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Abstract A theory of excitons in semiconductors in the Fractional Quan- 
tum Hall (FQH) Effect regime is presented. Non-conventional properties 
of magnetoexcitons in this regime originate from the fact that elemen- 
tary excitations of the FQH phases carry fractional charges. Properties 
of excitons strongly depend on the separation h between electron and 
hole confinement planes. When this separation is not too small, h 2 I ,  
where 1 is the magnetic length, excitons look like quasiatoms consisting 
of a valence hole and several fractional charges. Charge fractionalization 
results in a multiple-branch structure of the exciton energy spectrum. 
Symmetry classification of the branches is proposed, and their relation 
to the low-energy part of the Hilbert space of the charged elementary 
excitations of the FQH phases is established. Spectroscopic implications 
of the spectra classification, including the selection rules, are discussed. 

1. Introduction 
Excitons have been discovered and investigated in different inorganic and organic compounds 
during the last half-century. They show very different properties, have different size, binding 
energy, spin, coupling to phonons, etc. However, there is one basic property which is common 
for all of them: an exciton is a neutral particle consisting of a single electron and single hole, 
each carrying a charge equal to the elementary charge e (A specific type of excitons in which 
both an electron and hole reside on different intramolecular orbitals of the same molecule 
we call molecular, or Frenkel, excitons). This common property of excitons is based on the 
fundamental law of the integer quantization of the electrical charge known for a century 
since the discovery of an electron. 

More recently, in 1982-1983, a discovery has been made in the physics of semiconductors 
which changed fundamentally the established concepts about charged elementary excitations 
in solids. It was shown that under some conditions charged elementary excitations of two- 
dimensional (2D) electronic phases carry fractional charges ep = f e / q ,  where q is an odd 
integer. These new elementary excitations, quasielectrons and quasiholes, can manifest 
themselves in different phenomena. In particular, they can participate in the formation 
of an absolutely new type of exciton. Such an exciton is a neutral entity consisting of a 
positive elementary charge (+e), the usual valence hole, and q quasielectrons, each of them 
carrying a fractional charge ( - e / q ) .  For reasons which will become clear from what follows, 
we shall term them.anyon excitons. Such an entity resembles an atom, since it consists of 
a “large” central charge and numerous fractional charges around it. One may expect that 
the spectroscopy of these 2D quasiatoms will possess simultaneously the properties which 
are specific for both atomic spectroscopy and the spectroscopy of conventional excitons. I 
wish to show in this paper that the distinctive feature of anyon excitons is a multiple-branch 
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structure of their energy spectrum caused by the internal degrees of freedQm of their anyon 
shells. The experimental spectroscopy of anyon excitons does not exist for the time being. 
However, our theoretical data strongly suggest that the multiple-branch spectrum of these 
excitons should be accessible for observation and investigation. 

2. Fractional Quantum Hall Effect and Fractional Electrical Charges 
Charge carriers acquire the exotic properties mentioned above when they appear against 
a background of 2D electronic phases called Incompressible Quantum Liquids (IQL). Elec- 
trons show 2D behavior and form 2D phases when they are confined in semiconductor 
heterojunctions and quantum wells having the width about l O O A  or less. Their motion 
in the z-direction, i.e., perpendicular to the confinement plane, being strongly quantized, 
they retain only the lateral degrees of freedom. A strong magnetic field H applied in the 
z-direction quenches the free motion of electrons in the 2, y-plane. Their spectrum becomes 
completely discrete, it is determined by the Landau quantization EN = fiu@ + 1/2),  where 
w, = e H / m c  is a cyclotron frequency. The number of quantum states per unit area equals 
n1 = 1/2n12 for each Landau level, where 1 = ( ~ f i / e H ) ’ / ~  is the magnetic length. If H is 
sufficiently strong, and T = 0, then: 

i) The filling factor v = n/nl is less than one, v < 1, since electrons populate only the 
lowest Landau level (N = 0, n is the electron concentration), and 

ii) the characteristic Coulomb energy EC = e 2 / d  is less than fiu,, EC << hut, where E is 
a dielectric constant. Hence the Landau level mixing may be neglected. 

