00

(1)(r )5zc00(r )/A2 to gen-
erate the sets of orbitalscmn

(1)(r ) and Bloch functions
Ck

(1)(r ). The setscmn(r ) and cmn
(1)(r ) belong to the LLL.

Both sets are overcomplete and can be expanded one in
other. Consequently, functionsCk(r ) andCk

(1)(r ) can differ
only in r independent phase factors for arbitrary value
k. Boonet al.have shown26 thatk0 is a regular point for the
setCk

(1)(r ). Therefore, one can useCk0
(1)(r ) as a function

Fk0
(r ). The shape of the functionWmn(r ) depends on the

choice of the phase ofFk0
(r ).

The properties of Bloch functions discussed in the pre
ous paragraph can be also understood from a more gen
point of view. It follows from Eqs.~3! and ~13! that func-
tions cmn

(1)(r ) can be obtained as
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cmn
~1!~r !5A2~]/]Z̄mn2

1
4Zmn!cmn~r !.

Therefore, functionscmn
(1)(r ) andcmn(r ) belong to the same

Landau level because of the existence of continuous grou
magnetic translations. The same is true for the functi
cmn
(q)(r ) originating from the functionc00

(q)(r )}zqc00(r ),
where q is an arbitrary integer. Bloch functionsCk

(q)(r ),
constructed from them, are completely determined by
translational symmetry up to the phase factors depend
only on q and k. Therefore, all functionsCk

(q)(r ) with the
same value of the momentumk and different values ofq
coincide up to these phase factors. Singularities of functi
Ck

(q)(r ) ensure the existence of the Hall current,17 hence,
they are present for each set of functionsCk

(q)(r ) and cannot
be eliminated. However, the number of singular points a
their positions in the Brillouin zone change depending
q.26

It is known that the overcompleteness equation~4! is re-
lated to the properties of Jacobiq(uut) functions.12,17Equa-
tion ~7! for n(k) takes a simple form when rewritten in term
of these functions. If one performs the summation overn in
Eq. ~7! using the Jacobi imaginary transformation ofq
functions,27 n(k) acquires the form

n~k!5
a

Ap
e2ky

2
q3S a

2p
k1U i abDq3S a

2p
k2U i abD , ~17!

where k65kx6 iky . The zeros ofq3(uut) can be found
from the conditionu5(M1 1

2)1(N1 1
2)t, whereM andN

are integers, and one immediately recovers that the corne
the Brillouin zone,k05(6p/a, 6p/b), is a zero ofn(k).

III. WANNIER FUNCTIONS IN THE INFINITE PLANE

Equations~9! and~10! can be used to find Wannier func
tions wmn(r ) localized in the infiniter plane. In the limit
a,b→`, the sum in Eq.~10! transforms into the integra
over the Brillouin zone:

K`~m,n!5abE
~B.Z.!

dk

~2p!2
exp~ ikRmn!

An~k!
. ~18!

The kernelK`(m,n) is obviously independent off.
The asymptotic behavior ofK`(m,n) for umu, unu@1 can

be found analytically. It is determined by the behavior of t
integrand near its pole, i.e., by the expansion ofn(k) near
k0. For a square lattice,a5b5A2p, this expansion has th
form

n~k01z!'ga2z2/2, ~19!

whereg'0.5814 is given by the series

g52 (
mn52`

`

~2 !mn1m1nm2expF2
p

2
~m21n2!G . ~20!

Substituting~19! into ~18! results in the leading term of th
expansion ofK`(m,n) in Rmn

21 :
of
s

e
g

s

d
n

of

K`~m,n!'~2 !m1n2Ap

g
E

2`

` dz

~2p!2
exp~ i zRmn!

z

5
~2 !m1n

ApgRmn

. ~21!

The next term of this expansion falls off asRmn
23 . An equa-

tion equivalent toK`(m,n)}(2)m1n/Rmn was derived by
Sen and Chitra28 using a different procedure.

The asymptotic behavior ofwmn(r ) for large ur2Rmnu
values follows from Eqs.~9! and~21!. The right-hand side of
the equation

w00~r !5 (
mn52`

`

K`~m,n!cmn~r ! ~22!

for the functionw00(r ) includes the product of the kerne
K`(m,n), whose denominator depends onm andn slowly,
and the factorcmn(r ), which depends onm andn exponen-
tially for a fixed value ofr . One can use the asymptotic form
of the kernelK`(m,n), Eq. ~21!, and neglect the higher or
der corrections to it. If one substitutes the expansion

Rmn
21'r21@12r•~Rmn2r !/r 2#

into Eq. ~22!, the first term vanishes because of the Pere
mov identity, Eq.~4!, and the second term results in

w00~r !'2
r

Apgr 3 (
mn52`

`

~2 !m1n~Rmn2r !cmn~r !. ~23!

The first factor in Eq.~23! falls off as r22, whereas the
second is a periodic function ofr . If one plugsr5Rm8n8 in
the second factor and applies Eq.~3!, this factor takes the
form

~2 !m81n81m8n8 (
mn52`

`

~2 !m1n1mnRmnc00~r !.

