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Orthogonal localized wave functions of an electron in a magnetic field
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We prove the existence of a set of two-scale magnetic Wannier orbitg|gr), in the infinite plane. The
guantum numbers of these states are the positione)(of their centers which form a von Neumann lattice.
Functionwg(r) localized at the origin has a nearly Gaussian shape of-exp{l%)/ 27 for r <+2xl, where
| is the magnetic length. This region makes a dominating contribution to the normalization integral. Outside
this region functiorwg(r) is small, oscillates, and falls off with the Thouless critical exponent for magnetic
orbitals,r ~2. These functions form a complete basis for many-electron problg$64.63-182607)05507-(

[. INTRODUCTION like functions with a characteristic size abdutHowever,
some general requirements exclude the existence of a com-
Computational methods for interacting electrons in aplete system of single-electron states which are both expo-
strong magnetic field have been developing rapidly in thenentially localized and linearly independent. This point
past decadé.They employ different geometries which sug- should be explained in more detail.
gest different sets of single-electron wave functions and The coherent stattson a von Neumann lattice are the
quantum numbers of many-electron states. The toroidal ggnost localized eigenfunctions for an electron in a magnetic
ometry was advanced by Yoshioka, Halperin, and &ae  field. For such a lattice, with a single flux quantum per a unit
symmetry classification of the many-electron functions incell, the area of a unit cell equalsr®?. The set of coherent
this geometry was proposed by Haldanafterwards most  statescn,q(r), of the lowest Landau levéLLL ) can be ob-
of the finite-size computations were performed in the frametained by the magnetic translations of the function
work of the spherical geometry proposed and developed bgo(r) =exp(—rZ/4l 2)/\J2 from the origin to all lattice sites
Haldane and Rezafi. (m,n). The setc,,,,(r) is complete, i.e., an arbitrary function
Landau functions, eigenfunctions of angular momentumbelonging to the LLL can be expanded in functians.(r).
and localized and Bloch functions based on coherenfhis statement is physically appealing and is supported by a
stateS™® are usually used in the plane geometry. Localizedrigorous mathematical prodf:** The functionscy,,(r) are
functions have obvious advantages as applied to the Wigneabviously nonorthogonal. A straightforward way to orthogo-
crystal theory and also to some systems with strongly inhonalize such a set is to transform it into the Bloch representa-
mogeneous potential distribution. We expect that these fundion, and then go back to the site representation. Wannier
tions may also be effective as the basis functions for numeriapplied this procedure to a one-dimensional chain of
cal diagonalization. Since the matrix size increasesGaussiansd? If the functionsc,,,(r) were linearly indepen-
exponentially with the number of particldd, this number is dent, this orthogonalization procedure would result in a set
strongly restricted by computational facilities, e.g., by of exponentially localized functions. However, Pereloffov
N=<10 for the filling factor v=1/3. Therefore, it seems has established a nontrivial fact that thecgi(r) is actually
tempting to develop some procedure for a strong reduction advercomplete by exactly one function and presented the ex-
the dimension of the Hilbert space by eliminating functionsplicit form of the linear equation relating these functions; see
which make only small contributions to the low-energy Eq. (4) below. The overcompleteness of the sgt(r) im-
states. We believe that the prospects for such an approach greses hard restrictions on the localization of Wannier func-
promising since the correlation energyy,,;, which can be tions. Zak and collaborator®'® have shown that the expo-
evaluated by the magnitude of the Laughlin gap or by thenential localization and the orthogonality of magnetic
energy difference between the liquid and solid phases, isrbitals are incompatible. Thoulé$groved even a stronger
small compared with the characteristic Coulomb energyresult by relating the localization of magnetic orbitals to the
ec=e?lel, wherel = (c#i/eB)? is the magnetic length. The existence of the Hall current. He showed that in systems
inequality e ;o< £ implies that the subspace chosen for di- supporting a Hall current the orbitals should fall off with
agonalization can be restricted by the electron configurationdistance no faster than by the inverse-square law, hence,
with low Hartree-Fock energies. Such an approach has bean 2 is a critical exponent.
recently developed and successfully applied to electrons on a Keeping in mind these restrictions on the falloff of mag-
lattice 1° netic orbitals, one can question whether particlelike orbitals
As a first step in developing a low-energy states selectinguitable for restricted-basis finite-size calculations do exist. It
procedure, one should construct a basis of localized, particlés the main result of this paper that a set of two-scale orbitals
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Wmn(r), which satisfy the above requirements exiétethe T, and T,,, also commute for any arbitrary integarsand
smallr region,r=<.27l, the orbitalwy(r) is very close to n and form the groupG,2G,. The groupG,®G, is an
the Gaussiarty(r), and this region contributes about 95% Abelian group of magnetic translations, hence, one can in-
to the normalization integral. For= \/ﬁL the function troduce a two-dimensional momentuknr and follow the
Woo(r) falls off asr~2 in exact correspondence with the Wannier proceduré? The operatord .., do not belong to
Thouless criterion and shows an oscillatory behavior whicithe groupG,® Gy, if both m,n+0; they form a projective
ensures orthogonality to the different orbitatg, (r). (ray) representation of the ordinary translation group.
The term Wannier functions is usually applied only to the ~ Transformation of the set;,(r) to the momentum repre-
orbitals which fall off exponentially. Since the functions Sentation results in Bloch functions:
Wn(r) are normalizable and have a well localized Gaussian
core, we shall term them Wannier functions in what follows. Wy (r)
The paper is organized as follows. In Sec. Il general equa-
tions are presented and the behavior of magnetic Bloch funqi .
unctionsW¥