Under these conditions EC is the only quantity of the dimensionality of energy which 
enters the theory. There are no other competing quantities. Therefore, the properties of 
the ground state are determined completely by the filling factor v, and EC determines the 
energy scale of elementary excitations. 

Now we are in position to formulate the fact which is of a special importance. When 
v takes the values = p / q ,  where p is an integer, and q is odd, the electron system 
condenses into an incompressible phase, the IQL. These liquids have unique properties which 
manifest themselves in the Fractional Quantum Hall Effect (FQHE)( l),  a non-dissipative 
electron magnetotransport (ozz = 0) with quantized values of the Hall conductivity ozy = 

The notion of IQL’s was introduced in the seminal paper by Laughlin (2), who established 
the basic properties of these liquids. They are as follows: 

i) IQL’s are homogeneous phases with the quantized densities v = p / g ,  where p is an 
integer, and g # 1 is odd. 

ii) Charged elementary excitations of IQL’s, quasielectrons (QE) and quasiholes, have 
fractional charges eq = +e/q .  

iii) There are no “soft” branches of neutral elementary excitations in IQL’s. The energy 
gap A for formation of a quasielectron-quasihole pair algebraically has the scale EC. However, 
it is numerically small as compared to E C ,  e.g., for the most stable v = 1 /3  - IQL it equals 

Exotic properties of the charge carriers are not restricted by the charge fractionalization. 
Halperin has shown that they also obey a fractional statistics, which is intermediate between 
the Bose and Fermi statistics. Such particles are termed anyons. The statistical properties 
of these quasiparticles may be expressed either in terms of wave functions (3),  or in terms 
of the filling of the phase space (4). 

The lowest branch of the spectrum of neutral elementary excitations is termed a mag- 
netoroton branch u ~ ~ ( k ) ,  where k is the quasimomentum (Girvin e t  al., Ref. 5 ) .  The 
magnetoroton may be modeled either as a charge density wave ( 5 ) ,  or as a quasiexciton 
consisting of a bound quasielectron-quasihole pair (6). Energy of large-k magnetorotons is 

( e2 / 2 7T f i  ) vp/n * 

A z O.l~c. 
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related to the gap, f i w ~ ~ ( I c  + w) = A. There is a continuum above the magnetoroton 
branch whose states are not classified yet. 

3. Spectroscopy of IQL’s: Excitons 
IQL’s were discovered by means of magnetotransport experiments which are a splendid 

tool for investigating the ground state properties. However, optical spectroscopy seems to 
be an indispensable tool for investigating the spectrum of elementary excitations. To be 
effective in resolving tiny features related to the properties of IQL’s, spectroscopy should 
have a resolution much better than A, which is about 1meV for magnetic fields about 10T. 

There are successful observations of the specific features in the spectra of the intrinsic 
emission from IQL’s in the vicinity of fractional fillings vp/q  which correlate with magneto- 
transport data ( 7 ) .  Resonant Raman scattering permitted the measurement of the frequency 
of the k = 0 neutral excitation (8). Highly pronounced features were observed in the extrin- 
sic emission spectra coming from the trapping of the electrons from a confinement layer by 
neutral impurities (9). They were successfully treated in terms of cusp-strengths (10) and 
used for measuring A values for numerous IQL’s (1 1). 

After the signatures in optical spectra of the formation of IQL’s have been observed, 
the main problem shifts from taking the spectra to the assignment and treatment of them. 
There are electronic correlations which determine the basic properties of IQL’s. This means 
that the traditional methods and concepts of the spectroscopy of semiconductors which are 
based either on neglecting the electron-electron interaction, or on taking it into account in 
the self-consistent approximation, are inapplicable to IQL’s. Assignment of experimental 
data should be based on a theory which takes into account the basic properties of IQL’s in 
a proper way. 