The sum is equal to zero because of symmetry argume
therefore, all lattice sites,r5Rmn , are zeros of the asymp
totic expansion~23! of the functionwmn(r ).

It was shown by Kohn29 that the rate of the falloff of an
exponentially decaying Wannier function is determined
the distance of the singular point in the complex moment
plane from the real axis. In the problem of magnetic Wann
functions unavoidable singularities exist in the real (kx ,
ky) plane. These singularities result in the power-law fallo
of the Wannier functions.

The asymptotic expansion ofK`(m,n), Eq. ~21!, is accu-
rate up to the valuesumu, unu'1, e.g., the deviation of
K`(1,0)'20.288 from its approximate value following
from Eq. ~21! is only about 2%. The coefficien
K`(0,0)'1.241 is large as compared with all the coef
cientsK`(m,n) with m,nÞ0. One can subtract this larg
term and rewrite Eq.~22! in the form

w00~r !2c00~r !5 (
mn52`

`

~2 !m1nD~m2,n2!cmn~r !. ~24!

The kernelD(m2, n2) is numerically small and can be con
sidered as a smooth function ofm and n. This allows the
application of the arguments employed when deriving E
~23!. Then the leading term in the right-hand side of Eq.~24!
vanishes because of the overcompleteness condition of
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~4!. Thereforew00(r )'c00(r ), which means that the differ
ence between the functionsw00(r ) andc00(r ) is expected to
be small in the region where these functions are large. In
larger region, where these functions are small,w00(r ) domi-
nates and Eq.~23! should be used.

Numerical results support all of the above conclusio
The infinite-plane functionw00(r ) is shown in Fig. 2. Figure
2~a! provides a detailed comparison of the shapes of
function uw00(r )u2 and the Gaussian functionc00(r )

2 in the
region of uxu, uyu<1.53A2p. These functions are plotte
along thex axis and along the diagonal,x5y, on the right-
and left-hand sides of the figure, respectively. The funct
w00(r ) is real on these lines. One can see thatw00(r )

2 and
c00(r )

2 are very close to each other in both directions. T
functionw00(r )

2 shows small anisotropy: it is slightly elon
gated in thex5y direction and squeezed in thex direction
compared withc00

2 (r ). It is a remarkable property of th
function uw00(r )u2 that it is very small in the points
r5A2p(1,0) andA2p(1,1). These points are the lattic

FIG. 2. ~a! Dependence of the functionsuw00(r )u2 and c00(r )2

on r in the directions of the principal axesx andy ~right! and the
diagonals x56y ~left!. Solid line—uw00(r )u2, dashed line—
Gaussian functionc00(r )

2. ~b! Oscillatory dependence of the func
tion w00(x,0) on x. The exact solution, asymptotic solution, an
envelope function proportional tox22 are shown in the region
x>A2p l by solid, dotted, and dashed lines, respectively.
e

.

e

n

e

sites adjacent to the origin. The suppression ofuw00(r )u2 at
the lattice sites of the two first coordination spheres of
von Neumann lattice results in the squeezing of the cen
peak and a strong localization ofuw00(r )u2. Consequently,
the central region contributes about 95% to the normaliza
integral. The behavior ofw00(r ) along thex axis is shown in
Fig. 2~b! over a wide region ofx values. It is seen tha
w00(x,0) oscillates and decreases withx. For x→`, the os-
cillation amplitudes decrease asx22 and zeros ofw00(x,0)
approach multiples of the lattice periodA2p in agreement
with Eq. ~23!. The exactw00(r ) curve is almost indistin-
guishable from its asymptotic shape in the entire oscillat
region.

Therefore, functionswmn(r ) show a two-scale behavior
The functionw00(r ) is large and shows only minor devia
tions from the Gaussian shape inside the central cell, but
small, oscillates, and falls off according to ther22 law in the
asymptotic region.

The setwmn(r ) is orthogonal and complete by argumen
of Sec. II. Therefore, any function which is invariant und
the unitary transformations of the basis can be calculate
the Wannier representation. For instance, a straightforw
calculation based on the representation of the functi
wmn(r ) through the kernelK`(m,n) and coherent functions
cmn(r ) shows that the function

C`~r ,r 8!5 (
mn52`

`

w̄mn~r !wmn~r 8! ~25!

is equal to the expression

C`~r2r 8!5~1/2p!exp$2~r2r 8!2/4%expH i2ẑ•~r3r 8!J ,
~26!

which can be also derived in the Landau representation.
last factor in Eq.~26! is gauge dependent. Therefore, t
continuous symmetry of the magnetic translation group
recovered due to the completeness of the systemwmn(r ).

IV. SOME RESULTS FOR TOROIDAL GEOMETRY

Only few results can be obtained for Wannier functio
Wmn(r ), Eq. ~8!, analytically. However, numerical method
allow one to study the dependence ofWmn(r ) on the
plaquette size (a,b) and the twistf, and to check the self-
consistency of the procedure. A number of results was
tained by Ferrari.6,25 The singular behavior ofCk(r ) near
k5k0 was studied in Sec. II.