tions near the singular point in the momentum plane is stud—ince the bkélrgnw'ttg g:gggm ﬁé‘éﬁiig& ?gergsrg]nc;gggﬁls of
ied. It is of importance for establishing the completeness ogh y 9 b

o

>

mn=—

Cmn(N)eXp(ikRmn)/VaBr(k).  (5)

the sets of Bloch and Wannier functions. The basic result € groupG,®Gy. Values ofk can be found from the

are discussed in Sec. Ill where two-scale Wannier functioneﬁﬁgrd:;yrecol:]lg'r“ogrsi’ogoigpgéL)r; dgrecl)ar:geitriocnasnwli)tﬁ rcehsoseirt] to
Wmn(r) of the infinite plane are derived and studied analyti- 9 P Y P

cally and numerically. In Sec. IV some results for Wannier
functions on the finite plaquettes are presented. The resul
are summarized in the Conclusion.

the magnetic translations with periotls and L, or from
-periodic conditions when some twis$=(y,¢,) is
added?! Therefore, the components kfcan take values

Ke=(2ms,+ b)lLy,  ky=(2ms,+ )L,  (6)

inside the Brillouin zone. Here componems{sands, of the
Let us choose a rectangular unit cell with sideandb ~ Vector s=(s,, s,) are integerss,, s,=0, *1,..., taking
such thatab= 27 and a normalization plaquette with sides @ and B values, respectively. Normalization coefficient
«=aa andL,=Bb, wherea and 3 are integers. Here and ¥(K) is determined by the equation
below |=1. It is convenient to define the functiar,(r)

Il. GENERAL EQUATIONS

centered at a siteng,n) as y(K)=V27 2 Cmn(0,0)co0gKR ). 7
mn=—o
Crn(1) = TmaTnbCoo(F),  Coolr)=exp(—r?/4)/\2, The inverse Fourier transformation
1)
whereT,,, and T,,, are operators of magnetic translatibhs Wmn(r):; Wi(r)exp(—ikRpp)/Vap (8)

alonga andb axes, andt,,,(r) are the eigenfunctions of the
Schralinger equation of an electron in a magnetic field. Theresults in a set of orthonormal Wannier-type functions:

axial gaugeA(r)=1zxr is used. The general definition of

the operatofT for a particle with a charge>0 is W)= 2 Kgm'—m, n'=n)Cun(r), (9
mn'=—w
i
Tris(r) =exp[ - ER-A(R)] explir-A(R)}¢(r—R). (2 where
1 . —
Therefore, the explicit form of the functiogy,(r) is Kg(min)= @; SXTkRmn)/ V(). (10