It is clear from the basic principles that the intrinsic recombination spectra of IQL’s 
are dominated by excitons. Indeed, in a strong magnetic field the binding energy of an 
exciton increases from about rne4/e2ti2 up to e 2 / d .  Their ratio is just the small parameter 
of the theory ec/hw, << 1. The main problem is: how does an IQL change the properties 
of excit ons ? 

4. Theoretical Concepts. Governing parameter 
In our model exciton consists of a hole and a screening electric charge induced in the electron 
confinement layer where the IQL forms. A hole lives in a different confinement layer which 
is parallel to the electron confinement layer and is separated from it by a distance h. In an 
ideal scheme the confinement layers have a zero width, i.e., they are confinement planes. In 
real systems their widths are of the order of lOOA. A 2D quasimomentum can be always 
ascribed to an exciton even in a magnetic field since it is a neutral entity. Different quantum 
numbers depend on the specific internal structure of the exciton, see below. 

Depending on the ratio h / l  there are two limitbq c f i C P 5 ~  

a. h/ l  << 1. In this case the perturbing field of a hole is very strong since EC >> A, 
and the electron density in the vicinity of a hole strongly deviates from vnl. This limit is 
most interesting from the point of view of a strong renormalization of the exciton properties, 
especially its dispersion law, and the existence of a hidden symmetry trivializing its optical 
spectrum. 

The energy spectrum can not be found analytically. The most powerful tools are exact 
numerical calculations$‘, *&particle systems; actually, the number of particles N 5 10. A 
spherical geometry (12) in which a magnetic monopole is placed in the center of a sphere is 
especially convenient. The magnetic flux through the sphere, 2S40, should be a multiple of 
the flux quantum 4 0  = 2nhc/e. The radius of the sphere R = S1I2Z. The relation between 
the angular momentum of a quantum state on the sphere, L ,  and the quasimomentum of 
the corresponding state on the plane, I c ,  is usually established by the prescription L = Rk. 
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The spherical geometry is most appropriate for spectroscopic applications since it retains a 
continuum rotation group inherent in the real plane geometry and excludes edge effects. 

b. h/l  >> 1. In this case the perturbation produced by a hole is small as compared 
to A, and the size of the exciton (x h )  is large as compared to a size of an anyon (M 1). 
Under these conditions an exciton is an atom-like entity having internal anyon degrees 
of freedom. Its energy spectrum should comprise a multiplicity of branches. There are 
appropriate analytical approaches to the problem. This limit permits one to bridge the 
exciton spectroscopy of IQL’s and the main body of the low-energy physics of the FQHE, 
and opens a new approach to the latter. Actually, excitons are few-anyon systems where 
the interaction and dynamics of anyons may be investigated theoretically and controlled by 
optical experiments. 

I will show in this paper that the events in the intermediate region h M 1 where the 
multiple-branch exciton spectrum emerges are extremely instructive in disclosing the deep 
connections existing between the physics of excitons and the physics of many-anyon systems. 
A hole works as a probe which explores the quantum states of interacting anyons. When h 
changes, the exciton energy spectrum changes strongly. Different branches of it intersect and 
mutually transform. The separation h acquires the role of a governing parameter controlling 
the exciton spectrum (13). 