In Fig. 3 the square of the modulus of the functio
W00(r ) as well as the real and imaginary parts ofW00(r ) are
shown for a square lattice witha5b53 andf50. It is
seen thatuW00(r )u2 is nearly isotropic and well localized in
the area of aboutA2p near the origin. The shape of thi
function is close to the data6 for a triangular lattice.
Re$W00(r )% is also rather isotropic and well localized
whereas Im$W00(r )% is small and highly anisotropic in the
same region. The shape of the function Im$W00(r )% can be
understood if one takes into account that, because of Eqs~3!
and ~9!, the expansion of Im$W00(r )% in the powers ofz
starts with the term Im$W00(r )%}Im$z4%. All lower-power
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terms cancel for a square lattice.
It is seen in Fig. 3 that all three functions possess fu

symmetry of the square lattice. For an odd-odd plaquette th
high-symmetry shape appears only for the twistf50. When
twist increases, the shape ofuW00(r )u2 changes and becomes
asymmetric. The changes are moderate near the maximum
the surfaceuW00(r )u2 but are considerably larger in its lower
part. The dependence of the functionW00(r ) on f becomes

FIG. 3. Shape of the functionW00(r ) for a square lattice
with a5b53 and f50. ~a! uW00(r )u2, ~b! Re$W00(r )%, ~c!
Im$W00(r )%.
ll
is

of

discontinuous when one of the points determined by Eq.~6!
passes through the corner of the Brillouin zonek0, since in
the vicinity of k0 the functionCk(r ) critically depends on
the phasewz of z5k2k0 as it follows from Eq.~16!.

More generally, the functionuW00(r )u2 depends onf dis-
continuously when ~i! both a and b are odd and
fx5fy5p, ~ii ! botha andb are even andf50, and~iii !
a is odd,b is even, andfx5p andfy50.

Toroidal Wannier functions constructed by magne
translations of infinite-plane functionswmn(r ) have more
stable shape thanWmn(r ). This approach will be discussed i
more detail elsewhere.

It was shown in Sec. II that despite the singular dep
dence ofCk(r ) andWmn(r ) on the twistf in the vicinity of
k0, these sets of functions remain complete at any value
f. The completeness can be checked by comparing the
sults obtained in theWmn(r ) lattice basis with those in the
Landau function2 basis. For example, the function

C~r ,r 8!5(
mn

W̄mn~r !Wmn~r 8!, ~27!

which is similar to the functionC`(r ,r 8), Eq. ~25!, does not
depend on a specific choice of a complete basis set of
LLL. We have calculated the right-hand side of Eq.~27! for
finite plaquettes using bothWmn(r ) and Landau functions a
given in Ref. 2. Gauge independent parts ofC(r ,r 8) in both
representations coincide with the accuracy of our compu
tions. They were performed for the values ofa andb up to
5. For the finite plaquettes the electron dens
r(r )5C(r ,r ) oscillates with r near its continuum limit
r`51/2p. The amplitude of oscillations decreases rapid
with increasinga andb. The number of oscillations inx and
y directions equals the number of fluxesab per a plaquette
rather than the individual values ofa andb, which are the
number of lattice sites in corresponding directions. T
property was found analytically in the Landau representat
by Sutherland.24 It indicates the disappearance of the patte
of the flux lattice and restoration of the symmetry of t
underlying problem as it is expected since both perio
functionsWmn(r ) and Landau functions form complete se
The completeness of theWmn(r ) set is in agreement with the
assertions by Ferrari.6

V. CONCLUSION

The construction of infinite-plane localized magne
Wannier-type functions was considered a challenging pr
lem for a long time. It was shown that these functions, if th
do exist, are subject to rigid restrictions. Three properties
a set of localized magnetic orbitals are incompatible: co
pleteness, orthogonality, and exponential falloff.16 Moreover,
for systems supporting a Hall current magnetic orbit
should fall off no faster thanr22.17 The set of Gaussian
coherent states on a von Neumann lattice violates these
teria because of the overcompleteness relation,12 which is a
single linear constraint relating an infinite set of orbitals. W
believe that the complete set of orthogonal two-scale orbi
wmn(r ) studied in this paper is the best compromise betw
the requirement of optimal localization and the inevitab
restrictions on the degree of localization. Functionw00(r )
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centered at the origin~i! is large and possesses nearly Gau
ian shape inside the region of the size of aboutA2p l making
a dominant contribution to the normalization integral, a
~ii ! is small and falls off with a critical exponentr22 outside
this region. It is a striking property of the theory that th
overcompleteness condition, Eq.~4!, emerges and plays
crucial role at all stages of the derivation and study of
Wannier orbitalswmn(r ). We expect thatwmn(r ) orbitals
form a convenient basis both for analytical and numeri
calculations.

Note added in proof. In a recent paper by J. Zak~unpub-
lished! a connection between the properties of magne
Wannier functions and the Balian-Low theorem@R. Balian,
C. R. Acad. Sci. Paris292, 1357 ~1981!; F. E. Low, in A
ate

ep
-

e

l

c

Passion for Physics—Essays in Honor of Geoffrey Che,
edited by C. DeTaret al. ~World Scientific, Singapore
1985!, p. 17# is discussed.
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