The functionsK ,(m,n) and W,(r) obey the equations
Kg(m+Ma, n+NB)=K 4(m,n)exgi$(M,N)}, and

Wm+Ma,n+NB(r):Wmn(r)exp[_i¢(M1N)}! (11)

where $(M,N)=M ¢,+N¢,, andM andN are integers.
Therefore,|Wp,(r)| is periodic with periodd , and L, for
any value of the fluxgp.

The above equation for the Bloch functior,(r) is
known both in Landat?2* and coherent functidn bases,
and the equation fow,,,(r) was discussed more recently as
applied to finite plaquettésThese equations have their ana-
logs in the mixedkq representatiof®

FunctionsW(r) are orthogonal and, therefore, linearly
independent. If they exist for any momenta (k,, k), de-
the groupsG, and G, of the integral magnetic translations fined by Eq.(6), then the setV,(r) is complete. Hence, the
alonga andb consists of operator§,,T,;,. It follows from  setW,,(r) is complete, too. However, the properties of one
Eq. (2) that T,T,=T,T,e3=T,T,. Therefore, operators of the functions¥,(r), namely, the function? (r), where

/&

(3)

mn 1 ) i~
Cmn(N)=(—)""ex _Z(r_Rmn) +EZ'(Rmnxr)

whereR,,,= ma+nb.
The set of functions,,(r) obeys the Perelomov over-
completeness equati

©

>

mn=—oo

(_)m+ncmn(r):0-

(4)

Therefore functiong,,,(r) are linearly dependent.
By definitionZ° the outer Kronecker produds,® G, of
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ko is the corner of the Brillouin zone, need a special delib-If

eration. At this poink,a= *k,b= * 7, and the exponent in
Eg. (5 equals )™ ". Therefore, the numerator of
‘Ifko(r) turns into zero because of E@4). If one puts

\Ifko(r)=0 and excludes this function from the s&t(r),

the set becomes incomplete since it lacks a function of the

translation symmetry oky. This problem was emphasized
by Thouless!

Since functionsl . (r) are normalized, the denominator of
Wy (r) also turns into zeroy(ko) =0. Indeed, fok =Kk, the
cosine in Eq(7) equals co$(;Rmn) =(—)""", and therefore
v(ky) =0 due to Eq.(4). Functionwv(k) is shown in Fig. 1
for a square latticea=b= 2. One can see that(k) is

positive, v(k) >0, inside the Brillouin zone and reaches its

minima, v(ky) =0, in the corners of it. Both the numerator
and denominator of' (r) have the order of magnitude of
|gd when{=k—ky—0. The leading term in the numerator of
W (r) depends orp,, the azimuth ofZ, as it is shown be-
low; cf. Eq.(16). On the contrary, the functiogiv(k), which

is the denominator o¥(r), is isotropic neak, for a square
lattice. Therefore, the functiowr, (r) retains the dependence
on ¢, even in the limit{—0. Hence, it is singular at the
point k=Kkg, and the Iimit\If,Hk0 does not exist.

To find the form ofW¥(r) in the limit k—k, , one can
expand the numerator & , (r) in and take into account

Eqg. (4). Then

(_ )m+n§_ Rmncmn(r)- (12)

i
v rN=c———"=1p
k0+§( ) [aﬂy(k)]lZm
If one introduces complex variablez=x+iy and
Zn=XmtiY,, the condition(4) takes the form:

©

E (—)mntmEngy — %Rzmn"' %ZZnn}:O- (13

mn= —o©

Here and below complex conjugate variables are designatesdEt
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FIG. 1. Normalization factor
v(k) for a square lattice.

one takes advantage of the relationd: Ry,
=(Zmnd+Zmnd)12, where{={,+i{,, and plugs Eq(14)
into Eq. (12), the latter takes the form

oo

—~ 112 o 2 m+n
\Pko+§(r)~ [a,BV(k)]l gmn:—w (_) Zmncmn(r)- (15)
Sincev(k)Y2x|¢]| for |{|]—0, Eq.(15) can be rewritten as

‘Ifko+£(r)~e“‘/’é¢>ko(r), (16)

whered)ko(r) is a regular function of possessing the sym-
metry of the point,.