5. Small h / l  values. Dressing of an Exciton by IQL 
When h is small, h/ l  < 1/2, the energy spectrum of a system comprising a single exciton and 
an v = 1/3 - IQL consists of a single exciton branch and a structureless continuum above 
it, Fig. la. Coupling of the exciton to the IQL strongly perturbs the liquid around it and 
changes the exciton properties. Nevertheless, exciton remains a stable particle with a well 
defined spectrum; for more detail see Ref. 14. Exciton dispersion is strongly suppressed 
as compared to a bare exciton, i.e., an exciton in Fn empty crystal. An increase in the 
exciton effective mass may be considered as a polaron effect caused by the dressing of it by 
neutral elementary excitations of the IQL. As distinct from the conventional polaron effect, 
the electron entering the exciton belongs to the same Fermi sea which dresses the exciton. 
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Fig. 1. (a) Lower part of the energy spectrum of an exciton against a background of an IQL 
consisting of N ,  = 6 electrons in a spherical geometry. For h = 0 the spectrum of a bare 
exciton (ex), a dressed exciton, ~ ( k ) ,  and the “continuum” above it are shown. Only ~ ( k )  
is shown for three different values of h. The energy ~ ( k  = 0) is chosen as an origin for all 
curves. Multiplicative states are shown by open dots; they also display the magnetoroton 
dispersion law (From Ref. 15). 
(b) Distribution of the electron density around a hole in the k = 0 state for a bare exciton 
(ex) and a dressed exciton for h = 0. For large values of 0 x 7r electron density is close to 
the density 3/8 of the v = 1/3 - IQL in the finite system. 
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Electron density in the center of a k = 0 bare exciton equals n1 which is the maximum density 
compatible with the Pauli exclusion principle. For h = 0 this value remains unchanged, 
hence, the distribution of the electron density becomes flatter to ensure the electronic charge 
conservation; this distribution is shown in Fig. lb .  For h = 0 the electron-hole system 
possesses a hidden symmetry: frequencies of all allowed transitions coincide exactly with 
the transition frequency of a bare exciton. The states to (from) which transitions are allowed 
are termed multiplicative states. They constitute only a small part of all excited states. In 
Fig. l a  these states are shown by open dots. The lowest dot corresponds to a transition from 
the ground state of the system, and other open dots to transitions from single-magnetoroton 
states. Absence of the shift of the k = 0 exciton level may be treated as an exact cancellation 
of the down-shift caused by polaron effect and the up-shift caused by the Pauli exclusion 
principle (since the IQL fills a considerable part of the electron phase space). For h # 0 the 
compensation is no more complete and the up-shift dominates. 

It is seen from Fig. l a  that up to h/l  = 0.5 the continuum remains structureless, and 
the gap which forms between it and the exciton branch remains narrow. 

6. Large h/ l  values. Anyon excitons 
In this limit an exciton may be considered as a bound state of a valence hole and q QE's 
as was argued in Sect. 4. In a strong magnetic field every charged particle possesses a 
single degree of freedom and a single quantum number. Therefore, an exciton possesses 
( q  + 1) quantum numbers. In a plane geometry two of them may be chosen as the 2D 
exciton quasimomentum k,  and ( q  - 1) describe internal degrees of freedom. Therefore, 
a conventional (electron-hole) magnetoexciton, q = 1, has no internal quantum numbers. 
This is a well known fact. 

A simple model of an anyon exciton includes two QE's (16); therefore, q = 2, and there 
is a single internal degree of freedom. For k = 0 the internal angular momentum M may be 
chosen as the corresponding quantum number ( M  5 0 since QE's carry negative charges). 
The wave functions of this system may be written in the representation of pseudo (envelope) 
functions (3): 

