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Exciton spectra of a v = 2/3 Incompressible Quantum Liquid (IQL) are investigated and 

compared with those of a v = l/3 IQL. Difference in exciton spectra of these IQL’s is related 

to the asymmetry in the statistical and dynamical properties of quasielectrons and quasiholes 

of the same IQL which follows from the composite fermion theory. Energy spectra and 

electron form factors of excitons of a v = 213 IQL are in a satisfactory agreement with the 

anyon exciton model. They are also compatible with the assignment of magnetorotons as 

quasiparticles with the intrinsic angular momentum 2. 
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Spectra of elementary excitations of IQLs’ comprise 
charged and neutral excitations. Charged quasiparticles 
(QPs) are quasielectrons (QEs) and quasiholes (QHs) 
carrying fractional charges’ e* and obeying fractional sta- 
tistics, 2 i.e., they are anyons. For an IQL with a filling 
factor v = p/q the charge e’ equals e’ = &e/q. A col- 
lective mode known as a magnetoroton (MR) branch3 
forms a lower part of the spectrum of neutral excitations. 
Optical experiments on intrinsic photoluminescence and 
resonant Raman scattering4 involve excitons, a different 
type of neutral excitations. Presence of an incompress- 
ible condensate strongly influences the internal structure 
of excitons. When the separation, h, between electron 
and hole confinement planes is large as compared to the 
magnetic length, 1, exciton spectrum shows a multiple- 
branch structure.’ Multiplicity of branches arises because 
of charge fractionalization, and excitons of some of these 
branches are anyon excitons consisting of a valence hole 
and Q QEs. Multiple-branch exciton spectra have been 
also found in recent finite-size calculations for an Y = 
l/3 IQL. % 7, s Charged complexes which include anyons 
(anyon ionsg”) can also arises Fine structure of the op- 
tical spectra resulting from all these entities shoulo not 
disappear even in the h + co limit.” 

Anyon exciton branches are related 6, s to the low en- 
ergy sector of the electron subsystem” which is believed 
to be the anyon sector. This relation connects excitons 
to the basic physics of the fractional QHE and opens 
the possibility to investigate it by means of the optical 
experiments. Because of the charge symmetry, &Es of 
a v = (1 - p/q) I&L have the same properties as QHs 

of a u = p/q IQL. Therefore, investigation of excitons of 
charge conjugate IQLs, v = p/q and v = 1 -pJq, permits 
one to probe the properties of QEs ans QHs of the same 
IQL. The very fact that the filling factors of incompress- 
ible states are non-equal to l/2 implies difference both in 
statistical and dynamic properties of QEs and QHs. The 
difference in dynamic properties, e.g., in form factors, is 
a well established fact.12 Difference in the dimensions of 
the Hilbert spaces of QEs and QHs has been established 
numerically. l3 We argue that this difference in the statis- 
tic properties of QEs and QHs is an intrinsic property 
of IQLs which follows from composite fermion (CF) the- 
ory by Jain14 and does not require any involvement of 
dynamic correlations between QPs. We show that the 
energy spectra of excitons of v = 213 and v = l/3 IQLs 
differ drastically, and that exciton spectra of a Y = 213 
IQL may be related to the anyon sector of the electronic 
subsystem in conformity with the approach developed 
previously. ‘, l5 Exciton spectra of a v = 213 IQL support 
the assignment61 l5 of MRs as QPs possessing an intrinsic 
angular momentum L = 2. 

Let us consider Laughlin liquids, v = l/m, in a spher- 
ical geometry12 and apply to them the CF theory. The 
flux 2Sc~ in the CF representation equals 

~S~F=N$N~H-N~~-~, (1) 

where N, Non, and NOE are the numbers of electrons, 
QHs, and QEs, respectively. Since QHs inhabit the low- 
est Landau level, the dimension of the Fock space is 

GQH=2SCF+l= N+NgH. (2) 
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QEs inhabit the next Landau level, hence, the dimension 
of the QE Fock space is 

has a macroscopic limit when plotted us L - (LQ~)~~. It 
is a remarkable property of the data of Fig. 1 and Ref. 15 
(which are in agreement with the data of Ref. 13) that the 

energies of L = ( LQP)-~ and L = (LQ~), - 2 states 
are high for 3-QH systems, while low for 3-QE systems. 