Therefore, nonanalytic functioxlrko+§(r) factors near the
singular point into the product of two functions;'¢s and
CI)kO(r). The first factor absorbs the nonanalytic dependence

of \I/ko+§(r) on ¢, whereas the second factor does not depend

on ¢ and possesses the translational symmetry of the point
kg. Function <I>k0(r), taken with an arbitrary phase factor,

can be used as a Bloch function with thg symmetry.
Therefore, Bloch functions are defined for klvalues. This
statement concludes the proof of the completeness of the set
¥\ (r). The setW,,,(r) obtained from it by the orthogonal
transformation of Eq(8) is also complete.

There exists another way to construct the function
@, (r). Itis based on the properties of Bloch functions con-
structed from different sets of localized orbitals. Instead of
Coo(r), one can use the functiaryl)(r) = zcyo(r)/ V2 to gen-
erate the sets of orbitalgl)(r) and Bloch functions
w(r). The setscyy(r) and c{})(r) belong to the LLL.
Both sets are overcomplete and can be expanded one in an-
other. Consequently, functionis,(r) and¥{")(r) can differ
only in r independent phase factors for arbitrary value of
k. Boonet al. have showff thatk, is a regular point for the
WH(r). Therefore, one can usé{(r) as a function

by bars. Since this equation is valid for arbitrary values of®«(r). The shape of the functiow/,,(r) depends on the
z and the sum converges exponentially, one can take thehoice of the phase Gbko(r).

derivative overz:

©

>

mn= —c

(=)™ Z, 1 Coe(1) =0. (14)

The properties of Bloch functions discussed in the previ-
ous paragraph can be also understood from a more general
point of view. It follows from Eqgs.(3) and (13) that func-
tionsc{l)(r) can be obtained as
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anl,).,(r)Z\/E(o"/&Zmn— %Zmn)cmn(r)- K..(m,n)~ (=)™ "2 \/;J'OG dZ exp(idRmn)
. o0 ’ ~\ - (2 2
Therefore, functiong{})(r) andcn(r) belong to the same ) —=(2m) ¢
Landau level because of the existence of continuous group of (—)m*n
magnetic translations. The same is true for the functions = (21
VT YRmn

cﬁ,?,)](r) originating from the function cg%)(r)oczqcoo(r),

where g is an arbitrary integer. Bloch function® (®(r), ~ The next term of this expansion falls off &3 An equa-
constructed from them, are completely determined by thdion equivalent toK..(m,n)x(—)™""/Ry, was derived by
translational symmetry up to the phase factors dependin§en and Chitr& using a different procedure.

only on q andk. Therefore, all functionst{¥(r) with the The asymptotic behavior ofim(r) for large |r—Rpy,|
same value of the momentukn and different values of values follows from Eqs(9) and(21). The right-hand side of
coincide up to these phase factors. Singularities of functiong1e equation

w({@(r) ensure the existence of the Hall curréhtence, *

they are present for each set of functioh§”(r) and cannot WOO(r):ng_w Koo (M,n) (1) (22
be eliminated. However, the number of singular points and . 7

their positions in the Brillouin zone change depending onfor the functionw(r) includes the product of the kernel
q.%8 K..(m,n), whose denominator depends snandn slowly,

It is known that the overcompleteness equatidhis re- ~ and the factocy,(r), which depends om andn exponen-
lated to the properties of Jacob{u|7) functions!2!’ Equa-  tially for a fixed value ofr. One can use the asymptotic form
tion (7) for v(k) takes a simple form when rewritten in terms Of the kemnelK..(m,n), Eq. (21), and neglect the higher or-
of these functions. If one performs the summation avém der corrections to it. If one substitutes the expansion