*kn(21,  2 2 ,  Z ~ ~ C Y )  c( exp{ikR + i(pzY - p,X)/2} exp{-(1/4)(p'- Z)2)}lzI"Z"'xp(-lz12/16). 
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Fig. 2. (a), (b): Lower part of the energy spec- 
trum of an anyon exciton consisting of a hole and 
two (-e/2) QE's. When h increases, anticrossings 
become narrower, and a(k)  for the ground exciton 
state becomes flatter. The dispersion law of an 
conventional magnetoexciton (ex) is shifted to fa- 
cilitate a comparison with n = 0 curve. h in units 
of 1, ~ ( k )  in units of EC.  (c): Electron density at 
the hole in the three lower states (From Ref. 16). 
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In this equation we use complex coordinates z = z + iy for QE’s (21 and 2 2 )  and a hole (a),  
and also Jacobi coordinates z = z1 - z2 and zo = (zl + z 2 ) / 2  for QE’s. From zo and z3 new 
coordinates are formed by the usual exciton transformation. Therefore, the final complex 
coordinates are z ,  ( = zo - 23, and 2 = (zo + z 3 ) / 2 .  The vectors R, p’ and r correspond to 
complex coordinates 2, ( and z ,  respectively; 2 = E x K, E is a unit vector in the direction 
perpendicular to the confinement plane. The quantum number n = \MI .  Most of the factors 
in this equation are completely determined by the magnetic symmetry. The only non-trivial 
factor is IzIa, it comes from the fractional statistics of QE’s. For a two-anyon model the 
charge of QE’s equals e2 = -e/2, and cy = -1/2. For comparison, q k n  is even in 2 for 
bosons, and odd in Z for fermions. At k = 0 the Hamiltonian is diagonal in n7 and the 
functions q k n  permit us to calculate the energy levels explicitly. For k # 0 the anyon-hole 
interaction is non-diagonal in n ,  and the Hamiltonian must be diagonalized numerically. 
The results for the lower Landau levels are shown in Fig. 2. They were obtained with a 
Coulomb interaction between all particles. 

The spectrum consists of multiple branches as shown in Fig. 2. Their positions strongly 
depend on h/Z, so that with increasing h / l  the branches with large n values move down. The 
transformation of the spectrum is accompanied by numerous intersections of the branches. 
All branches are flat as compared to the spectrum of a conventional magnetoexciton shown 
as the dashed line in Fig. 2a. This behavior is in agreement with Fig. l a ,  but now it may 
be understood in somewhat different terms. When k -+ 03, one of the QE’s moves away 
from the exciton. It seems obvious that a partial ionization of an exciton costs less energy 
than the full ionization of it. Therefore, the larger is Q, the flatter the exciton spectrum is. 
The electron density in the point where the hole resides is shown in Fig. 2c for different 
quantum states. It is seen that every anticrossing of exciton branches is associated with a 
strong electron density exchange between them. 

7 .  Intermediate h / l  values. Emergence of the multiple-branch spectra 
Two absolutely different pictures of the exciton spectrum were obtained in Sects. 5 and 6 
for two opposite limit cases. The question is: when and how do these pictures match? 

“When” means: how large is the ratio h/ l  when the transformation sets in? If it occurs 
at large values of h/2, the transition can not be investigated theoretically in the spherical 
geometry since h can not be chosen larger than about R / 2 ;  actually, h/2 5 1.5. For too 
large values of h the effect also can not be investigated experimentally since the optical 
transition probability is controlled by the overlap between electron and hole wave functions, 
so that it decreases exponentially with h. We show below that for v = 1/3 and 2/5 - IQL’s 
the transformation sets in in a convenient region h/ l  M 1. 

“HOW” means: what happens to the original ( h  = 0) exciton branch and the continuum 
seen in Fig. l a  when h/l  increases? Where do the new branches come from? We show that 
they split off of the bottom of the continuum (and many of them move down), while the 
original branch moves up and looses its importance with increasing h/Z. 

Angular Momentum, L 

Fig. 3. Energy spectrum of the same system as in Fig. l a  for h/l  2 0.7: (a) h/2= 0.7, (b) 
1.0, and (c) 1.2.  In (d) the energy spectrum of the N ,  = 7 system is shown (From Ref. 17). 
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It is seen from Fig. 3 how the spectrum shown in Fig. l a  changes when h/ l  increases. 
Already at h / l  = 0.7 two new branches starting at L = 3 and L = 1 emerge; they are 
designated as L3 and L1, respectively. The branch L3 moves down with increasing hll .  The 
branch L5 which appears later follows it. The origin of the branch L6 is also seen in Fig. 
3c (at L = 6). Calculations performed for a larger system ( N ,  = 9, Nh = 1) result in nearly 
the same data. 