Therefore, a short range repulsion of anyons is strong for 

QHs rather than for QEs, which is in conformity with the 
difference in their form factors.12 

GQE = 2(& + 1) + 1 = N - N9~ + 2 . (3) 

For N~E = N~H = 1 both dimensions coincide and (2) 

and (3) give a well known result GQE = G,JH = N + 

1 =Gr. l2 However, for NQE = N9H # 1 the dimensions 
differ: 

GQH - GQE = 2(N~p - 1) (4) 

Eq. (4) was proposed in Ref. 13 to explain the numerical 
finite-size data and treated in terms of a hard core con- 
straint for QEs. The above arguments show that it has 
a statistical rather the dynamical origin.16 Bosonic Hal- 

dane dimensionI of QHs, dn, equals ds = G,. Bosonic 
dimension of QEs equals ds = G1 - ~(NQE - l), while 
fermionic dimension of them equals dF = G1 - (NQE - 1). 
Therefore, statistical suppression of the space dimension 

is stronger for QEs than for usual fermions. 

Maximum total angular momentum of several QEs or 
QHs in a v = I/q IQL may be found in the CF represen- 
tation by analogy with Refs. 6 and 15: 

(LQE)max = NQEN/~-NQE(NQE- I), (5) 

(LQH)-~ = NQHN/~. (6) 

These states correspond to minimum relative momenta 
of QPs, hence, to most compact configurations of them. 
This statement is supported by numerical data on the 
electron density distribution. For a v = l/3 l&L the 

energy spectrum of a 3-&H system is shown in Fig. 1, 
and the QH density distribution in Fig. 2; for the data 

for 3-QE systems see Ref. 15. Compact states are in- 
sensitive to the system size. Indeed, energies of large 
L states nearly coincide for the systems of different size 

when plotted vs L - (LQP)_~. With increasing N the 

value of (LQp)rnx increases as it follows from (5) and (6), 

and the low L part of the spectrum (which corresponds 
to large QP distances) develops. The low energy sector 
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FIG. 1. Energy of a u = 2/3 IQL with one extra 
electron plotted vs L - L,,. Dots - N = 15, diamonds - 
N = 13 (only the low energy sector is shown). The same 
spectrum possesses a v = l/3 IQL with 3 QHs. Energy 
in units of e2 jd. 

The properties of 3-QH and 3-QE quantum states for 
a v = l/3 IQL provide, because of the charge symme- 

try arguments, the properties of 3-&E complexes in a 

n = 213 and v = l/3 IQLs, respectively. Binding of 
these complexes to a hole results in forming anyon exci- 
ton branches. The data on 3-QE complexes permit one 
to find angular momenta of these branches and to fore 
see which branches appear in the low energy part of the 

exciton spectrum for moderate values of h/l x 1 - 2. 

In Fig. 3 the evolution of the lower part of the exci- 
ton spectrum of a Y = 213 IQL is shown for 0 5 h/i 5 
1.6. Only a single exciton branch, Lo, exists for h = 0. 
The gap between the Lo branch and the quasi-continuum 
above it is wider than for a v = l/3 IQL. With increasing 
h/l new branches develop just as for a Y = l/3 IQL.‘? 7, s 

First the L2 branch appears, then 4, and ‘for h/l = 2 
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2 4 6 
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FIG. 2. Electron density distribution for a u = 213 
IQL with one extra electron; N = 15. Density of the 
incompressible background is subtracted. Upper part: 
L-L - 0 - solid line, 2 - dashed line, 4 - dash- rrmx - 
dotted line. Lower part: L - L, = 3 - solid line; the 
data for a N = 13 system - dashed line. Density in 
units of (2S+ 1)/47rS, coordinate in units of 2. The same 
distribution describes 3 QHs in a v = l/3 IQL. 
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FIG. 3. Energy spectra and intensities of single-MR 
assisted transitions for v = 2/3; N = 13. Numbers - in- 
tensities in units of transition intensities from multiplica- 
tive states (h = 0). h/l = 0 - (a), 1.0 - (b), 1.6 - (c). 

also Ls branch is distinctly seen above L*. Indices ‘id of 
L, branches indicate the values of the angular momenta 
the corresponding branches start from; they are quantum 
numbers which do not depend on the system size. lt is 
remarkable that the sets of of these quantum numbers 
are different for u = l/3 and v = 213 IQLs. E.g., for a 
v = l/3 IQL the branch Ls appears at first, and there is 
no low lying Lz and La branches. 