Eqg. (7) using the Jacobi imaginary transformation of Rot~r=1-r-(Rpn—r)/r?]
functions?” »(k) acquires the form _ _ .
into Eq. (22), the first term vanishes because of the Perelo-
mov identity, Eq.(4), and the second term results in
)= e K| ki o] 95 —k_|i2], (17) .
v \/; 1270 "I'b) \27 | b)

r
Wod )=~ =3 2 ()™ (R~ Demi) (23
where k. =k, *ik,. The zeros ofds(u|7) can be found
from the conditionu=(M+3)+ (N+3) 7, whereM andN
are integers, and one immediately recovers that the corner
the Brillouin zone ko= (= w/a, = w/b), is a zero ofv(k).

The first factor in Eq.(23) falls off asr 2, whereas the
gcond is a periodic function of If one plugsr=R,, " in

e second factor and applies H@), this factor takes the
form

[’

I1l. WANNIER FUNCTIONS IN THE INFINITE PLANE "in'+m’'n’
(_)m +n’+m’n E (_)m+n+mannC00(r)'

mn=—o
Equations(9) and(10) can be used to find Wannier func-

tions w,4(r) localized in the infiniter plane. In the limit

a,B—, the sum in Eq.(10) transforms into the integral

The sum is equal to zero because of symmetry arguments,
therefore, all lattice sites,=R.,,, are zeros of the asymp-
totic expansion(23) of the functionw,,(r).

over the Brillouin zone: It was shown by Kohf? that the rate of the falloff of an
exponentially decaying Wannier function is determined by
K J—ab dk exp(ikRpp,) 19 the distance of the singular point in the complex momentum
<(Mmn)=a . is. i i
( (B2)(27)2 NEDS) plane from the real axis. In the problem of magnetic Wannier

functions unavoidable singularities exist in the re&l (
ky) plane. These singularities result in the power-law falloff
of the Wannier functions.
: : _ ) The asymptotic expansion &f..(m,n), Eqg.(21), is accu-
be found analytically. It is determined by the behavior of the, .. up tg tﬁe valuep$m| |n|~1( e.é. tﬂe( dZeviation of
integrand near its pole, i.e., by the expansionv(k) near (1 0)~—0.288 from its approximate value following
Ko. For a square lattica=b= /2, this expansion has the fom Eqg. (21) is only about 2%. The coefficient
form K.(0,0)~1.241 is large as compared with all the coeffi-
cientsK..(m,n) with m,n#0. One can subtract this large
v(Ko+ &)~ ya2el2, (190  term and rewrite Eq(22) in the form

The kernelK..(m,n) is obviously independent ap.
The asymptotic behavior d€..(m,n) for |m|, |n|>1 can

o

woo(r)—coo<r>=m2 (=)™ PA(MZn?)ena(r).  (24)

n=—o

where y~0.5814 is given by the series

©

T
y=- 2 (_)mn+m+nm2ex%_5(m2+n2)

mn= —

. (20) The kernelA(m?, n?) is numerically small and can be con-
sidered as a smooth function of and n. This allows the
application of the arguments employed when deriving Eq.

Substituting(19) into (18) results in the leading term of the (23). Then the leading term in the right-hand side of Exf))

expansion oK. (m,n) in Rr;ﬁ: vanishes because of the overcompleteness condition of Eg.
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sites adjacent to the origin. The suppressionvefy(r)|? at