We are insposition now to summarize the general regularities which follow from the 
calculations. New branches split off at the bottom of the continuum. The branches Lm 
with m 2 3 move down when h/ l  increases and pass below the the original Lo branch for 
h/Z 2 1. The branches L ,  with m = 1, 2 remain above Lo. Therefore, the branch L3 plays 
some special role. It plays the same role also for a v = 2 / 5  - IQL. 

8. Exciton Branches and Hilbert Space of Quasielectrons 
An exciton existing against a background of an v = 1/3 - IQL consists of a hole and three 
QE’s. There exists a question: what are the values of the angular momentum in the low- 
energy states of a composite consisting of these four particles? It can be shown fiom the 
general arguments based on the dynamics of the particles on a sphere and the limitations 
imposed by statistics, that for Y = 1/3 - IQL’s the maximum angular momentum of three 
QE’s equals 

and the angular momentum of a hole equals 

here N ,  is the full number of electrons on the sphere. The low-energy spectrum of three 
QE’s in the absence of a hole may be found by calculations, for N ,  = 7 it is shown in Fig. 
3d. It is seen that ( L Q E ) ~ ~ ~  = 4.5 in agreement with Eq. (1). It follows from Eqs. (1) and 
( 2 ) ,  and from the usual momenta addition rule that the angular momentum of an exciton 
built from a hole and three QE’s can take the values 

This value does not depend on N, (15). Eq. ( 3 )  explains the special role the branch L3 
plays. Only L ,  branches with m 2 3 may appear within the framework of the quasiparticle 
description, i.e., with an exciton as a composite built of a hole and low-energy QE’s (cf. 
Sect. 6). Excitons with m < 3 include highly excited states of the electron subsystem. 

9. Quasielectron-Hole Momentum Coupling Scheme 
The conclusion of Sect. 8 about the special role of the & branch is based on general 
arguments. To understand the regularities which govern the appearance of different branches 
with m 2 3, it is necessary to consider in more detail the low-energy spectrum of three QE’s. 
The decomposition of the low-energy part of the three-QE Hilbert space of a seven-electron 
system into subspaces with different angular momenta is 4.5 @ 2.5 @ 1.5,  the two former 
states having the lower energy, Fig. 3d. Taking into account that Lh = 7.5, and applying 
the momentum addition scheme one finds that the minimal angular momenta of excitons 
arising from the three QE subspaces are equal to 3, 5 ,  and 6 ,  respectively. These are just 
the minimum L values for the branches L 3 ,  L5 ,  and Lg which appear in Fig. 3. This 
observation implies the momentum coupling scheme for low-energy states which may be 
designated as { Q E } h  - coupling: the momentum LQE which forms in the absence of a hole 
couples to Lh, and by addition of them the exciton angular momentum L,, is formed. The 
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{QE}h  - coupling scheme was checked also for a larger v = 1/3 system ( N ,  = 8,Nh = l ) ,  
and for v = 2/5 - IQL ( N ,  = 9,Nh = 1); in the latter case an exciton includes five QE’s. 
One can check by inspection that first emerge the excitons which originate from subspaces 
having lower energies, and between the excitons emerging from subspaces with comparable 
energies first come those which have lower values of m, i.e., the lesser exciton size. 
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Fig. 4. Energy spectrum of the same 
system as in Fig. la for h / l  = 1.4 in 
a wide region of L values. The number 
of states at the branches Ls,  L5, and 
L6 is in agreement with the { Q E } h  - 
coupling scheme (From Ref. 1 i). 

Angular Momentum, L 

Exciton dispersion laws are shown in Fig. 3 only for L 5 6 since the accuracy of the 
data decreases for larger momenta. However, for the systematics-of-states purposes it is 
instructive to consider the data in a larger range of L values. They are shown in Fig. 4 
and permit to check the { Q E } h  - coupling scheme. The number of states at  the L3, L 5 ,  
and L6 branches coincides exactly with the requirements of the momentum addition rule, 
Lh - LQE 5 L 5 Lh + LQE. When R + co, the branches which arise from the addition of the 
momenta turn into different branches of the exciton dispersion law in the plane geometry. 