Angular momentum of an anyon exciton on the back- 
ground of an I&L is equal to the difference between the 
hole angular momentum Lh and the angular momentum 
of a m-&E complex, Lc)E. L,, always equals S, the half of 
the flux. Therefore, it is convenient to rewrite (LQE)~~ 
in terms of S. Eq. (5) for a Y = l/m I&L takes the form 

(&E)max = S - m(m - 2) . The analogous equation for 
a u = (1 - I/m) IQL is (&,E)-x = S; it follows from 
(6). These equations determine the minimum value of 
the exciton angular momentum, (Lex)dn, for Y = 1 jrn? 

(&&in = m(m - 2) , 

and for Y = (1 - l/m): 

(7) 

(Lb?.ii, = 0 . (8) 

Eq. (7) clarifies the special role of the Ls branch for a 
v = l/3 IQL, while (8) determines angular momenta of 
the exciton branches for u = 213: L,, = 0, 2, 3 ,... . 
L,, = 1 is absent because of restrictions imposed on CFs 
by Fermi statistics. The factors favoring low values of the 
exciton energy are i) a low energy of the QE state and ii) 
a small difference (LQE)-~ - LQ,; the latter ~ndition 
ensures a considerable &E-hole attraction for moderate 
values of h/l N 1. The energy of the L,, = 0 state 
is high. As a result, there is only a small, about 25%, 
anyon contribution to the original Lo branch, and there 
is no additional Lo branches. L, branches with n 2 2 are 
related to the low energy sector of the electron subsystem 
and are, in this sense, anyon branches. For h/Z w 1 the 
L$E = 2 state has optimal properties for forming exci- 
tons; the energy of this state is sufficiently low, Fig. 1, 
and the QE density is high near the origin, Fig. 2. Al- 
though the energy of the LQE = 3 state is lower than 
the energy of LQE = 2, the density of LQE = 3 is widely 
spread, Fig. 2, which strongly reduces a Coulomb attrac- 
tion. As a result, LQ, = 3 branch approaches LQE = 2 
only for larger values of h/l about hjl m 2. 

Properties of Lz excitons provide important data for 
assignment, of the MR branch. We argued’ that the prob- 
abilities of single-MR assisted transitions for some branch 
L, can both i) have a considerable magnitude and ii) 
show a slow L-dependence only if L, = LMR, where LMR 
is the angular momentum of MRS. The data for a v = 1 f 3 
IQL favor the Lz assignment of MRS.’ However, for a 
Y = l/3 IQL the Lz branch appears high in the energy 
spectrum, for large values of h, and can not be reliably 
separated from adjacent branches. Lz branch in Fig. 3 
gives stronger arguments in favor of the same assignment 
of MRS. Indeed, for it the intensities of single-MR tran- 
sitions weakly depend on L and are much higher than for 
Lo and for the states lying above Lz. Lz is well isolated, 
and exists in the region h/R N 0.5, R is the sphere ra- 
dius, where the spherical geometry is rather accurate. 

It is instructive to compare the above data for QEs 
of a v = 2/3 IQL with the results of an analytic study 
of anyon excitons. 56 The correspondence is impressive if 
to compare QE complexes and excitons which angular 
momenta are related as Lex = (LQE)~~ - LQE. Indeed, 
there is no L,, = 1 excitons, and only one type of exci- 
ton species for each value of L,, = 0, 2 - 5. The density 
distributions are similar, including a very special distri- 
bution for L,, = 3. In both cases two species with the 
same value of the angular momentum appear for the first 
time for L,, = (LQE)~~ - LQE = 6. Therefore, the sim- 
ple anyon model of Ref. 5b works well for excitons of a 
v = 2/3 IQL. The success may be attributed, in part, to 
a small size of QEs of this IQL. The data imply that QEs 
of a v = 2/3 IQL possess no intrinsic angular momenta 
in agreement with the recent conjectureI on the absence 
of anyon spins in the plane limit. Complications inherent 
in a v = l/3 liquid will be discussed elsewhere. 
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