0187 the lattice sites of the two first coordination spheres of the
015 - von Neumann lattice results in the squeezing of the central
peak and a strong localization fvgy(r)|2. Consequently,
g o3 the central region contributes about 95% to the normalization
> integral. The behavior ofigo(r) along thex axis is shown in
~— o1er Fig. 2(b) over a wide region ofx values. It is seen that
Nf 0.08 1 Woo(X,0) oscillates and decreases withFor x— o, the os-
3 cillation amplitudes decrease &52 and zeros ofwg(x,0)
3 oosf approach multiples of the lattice perio®= in agreement
with Eq. (23). The exactwgy(r) curve is almost indistin-
0-03 ¢ guishable from its asymptotic shape in the entire oscillatory
0.00 L region.
25 1.5 Therefore, functionsv,,,(r) show a two-scale behavior.
@) The functionwg(r) is large and shows only minor devia-
tions from the Gaussian shape inside the central cell, but it is
0.03 small, oscillates, and falls off according to the? law in the
asymptotic region.
0.02F The setw,,,(r) is orthogonal and complete by arguments
SN of Sec. Il. Therefore, any function which is invariant under
= ooth | the unitary transformations of the basis can be calculated in
> AW the Wannier representation. For instance, a straightforward
g . PANE e calculation based on the representation of the functions
B [ > -~ - Wnn(r) through the kerneK,(m,n) and coherent functions
38 worl 2 Cmn(r) shows that the function
R -
1 _
002} Calrir)= 2, Wine(1)Wini(r") (29
-0.03 L 5 o is equal to the expression
(b) z (V2w 1)

Cx(r—r’)=(1/27-r)exp[—(r—r’)2/4}exp[ Iii(rxr’)],

FIG. 2. (a8 Dependence of the functionsy(r)|? and cyo(r)? (26)

onr in the directions of the principal axesandy (right) and the . . . .
diagonals x=+y (left). Solid line—wo(r)|?, dashed line— which can be also derived in the Landau representation. The

Gaussian functioe(r)2. (b) Oscillatory dependence of the func- last factor in Eq.(26) is gauge dependent. Therefore, the
tion wg(x,0) on x. The exact solution, asymptotic solution, and continuous symmetry of the magnetic translation group is
envelope function proportional t& 2 are shown in the region recovered due to the completeness of the systef(r).

X= \/ﬂl by solid, dotted, and dashed lines, respectively.

IV. SOME RESULTS FOR TOROIDAL GEOMETRY

(4). Thereforewq(r)=~coo(r), which means that the differ- ~ Only few results can be obtained for Wannier functions
ence between the functiomg(r) andco(r) is expected to W, (r), Eq. (8), analytically. However, numerical methods
be small in the region where these functions are large. In thallow one to study the dependence W,,(r) on the
larger region, where these functions are smailo(r) domi-  plaquette size,3) and the twistep, and to check the self-
nates and Eq23) should be used. consistency of the procedure. A number of results was ob-
Numerical results support all of the above conclusionstained by Ferraf:?® The singular behavior of',(r) near
The infinite-plane functionvyy(r) is shown in Fig. 2. Figure k=k, was studied in Sec. |I.
2(a) provides a detailed comparison of the shapes of the In Fig. 3 the square of the modulus of the function
function |wg(r)|? and the Gaussian functiaryy(r)? in the Wyo(r) as well as the real and imaginary partsWfq(r) are
region of |x|, |y|<1.5x27. These functions are plotted shown for a square lattice with=8=3 and ¢=0. It is
along thex axis and along the diagonad=y, on the right-  seen thatWy(r)|? is nearly isotropic and well localized in
and left-hand sides of the figure, respectively. The functionthe area of about/27 near the origin. The shape of this
Woq(r) is real on these lines. One can see twgy(r)> and  function is close to the daiafor a triangular lattice.
Coo(r)? are very close to each other in both directions. TheRe[W,(r)} is also rather isotropic and well localized,
function woo(r)? shows small anisotropy: it is slightly elon- whereas IfWq(r)} is small and highly anisotropic in the
gated in thex=y direction and squeezed in thedirection  same region. The shape of the function{W(r)} can be
compared Withcgo(r). It is a remarkable property of the understood if one takes into account that, because of(8ps.
function |wge(r)|? that it is very small in the points and (9), the expansion of IfWy(r)} in the powers ofz
r=27(1,0) and\27(1,1). These points are the lattice starts with the term IfWoo(r)}o<Im{z*}. All lower-power
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FIG. 3. Shape of the functioWyy(r) for a square lattice
with a=B=3 and ¢=0. (@ [Woy(r)|?, (b) Re[Wqr)}, (¢)
Im{Woo(r)}

terms cancel for a square lattice.

discontinuous when one of the points determined by(Ey.
passes through the corner of the Brillouin zdqgg since in
the vicinity of ky the functionW(r) critically depends on
the phasep, of {=k—kg as it follows from Eq.(16).