10. Sphere-onto-Plane Projection. Spectroscopic Implications 
Real systems have a plane, and not a spheric geometry. Therefore, it is necessary to have a 
definite prescription for projecting the dispersion law of a composite particle between these 
two geometries. In the plane geometry the quasimomentum k is a quantum number; the 
energy depends on k, and the phase of k forms the space of degeneracy. In the spherical 
geometry the quantum numbers are L and L,; the energy depends on L, and L, forms the 
space of degeneracy. Therefore, there are the quantities L and lc which should be connected 
by some relation. One more fact should be taken into account: for L, branches the values 
of m do not depend on the system size. Therefore, L, is a quantum number, and it may be 
understood only as an internal angular momentum of a composite particle. The prescription 
based on these arguments is as follows: L, is the internal angular momentum, L, = IMI, 
and L - L, = Rk. The latter equation generalizes the usual prescription L = Rlc (12) as 
applied to composite particles. 
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Fig. 5 .  Energy spectrum of the same sys- 
tem as in Fig. la  for h/l  = 1.5. Num- 
bers show calculated intensities of single- 
magnetoroton transitions (in percents to 
the transition probability from multiplica- 
tive states, for h = 0) (From Ref. 18). 
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Identification of the left ends of the L,  branches in the spherical geometry with the k = 0 
point in the plane geometry point implies some restrictions on the shape of L,,, curves, and 
also some selection rules for optical transitions. Since the dispersion law should show an 
extremum (usually a minimum) at k = 0, one can expect that the slope of L ,  curves at  their 
left end should tend to zero when R + 03. The slope of well developed curves (Lo, L1, LJ, 
and L5) in Fig. 4 decreases with decreasing L. 

In the k = 0 point excitons may be classified according to the projection of the internal 
angular momentum M .  Therefore, direct transitions to the ground state are allowed only 
from the Lo branch. Magnetorotons also are composite particles. Therefore, they might be 
expected to have some internal momentum MMR whose value is as yet unknown. Single- 
magnetoroton transitions at the k = 0 point are allowed from the exciton branches having 
M = MMR, and forbidden for all different branches. The transition probabilities found in 
the spherical geometry are expected to have i) a considerable magnitude at the left end and 
a weak k dependence for allowed transitions, and ii) a small magnitude at the left end and 
a strong k dependence for forbidden transitions. In Fig. 5 single-magnetoroton transition 
probabilities are shown for all points having an unambiguous assignment. The branch Lz 
seems to be the only candidate for the allowed single-magnetoroton transition; the transition 
is weak, but its intensity shows a slow L dependence. These data imply that magnetorotons 
are Lz quasipart icles . 

11. Conclusion 
It was shown above that excitons possess unusual properties in the FQHE regime. These 
properties originate from the charge fractionalization, which manifests itself in the multiple- 
branch structure of the exciton energy spectra. The most favorable experimental procedure 
for observing exotic properties of excitons consists in changing the parameter h / l  under the 
conditions v =const. The theory establishes a direct relation between the spectroscopy of 
excitons and the low-energy physics of the FQHE. The experimentally observable objects 
of the latter are hierarchical (many-particle) states and the gaps. Observable objects of 
the exciton physics are few-particle states including a single hole and several quasielectrons. 
These two fields constitute a single whole with the analogous problems and approaches. 
One of these problems is the quasiparticle interaction law. It seems probable that exciton 
spectroscopy may become a very useful tool for investigating it. Indeed, the exciton spec- 
troscopy deals with few-particle systems, has in its disposal the governing parameter h / l ,  
and reach experimental techniques (selection rules, polarized spectra, etc.). Unification of 
the transport and spectroscopic techniques on the level of fundamental mechanisms seems 
highly promising. 
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