More generally, the functiofWyy(r)|? depends onp dis-
continuously when (i) both « and B are odd and
b= ¢y=m, (ii) both @ and B are even andp=0, and(iii)

a is odd, B is even, andp,=m and ¢,=0.

Toroidal Wannier functions constructed by magnetic
translations of infinite-plane functionw,,,(r) have more
stable shape thaw,,,(r). This approach will be discussed in
more detail elsewhere.

It was shown in Sec. Il that despite the singular depen-
dence of¥,(r) andW,,,(r) on the twiste in the vicinity of
kg, these sets of functions remain complete at any values of
¢. The completeness can be checked by comparing the re-
sults obtained in th&V,,,(r) lattice basis with those in the
Landau functiofi basis. For example, the function

Crrn=23 Wine(1)Wina(17), 27)

which is similar to the functiorC_.(r,r’), Eqg. (25), does not
depend on a specific choice of a complete basis set of the
LLL. We have calculated the right-hand side of ER7) for
finite plaquettes using botW,,(r) and Landau functions as
given in Ref. 2. Gauge independent partsGgf,r’) in both
representations coincide with the accuracy of our computa-
tions. They were performed for the valuesofand 8 up to

5. For the finite plaguettes the electron density
p(r)=C(r,r) oscillates withr near its continuum limit
p»=1/27r. The amplitude of oscillations decreases rapidly
with increasinge and 8. The number of oscillations ik and

y directions equals the number of fluxeg per a plaguette
rather than the individual values of and 8, which are the
number of lattice sites in corresponding directions. This
property was found analytically in the Landau representation
by Sutherland? It indicates the disappearance of the pattern
of the flux lattice and restoration of the symmetry of the
underlying problem as it is expected since both periodic
functionsW,,,(r) and Landau functions form complete sets.
The completeness of th¥,,,(r) set is in agreement with the
assertions by Ferrafi.

V. CONCLUSION

The construction of infinite-plane localized magnetic
Wannier-type functions was considered a challenging prob-
lem for a long time. It was shown that these functions, if they
do exist, are subject to rigid restrictions. Three properties of
a set of localized magnetic orbitals are incompatible: com-
pleteness, orthogonality, and exponential fall8fkoreover,
for systems supporting a Hall current magnetic orbitals
should fall off no faster tham 21" The set of Gaussian

It is seen in Fig. 3 that all three functions possess fullcoherent states on a von Neumann lattice violates these cri-
symmetry of the square lattice. For an odd-odd plaquette thiteria because of the overcompleteness reldfiamhich is a

high-symmetry shape appears only for the twst 0. When

single linear constraint relating an infinite set of orbitals. We

twist increases, the shape |[8/,(r)|? changes and becomes believe that the complete set of orthogonal two-scale orbitals
asymmetric. The changes are moderate near the maximum wf,,,(r) studied in this paper is the best compromise between
the surfacéWy(r)|? but are considerably larger in its lower the requirement of optimal localization and the inevitable

part. The dependence of the functidfy(r) on ¢ becomes

restrictions on the degree of localization. Functiwpy(r)
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centered at the origifi) is large and possesses nearly GaussPassion for Physics—Essays in Honor of Geoffrey Chew

ian shape inside the region of the size of abgRtrl making edited by C. DeTaretal. (World Scientific, Singapore,

a dominant contribution to the normalization integral, and1985, p. 17] is discussed.
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